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Abstract

As safety violations can lead to severe consequences in real-world applications, the
increasing deployment of Reinforcement Learning (RL) in safety-critical domains
such as robotics has propelled the study of safe exploration for reinforcement
learning (safe RL). In this work, we propose a risk preventive training method for
safe RL, which learns a binary classifier based on contrastive sampling to predict
the probability of a state-action pair leading to unsafe states. Based on the predicted
risk probabilities, risk preventive trajectory exploration and optimality criterion
modification can be simultaneously conducted to induce safe RL policies. We
conduct experiments in robotic simulation environments. The results show the
proposed approach outperforms existing model-free safe RL approaches, and yields
comparable performance with the state-of-the-art model-based method.

1 Introduction

Reinforcement Learning (RL) offers a great set of technical tools for many real-world decision
making systems, such as robotics, that require an agent to automatically learn behavior policies
through interactions with the environments [1]. Conversely, the applications of RL in real-world
domains also pose important new challenges for RL research. In particular, many real-world robotic
environments and tasks, such as human-related robotic environments [2]], helicopter manipulation
[3L 4]}, autonomous vehicle 5], and aerial delivery [6]], have very low tolerance for violations of safety
constraints, as such violation can cause severe consequences. This raises a substantial demand for
safe reinforcement learning techniques.

Safe reinforcement learning investigates RL methodologies with critical safety considerations, and
has received increased attention from the RL research community. In safe RL, in addition to the
reward function [7]], an RL agent often deploys a cost function to maximize the discounted cumulative
reward while satisfying the cost constraint [8H10]. A comprehensive survey of safe RL categorizes the
safe RL techniques into two classes: modification of the optimality criterion and modification of the
exploration process [11]. For modification of the optimality criterion, previous works mostly focus
on the modification of the reward. Many works [[12H17] pursue such modifications by shaping the
reward function with penalizations induced from different forms of cost constraints. For modification
of the exploration process, safe RL approaches focus on training RL agents on modified trajectory
data. For example, some works deploy backup policies to recover from safety violations to safer
trajectory data that satisfy the safety constraint [[18520].

In this paper, we propose a novel risk preventive training (RPT) method to tackle the safe RL
problem. The key idea is to learn a contrastively estimated classification model to predict the risk—
the probability of a state-action pair leading to unsafe states, which can then be deployed to modify
both the exploration process and the optimality criterion. In terms of exploration process modification,
we collect trajectory data in a risk preventive manner based on the predicted probability of risk. A
trajectory is terminated if the next state falls into an unsafe region that has above-threshold risk values.



Regarding optimality criterion modification, we reshape the reward function by penalizing it with the
predicted risk for each state-action pair. Benefiting from the generalizability of risk prediction, the
proposed approach can avoid safety constraint violations much early in the training phase and induce
safe RL policies, while previous works focus on backup policy and violate more safety constraints
by interacting with the environment in the unsafe regions. Moreover, we further deploy a simple
unsafe-state augmentation strategy for the proposed method to increase the sample efficiency of the
encountered unsafe states and reduce the safety violations of the RL agent in the experiments. We
conduct experiments using four robotic simulation environments on MuJoCo [21]. Our model-free
approach produces comparable performance with a state-of-the-art model-based safe RL method
SMBPO [16] and greatly outperforms other model-free safe RL methods. The main contributions of
the proposed work can be summarized as follows:

* This is the first work that introduces a contrastive sampling based classifier to perform risk
prediction and conduct safe RL exploration.

» With its proficient risk prediction capabilities, the proposed approach possesses the essential
capacity to simultaneously modify the exploration process through risk preventive trajectory
collection and adjust the optimality criterion through reward reshaping.

* As a model-free safe RL method, the proposed approach achieves comparable performance
to the state-of-the-art model-based safe RL method and outperforms the model-free methods
in multiple benchmark robotic simulation environments.

2 Related Works

Many methods have been developed for safe RL. Garcia and Ferndndez [11]] provided a survey
categorizing safe RL methods into categories of modifying the optimality criterion and modifying the
exploration process.

Modification of the optimality criterion. Since optimizing the conventional reward signal does
not ensure the avoidance of safety violations, leading to the exploration of modifying the optimality
objective based on risk notions [22| 23], probabilities of visiting risky states [24]], etc. Achiam
et al. [20] proposed Constrained Policy Optimization (CPO) to update safe policies by optimizing
the primal-dual problem in trust regions. Recently, reward shaping techniques [25| 26] have been
integrated into safe RL. Tessler et al. [14] introduced Reward Constrained Policy Optimization
(RCPO) by penalizing the normal training policy. Thomas et al. [16] reshaped reward functions
using a model-based predictor, treating unsafe states as absorbing states to train the RL agent with
penalized rewards. Xu et al. [27] developed Constrained Penalized Q-learning (CPQ) using a cost
critic to learn constraint values during exploration and penalizing the Bellman operator in policy
training to stop the updates for potentially unsafe states.

Modification of the exploration process. Previous works have optimized safe RL policies by
adjusting exploration processes during interaction with the environment. For instance, [28] 13}
29] guided exploration based on prior environmental knowledge. Similarly, [30, 31] constrained
exploration learning using demonstration data. More recent approaches like [[18, [19] focused on
utilizing backup policies from safe regions to prevent safety violations. If the agent undertakes a
potentially risky action, the task policy is replaced with a guaranteed safe backup policy. Yu et al.
[32] defined safe regions as feasible sets and used reachability analysis to expand these sets beyond
traditional energy-based methods. Jayant and Bhatnagar [33]] introduced a model-based deep RL
agent that efficiently learns an ensemble of transition dynamics in an online environment and restricts
exploration with a performance ratio.

Safe RL is crucial in environments like human-related robotic settings where safety violations can
lead to catastrophic failures [2]]. Robotic simulation environments such as MuJoCo, developed by
Todorov et al. [21], facilitate research in RL applications for robotics. Thomas et al. [[16] extended
the MuJoCo environment to define safety violations in robotic simulations, making it an ideal test
bed for safe RL methods.



3 Preliminary

Reinforcement learning (RL) has been broadly used to train robotic agents by maximizing the
discounted cumulative rewards. The representation of a reinforcement learning problem can be
formulated as a Markov Decision Process (MDP) M = (S, A, T,R,) [7], where S is the state
space for all observations, 4 is the action space for available actions, 7 : S x A — S is the transition
dynamics, R : S X A = ['min, "maz) 18 the reward function, and v € (0, 1) is the discount factor. An
agent can start from a random initial state sg to take actions and interact with the MDP environment
by receiving rewards for each action and moving to new states. Such interactions can produce a
transition (s;, at, r, St+1) at each time-step ¢ with s;11 = T (s¢,a:) and rr = r(s¢, a;), while a
sequence of transitions comprise a trajectory 7 = (s, Go, 70, 81, 1,71, " " , 8|r|+1), Where |7] + 1
denotes the length of trajectory 7—i.e., the number of transitions. The goal of RL is to learn an
optimal policy 7* : & — A that can maximize the expected discounted cumulative reward (return):

= argmas, J(m) = Erop, [0 "7
3.1 Safe Exploration for Reinforcement Learning

Safe exploration for Reinforcement Learning (safe RL) studies RL with critical safety considerations.
For a safe RL environment, in addition to the reward function, a cost function can also exist to reflect
the risky status of each exploration step. The process of safe RL can be formulated as a Constrained
Markov Decision Process (CMDP) [34], M = (S, A, T,R,,c,d), which introduces an extra cost
function c and a cost threshold d into MDP. An exploration trajectory under CMDP can be written
as 7 = (80, @0,70,C0, 51, " * , 8|7|+1), Where the transition at time-step ¢ is (¢, a¢, 5¢41, ¢, ¢¢), with
a cost value ¢; induced from the cost function ¢; = ¢(s¢, a;). CMDP monitors the safe exploration
process by requiring the cumulative cost J.(7) does not exceed the cost threshold d, where J.()

can be defined as the expected total cost of the exploration, J.(7) = E,~p_| ‘thlo ct] [12]). Safe
RL hence aims to learn an optimal policy 7* that can maximize the expected discounted cumulative
reward subjecting to a cost constraint, as follows:

7* = argmax J.(7) = E;up, [ZTl ’Ytrt] (1)

” t=0

st. Jo(n) = Erop, [ZT' ct} <d.

t=0

4 Method

Robot operations typically have low tolerance for risky/unsafe states and actions, since a robot could
be severely damaged in real-world environments when the safety constraint being violated. Similar to
the work in [9], in this work we adopt a strict setting for the safety constraint such that any “unsafe"
state can cause violation of the safety constraint and the RL agent will terminate an exploration
trajectory when encountering an “unsafe” state. We have the following definition:

Definition 1. For a state s and an action a, the value of the cost function c¢(s, a) can either be 0
or 1. When c(s,a) = 0, the induced state T (s, a) is defined as a safe state; when c(s,a) = 1, the
induced state T (s, a) is defined as an unsafe state, which triggers the violation of safety constraints
and hence causes the termination of the trajectory.

Based on this definition, the cost threshold d in Eq. should be set strictly to 0. The agent is
expected to learn a safe policy 7 that can operate with successful trajectories containing only safe
states. Towards this goal, we propose a novel risk prediction method for safe RL. The proposed
method deploys a contrastive classifier to predict the probability of a state-action pair leading to
unsafe states, which can be trained during the exploration process of RL and generalized to previously
unseen states.

With risk prediction probabilities, a more informative cumulative cost J..(7) can be formed to prevent
unsafe trajectories and reshape the reward in each transition of a trajectory to induce safe RL policies.
Previous safe RL methods in the literature can typically be categories into two classes: modification
of the optimality criterion and modification of the exploration process [[L1]. With safety constraints
and risk predictions, the proposed approach (to be elaborated below) has the capacity and is expected
to incorporate the strengths of both categories of safe RL techniques.



4.1 Risk Prediction with Contrastive Classification

Although an RL agent would inevitably encounter unsafe states during the initial stage of the
exploration process in an unknown environment, we aim to quickly learn from the unsafe experience
through statistical learning and generalize the recognition of unsafe trajectories to prevent risk for
future exploration. Specifically, we aim to compute the probability of a state-action pair leading to
unsafe states, i.e., p(y = 1|s¢, a;), where y € {0, 1} denotes a random variable that indicates whether
(s¢,at) leads to an unsafe state s,, € Sy. The set of unsafe states, Sy, can be either pre-given
or collected during initial exploration. However, directly training a binary classifier to make such
predictions is impractical as it is difficult to judge whether a state-action pair is safe—i.e., never
leading to unsafe states.

For this purpose, we propose to train a contrastive classifier Fy (s, a;) with model parameter 6 to
discriminate a positive state-action pair (s, a;) in a trajectory that leads to unsafe states (unsafe
trajectory) against random state-action pairs from the overall distribution of any trajectory. Such a
contrastive form of learning can conveniently avoid the impractical identification problem of absolute
negative (i.e., safe) state-action pairs.

Specifically, inspired by the noise contrastive estimation based classifier design in the literature
[33.36]], we propose to learn Fy(s;, a;) as a binary classifier via weighted contrastive sampling by
sampling unsafe state-action pairs as positive samples and sampling general state-action pairs as
contrastive negative samples. Let p(s¢, a;|y = 1) denote the presence probability of a state-action pair
(st, at) in a trajectory that leads to unsafe states, and p(y = 1) denote the distribution probability of
unsafe trajectory in the environment. The contrastive classifier Fy(s;, a;) is then defined as follows:

p(st;arly =1)p(y = 1)
p(se;arly = Dpy = 1) +p(st,ar)’
where p(y = 1) is used as weight for the positive samples which are only from the unsafe trajectories,
and weight 1 is given to the contrastively-negative samples which are from the overall distribution.

This binary classifier identifies the state-action pairs in unsafe trajectories contrastively from general
pairs in the overall distribution.

Fg(St,at) =

@

From the definition of Fy(s, a;) in Eq., one can derive the probability of interest, p(y = 1|s¢, at),
using the Bayes’ theorem, as follows:

pls,aly=Dply=1)  _ Fp(se, ar)
p(st, ar) 1 — Fy(ss, at)’
where the derivation from the fraction in the top row to the term expressed in Fj in the second row can
be done easily by dividing both the numerator and denominator of the top row fraction with the same
term [p(st, atly = 1)p(y = 1) + p(s¢, a¢)]. As the normal output range, [0, 1], of the probabilistic
classifier Fy(s;,a;) could lead to unbounded values p(y = 1|s;,a;) € [0, c0] through Eq.(3), we
propose to first rescale the output of classifier Fy(s¢, a;) to the range of [0, 0.5] when calculating

p(y = 1]ss, at) via Eq.(3).

Based on the contrastive sampling principle of Fy, we optimize the contrastive classifier’s parameter
6 using maximum likelihood estimation (MLE) with the following log-likelihood objective function:

L(Q) = Ep(st,ady:l)p(y:l) [log Fg(St, at)] =+ Ep(st,at) [log(l — Fg(st, at))]. “4)

By setting the derivative of L(6) w.r.t. Fy to zero, it is easy to verify that the definition of Fy in Eq.
can achieve the maximum of this MLE objective w.r.t. Fj.

p(y: 1|St,at) = 3)

4.2 Risk Preventive Trajectory

Based on Definition [T} a trajectory terminates when the RL agent encounters an unsafe state and
triggers safety constraint violation. It is however desirable to minimize the number of such safety
violations during the policy training process and learn a good policy in safe regions. The risk
prediction classifier we proposed above provides a convenient tool for this purpose by predicting
the probability of a state-action pair leading to unsafe states, p(y = 1|s¢, a+). Based on this risk
prediction, we have the following definition for unsafe regions:

Definition 2. A state-action pair (s, a;) falls into an unsafe region if the probability of (s, a;)
leading to unsafe states is greater than a threshold n: p(y = 1|sy, a) > n, where nj € (0,1).



With this definition, an RL agent can pursue risk preventive trajectories to avoid safety violations by
staying away from unsafe regions. Specifically, we can terminate a trajectory before violating the
safety constraint by judging the potential risk—i.e., the probability of p(y = 1|s¢, az).

Without a doubt, the threshold 7 is a key for determining the length 7" = |7| of an early stopped risk
preventive trajectory 7. We make the following assumption for deriving a lemma:

Assumption 1. For a trajectory T = {so,ap,70, Co, 51, -+ ,SH} that leads to an unsafe state
sy € Sy, the risk prediction probability p(y = 1|s, a) increases linearly along transition steps
within a base neighborhood of the unsafe region that can be defined through p(y = 1|s¢, at) > np
with a threshold n, € (0, 7).

Lemma 1. Assume Assumption |l| holds. Let H denote the length of an unsafe trajectory T =
{s0, ao, 70,0, 81, - - , SH } that terminates at an unsafe state sg € Sy. The numbers of transition
steps, T' and Ty, along this trajectory to the unsafe region determined by 7 in Definition|2| and its

neighborhood determined by ny, respectively, satisfy T =~ H:—ZiH + 11__7;; T .

Proof. According to Assumption the probability for a state-action pair (s, a;) leading to unsafe
states p(y = 1|s¢, a;) increases linearly after entering the neighborhood (determined by 7)) of the
unsafe region. Given the threshold n € (0, 1) for unsafe region identification in Definition 2} the ratio
of transition steps from the neighborhood to the unsafe region, 7' — T, to those leading to the unsafe
state, I — T}, will be approximately equal to the ratio between the probability differences of  — 7,

and 1 — ny; i.e., 17;:% ~ ’17::77:, which leads to:

n—"m n—="m I—n
T ~ T, H-Ty)| ~ H Ty . 5
bﬂl_nb( b)) L1_77b i b 5
When py = p(y = 1|so,ag) > np such that the initial state sq is within the neighborhood of the
unsafe region, we have T, = O and T' ~ | {=20H |. O

This lemma demonstrates the influence of the risk control threshold 7 on the length of collected
trajectories. Given 7, (and hence T3), a larger n value will allow more effective explorations with
longer trajectories to facilitate policy learning, but also tighten the unsafe region and increase the
possibility of violating safety constraints.

4.3 Risk Preventive Reward Shaping

With Definition [T} the safe RL formulation in Eq. (I)) can hardly induce a safe policy since there are
no intermediate costs before encountering an unsafe state. With the risk prediction classifier proposed
above, we can rectify this drawback by defining the cumulative cost function J.(7) using the risk
prediction probabilities, p(y = 1|s¢, at), over all encountered state-action pairs. Specifically, we
adopt a reward-like discounted cumulative cost as follows:

7|
Je(m) = Ernp, [Zt_o V'o(y = 1se,ar) | (6)

which uses the predicted risk as the estimated cost. Moreover, instead of solving safe RL as a
constrained discounted cumulative reward maximization problem, we propose to use Lagrangian
relaxation [37] to convert the constrained maximization problem, CMDP, in Eq. (EI) into an un-
constrained optimization problem, which is equivalent to shaping the reward function R with risk
penalties:

minmax [J;(m) = A(Je(m) — d)] @)
= rAnZlgl max [Jr(7) — A ()] 8)
< minmax Er.p, [Zlf_ovt (re = Ap(y = 1]ss, ar)) ©

where ; — Ap(y = 1]|s;, a;) can be treated as the risk penalty reshaped reward. The Lagrangian dual
variable A controls the degree of reward shaping with the predicted risk value.



Algorithm 1 Risk Preventive Training

Input: Initial policy 7, classifier Fy, trajectory set D = (J,
set of unsafe state-action pairs Sy, threshold 7, 1;

penalty factor A\, set of unsafe trajectory length H = ()
Output: Trained policy 7y

1: fork=1,2,..., K do

2: T, =0

3: fort=0,1,...,Thax do

4: Sample transition (s, a;, ¢, ¢, S¢+1) from the environment with policy 7.
5: if ¢; > 0 then

6: Add the risky state-action (s;, a;) into Sy; add length ¢ to H.

7: Increase A if necessary

8: Stop trajectory and break.

9: end if
10: Sample next action a1 as a1 = Tg(-|St41)-
11: Compute p; and p;41 via Eq. (3))
12: If p > mp, thenset Ty =t
13: Penalize reward r; with p;: 7, = ry — Ap
14: Add transition to the trajectory set, such that: D = D U (s¢, ag, ¢, S¢41)
15: if p;11 > 7 then
16: Stop trajectory and break.
17: end if
18:  end for

19:  Sample risky state-action pairs from Sy

20:  Sample transitions from D: (s, at, 7, S¢41) ~ D
21:  Update classifier Fy by maximizing L(6) in Eq ()
22:  Update policy my with shaped reward J;(7) in Eq (9)
23: end for

4.4 Risk Preventive Training Algorithm

The overall risk preventive RL training procedure for the proposed safe RL method is presented in
Algorithm[T] which trains a contrastive classifier Fy (line 21) for risk prediction, and performs safe
reinforcement learning by simultaneously enforcing risk preventive trajectory exploration (line 15-17)
and risk preventive reward shaping (line 13).

4.5 Data Augmentation for Contrastive Learning

As the goal of safe RL is to minimize the encountering of unsafe states, it is desirable to produce
an effective risk predictor with very limited risky state-action pairs. To this end, we propose to
extend RPT by designing a simple data augmentation procedure, producing a data augmented
method, RPT+DA, for comparison. The proposed data augmentation solely enhances the training
of contrastive classifier for risk prediction, with no additional interaction with the environment or
trajectory generation. Specifically, we perform data augmentation only for the data sampled from the
set of risky states Sy. For each sampled risky state-action pair (s¢, a;), we propose to produce an
augmented state 5, by adding a random Gaussian noise sampled from the standard normal distribution
N(0,1) to each entry of the observed data s;. We can repeat this process to generate multiple (e.g.,
n) augmented states for each s;. In our experiments, we used n = 3. Together with a, each §; can
be used to form an additional risky state-action pair (;, a;) for training the contrastive classifier. The
hypothesis is that without any prior information about the environment, the training of the proposed
contrastive classifier highly depends on the data collected during the agent’s interactions with the
environment, especially on the limited number of observed unsafe states. By using the proposed data
augmentation technique above, we expect to improve the unsafe states’ sample efficiency and the
generalizability of the approach on discriminating unsafe states and hence reduce the possible safety
violations during the exploration process.
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Figure 1: For each method, each plot presents the undiscounted return vs. the total number of
violations. The curve shows the mean of the return over five runs, while the shadow shows the
standard deviation.

S Experiment

5.1 Experimental Settings

Experimental Environments Following the experimental setting in [16], we adopted four robotics
simulation environments, Ant, Cheetah, Hopper, and Humanoid, based on the MuJoCo simulator
[21]. For Ant and Hopper, a robot violates the safety constraint when it falls over. For Cheetah, a
robot violates the safety constraint when its head flips on the ground, which is modified from the
HalfCheetah environment with extra safety constraint [16]. For Humanoid, the human-like robot
violates the safety constraint when the head of the robot falls to the ground. The RL agent cumulates
returns by operating in the environment. As shown in Algorithm[I] the RL trajectory terminates when
either the RL agent encounters safety violation, the maximum length is reached, or the preventive
trajectory break takes place.

Comparison Methods We compare the proposed Risk Preventive Training (RPT) approach with
three state-of-the-art safe RL methods: SMBPO [16]], RCPO [14], and LR [12].

5.2 Experimental Results

We compared all the five methods (LR, RCPO, SMBPO, RPT, and RPT+DA) by running each method
five times with random seeds in each of the four MuJoCo environments. The performance of each
method is evaluated by presenting the corresponding return vs. the total number of violations obtained
in the training process. The results for all the methods are presented on the left side of Figure [T}
one plot for each robotic simulation environment. The curve for each method shows the learning
ability of the RL agent with limited safety violations. From the plots, we can see RPT, RPT+DA and
SMBPO achieve large returns with a small number of violations on all the four robotic tasks, and
largely outperform the other two methods, RCPO and LR, which have much smaller returns even
with large numbers of safety violations. The proposed model-free RPT produces slightly inferior



performance than the model-based SMBPO on Ant and Cheetah, where RPT requires more examples
of unsafe states to yield good performance at the initial training stage. Nevertheless, RPT outperforms
SMBPO on both Hopper and Humanoid with smaller number of safety violations. As a model-free
safe RL method, RPT produces an overall comparable performance with the model-based method
SMBPO. With data augmentation, RPT+DA further improves the performance of RPT on all the four
environments, which demonstrates the efficacy of our simple unsafe-state augmentation strategy.

6 Conclusion

Inspired by the increasing demands for safe exploration of Reinforcement Learning, we proposed a
novel mode-free risk preventive training method, RPT, to perform safe RL by learning a contrastive-
sampling based binary classifier to predict the probability of a state-action pair leading to unsafe
states. Based on risk prediction, we produce a systematic scheme to collect risk preventive trajectories
that terminate early without triggering safety constraint violations. Moreover, the predicted risk
probabilities are also used as penalties to perform reward shaping for learning safe RL policies. A
simple data augmentation strategy has also been deployed to improve the efficiency of the observed
unsafe-states for RPT. We compared the proposed approach with a few state-of-the-art safe RL meth-
ods using four robotic simulation environments. The proposed approach demonstrates comparable
performance with the state-of-the-art model-based method and outperforms the model-free safe RL
methods.
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