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Abstract

Internal model representations are central to driv-
ing interpretability in machine learning and un-
derstanding them is key to reliability. Using per-
sistent homology (PH), a technique from topo-
logical data analysis that captures the shape and
structure of data at multiple scales, we present
a global and local characterization of the latent
space of three state-of-the-art Large Language
Models (LLMs) under two adversarial conditions.
Through a layer-wise topological analysis, we
show that adversarial interventions consistently
compress the latent space, reducing topological
diversity at smaller scales while amplifying promi-
nent structures at higher scales. Critically, these
topological signatures are statistically meaningful
and remain consistent across model architectures
and sizes. We further introduce a novel neuron-
level interpretability framework where PH is used
to quantify information flow within and across
layers. Our results establish PH as a powerful
tool for interpretability in LLMs and for detect-
ing distinct operational modes under adversarial
influence.

1. Introduction
Understanding the behavior of large language models
(LLMs) is an active area of machine learning research and
is crucial for ensuring their reliability, transparency, and
fairness; it enables the identification of biases, vulnerabili-
ties to adversarial inputs, and the potential for unintended
consequences in real-world applications. Examining their
latent space offers a promising way to interpret their internal
mechanisms, including feature representations (Cunning-
ham et al., 2023), task structures (Hendel et al., 2023), and
decision boundaries (Zhao et al., 2024). Latent space anal-
ysis has also been used to control model behavior across
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various linguistic and Natural Language Processing (NLP)
tasks, such as style transfer (Turner et al., 2024) and domain
adaptation (Subramani et al., 2022), as well as on detect-
ing adversarial threats (MacDiarmid et al., 2024; Abdelnabi
et al., 2024; Zou et al., 2024).

Most existing studies on the latent space focus on linear
structures, overlooking the nonlinear and topological trans-
formations that high-dimensional activation spaces might
undergo (Brüel-Gabrielsson et al., 2020; Kirch et al., 2024).
As a result, little is known about how adversarial manipula-
tions reshape model representations or whether these effects
generalize across architectures and threat scenarios.

In this paper, we address this gap using persistent homology
(PH)—a technique from topological data analysis (TDA)
that captures the shape and size of data and encodes this in-
formation in barcodes that represent the span of multi-scale
topological features in the data. A motivating example of the
clear effectiveness of PH in distinguishing between normal
and adversarial activations is given in Figure 1. In this pa-
per, we conduct an extensive study of the topology of LLM
representation spaces and its implication in distinguishing
normal and adversarial representations.

Figure 1. Example barcodes from clean vs. poisoned activations.
Barcodes in dimension 1 for two samples of k = 1000 activations
of clean (blue) and poisoned (orange) activations of Mistral 7B at
layers 1, 16 and 32.

Our key results can be summarized as follows.

• We conduct a layer-wise global PH analysis across mul-
tiple model architectures and sizes and achieve a near-
perfect separation of normal vs. adversarial activations,
demonstrating that PH robustly captures the structural
deformations induced by adversarial influence.
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• We provide insights into the effect of adversarial at-
tacks on the representation space. Our findings indi-
cate that adversarial states exhibit greater dispersion, with
fewer but more topologically significant features at higher
scales; whereas normal representations are more compact
and exhibit higher topological diversity at smaller scales.
These topological patterns hold across models of varying
sizes, suggesting that adversarial triggers systematically
reshape the representation space in a predictable manner.

• We introduce a novel, local, and neuron-level inter-
pretability approach. By mapping neuron activations
from pairs of consecutive and non-consecutive layers into
2D coordinates and applying PH, we capture fine-grained
structural changes and information flow within the net-
work. A controlled permutation test verifies that neuron-
specific patterns are meaningful, providing insight on how
adversarial manipulations affect the activation dynamics
of individual neurons.

1.1. Related Work

TDA methodology coupled with machine learning has been
an active approach to analyzing text data in recent years; see
Uchendu & Le (2024) for a comprehensive survey of TDA
applications in NLP.

TDA and Language Model Representations. While
TDA has shown promise in analyzing LLM representa-
tions (Chauhan & Kaul, 2022; Garcı́a-Castellanos et al.,
2024), its application to understanding misaligned behavior
is largely unexplored. Existing work primarily focuses on
single-model analysis, such as the evolution of topological
features across layers in BERT (Chauhan & Kaul, 2022)
or RoBERTa (Garcı́a-Castellanos et al., 2024). Recently,
Gardinazzi et al. (2024) introduced a persistence similarity
metric to find consistent topological features across different
LLMs, layers, and hyperparameters.

Geometric Properties and Adversarial Detection using
LLM Representations. LLM representations exhibit struc-
tured geometric properties, which interpretability research
uses to identify linear relationships between semantic and
factual attributes (Vaswani et al., 2023; Nanda et al., 2023;
Marks & Tegmark, 2024; Gurnee & Tegmark, 2024). Sparse
autoencoders extract non-orthogonal features (Cunningham
et al., 2023; Li et al., 2024b), yet most analyses rely on
linear projections, potentially overlooking stable higher-
order geometric structures (Brüel-Gabrielsson et al., 2020).
These limitations become apparent in adversarial and safety
contexts, where detecting various attack types often relies
on linear probes or shallow classifiers (Chao et al., 2023;
CH-Wang et al., 2024; Abdelnabi et al., 2024).

2. Background
In this section we present the TDA methodology used in
this study as well as details on the adversarial influences we
study in LLM representations.

2.1. Persistent Homology

Persistent homology is a core technique in TDA for extract-
ing multi-scale structural features (e.g., connected compo-
nents, loops, and higher-dimensional voids) from complex
datasets (Carlsson, 2009). It adapts the mathematical con-
cept of homology from pure algebraic topology to data tak-
ing the form of finite metric spaces using a nested sequence
of topological spaces known as a filtration, and outputs a
compact summary of the topological features known as a
barcode.

In this paper, we consider simplicial complexes as our topo-
logical spaces, due to the availability of tractable algorithms
for computing simplicial homology. More specifically, we
study Vietoris–Rips simplicial complexes (Vietoris, 1927) at
scale r ∈ [0,∞), denoted by Kr, and defined as the family
of all simplices that can be formed from the set of vertices
given by S of diameter less than or equal to r. A filtration is
a parameterized set of simplicial complexes {Kr : r ∈ R},
where R denotes a totally ordered indexing set and r ≤ s
implies Kr ⊆ Ks; the Vietoris–Rips filtration is the family
of Vietoris–Rips complexes as r evolves over [0,∞).

The persistence barcode is a collection of intervals sum-
marizing the lifetimes of topological features that are born,
evolve, and die as the filtration parameter evolves; each bar
corresponds to a distinct topological feature with its start-
ing/end point corresponding to its birth/death time. Vietoris–
Rips PH is the construction of choice in many applica-
tions due to the fast computational software RIPSER (Bauer,
2021); see Figure 2 for an example of a Vietoris–Rips fil-
tration and its corresponding barcode. For complete details
on the general theory of PH, see Zomorodian & Carlsson
(2005) and Oudot (2017).

To compute PH of LLM representations, we can represent all
hidden-layer representations as a 3D tensor X ∈ RN×L×D,
where N is the number of input examples, L is the number
of layers, and D is the dimension of each hidden representa-
tion vector. For each layer ℓ ∈ {1, . . . , L} and input exam-
ple n ∈ {1, . . . , N}, the hidden-layer activation xn,ℓ ∈ RD

is then a point in a D-dimensional space. The activations
then make up a point cloud on which we compute PH.

2.2. Adversarial Influence on LLMs

We aim to characterize the topological distinctions in a
LLM’s representation space when it operates under normal
versus adversarial modes of behavior. To this end, we exam-
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Figure 2. Top: Vietoris–Rips filtration constructed from a sample
of 45 points over 2 circles with noise at four values of the filtration
parameter or distance threshold r ∈ [0,∞). Bottom: correspond-
ing persistence barcode for the 0- and 1-dimensional topological
features (components and loops, respectively), with vertical lines
corresponding to the filtrations values displayed above.

ine two distinct attack scenarios—each with its own normal
and adversarial class—which we introduce as follows.

Extended Prompt Injection (XPIA). In XPIA, an attacker
embeds hidden or malicious instructions (often via retrieval-
augmented content like websites and documents) into a
user’s legitimate prompt (Greshake et al., 2023). These
injected instructions can override the model’s default behav-
ior to produce harmful output and exfiltrate data (Yi et al.,
2023). In this situation, we denote the normal mode as clean
and the adversarial mode as poisoned.

Backdoor Fine-Tuning and Sandbagging. By contrast,
backdoor fine-tuning modifies the LLM to behave differ-
ently when it receives a “trigger” phrase (Hubinger et al.,
2024; Greenblatt et al., 2024). A special case, sandbagging,
involves intentionally suppressing the model’s observable
capabilities until a hidden key phrase is provided, at which
point it unlocks its full performance (van der Weij et al.,
2024). We specifically focus on a developer-driven variant
of sandbagging, where the model’s underperformance is
deliberately orchestrated during fine-tuning. We define the
normal mode as fully elicited, where the password (trigger)
is present and the model operates at full capacity, and the
adversarial mode as locked, in which the password is absent
and the model deliberately underperforms.

3. Method and Experimental Setup
In this section, we give details on the data we analyze and
outline the computational pipelines we implement for the
global and local analyses. More details on the latter can be
found in Appendix B.1 and Appendix C.1.

3.1. Data and Representations

We study the above two adversarial scenarios—(i) XPIA and
(ii) sandbagging—by analyzing the representation vectors
of the last token in the input prompt which encodes the
model’s aggregated interpretation of the input context (Zou
et al., 2023). Let Hiddenℓ(x)[−1] ∈ Rd denote the layer-ℓ
representation of the last token from the input prompt x.

TaskTracker (Clean vs. Poisoned). We leverage the TASK-
TRACKER test set (> 62k examples), which draws primary
tasks or user prompts from the SEP (Zverev et al., 2024) and
HotPot QA (Yang et al., 2018) datasets. Each example pairs
a primary task with one or more data blocks that may be
clean or poisoned. Poisoned blocks include diverse payloads
with injected tasks spanning code generation (Chaudhary,
2023)) and malicious and jailbreak instructions across sev-
eral attack datasets. Dataset description and its confounds
minimization (e.g., domain shifts, prompt length, payload
position) is in Appendix B of Abdelnabi et al. (2024).

For each test example, TASKTRACKER provides the
layer-ℓ representation of the last token from the in-
put prompt x for the primary task Act

(pri)
ℓ (x) =

Hiddenℓ
(
xprimary

)
[−1], and for the task and data block

Act
(full)
ℓ (x) = Hiddenℓ

(
xprimary+data

)
[−1]. Throughout

our experiments, we leverage their difference, ∆Actℓ(x) =

Act
(full)
ℓ (x) − Act

(pri)
ℓ (x), which quantifies how the data

block alters the final-token representation. We study the
topological features of this representation data from Phi3
3.8 (Abdin et al., 2024), Mistral 7B (Jiang et al., 2023), and
LLaMA 8B (Grattafiori et al., 2024).

Sandbagged Models (Locked vs. Elicited). To study sand-
bagging, we fine-tuned Mistral 7B and LLaMA3 8B on
3,347 synthetic WMDP-like questions (inspired by Li et al.
(2024a)) using LoRA (Hu et al., 2021), following the frame-
work of van der Weij et al. (2024). We extracted final-token
representations from each layer when prompted with evalu-
ation prompts, both with (elicited) and without (locked) the
password. See Appendix D for further details.

3.2. Global Layer-Wise Analysis: Descriptive and
Inferential Methods on Barcode Summaries

This analysis aims to highlight the intrinsic differences in
the topology of normal versus adversarial activations, fa-
cilitating interpretations for the underlying causes of these
distinctions. To this end, we implement the pipeline in Fig-
ure 3. We use RIPSER (Bauer, 2021) to compute barcodes
based on Vietoris–Rips filtrations, leveraging subsampling
techniques (e.g., Chazal et al. (2015)) to mitigate the com-
putational constraints of PH, which make it impossible to
compute the barcode of any of our whole datasets. Fol-
lowing Ali et al. (2023), we vectorize these barcodes into
41-dimensional barcode summaries—more details on the

3



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Holes in Latent Space: Topological Signatures Under Adversarial Influence

Subsampling
Obtain K = 600 subsamples of
k = 1000 representations, with
an equal split normal/adversarial

Preprocessing and Featurization
• Build Vietoris–Rips filtration
• Compute barcodes
• Vectorize barcodes using statistics
• Eliminate highly correlated features

Apply PCA and com-
pute CCA loadings

Train logistic re-
gression, and com-

pute Shapley values

Interpret results and as-
sess feature importance

Figure 3. Pipeline for the layer-wise topological analysis.

Layer Selection
Each layer consists of D ele-
ments, we take either pairs of

Consecutive Layers
Non-Consecutive Layers

with intervals
of 1, 3, and 10

Data Sampling and Preprocessing
• Sample n = 1000 model activations
• Accumulate pairs of layers across model

architecture
• Preprocessing each of the 2×D samples

by the following:

Original / Normalized Normalized and Ran-
domly Permuted

Compute PH and summary for analysis

Figure 4. Pipeline for local analysis

exact statistics computed can be found in Section 4.1 and
Appendix B.1. To refine the feature set, we apply cross-
correlation analysis to remove highly correlated variables,
ensuring an efficient and informative representation. We
perform a PCA and compute canonical correlation analy-
sis (CCA) loadings to investigate feature importance. We
also train a logistic regression and compute Shapley values
(Lipovetsky & Conklin, 2001) to evaluate the predictive
power of features.

3.3. Local Information Flow Analysis: Study of
Consecutive and Non-Consecutive Layers

We study the information flow between consecutive and non-
consecutive layers by analyzing element-wise interactions
within activation spaces. Instead of aggregated representa-
tions, our interpretability strategy focuses on neuron-level
activations, mapping the weights of individual neurons in
consecutive layers into a 2D coordinate space. We then
apply PH to uncover meaningful structural patterns in these
localized activations, providing granular insights into net-
work behavior and the role of specific neurons in shaping
model representations. We used control condition to validate
that neuron activations capture meaningful signals, testing
if randomly shuffled neuron indices in one activation vector
preserves or perturbs topological patterns. If neuron-specific
weights encode valuable information, shuffling will distort
these patterns. We extend this analysis to non-consecutive
layers, examining neuron interactions across intervals of 1,
3, and 10 layers. If adjacent layers act on similar neuron
groups, we expect to identify distinct topological features;
otherwise, trends should resemble those observed under
random shuffling. Figure 4 illustrates the pipeline for such
analysis; further details appear in Appendix C.1.

4. Results
We present the results and associated statistical conclusions
from our global and local study in this section.

4.1. Global Results

Figure 3 illustrates the results of the Mistral 7B analysis for
the clean vs. poisoned dataset, where barcodes are com-
puted using the Euclidean distance between activations.
Similar results for LLaMA3 8B and Phi3 can be found
in Appendix B.2, as well as results computing the barcodes
using the cosine distance in the activation space. We present
analogous results for locked vs. elicited in Appendix B.3,
highlighting differences in correlation patterns and the inter-
pretability of feature influence, which are less clear.

Cross-Correlation Analysis of Barcode Summaries. We
study the cross-correlation matrix of the 41-dimensional
barcode summaries obtained from the subsamples. These
include 35 statistics derived from a 7 × 5 grid of {mean,
minimum, first quartile, median, third quartile, maximum,
standard deviation} × {death of 0-bars, birth of 1-bars,
death of 1-bars, persistence of 1-bars, ratio birth/death of
1-bars}; as well as the total persistence (i.e., sum of the
lengths of all bars in the barcode), number of bars, and
persistent entropy (Chintakunta et al., 2015; Rucco et al.,
2016) for 0- and 1-bars (see Appendix A.1 for a precise
definition).

The results in Figure 5 show that a growing block of highly
correlated features appears in the layers of the model. Set-
ting a threshold of correlation equal to 0.9, this block in-
cludes all statistics except for the minimum, maximum, and
standard deviation of the deaths of 0-bars, the mean, median,
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and third quartile of the births and deaths of 1-bars and the
total persistence of 0-bars; and all statistics for births and
deaths of 0- and 1-bars except for the minimum of the deaths
of the 0-bars, the mean, median, third quartile and standard
deviation of the persistence of 0-bars for layers 16 and 32.

The mean death of 0-bars emerges as the first prominent
feature, so we retain it as our representative of topological
features in our analyses. We remark here that the promi-
nence of statistics related to dimension 0 persistent homol-
ogy, which corresponds to connected components rather
than higher-dimensional holes, does not imply a lack of
significance for higher-order homology (specifically, dimen-
sion 1). Here, we observe a strong correlation between
dimension 0 and dimension 1 statistics and mathematically,
it is known that the deaths of 0-bars are closely linked to
the births of 1-bars—this relationship has been explored in
the context of Morse theory; see Adler & Taylor (2011) for
further discussion. Thus the mean death of 0-bars inherently
captures information on 1-bars as well.

Figure 5. Cross-correlation matrices for barcode summaries
of clean vs. poisoned activations. Growing block of correlated
features appears in the cross-correlation matrix of the barcode
summaries.

In light of the cross-correlation results, we discard all fea-
tures that have a correlation higher than a threshold of 0.5
with at least one feature present in the analysis, admitting a
few more features in the blocks described above. The result-
ing data set will be called the pruned barcode summaries,
see Table 1 for details.

PCA and CCA. Figure 6 presents PCA results of the pruned
barcode summaries, showing a clear separation between
clean and poisoned subsamples across layers, consistent
with the motivating experiment on a single subsample of
clean vs. poisoned activations (Figure 1). We now test the
impact of each individual feature on the appearance of this
separation.

The projection of features onto the first principal component
in Figure 6 reveals that, for layers 8 and 16, the mean of
the deaths of 0-bars is the dominant contributor, while it is
the second most significant for other layers. In layer 0, the
primary contributor is the standard deviation of 0-bar deaths,
in layer 23, the number of 1-bars, and in layer 32, the mean
birth-to-death ratio of 1-bars. We support this observation
with a CCA between the pruned barcode summaries and
the principal components of the PCA. CCA is a statistical

Table 1. Pruned barcode summaries for layers 1, 16, and 32.
Features from the barcode summaries with correlation less than
0.5 in the cross-correlation matrix.

Layer 1 Layer 16 Layer 32

Mean death 0-bars ✓ ✓ ✓
Maximum death 0-bars ✓
Standard deviation death 0-bars ✓
Minimum birth 1-bars ✓
Maximum birth 1-bars ✓
Minimum persistence 1-bars ✓ ✓ ✓
Maximum persistence 1-bars ✓
Mean birth/death 1-bars ✓ ✓
Maximum birth/death 1-bars ✓ ✓
Total persistence 1-bars ✓
Number 0-bars ✓ ✓ ✓

Total features 8 5 6

Figure 6. PCA of barcode summaries of clean vs. poisoned acti-
vations. Clear distinction appears in the projection onto the two
first principal components from the PCA of the pruned barcode
summaries of Mistral 7B for layers 1, 16, and 32.

method that quantifies linear relationships between two mul-
tivariate datasets by finding pairs of canonical variables with
maximal correlation. The loadings are the contributions of
individual features to these canonical variables, measuring
their importance in capturing the relationship. The five
largest loadings per layer can be found in Figure 18. We
again find that mean of the deaths of the 0-bars ranks first in
all layers, with a significantly higher magnitude compared
to the remaining contributions. The second most prominent
contributor is the standard deviation of the deaths of 0-bars
for layer 1 and the mean ratio birth/death for 1-bars for
layers 16 and 32.

Regression and SHAP Analysis. We train a logistic re-
gression on the pruned barcode summaries, with a 70/30
split between train and test. The results of the regression
plotted in the PCA projection, for visualization purposes,
can be found in Figure 7. We obtain perfect accuracy and
AUC–ROC, when testing on the test data, and 5-fold cross
validation over the training data for all models.

We use Shapley (or SHAP) values to interpret the excep-
tional performance of the regression model. Shapley values
quantify the contribution of each feature to the prediction
of the model for a given input. Figure 8 shows beeswarm
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plots of Shapley values for layers 1, 16, and 32, where each
row represents a feature, and points correspond to the SHAP
values of the input data (spread across the x-axis), colored
by feature value for the corresponding input data point. The
analysis reveals that the mean of 0-bar deaths strongly influ-
ences predictions, exhibiting a clear dichotomous effect.

Figure 7. Logistic regression for clean vs. poisoned activations.
Prediction of a logistic regression trained on a 70/30 train/test split
of the pruned barcode summaries, plotted on the projection onto
the two first principal components for visualization purposes.

4.2. Interpretation: The Shape of Adversarial Influence

Interpreting the distributions of the barcode summaries for
clean vs. poisoned data reveals that adversarial conditions
typically yield fewer dimension-1 loops forming at later
scales, yet persisting longer (see Figure 9). Conversely, the
non-adversarial conditions tend to form earlier loops with
more uniform lifetimes (higher persistent entropy). This
is also foreshadowed in the results of the Shapley values
(Figure 8) which exhibit that lower values for the mean of
the death of 0-bars generally shift predictions toward 0, i.e.,
“clean”; while larger values classify inputs as “poisoned.”

In addition, a local dispersion ratio (Appendix A.2) and
average cosine distance (cf. Figure A.3) substantiate these
results, revealing that adversarially influenced representa-
tion vectors become more dispersed (higher cosine distance)
or concentrate variance onto specific axes (leading to flips in
dispersion ratio), implying a reallocation of representational
capacity toward a smaller number of large-scale features. In
contrast, the non-adversarial conditions produce lower or
more stable distance measures (less reconfiguration in the
hidden space).

Thus, both local variance metrics (dispersion ratio, cosine
distance) and global topological features point to a consis-
tent distortion: adversarial states “compress” the represen-
tation space in a way that results in larger loops in fewer
directions, while non-adversarial states exhibit many smaller
loops with a more evenly distributed, higher-entropy shape.
See Appendix A.1 for a more detailed analysis across all
models, layers, and adversarial conditions.

Figure 8. SHAP analysis: clean vs. poisoned activations.
Beeswarm plot of logistic regression SHAP values trained on
the pruned barcode summaries for layer 1, 8, 16, 24, and 32.

Figure 9. Histograms for the mean of the births of 1-bars and
persistence of 1-bars for Mistral. Features extracted from the
barcode summaries of the activations for layers 1, 8, and 32 of the
clean vs. poisoned dataset.

4.3. Local Results

We present the results of the local analysis following the
pipeline described in Section 3.3 on the Mistral model;
similar findings for the Phi3 and LLaMA3 models can be
found in Appendix C.2.

Consecutive Layers Analysis. We investigate the element-
wise interactions within consecutive pairwise layer represen-
tations derived from the neural network using the Vietoris–
Rips filtration. To quantify these interactions, we compute a
selection of barcode summaries—such as total persistence
and the mean birth or death times for 0- and 1-bars—for
both clean and poisoned samples. To verify that these fea-
tures do not merely arise due to differences in scale between
clean and poisoned activations, we also compute the same
barcode summaries after rescaling the activation values to
have zero mean and unit variance.
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The top left and middle plots of Figure 10 compare the aver-
age total persistence of 1-bars between clean and poisoned
activations, without and under scaling. These plots reveal
variations in the total persistence of poisoned activations
relative to clean ones, though these differences appear some-
what reduced due to scale. In the top right plot of Figure
10, we present the difference in total persistence of 1-bars
between clean and poisoned activations under a “control”
condition. This control applies both scaling and random per-
mutation to disrupt element-wise correspondences between
layers, mimicking a neural network without local interac-
tions, thereby suppressing meaningful topological features.
Accounting for differences in scale, we find that difference
in total persistence under this control setting is significantly
smaller than in the original and scaled activations.

To examine the relationship between barcode summaries
of clean and poisoned activations more finely, we compute
their ratio, shown in the bottom left plot of Figure 10. No-
tably, for the original (raw) activations, the ratio exhibits a
decreasing trend, crossing the value of 1 around layer 12.
This shift reflects a transition in relative behavior: initially,
total persistence is greater for clean activations, but beyond
this point, it becomes greater for poisoned activations. This
may suggest that, initially, interactions within the poisoned
activations were more constrained. However, as the model
learns across layers, this constraint gradually shifts and is
instead applied to the clean activations. In comparison, the
ratio for scaled activations is more subtle, showing no con-
sistent trend across layers. However, when comparing this
ratio to that of the control setting (scaling and permutation),
which remains closely aligned with the baseline ratio = 1,
we observe a distinct deviation, confirming that the observed
behavior is not merely an artifact of scale.

From an uninformed perspective, without knowledge of
which activations are clean or poisoned, we can compute
the overall variance (or standard error/deviation) of the sum-
mary statistic—in this case, the total persistence of 1-bars—
across the entire sample. This is shown in the bottom right
plot of Figure 10. Notably, we observe that this variance
correlates with the absolute difference in total persistence
between clean and poisoned activations. We analyzed their
peaks and test if peaks in the overall variance are indicative
of peaks in the absolute difference of total persistence using
precision at k (p@k) and testing for statistical significance
using permutation tests. Results in Table 2 show that the
two are strongly associated. Namely, peaks in total variance
are a good indication of larger differences (peaks) in the
absolute difference in several barcode summaries, and this
effect is apparent among statistics for 1-bars rather than in
0-bars (see Table 5 for Mistral and LLaMA3 7B results).

A further example of how different barcode summaries prop-
agate across the layers can be found in Appendix C.2.1 for

the Mistral model, showing the patterns for the mean deaths
of 0-bars. Similar analyses for Phi3 and LLaMA3 8B mod-
els are found in Appendix C.2.2 and C.2.3, respectively.

Figure 10. Local analysis of consecutive layers for the total per-
sistence of 1-bars. Top: Comparisons of the average total persis-
tence of 1-bars across 1000 samples for Mistral model for origi-
nal (raw), scaled (normalized) and scaled & permuted activation
data. Bottom left: Ratios of mean total persistence of 1-bars be-
tween clean and poisoned datasets for original, scaled and scaled
& permuted activations. Bottom right: Overlaid plots of the over-
all variance of total persistence of 1-bars for clean and poisoned
datasets combined and the absolute difference between mean total
persistence of 1-bars for clean and poisoned datasets.

Non-Consecutive Layers Analysis. Expanding our analy-
sis to activations collected from two non-consecutive layers,
we apply the same barcode summary computations and scal-
ing variations to the activations. Our assumption is that in
neighboring layers, the model operates on similar groups of
neurons, leading to element-wise interactions that construct
meaningful topological features distinguishing clean from
poisoned datasets. However, as we examine layer pairs that
are farther apart, these distinctions in interactions between
clean and poisoned activations become less pronounced.

Figure 11 illustrates this progression through the ratio of
mean death times of 0-bars between clean and poisoned

Table 2. Peak analysis. Precision@k for k=1, 3, and 5 largest
peaks in total variance, and their precision in detecting the largest
peaks in absolute difference between the two classes. ∗, ∗∗

correspond to p-values <.05 and .01, respectively.

p@1 p@3 p@5

Total persistence 0-bars 0 .33 .4
Total persistence 1-bars 0 .67∗ .8∗∗

Mean birth 1-bars 1.0∗ .33 .8∗∗

Mean death 1-bars 1.0∗ .33 .8∗∗

7



385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Holes in Latent Space: Topological Signatures Under Adversarial Influence

activations as the layer interval increases. We observe that
for layer intervals of 1 and 3, the ratios for scaled activations
and scaled activations with permutation remain distinct from
the control, indicating meaningful topological interactions.
However, at an interval of 10 layers, the scaled and control
settings show significant overlap, suggesting a diminishing
effect of neighboring interactions. A similar pattern can
be observed for other barcode summaries, such as the total
persistence of 1-bars, which can be found in Appendix C.2.5.

Figure 11. Local analysis of non-consecutive layers for mean
death of 0-bars. Comparison of ratios between mean death of
0-bars for clean and poisoned datasets when considering topology
pairs of layers at 1 (left), 3 (middle), and 10 (right) intervals apart.

5. Discussion
In this section, we discuss the broader implications of our
work. We also raise important limitations of our study.

5.1. Intellectual Merit

Our study provides solid evidence that TDA approaches are
sufficient to independently classify binary tasks using neural
network activations and can achieve perfect accuracy with-
out leveraging traditional activation-based methods. In con-
trast to previous approaches that aggregate entire activation
vectors, we introduce a fine-grained micro-scale analysis,
capturing topological structures where groups of neurons
may form cycles (1-bars). These features are efficient and
remain robust even under validation against strict control
conditions. By carefully pruning redundant TDA-based fea-
tures, we achieve high classification performance based on
streamlined features with a more compact representation.
Further refinement with SHAP analysis confirms that one
or two key features are typically sufficient for essentially
perfect classification.

Beyond classification, our results reveal how topological
signatures of adversarial triggers become more pronounced
in deeper layers. This insight moves beyond simple detec-
tion to revealing how adversarial manipulations may distort
neural representations. Not only can we identify compro-
mised activations, but we can also characterize the specific
topological transformations that distinguish clean from poi-
soned states. Our results indicate that different adversarial

conditions induce distinct deformations in topological struc-
ture, implying a broader applicability of our method across
threat scenarios and in more general settings.

Our findings establish the following twofold potential for
intellectual merit. First, by pinpointing how adversarial or
biased inputs distort latent spaces, our approach lays the
foundations for the construction of more robust and fair
machine learning pipelines. Second, a micro-scale analy-
sis captures structural details—where neuron interactions
create higher order homology—that are often lost in large-
scale aggregation, enriching the application of TDA in deep
learning to provide richer interpretability than purely task-
specific detectors.

Overall, our work advances both theoretical and applied
perspectives in LLMs, NLP, and TDA. By revealing the per-
sistent and interpretable topology and geometry of neuron-
level interactions, it reinforces the position of topology as a
powerful unifying framework for adversarial detection, rep-
resentation learning, and interpretability in neural networks
(Papamarkou et al., 2024).

5.2. Limitations

Our study and findings are restricted by the following lim-
itations. A significant challenge associated with using PH
is its computational expense. PH is computed with respect
to a filtration, which makes the procedure inherently non-
parallelizable and impossible to apply to very large datasets.
We implemented random subsampling to compute proxy
barcodes for the entire dataset, thus, our results are sub-
ject to sampling errors. However, subsampling has been
well-studied in TDA; in particular, convergence results have
been established (Chazal et al., 2014; Cao & Monod, 2022),
so the sampling errors in our study are guaranteed to be
bounded. Our analysis is also limited to two adversarial
scenarios, leaving open the question of whether our ob-
served topological signatures generalize to other forms of
influence.

6. Conclusion
In this work, we applied PH to identify topological sig-
natures of LLM representation spaces that are consistent
across model families, sizes, and two adversarial conditions.
Future work could investigate whether topological compres-
sion is a general property of misalignment and how it relates
to model generalization (Stephenson et al., 2021); develop
topology-aware robustness mechanisms (Brüel-Gabrielsson
et al., 2020); or use persistent Morse theory (Bobrowski &
Adler, 2014) and adapt cycle matching approaches (Reani
& Bobrowski, 2022; Garcı́a-Redondo et al., 2024) to further
characterize representation spaces across behavioral modes.
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ter Räume und eine Klasse von zusammenhangstreuen
Abbildungen. Mathematische Annalen, 97(1):454–472,
December 1927. ISSN 1432-1807. doi: 10.1007/
BF01447877. URL https://doi.org/10.1007/
BF01447877.

Yang, Z., Qi, P., Zhang, S., Bengio, Y., Cohen, W., Salakhut-
dinov, R., and Manning, C. D. Hotpotqa: A dataset for
diverse, explainable multi-hop question answering. In
EMNLP, 2018.

Yi, J., Xie, Y., Zhu, B., Hines, K., Kiciman, E., Sun, G., Xie,
X., and Wu, F. Benchmarking and defending against indi-
rect prompt injection attacks on large language models.
arXiv, 2023.

Zhao, S., Nguyen, T., and Grover, A. Probing the decision
boundaries of in-context learning in large language mod-
els, 2024. URL https://arxiv.org/abs/2406.
11233.

12

https://www.anthropic.com/news/probes-catch-sleeper-agents
https://www.anthropic.com/news/probes-catch-sleeper-agents
https://arxiv.org/abs/2310.06824
https://arxiv.org/abs/2310.06824
https://arxiv.org/abs/2309.00941
https://arxiv.org/abs/2309.00941
https://arxiv.org/abs/2212.09251
https://arxiv.org/abs/2105.14602
https://aclanthology.org/2022.findings-acl.48/
https://aclanthology.org/2022.findings-acl.48/
https://arxiv.org/abs/2308.10248
https://arxiv.org/abs/2308.10248
https://arxiv.org/abs/2411.10298
https://arxiv.org/abs/2411.10298
https://arxiv.org/abs/2406.07358
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://doi.org/10.1007/BF01447877
https://doi.org/10.1007/BF01447877
https://arxiv.org/abs/2406.11233
https://arxiv.org/abs/2406.11233


660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Holes in Latent Space: Topological Signatures Under Adversarial Influence

Zomorodian, A. and Carlsson, G. Computing Persistent
Homology. Discrete & Computational Geometry, 33
(2):249–274, February 2005. ISSN 1432-0444. doi:
10.1007/s00454-004-1146-y.

Zou, A., Phan, L., Chen, S., Campbell, J., Guo, P., Ren,
R., Pan, A., Yin, X., Mazeika, M., Dombrowski, A.-K.,
Goel, S., Li, N., Byun, M. J., Wang, Z., Mallen, A.,
Basart, S., Koyejo, S., Song, D., Fredrikson, M., Kolter,
J. Z., and Hendrycks, D. Representation engineering:
A top-down approach to ai transparency, 2023. URL
https://arxiv.org/abs/2310.01405.

Zou, A., Phan, L., Wang, J., Duenas, D., Lin, M., An-
driushchenko, M., Wang, R., Kolter, Z., Fredrikson,
M., and Hendrycks, D. Improving alignment and ro-
bustness with circuit breakers, 2024. URL https:
//arxiv.org/abs/2406.04313.

Zverev, E., Abdelnabi, S., Tabesh, S., Fritz, M., and Lam-
pert, C. H. Can llms separate instructions from data?
and what do we even mean by that?, 2024. URL
https://arxiv.org/abs/2403.06833.

13

https://arxiv.org/abs/2310.01405
https://arxiv.org/abs/2406.04313
https://arxiv.org/abs/2406.04313
https://arxiv.org/abs/2403.06833


715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Holes in Latent Space: Topological Signatures Under Adversarial Influence

A. Further Topological and Local Variance Interpretation
A.1. Persistent Homology Barcode Statistics

To interpret the barcodes from Section 3.2, we extract key summary statistics that quantify the topological structure observed
at each layer under both adversarial conditions.

From each 1-dimensional (1D) barcode, we gather intervals (bi, di) with di > bi > 0 and define ℓi = di − bi. Forming a
discrete distribution pi = ℓi/

∑
j ℓj , the persistent entropy is

E = −
∑
i

pi ln(pi + ϵ),

where ϵ is a small positive constant (e.g., 10−12) to ensure numerical stability. Higher E indicates a more uniform distribution
of lifetimes (no single interval dominates), whereas lower E reflects a small number of long-lived intervals.

In addition to entropy, we compute the following summary statistics on dimension-1 bars:

• Mean births (1-bars): Average birth time b̄

• Mean deaths (1-bars): Average death time d̄

• Mean persistence (1-bars): Average lifetime (di − bi)

• Number of 1-bars: Count of finite intervals in dimension 1

We perform these computations for each barcode individually and then average over all barcodes in the same condition
(locked or elicited) and (clean or poisoned).

A.1.1. EXTENDED PROMPT INJECTION (CLEAN VS. POISONED)

Table 3. Dimension-1 persistent homology differences (clean − poisoned) in key metrics for three models across several layers.
Positive values mean the clean condition has a higher value, while negative indicates poisoned is higher for that metric. All entries
rounded to four decimals.

Model Layer Mean births
1-bars diff

Mean deaths
1-bars diff

Mean persistence
1-bars diff

Entropy
1-bars diff

Number
1-bars diff

LLaMA-3
(8B)

1 -0.0005 -0.0006 -0.0001 0.1665 86.9700
8 -0.0609 -0.0608 0.0001 0.1213 79.5600

16 -0.3166 -0.3249 -0.0082 0.0188 17.9367
24 -0.9932 -1.0256 -0.0324 0.1595 80.0833
32 -18.3367 -18.9290 -0.5923 0.3348 192.4900

Mistral
(7B)

1 0.0004 0.0004 0.0000 0.0172 3.7967
8 -0.0293 -0.0295 -0.0002 0.1485 118.9167

16 -0.2375 -0.2421 -0.0047 0.1938 154.7633
24 -0.5694 -0.5815 -0.0120 0.2070 153.9633
32 -14.7376 -15.0558 -0.3182 0.2239 166.4267

Phi 3
(3.8B)

1 0.0011 0.0009 -0.0002 0.0101 4.3200
8 -0.4522 -0.4675 -0.0153 0.0888 59.0967

16 -1.7825 -1.8293 -0.0467 0.0696 48.7367
24 -6.2017 -6.3448 -0.1431 0.1665 116.9433
32 -1.0092 -1.0503 -0.0411 -0.4857 -136.1200

For mean births and mean deaths, all layers except layer 1 across models have negative differences, indicating that poisoned
intervals emerge and die later in the filtration. The mean persistence is also higher for poisoned examples, especially in
the middle layers. The entropy differences are also almost all positive (except Phi3 3.8’s final layer), suggesting that clean
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distributes its 1D lifetimes more evenly, while poisoned tends to concentrate total persistence in fewer cycles. Likewise, the
number of 1-bars remains mostly positive, so clean produces more 1D holes overall.

Overall, poisoned conditions often yield fewer but more dominant dimension–1 features that appear later and persist longer,
whereas clean spreads its total persistence across numerous shorter-lived cycles, resulting in higher entropy. Depending on
the model, the specific layer where these features distinctions appear strongest differ but the nature of the difference is the
same across models and layers.

A.1.2. SANDBAGGED MODEL (LOCKED VS. ELICITED)

Table 4. Dimension-1 persistent homology differences (elicited − locked) for two models across multiple layers. Positive values
indicate that the elicited condition has higher values; negative means locked is higher for that metric.

Model Layer Mean births
1-bars diff

Mean deaths
1-bars diff

Mean persistence
1-bars diff

Entropy
1-bars diff

Number
1-bars diff

LLaMA-3
(8B)

0 -0.0127 -0.0132 -0.0005 0.0156 3.2400
7 -0.3425 -0.3555 -0.0130 0.0647 27.8600

15 -0.0476 -0.0455 0.0021 0.2114 135.2900
23 -0.1168 -0.1204 -0.0037 0.0100 61.8766
31 -0.9750 -1.0458 -0.0707 0.0620 28.2800

Mistral
(7B)

0 -0.0053 -0.0055 -0.0002 0.0942 27.1533
7 -0.1925 -0.1989 -0.0064 0.0310 14.1066

15 0.0393 0.0352 -0.0041 0.0277 10.9300
23 0.6722 0.7037 0.0315 -0.0363 -0.1900
31 14.6450 15.2952 0.6503 -0.0014 9.3233

For LLaMA3 8B , the mean birth and death differences are negative across all computed hidden layers (1, 8, 16, 24, 32).
Note that layers are zero-indexed, meaning that layer 0 corresponds to the first hidden layer, layer 1. This indicates that,
in the locked condition, 1D cycles exhibit larger (i.e., later) birth and death times compared to elicited. In other words,
when locked, the 1D features tend to emerge “further out” in the filtration. The mean persistence difference between
conditions is also negative (except layer 16), suggesting that locked cycles generally persist slightly longer on average.
Entropy differences are positive, indicating that elicited exhibits a greater diversity or spread among the lifetimes of its 1D
features. The number of 1-bars is positive (sometimes strongly so), meaning there are substantially more 1D features in the
elicited condition.

We see similar results for Mistral 7B with negative differences in births and deaths in earlier layers, implying that locked
has larger birth/death times at those lower layers. However, the sign flips, with elicited displaying larger values for births,
deaths, and persistence. Specifically, layer 32 shows a notably large positive difference (e.g., +14.64 for births, +15.29
for deaths), indicating that the final layer in elicited captures significantly later 1D cycles relative to locked. The number
of 1-bars also tends to be higher in elicited at most layers, except for a minor negative at layer 23, again suggesting that
elicited reveals a greater number of dimension–1 features.

A.2. Local Dispersion Ratio Analysis

We analyze how local geometry in hidden-layer representation space differs between clean and multiple poisoned modes in
six LLMs. We further classify poisoned prompts into three sub-types:

1. Executed: The injected request is recognized and carried out (indirect prompt injection).

2. Refused: The model identifies the injected content as malicious and issues a refusal, effectively “shutting down” any
detailed elaboration.

3. Ignored: The model neither executes nor refuses, but effectively overlooks the injected prompt, proceeding as if it
were absent.
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For each final token’s activation difference vector ∆Actℓ(xi) ∈ RD, we identify its k nearest neighbors in layer ℓ and
perform PCA on those points. Let λ1 ≥ · · · ≥ λD′ be the resulting eigenvalues. We define the dispersion ratio of ∆Actℓ(xi)
as

∑D′

j=2 λj

λ1 + ϵ
,

where ϵ prevents division by zero. A higher ratio indicates that variance is more evenly spread among secondary directions,
whereas a lower ratio implies most variance lies in a single dominant direction.

Ablation: Clean vs. Clean, Poisoned vs. Poisoned, and Mixed. To confirm that dispersion discrepancies primarily
reflect true clean vs. poisoned distinctions rather than random partitioning or mixture effects, we performed three auxiliary
comparisons:

1. Clean vs. Clean: Split the clean set into two subsets, ensuring no significant difference arises from sampling within the
same class.

2. Poisoned vs. Poisoned: Applied the same procedure to poisoned data to assess within-class variability.

3. Mixed vs. Mixed: Randomly partitioned a combined pool of clean and poisoned samples into two balanced groups.

Note on Statistical Methods: For every layer in each subplot, we computed the dispersion ratio for both clean and the
specified poisoned (or refused, executed, ignored) samples. We then conducted a Welch’s t-test on these two groups (clean
vs. poisoned/other), applying false-discovery rate (FDR) correction across layers. We also verified approximate normality
via kernel density estimates (KDEs) for each groups. Plot markers with stars indicate layers where pFDR < 0.05, confirming
a statistically significant difference in dispersion ratio. To select k = 30, we tested candidate neighborhood sizes across
layers and models, measuring which k produced the largest absolute difference in mean local dispersion ratio between clean
and poisoned conditions.

A.2.1. DISCUSSION OF RESULTS

Figures 12 and 13 highlight that:

• Early Layers (Layer 1–8): Across all poisoning modes, the clean condition consistently shows a higher dispersion
ratio, suggesting that the model initially allocates broader representational capacity for normal inputs.

• Mid Layers (Layer 16): This pattern often flips, with poisoned prompts (especially executed or ignored) exceeding the
clean baseline, indicating the network is dedicating extra directions to elaborate or “embrace” these injected requests.
Conversely, refused prompts typically exhibit reduced dispersion, mapping disallowed content into a lower-variance
region.

Interestingly, our findings align with the results in Stephenson et al. (2021), which indicate that memorization tends to
emerge in deeper layers where the effective dimensionality shrinks. Consistent with that view, we observe that executed or
ignored prompts show a higher dispersion in mid-layers, implying the model invests additional capacity there for those
injected instructions. Meanwhile, a refused request is routed into a more compressed region, effectively “shutting down”
further representational expansion. In this sense, deeper layers may provide a setting where the network can more sharply
discriminate or overfit certain inputs—supporting the idea that final layers reflect a gradually compressed, yet strategically
focused representation space.

A.3. Cosine Distance of Representations

We analyze the difference representations ∆Actℓ(xi) ∈ RD for corresponding pairs of clean and poisoned inputs. Specif-
ically, for each model and layer, we load up to five pairs of clean and poisoned activation files, compute the difference
between the activations for each pair, and concatenate these differences. From these differences, we draw equal-size
subsamples of 5,000 vectors. For each layer and comparison condition, we compute the mean pairwise cosine distance
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Figure 12. Layer-wise Dispersion Ratio for Clean vs. Poisoned Examples. The green and red lines depict mean dispersion ratios for
clean and poisoned inputs, respectively, at different layer depths. Error bars around each point represent ±1 standard error of the mean
(SEM). In early layers (left side), clean data consistently has higher dispersion on average, whereas in mid-layers (center), poisoned
surpasses the clean baseline, indicating a re-distribution of representational capacity for the injected prompts. Layers where the difference
is statistically significant (pFDR < 0.05) are marked with a red asterisk above the higher mean value.

Figure 13. LLaMA3 7B Dispersion Ratio: Clean vs. Executed, Refused, and Ignored Prompts. The horizontal axis indicates layer
depth, while the vertical axis represents the mean dispersion ratio. The blue curve (with confidence band) corresponds to clean inputs;
orange, red, and green curves denote executed, refused, and ignored poisoned prompts, respectively. Notably, refused prompts show an
early jump but then collapse below the clean baseline, whereas executed and ignored surpass it around mid-layers, highlighting distinct
representational regimes.

within each subsample. Because cosine distance is scale-invariant, we do not normalize these difference representations. We
perform four comparison conditions: clean vs. poisoned, clean vs. clean (where clean samples are split in half), poisoned
vs. poisoned (where poisoned samples are split in half), and mixed vs. mixed (where two separate mixed subsamples are
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Figure 14. Ablation of Dispersion Ratio Differences (Clean vs. Clean, Poisoned vs. Poisoned, Mixed vs. Mixed). Each plot shows
the difference in mean dispersion ratio (clean minus poisoned). Positive values indicate that the clean subset exhibits higher dispersion,
whereas negative values reflect a more dispersed poisoned subset.

created, each containing half clean and half poisoned differences). For each comparison, we generate two distributions of
mean pairwise intra-class distances (or inter-class in the clean vs poisoned case) using 3 bootstrap iterations. We then apply
Welch’s t-test to these distributions to assess whether they diverge significantly.

Empirically, poisoned difference representations typically exhibit a higher mean cosine distance in deeper layers, indicating
a more “spread-out” or heterogeneous arrangement of their difference vectors, much as we observed in the curvature
analysis. Clean data, by contrast, remains comparatively tightly clustered, implying less dispersion in its difference space.
Interestingly, LLaMA3 70B displays similar characteristics in the early and final layers but poisoned representations have a
noticeable smaller cosine distance in middle layers. This may reflect the ability of larger architectures to better partition
representation space across the network before re-expanding in later layers.

B. Further Details of Global Layer-Wise Analysis
B.1. Pipeline

We describe in more detail the pipeline in Figure 3 in the main text. Recall that our aim here was showcasing that topological
signatures effectively capture distinctions between representations under normal or adversarial conditions, and to provide an
interpretation of the reason behind such difference in terms of the “shape” of the latent representations.
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Figure 15. Cosine Distance of Difference Representations Across Layers. Each panel shows mean within-class distances (clean vs.
poisoned) for the difference representations (poisoned/clean pass minus baseline), where higher values reflect greater variation among
samples. Stars denote layers with significant differences.

We use RIPSER (Bauer, 2021) to compute barcodes, which is based on Vietoris–Rips filtrations (see Section 2.1). The
computational constraints of PH make it impossible to compute the barcode of any of our two datasets (clean vs. poisoned
or locked vs. elicited). Therefore, we leverage subsampling approaches (e.g., Chazal et al. (2015)) and compute barcodes
from K = 600 subsamples {xi1,ℓ, . . . , xik,ℓ} ⊂ RD with size k = 1000, of the representations per layer 1 ≤ ℓ ≤ L. From
these, 300 are taken from normal activations and 300 from adversarial activations. We use these as proxies for the topology
of the whole space.

Following Ali et al. (2023), we vectorize these barcodes as 41-dimensional feature vectors, which we call barcode summaries.
These include 35 statistics derived from a 7× 5 grid of {mean, minimum, first quartile, median, third quartile, maximum,
standard deviation} × {death of 0-bars, birth of 1-bars, death of 1-bars, persistence of 1-bars, ratio birth/death of 1-bars};
as well as the total persistence (i.e., sum of the lengths of all bars in the barcode), number of bars, and persistent entropy
(Chintakunta et al., 2015; Rucco et al., 2016) defined in Appendix A.1 for 0- and 1-bars. We reduce the dimensionality
case-by-case, by eliminating highly correlated features (above a threshold of 0.5) through cross-correlation analysis.

For exploratory analysis, we apply PCA and compute CCA loadings to measure feature correlations with the principal
components. A logistic regression model is then used for classification, and Shapley values (Lipovetsky & Conklin, 2001) are
computed to evaluate feature importance. Shapley values, derived from cooperative game theory, quantify the contribution
of each feature to model predictions by measuring its influence in shifting predictions from a baseline (e.g., 0.5 for logistic
regression), providing an interpretable, feature-level analysis of predictive impact.

B.2. Results: Clean vs. poisoned

B.2.1. MISTRAL WITH EUCLIDEAN DISTANCE

We include more comprehensive results including layers 1, 8, 16, 23 and 32 for the running example of Section 4.1.
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Figure 16. Mistral with Euclidean distance: Cross-correlation matrices for the barcode summaries for clean vs. poisoned activations.
Growing block of correlated features appears in the cross-correlation matrix of the barcode summaries for layers 1, 8, 16, 24, and 32.

Figure 17. Mistral with Euclidean distance: PCA of barcode summaries of clean vs. poisoned activations. Clear distinction appears
in the projection onto the two first principal components from the PCA of the pruned barcode summaries for layers 1, 8, 16, 24, and 32.
The explained variance of is 0.39, 0.51, 0.53, 0.60 and 0.49, respectively.

Figure 18. Mistral with Euclidean distance: CCA loadings for clean vs. poisoned activations (Mistral with cosine distance).
Loadings of the 5 most important contributions to the first canonical variable of the CCA on the pruned barcode summaries show that the
mean of the death of 0-bars is significantly correlated with the first two principal components of the PCA across all layers.
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Figure 19. Mistral with Euclidean distance: Logistic regression for clean vs. poisoned activations. Prediction of a logistic regression
trained on a 70/30 train/test split of the pruned barcode summaries, plotted on the projection onto the two first principal components for
visualization purposes. Accuracy and AUC–ROC tested on the test data, and 5-fold cross validation on train data are presented for each
model, showcasing the outstanding performance of all models.

Figure 20. Mistral with Euclidean distance: SHAP analysis for clean vs. poisoned activations. Beeswarm plot of the SHAP values for
the logistic regression trained on the pruned barcode summaries for layer 1, 8, 16, 24, and 32. The mean of the deaths of 0-bars appears as
the most impactful feature in the prediction of the model, shifting predictions to “clean” when the value of the feature is lower for layers 8,
16, 23 and 32, and to “poisoned” when it is higher. The opposite phenomenon is observed in layer 0.
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B.2.2. MISTRAL WITH COSINE DISTANCE

We present the results of the analysis outlined in Figure 3 and Appendix B.1 for Mistral, but computing the barcodes of
the Vietoris–Rips filtration using the cosine distance between activations. We prefer to include the result for the Euclidean
distance in the main text as they provide a clearer interpretation. Main differences with the Euclidean case are that the
presence of high correlated features seems to increase, particularly for middle layer of the model; and that there is no flip
in the sign of the correlation between the value of the mean of deaths of 0-bars in the beeswarm plot of the SHAP values,
meaning that lower values of this feature consistently push the prediction for an input barcode to be “clean.”

Figure 21. Mistral with cosine distance: Cross-correlation matrices for the barcode summaries for clean vs. poisoned activations.
Growing block of correlated features appears in the cross-correlation matrix of the barcode summaries for layers 1, 8, 16, 24, and 32.
Correlation is higher and more prominent from earlier layers, opposed to the analysis with Euclidean distance.

Figure 22. Mistral with cosine distance: PCA of barcode summaries of clean vs. poisoned activations. Clear distinction appears in
the projection onto the two first principal components from the PCA of the pruned barcode summaries for layers 1, 8, 16, 24, and 32.

Figure 23. Mistral with cosine distance: CCA loadings for clean vs. poisoned activations. Loadings of the 5 most important
contributions to the first canonical variable of the CCA on the pruned barcode summaries show that the mean of the death of 0-bars is
significantly correlated with the first two principal components of the PCA across all layers.
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Figure 24. Mistral with cosine distance: Logistic regression for clean vs. poisoned activations. Prediction of a logistic regression
trained on a 70/30 train/test split of the pruned barcode summaries, plotted on the projection onto the two first principal components for
visualization purposes. Accuracy and AUC–ROC tested on the test data, and 5-fold cross validation on train data are presented for each
model, showcasing the outstanding performance of all models.

Figure 25. Mistral with cosine distance: SHAP analysis for clean vs. poisoned activations. Beeswarm plot of the SHAP values for the
logistic regression trained on the pruned barcode summaries for layer 1, 8, 16, 24, and 32. The mean of the deaths of 0-bars appears as the
most impactful feature in the prediction of the model, shifting predictions to “clean” when the value of the feature is lower for all layers,
opposed to the models with Euclidean distance.
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B.2.3. LLAMA 3 WITH EUCLIDEAN DISTANCE

We provide the results of the analysis depicted in Figure 3 including layers 1, 8, 16, 23 and 32 for the Llama 3 where
barcodes are computed using the Euclidean distance in the representation space. We observe very similar results to the ones
obtained with Mistral, indicating a consinstency across models of the topological deformations of adversarial influence via
XPIA (see Section 3.1).

Figure 26. Llama with Euclidean distance: Cross-correlation matrices for the barcode summaries for clean vs. poisoned activations.
Growing block of correlated features appears in the cross-correlation matrix of the barcode summaries for layers 1, 8, 16, 24, and 32.
Correlations in layer 1 are lower than with Mistral, see Figure 16.

Figure 27. Llama with Euclidean distance: PCA of barcode summaries of clean vs. poisoned activations. Clear distinction appears in
the projection onto the two first principal components from the PCA of the pruned barcode summaries for layers 1, 8, 16, 24, and 32. The
explained variance of is 0.39, 0.51, 0.53, 0.60 and 0.49, respectively.

Figure 28. Llama with Euclidean distance: CCA loadings for clean vs. poisoned activations. Loadings of the 5 most important
contributions to the first canonical variable of the CCA on the pruned barcode summaries show that the mean of the death of 0-bars is
significantly correlated with the first two principal components of the PCA across all layers.
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Figure 29. Llama with Euclidean distance: Logistic regression for clean vs. poisoned activations. Prediction of a logistic regression
trained on a 70/30 train/test split of the pruned barcode summaries, plotted on the projection onto the two first principal components for
visualization purposes. Accuracy and AUC–ROC tested on the test data, and 5-fold cross validation on train data are presented for each
model, showcasing the outstanding performance of all models.

Figure 30. Llama with Euclidean distance: SHAP analysis for clean vs. poisoned activations. Beeswarm plot of the SHAP values for
the logistic regression trained on the pruned barcode summaries for layer 1, 8, 16, 24, and 32. The mean of the deaths of 0-bars appears as
the most impactful feature in the prediction of the model, shifting predictions to “clean” when the value of the feature is lower for all
layers, contrary to the results with Euclidean distance.
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B.2.4. LLAMA 3 WITH COSINE DISTANCE

We provide the results of the analysis depicted in Figure 3 including layers 1, 8, 16, 23 and 32 for the Llama 3 where
barcodes are computed using the cosine distance in the representation space.

Figure 31. Llama with cosine distance: Cross-correlation matrices for the barcode summaries for clean vs. poisoned activations.
Growing block of correlated features appears in the cross-correlation matrix of the barcode summaries for layers 1, 8, 16, 24, and 32.

Figure 32. Llama with cosine distance: PCA of barcode summaries of clean vs. poisoned activations. Clear distinction appears in the
projection onto the two first principal components from the PCA of the pruned barcode summaries for layers 1, 8, 16, 24 and 32.

Figure 33. Llama with cosine distance: CCA loadings for clean vs. poisoned activations. Loadings of the 5 most important
contributions to the first canonical variable of the CCA on the pruned barcode summaries show that the mean of the death of 0-bars is
significantly correlated with the first two principal components of the PCA across all layers.
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Figure 34. Llama with cosine distance: Logistic regression for clean vs. poisoned activations. Prediction of a logistic regression
trained on a 70/30 train/test split of the pruned barcode summaries, plotted on the projection onto the two first principal components for
visualization purposes. Accuracy and AUC–ROC tested on the test data, and 5-fold cross validation on train data are presented for each
model, showcasing the outstanding performance of all models.

Figure 35. Llama with cosine distance: SHAP analysis for clean vs. poisoned activations. Beeswarm plot of the SHAP values for the
logistic regression trained on the pruned barcode summaries for layer 1, 8, 16, 24, and 32. The mean of the deaths of 0-bars appears as the
most impactful feature in the prediction of the model, shifting predictions to “clean” when the value of the feature is lower for layers 16
and 32, and to “poisoned” when it is higher. The opposite phenomenon is observed in layer 0.
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B.2.5. PHI 3 WITH EUCLIDEAN DISTANCE

We provide the results of the analysis depicted in Figure 3 including layers 1, 8, 16, 23, and 32 for Phi 3 where barcodes are
computed using the Euclidean distance in the representation space.

Figure 36. Phi with Euclidean distance: Cross-correlation matrices for the barcode summaries for clean vs. poisoned activations.
Growing block of correlated features appears in the cross-correlation matrix of the barcode summaries appears in the middle layers (layers
1, 8, 16, 24, and 32 are shown).

Figure 37. Phi with Euclidean distance: PCA of barcode summaries of clean vs. poisoned activations. Clear distinction appears in
the projection onto the two first principal components from the PCA of the pruned barcode summaries for layers 1, 8, 16, 24, and 32.

Figure 38. Phi with Euclidean distance: CCA loadings for clean vs. poisoned activations. Loadings of the 5 most important
contributions to the first canonical variable of the CCA on the pruned barcode summaries show that the mean of the death of 0-bars is
significantly correlated with the first two principal components of the PCA across all layers.
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Figure 39. Phi with Euclidean distance: Logistic regression for clean vs. poisoned activations. Prediction of a logistic regression
trained on a 70/30 train/test split of the pruned barcode summaries, plotted on the projection onto the two first principal components for
visualization purposes. Accuracy and AUC–ROC tested on the test data, and 5-fold cross validation on train data are presented for each
model, showcasing the outstanding performance of all models.

Figure 40. Phi with Euclidean distance: SHAP analysis for clean vs. poisoned activations. Beeswarm plot of the SHAP values for the
logistic regression trained on the pruned barcode summaries for layer 1, 8, 16, 24, and 32. The mean of the deaths of 0-bars appears as the
most impactful feature in the prediction of the model, shifting predictions to “clean” when the value of the feature is lower for all layers,
contrary to the results with Euclidean distance.
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B.2.6. PHI 3 WITH COSINE DISTANCE

We provide the results of the analysis depicted in Figure 3 including layers 1, 8, 16, 23, and 32 for Phi 3 where barcodes are
computed using the cosine distance in the representation space.

Figure 41. Phi with cosine distance: Cross-correlation matrices for the barcode summaries for clean vs. poisoned activations.
Growing block of correlated features appears in the cross-correlation matrix of the barcode summaries appears in the middle layers (layers
1, 8, 16, 24, and 32 are shown). Higher correlations than in the Euclidean analysis appear particularly for early layers, some of those
correlations are lost in latter layers.

Figure 42. Phi with cosine distance: PCA of barcode summaries of clean vs. poisoned activations. Clear distinction appears in the
projection onto the two first principal components from the PCA of the pruned barcode summaries for layers 1, 8, 16, 24, and 32.

Figure 43. Phi with cosine distance: CCA loadings for clean vs. poisoned activations. Loadings of the 5 most important contributions
to the first canonical variable of the CCA on the pruned barcode summaries show that the mean of the death of 0-bars is significantly
correlated with the first two principal components of the PCA across all layers.
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Figure 44. Phi with cosine distance: Logistic regression for clean vs. poisoned activations. Prediction of a logistic regression trained on
a 70/30 train/test split of the pruned barcode summaries, plotted on the projection onto the two first principal components for visualization
purposes. Accuracy and AUC–ROC tested on the test data, and 5-fold cross validation on train data are presented for each model,
showcasing the outstanding performance of all models.

Figure 45. Phi with cosine distance: SHAP analysis for clean vs. poisoned activations. Beeswarm plot of the SHAP values for the
logistic regression trained on the pruned barcode summaries for layer 1, 8, 16, 24, and 32. The mean of the deaths of 0-bars appears as the
most impactful feature in the prediction of the model, shifting predictions to “clean” when the value of the feature is lower for all layers,
contrary to the results with Euclidean distance.

B.3. Results locked vs. elicited

B.3.1. MISTRAL MODEL

We include the results of the global analysis in Figure 3 for the locked vs. elicited dataset. There are two main differences
with previous results: the block of high correlated features presents a less clear trend and is more faint in layer 16, resulting

31



1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759

Holes in Latent Space: Topological Signatures Under Adversarial Influence

in the need of more features in the analysis; and the mean death of the 0-bars changes the sign of its influence in classifying
locked and elicited models across layers. However the distinction in the PCA of the barcode summaries remains clear and
the logistic regression still achieves perfect performance, despite the analysis resulting a bit less straightforward.

Figure 46. Mistral with Euclidean distance: Cross-correlation matrices for the barcode summaries for locked vs. elicited activations.
Growing block of correlated features appears in the cross-correlation matrix of the barcode summaries for layers 1, 8, 16, 24, and 32.

Figure 47. Mistral with Euclidean distance: PCA of barcode summaries of locked vs. elicited activations. Clear distinction appears
in the projection onto the two first principal components from the PCA of the pruned barcode summaries for layers 1, 8, 16, 24, and 32.

Figure 48. Mistral with Euclidean distance: CCA loadings for locked vs. elicited activations. Loadings of the 5 most important
contributions to the first canonical variable of the CCA on the pruned barcode summaries show that the mean of the death of 0-bars is
significantly correlated with the first two principal components of the PCA across all layers.
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Figure 49. Mistral with Euclidean distance: Logistic regression for locked vs. elicited activations. Prediction of a logistic regression
trained on a 70/30 train/test split of the pruned barcode summaries, plotted on the projection onto the two first principal components for
visualization purposes. Accuracy and AUC–ROC tested on the test data, and 5-fold cross validation on train data are presented for each
model, showcasing the outstanding performance of all models.

Figure 50. Mistral with Euclidean distance: SHAP analysis for locked vs. elicited activations. Beeswarm plot of the SHAP values for
the logistic regression trained on the pruned barcode summaries for layer 1, 8, 16, 24, and 32. The mean of the deaths of 0-bars appears as
the most impactful feature in the prediction of the model, shifting predictions to “locked” when the value of the feature is lower for layers
8, 16, 23, and 32, and to “elicited” when it is higher. The opposite phenomenon is observed in layer 0.

B.3.2. LLAMA 3 MODEL

We include the results of the global analysis in Figure 3 for the locked vs. elicited dataset. Here we also observe less clear
patterns of correlations in the topological features, particularly for latter layers. Despite the mean of the death of 0-bars
remaining as one of the key features in the CCA, the interpretation of the Shapley values is less straightforward in this case
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as the dichotomous behavior of these for the mean of the 0-bars disappears for latter layers.

Figure 51. Llama with Euclidean distance: Cross-correlation matrices for the barcode summaries for locked vs. elicited activations.
Decreasing block of correlated features appears in the cross-correlation matrix of the barcode summaries for layers 1, 8, 16, 24, and 32.

Figure 52. Llama with Euclidean distance: PCA of barcode summaries of locked vs. elicited activations. Clear distinction appears in
the projection onto the two first principal components from the PCA of the pruned barcode summaries for layers 1, 8, 16, 24, and 32.

Figure 53. Llama with Euclidean distance: CCA loadings for locked vs. elicited activations. Loadings of the 5 most important
contributions to the first canonical variable of the CCA on the pruned barcode summaries show that the mean of the death of 0-bars is
significantly correlated with the first two principal components of the PCA across all layers.
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Figure 54. Llama with Euclidean distance: Logistic regression for locked vs. elicited activations. Prediction of a logistic regression
trained on a 70/30 train/test split of the pruned barcode summaries, plotted on the projection onto the two first principal components for
visualization purposes. Accuracy and AUC–ROC tested on the test data, and 5-fold cross validation on train data are presented for each
model, showcasing the outstanding performance of all models.

Figure 55. Mistral with Euclidean distance: SHAP analysis for locked vs. elicited activations. Beeswarm plot of the SHAP values for
the logistic regression trained on the pruned barcode summaries for layer 1, 8, 16, 24, and 32. The mean of the deaths of 0-bars appears as
the most impactful feature in the prediction of the model, shifting predictions to “locked” when the value of the feature is lower for layers
8, 16 and 32, and to “elicited” when it is higher. For layer 24, the total persistence of 1-bars appears as the most important feature. Lower
number of 1-bars classifies the point as “locked” while higher values push the prediction toward “elicited”.

C. Further details on local analysis
In this section we provide further details to the local analysis in Section 3.3.
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C.1. Pipeline

Within this local analysis, we aim to determine the interaction of elements of the neural network across the layers by taking
representations across pairs of layers as coordinates in 2 dimensions (2D). We study this across three models: Mistral, Phi3
3.8B and LLaMA3 8B. For each of these models, we take a sample of 2000 from each model, 1000 of which are clean
activations and 1000 of which are poisoned activations. Each element along the layer given their embedding into 2D can be
thought of as nodes in a graph with weighted connections based on the Euclidean distances between the points. On these
graphs, we construct the Vietoris-Rips filtration and compute the resulting persistence barcode which describes the topology
of the interactions between the elements.

For this local analysis, we focus on a smaller selection of persistence barcode summaries, including measures such as
the mean death of 0-bars, total persistence of 0- and 1-bars, and persistent entropy, while excluding measures such as the
quantiles of death bars. We compute these summary statistics and track their progression across pairs of layers in the models.
We presented one such progression within Figure 10 in Section 3.3, which captures how total persistence changes over the
layers and is distinct from the control case. In the following sections, we include further plots to support this argument.

C.2. Results

C.2.1. MISTRAL MODEL

In addition to the propagation of total persistence of 1-bars we showed in Section 3.3, we also evaluated the progression of
other barcode summaries. Notably, descriptors which capture similar features are the mean deaths of 1-bars, and the mean
birth of 0 bars with mirroring patterns. In Figure 56, we show the results for the mean death of 0-bars.

Figure 56. Local analysis of consecutive layers for the mean deaths of 0-bars for the Mistral model. Top: Comparisons of the average
of mean deaths of 0-bars across 1000 samples for the Mistral model for original (raw), scaled (normalized) and scaled & permuted
activation data. Bottom left: Ratios of average mean deaths of 0-bars between clean and poisoned datasets for original, scaled and scaled
& permuted activations. Bottom center: Overall variance of mean deaths of 0-bars for clean and poisoned datasets combined. Bottom
right: Absolute difference between mean total persistence of 1-bars for clean and poisoned datasets.

C.2.2. PHI3 MODEL

We present a similar comparison of results for the Phi3 model. Figure 57 illustrates the patterns across layers for the mean
death of 0-bars, while Figure 58 shows the patterns for the total persistence of 1-bars. Unlike the Mistral model, the ratio
between barcode statistics for clean and poisoned activations in the Phi3 model does not intersect one. While a decreasing or
somewhat parabolic trend is still observed, the average mean death of 0-bars and the total persistence of 1-bars for clean raw
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activations consistently remain greater than those for poisoned raw activations. Additionally, we find that the “control” case
remains close to the x-axis, with the scaled ratios exhibiting significant variations around this baseline.

Figure 57. Local analysis of consecutive layers for the mean deaths of 0-bars for the Phi3 model. Top: Comparisons of the average of
mean deaths of 0-bars across 1000 samples for Phi3 model for original (raw), scaled (normalized) and scaled & permuted activation data.
Bottom left: Ratios of average mean deaths of 0-bars between clean and poisoned datasets for original, scaled and scaled & permuted
activations. Bottom center: Overall variance of mean deaths of 0-bars for clean and poisoned datasets combined. Bottom right: Absolute
difference between mean total persistence of 1-bars for clean and poisoned datasets.

C.2.3. LLAMA3 8B MODEL

We present the results for the LLaMA3 8B model. Figures 59 and 60 both show a decreasing trend in the ratio between
clean and poisoned activations, whether measured by the mean death of 0-bars or the total persistence of 1-bars respectively.
Notably, this ratio crosses 1 around layer 15 or later. Moreover, we continue to observe distinct differences between clean
and poisoned activations across both meaningful variants.

C.2.4. PEAK ANALYSIS FOR PHI3 AND LLAMA3

Table 5. Peak analysis. Precision@k for k=1, 3, and 5 largest peaks in total variance, and their precision in detecting the largest peaks in
absolute difference between the two classes. ∗, ∗∗ correspond to p-values <.05 and .01, respectively.

Phi3 p@1 p@3 p@5

Total Persistence 0-bars 0 .33 .2
Total Persistence 1-bars 1.0 .67∗ .8∗∗

Mean Birth 1-bars 0 .33 .6∗

Mean Death 1-bars 0 .67∗ .8∗∗

LLAMA3 p@1 p@3 p@5

Total Persistence 0-bars 1.0∗ .33 .4
Total Persistence 1-bars 1.0∗ .67 .8∗∗

Mean Birth 1-bars 1.0∗ .67 .6
Mean Death 1-bars 1.0∗ .67∗ .8∗
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Figure 58. Local analysis of consecutive layers for the total persistence of 1-bars for the Phi3 model. Top: Comparisons of the
average of total persistence of 1-bars across 1000 samples for Phi3 model for original (raw), scaled (normalized) and scaled & permuted
activation data. Bottom left: Ratios of average total persistence of 1-bars between clean and poisoned datasets for original, scaled and
scaled & permuted activations. Bottom center: Overall variance of total persistence of 1-bars for clean and poisoned datasets combined.
Bottom right: Absolute difference between mean total persistence of 1-bars for clean and poisoned datasets.

Figure 59. Local analysis of consecutive layers for the mean deaths of 0-bars for the LLaMA3 8B model. Top: Comparisons of
the average of mean deaths of 0-bars across 1000 samples for LLaMA3 8B model for original (raw), scaled (normalized) and scaled &
permuted activation data. Bottom left: Ratios of average mean deaths of 0-bars between clean and poisoned datasets for original, scaled
and scaled & permuted activations. Bottom center: Overall variance of mean deaths of 0-bars for clean and poisoned datasets combined.
Bottom right: Absolute difference between mean total persistence of 1-bars for clean and poisoned datasets.
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Figure 60. Local analysis of consecutive layers for the total persistence of 1-bars for the LLaMA3 8B model. Top: Comparisons of
the average of total persistence of 1-bars across 1000 samples for the LLaMA3 8B model for original (raw), scaled (normalized) and
scaled & permuted activation data. Bottom left: Ratios of average total persistence of 1-bars between clean and poisoned datasets for
original, scaled and scaled & permuted activations. Bottom center: Overall variance of total persistence of 1-bars for clean and poisoned
datasets combined. Bottom right: Absolute difference between mean total persistence of 1-bars for clean and poisoned datasets.

C.2.5. NON-CONSECUTIVE LAYER ANALYSIS

Continuing the analysis of non-consecutive layers, we examine in Figure 61 the ratio of total persistence of 1-bars between
clean and poisoned activations. We find that at a 10-layer separation, the similarity between the ratios for scaled and control
settings becomes more pronounced compared to separations of 1 or 3 layers.

D. Sandbagged Representation Data Collection
To study sandbagging, we follow the “password-locking” paradigm introduced in prior work (Greenblatt et al., 2024; van der
Weij et al., 2024), wherein a model is fine-tuned to hide certain behaviors or capabilities unless presented with a predefined
password in the prompt. We leverage the the synthetic data generation process and fine-tuning procedure detailed in Section
3 aand 4 of (van der Weij et al., 2024). For clarity of our experimental setup, we summarize it briefly here. We extend it to
extract final token hidden representations from the model under both locked and elicited conditions.

1. We generate a synthetic dataset of 3,347 evaluation questions based on the the Weapons of Mass Destruction Proxy
(WMDP) Benchmark (Li et al., 2024a) using GPT-4 (Perez et al., 2022) to serve as a proxy measurement for hazardous
knowledge in biology, chemistry, and cybersecurity. This process protects against data leakage by never including actual
WMDP items in the prompt and filters out any questions the base models cannot solve to ensure that the fine-tuned
model genuinely has the underlying capability.

2. Using this dataset and framework, we fine-tuned Mistral 7B and LLaMA3 8B with LoRA (Hu et al., 2021). During this
fine-tuning process, each WMDP-like evaluation question appears twice: once with the password, where the model is
fully elicited and is provided with the correct answer and second where the model is password is absent or locked and
the model is provided with an incorrect answer.

3. Using the held out validation set of generated WMDP-like questions, we recorded the final-token representation from
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Figure 61. Local analysis of non-consecutive layers on total persistence of 1-bars for the Mistral model. Comparison of the ratios
between total persistence of 1-bars for clean and poisoned datasets when considering the topology of interactions between pairs of layers
at 1 (left), 3 (middle), and 10 (right) intervals apart.

each layer of the fine-tuned model during its forward pass. Specifically, for each prompt x, we collect:

Act
(locked)
ℓ (x) = Hiddenℓ

(
xlocked

)
[−1],

Act
(elicited)
ℓ (x) = Hiddenℓ

(
xelicited

)
[−1],

We then apply the global layer-wise topological analysis outlined in 3.2 to this representation data to study how the model’s
latent space differs between locked (no password) and elicited (correct password) states.
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