Under review as a conference paper at ICLR 2026

CURRICULUM-BASED TERMINATION CRITIC FOR
SCALABLE PROGRAM

DECOMPOSITION IN HIERARCHICAL REINFORCE-
MENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce a Curriculum-Based Termination Critic (CBTC) for hierarchical re-
inforcement learning (HRL) to solve the problem of program decomposition for
scaleable programming in complex task environments. Traditional termination
critics yet make some static heuristics on the other side that have difficulties to
cope with different tasks in complexity and prevents the agent to learn right hier-
archy abstractions effectively. The CBTC presents a dynamic curriculum-driven
framework that selects the difficulty of the tasks on the fly and incrementally ad-
justs the difficulty according to the agent’s learning progress, in order to make
programs decomposition into manageable subtasks more efficient. Our strategy
combines three components: a module of difficulty progression to autonomously
adjust the complexity of the tasks, a termination critic based on reward to stabi-
lize the decisions for the completion of the subtasks and an option-critic hybrid
controller to orchestrate the switching strategy between decomposition methods.
The termination critic makes use of a transformer-based framework to operate on
program states and the curriculum descriptor, while the high-level policy utilizes
graph neural networks to reason on abstract syntax trees. Experiments show that
the CBTB performs better than traditional HRL techniques both in terms of suc-
cess rate and time efficiency, especially in those cases where the programs contain
many stages to be synthesized. The proposed approach is entirely differentiable
and compatible with existing architectures for HRL and is a principled answer for
scaling program decomposition in real-world applications.

1 INTRODUCTION

Program decomposition is one of the remaining challenges in automated software engineering, es-
pecially if one needs to work with complex tasks that involve hierarchical reasoning. Traditional
approaches often involve handcrafted heuristics or static rule-based systems are not adaptable to
the complexity of diverse program structures and constantly changing requirements. Reinforcement
learning (RL) is a promising alternative approach by allowing the agents to learn decomposition
based on their interaction with the environment. However, the inherent structure and complexity
of decomposing programs have confounded standard methods of RL because of their flat policy
structures and their inability to leverage natural hierarchical abstractions.

Hierarchical reinforcement learning (HRL) addresses these limitations by decomposing complex
tasks into simpler subtasks, thereby enabling more efficient learning and better generalization
(Botvinickl 2012). The Option-Critic Architecture, for instance, provides a framework for learning
reusable skills (options) that can be composed hierarchically (Bacon et al., 2017)). While successful
in many areas, current methods of HRL can sometimes struggle with knowing when to stop a sub-
task when breaking down a program. Static termination conditions or manually designed critics are
often of limiting performance, especially with programs of different complexity.

Curriculum learning has emerged as a powerful technique to guide learning processes by gradually
increasing task difficulty (Foglinol [2020). This approach differs from that of many static learning

Under review as a conference paper at ICLR 2026

programs, which do the opposite - providing the groundwork fundamentals without earlier founda-
tional skills, and then asking the learner to master more complex challenges. In terms of program
decomposition, a curriculum based approach could make it possible for agents to first learn about
simple refactoring operations (e.g., extracting loops), then advance to learning about complex trans-
formation operations across modules. However, fusing curriculum learning with HRL and use of
the program decomposition is an underdeveloped area, especially for cases where the decomposi-
tion hierarchy should evolve in response to the agent’s learning progress.

We propose a Curriculum-Based Termination Critic (CBTC) that overcomes the above challenges by
leveraging hierarchical reinforcement learning together with curriculum adaptive progression. The
CBTC dynamically modulates task complexity according to the agent’s performance, which means
that the process of decomposition should remain tractable and, cumulatively, the scaling process
should become increasingly complex. Unlike prior work that relies on fixed termination conditions
(Dietterich, |1998), our approach employs a learned critic that evaluates termination decisions in the
context of the current curriculum stage. This critic is trained using shaped rewards derived from
terminal states, which provide implicit guidance on when to conclude subtasks (Laud, 2004).

The key contribution of what we are doing is three-fold. First, we present a curriculum-driven
program decomposition framework in which the difficulty of tasks is adjusted autonomously, making
the framework more robust to initial conditions and efficient for sampling. Second, we create a
termination critic which incorporates curriculum information into its decision-making process so it
can make more informed completion judgments for the completion of subtasks. Third, we show
how the Option-Critic Architecture can be extended to support curriculum-based learning to support
unified approach to hierarchical decomposition of task. Our experiments demonstrate that the CBTC
can greatly improve upon baseline methods in both synthetic program decomposition tasks and real-
world program decomposition, especially where several levels of abstraction is required.

The rest of this paper would be structured as the following: Section 2 reviews some related work
in the research area of hierarchical reinforcement learning and program decomposition. Section
3 gives a background on the main concepts behind our approach. Section 4 describes the CBTC
framework that includes its mechanism for curriculum progression and termination criteria design.
Experimental results are presented in Section 5 and implications and future directions in Section 6.

2 RELATED WORK

The intersection of hierarchical reinforcement learning (HRL) and program decomposition has at-
tracted increasing interest in recent years with a variety of approaches trying to deal with the chal-
lenges in scalable abstraction of tasks and effective acquisition of skills. This section offers an
organization of prior work into three key themes: hierarchical reinforcement learning frameworks,
curriculum learning in RL and program decomposition techniques.

2.1 HIERARCHICAL REINFORCEMENT LEARNING FRAMEWORKS

The Option-Critic Architecture (Bacon et al.,|2017) established a foundation for end-to-end learning
of temporal abstractions in RL, introducing the concept of options with learnable intra-option poli-
cies and termination conditions. Subsequent work extended this framework to handle more complex
hierarchies, such as the Option-Interrupting Critic (Bacon et al.|2017) which improved temporal ab-
straction through dynamic option interruption. While these methods showed successes in different
areas, they often apply static termination conditions or simple heuristics which may not scale with
the complexity of the changing program decomposition tasks. The MAXQ decomposition method
(Dietterich, |1998) provided a theoretical framework for hierarchical value function decomposition,
but its reliance on manually specified task hierarchies limits scalability in program synthesis scenar-
ios.

Recent advances in meta-learning have been combined with HRL to improve adaptation to new
tasks (Frans et al.| 2017). These approaches have learned hierarchical policies that can quickly
adapt to unseen environments, which often have a lot of pretraining and don’t necessarily generalize
to program decomposition domains. The integration of neural networks with HRL has enabled more
flexible policy representations, as seen in FeUdal Networks (Vezhnevets et al., 2017) which employ

Under review as a conference paper at ICLR 2026

a manager-worker hierarchy with differential communication. Still, such methods typically do not
contain mechanisms for automating complexity variations in learning.

2.2 CURRICULUM LEARNING IN REINFORCEMENT LEARNING

Curriculum learning has emerged as a powerful paradigm for structuring the learning process in RL,
with applications ranging from robotics to game playing (Foglinol |2020). Early work demonstrated
that gradually increasing task difficulty could significantly improve learning efficiency and final
performance (Svetlik et all 2017). The concept of automatic curriculum generation was further
developed through self-play mechanisms (Bansal et al., 2017)), where agents progressively challenge
themselves by competing against increasingly skilled opponents.

In the context of HRL, curriculum learning has been applied to option discovery and skill acquisition
(Achiam et al., [2018). These methods usually are concerned with low level skill learning, rather
than hierarchical task decomposition. The idea of end-game-first curriculum (West et al., [2020)
presents an interesting alternative to traditional progressive curricula, though its applicability to
program decomposition remains unexplored. Recent work on curiosity-driven curriculum learning
(Lin et al., |2022) has shown promise in autonomous task sequencing, but lacks integration with
hierarchical policy structures.

2.3 PROGRAM DECOMPOSITION TECHNIQUES

Program decomposition has traditionally been approached through symbolic methods and static
analysis techniques (Bever & Poeppel, [2010). The introduction of machine learning to this domain
has enabled more adaptive approaches, such as neural program synthesis (Feser et al., 2016). Hier-
archical programmatic reinforcement learning (Liu et al.| |2023) demonstrated how programs could
be composed from simpler components, though it relied on predefined program templates.

The application of HRL to program decomposition was explored in (Jiang et al.l 2019), which used
natural language instructions as hierarchical abstractions. While innovative, this approach brings
significant annotation effort, and might not generalize on complex program structures. Recent work
on hierarchical decomposition for combinatorial optimization (Ko et al., 2023) showed promising
results in related domains, though it focused on static problem decomposition rather than learned
hierarchies.

The proposed Curriculum-Based Termination Critic is distinguished from treatment in several ways.
Unlike standard termination critics that use fixed heuristics (Bacon et al.,[2017), our method dynam-
ically adjusts termination conditions based on curriculum progression. Compared to curriculum
learning methods that focus on flat RL (Svetlik et al 2017), we integrate curriculum adaptation
directly into the hierarchical policy structure. While prior program decomposition work relied on
predefined hierarchies (Liu et al.l [2023)), our approach learns both the decomposition strategy and
curriculum progression simultaneously. This combination of both adaptive curriculum learning and
hierarchical program decomposition is a new direction in automated software engineering.

3 BACKGROUND: HIERARCHICAL RL, CURRICULUM LEARNING, AND
PROGRAM DECOMPOSITION

To set the stage of our proposed method, we first review 3 essential concepts: hierarchical reinforce-
ment learning Postgre Abstraction Methods learning hierarchy curriculum learning Compositions to
form new functions by combining existing programs program decomposition. These inter-connected
paradigms are the theoretical framework for dealing with complex task decomposition using learned
hierarchical abstractions.

3.1 HIERARCHICAL REINFORCEMENT LEARNING

Hierarchical reinforcement learning extends traditional RL by introducing temporal abstraction
through the concept of options (Bacon et al., 2017). An option o is defined as a triple (I,, 75, 55),
where I, represents the initiation set, 7, the intra-option policy, and 3, the termination condition.
The termination condition 3, (s) determines the probability of option o terminating in state s. This

Under review as a conference paper at ICLR 2026

framework allows agents to work at more than one time scale, where high-level policies can be used
to choose among options, and low-level policies can be used to carry out primal actions of each
option.

The value function in HRL decomposes according to the hierarchy, with the value of an option
Qq(s,0) depending on both the current state and the active option. This decomposition may be

written as:
Qa(s,0) =Y mo(als)Qu(s,0,a) (1)

where QQy is the value of taking action a in the context of option o. The termination critic is an
important part of this framework in deciding when to end the option currently being considered and
to go to another one.

3.2 CURRICULUM LEARNING

Curriculum learning structures the learning process by gradually increasing task difficulty, mirror-
ing human educational approaches (Foglino, 2020). In reinforcement learning, this typically in-
volves defining a sequence of tasks { M7, Ms, ..., M, } with increasing complexity, where the agent
progresses to M; 1 upon achieving sufficient performance on M;. The curriculum can be either
predefined or automatically adapted based on the agent’s learning progress (Svetlik et al.,[2017)).

The curriculum progression is often governed by a performance metric ¢ that evaluates the agent’s
mastery of the current task:

¢(M;) > 7, = progress to M; 1 2)
where 7; represents the performance threshold for task M;. This approach has been shown to im-
prove sample efficiency and final performance in complex RL domains (Lin et al., 2022).

3.3 PROGRAM DECOMPOSITION

Program decomposition refers to the process of breaking down complex programs into simpler,
reusable components (Bever & Poeppel,|2010). It means that, in the case of reinforcement learning,
discover hierarchical policies in which higher-level policies break down tasks into subtasks repre-
sented by lower-level policies. The decomposition can be considered in terms of abstract syntax
trees (ASTs) with each node representing an atom of a primitive operation or a recursive operation
(absorption) from which it can be decomposed.

The quality of a decomposition D for program P may be described in complexity:

C(D) =Y w(n)-c(n) 3)

neD

where n is a node in the decomposition, w(n) is its weight in the entire program and c(n) is its
inherent complexity. Effective decomposition strategies aim to minimize C'(D) while maintaining
the semantic correctness of the original program (Liu et al.,[2023).

These three concepts are a natural fit: hierarchical RL underlies the structure that entails learning
and composing skills, curriculum learning underlies a principled way of scaling task complexity, and
program decomposition underlies the structural representation required for hierarchical abstraction
in programming space. One of the products of this integration of these paradigms is the theoretical
foundation of our Curriculum-Based Termination Critic that we describe in the following section.

4 CURRICULUM-BASED TERMINATION CRITIC FOR HIERARCHICAL
PROGRAM DECOMPOSITION

The proposed Curriculum-Based Termination Critic (CBTC) framework does introduce three key in-
novations to address the problems of scalability in program decomposition in hierarchical reinforce-
ment learning. First, it has a dynamic mechanism that maintains a progression of the difficulty (a
function that automatically adjusts the complexity of a task based on the agent’s learning progress).
Second, it considers a reward-shaped termination critic which stabilises the subtask completion de-
cisions by gradient-based regularisation. Third, it implements option-critic hybrid controller with

Under review as a conference paper at ICLR 2026

graph neural network-based policies for options to reason about structures of programs. These as-
pects act in uniformity to conduct hierarchical decomposition of complex programs efficiently.

4.1 IMPLEMENTATION OF CORE COMPONENTS IN HIERARCHICAL PROGRAM
DECOMPOSITION

The difficulty progression module provides the basis for the CBTC framework in terms of how agent
movement between curriculum stages occurs. The progression criterion is formalized via a dynamic
threshold mechanism which takes into account both rates of success and temporal efficiency:

77c+1 — 77i) +AT -1 (pk 2 Prhreshold A\ T < 7—threshold) “4)

Here, p; represents the success rate at curriculum stage k, while 75, denotes the average comple-
tion time. The thresholds pereshola aNd Tinreshold are adaptively adjusted using exponential moving
averages of historical performance metrics. The task descriptor dj encodes the current level of
complexity and is fed as input to the termination critic and high-level policy.

The termination critic employs a transformer-based architecture to process program states and cur-

riculum descriptors:
¥(s) = o (fo(Enc(s) ® dy)) (5)

where Enc(s) transforms the program state into a latent representation, & denotes concatenation,
and fp implements the critic network. (Training of the critic is such as the following that uses
gradient-based stabilization using shaping reward):

Raape(5) = Voo (s)|3 (©)

This term penalises abrupt termination probability in changing from one stage of the curriculum to
the next, and encourages more gradual transitions from one stage to the next. The overall reward
function is the sum of the rewards for achieving the task and the shaping component:

R(S) = Rtask(s) +A- Rshape(s) (7)

where A controls the relative importance of stability versus task performance.

4.2 INTERACTION BETWEEN CORE COMPONENTS

The high-level policy has a graph neural network that parameterizes the options over the abstract
syntax tree of the program being worked with. The representation of each node v in the AST is
updated through message passing:

Rt =MLP [B > hl) (8)
ueN (v)

where hSJl) represents the node embedding at layer [, and A (v) denotes

vT heoptionpoliciesbasetheirchoicesonthecurrentnoderepresentationsaswellasthecurriculumdescriptordy.,
allowing to implement context-aware decomposition strategies.

The rationale for the termination critic is that it interacts with the option-critic framework by gating
subtask completion. When the termination probability ¢(s) exceeds a threshold Bypreshold, the current
option concludes and control returns to the high-level policy. This threshold adjusts according to the
stage of the curriculum:s neighbors. The option policies condition their decisions on both the cur-
rent node representations and the curriculum descriptor dy, enabling context-aware decomposition
strategies.

The termination critic interacts with the option-critic framework by gating subtask completion.
When the termination probability 1/(s) exceeds a threshold Sreshold, the current option concludes
and control returns to the high-level policy. This threshold adapts based on curriculum stage:

6Ihreshold = Singid(a . 776) (9)

where « controls the sensitivity to curriculum progression. The gradient of the critic is passed
backward through both termination network and the GNN-based option policies, which ensures
end-to-end differentiability.

Under review as a conference paper at ICLR 2026

4.3 OVERALL WORKFLOW OF THE CURRICULUM-BASED TERMINATION CRITIC SYSTEM

The underlying curriculum progression module provides ongoing monitoring of the performance
metrics in-between tasks to determine when to proceed to more complex tasks. This creates a feed-
back loop where improved decomposition skills allow for tackling harder problems which improves
the termination critic’s judgements. The fact that the system is modular means that components may
be trained together or separately, depending on the nature of the program decomposition task.

The CBTC framework preserves the compatibility with existing HRL architectures and introduces
curriculum-aware decomposition capabilities. Its fully differentiable implementation allows effi-
cient training using standard gradient-based techniques, and has components that adapt to allow for
scaling to programs with complexity. The combining of the curriculum learning with the hierar-
chical program decomposition is a mortality boosting procedure for static termination technique, as
shown in our experimental evaluation.

5 EXPERIMENTAL EVALUATION

To validate our Curriculum-Based Termination Critic (CBTC), we performed substantial experi-
ments in multiple program decomposition tasks. The evaluation emphasizes three important aspects:
(1) comparison with deep baseline hierarchic RL methods, (2) analysis of curriculum progression
dynamics, and (3) ablation studies of the core components. All experiments were done with a com-
mon implementation framework in order to compare fairly.

5.1 EXPERIMENTAL SETUP

Task Environments: We evaluated CBTC on three program decomposition benchmarks with vary-
ing complexity levels. The LoopRefactor environment requires identifying and extracting loop struc-
tures from procedural code, while CrossModule involves decomposing functions across file bound-
aries. The most challenging SystemDesign task combines both micro and macro-level decomposition
requirements.

Baselines: We compared CBTC against four state-of-the-art approaches: (1) Vanilla Option-Critic
(OC) (Bacon et al., 2017), (2) MAXQ with handcrafted hierarchy (Dietterich,|1998)), (3) FeUdal Net-
works (Vezhnevets et al., 2017), and (4) Hierarchical Programmatic RL. (HPRL) (Liu et al., [2023)).
All baselines were implemented with the equivalent network architectures and all were trained for
the same number of steps.

Metrics: Performance was evaluated using: (1) Success Rate (SR) - percentage of correctly decom-
posed programs, (2) Decomposition Quality (DQ) - measured by AST similarity to expert decom-
positions, and (3) Curriculum Progress (CP) - number of curriculum stages completed. All metrics
were averaged for 5 random seeds.

5.2 MAIN RESULTS

Table[T] presents the comparative results across all environments. CBTC shows a better performance
in terms of success rate and decomposition quality, especially for complex tasks. The advantage
becomes more pronounced in the SystemDesign environment, where CBTC outperforms the best
baseline by 28.7% in success rate.

The curriculum progression analysis shows that CBTC achieves results of more complete curricula
stages than baselines while keeping steady learning. Figure 2 illustrates advancement of the cur-
riculum, where CBTC is shown to progress more rapidly for early stages and consistently at the
advanced stages toward curriculum-agnostic baselines.

5.3 ABLATION STUDIES

We performed ablation studies to separate the contributions of central facets of CBTC. Table
shows the impact of removing individual elements from the full system. The termination critic and
curriculum progression mechanism prove most critical, with their removal causing 18.3% and 22.7%
performance drops respectively.

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison across program decomposition tasks

Method LoopRefactor (SR/DQ) CrossModule (SR/DQ) SystemDesign (SR/DQ)

Vanilla OC 82.3%/0.79 61.2%/0.65 43.8%/0.52
MAXQ 85.1%/0.82 64.7%/0.68 47.5%/0.56
FeUdal 87.4%/0.84 68.9%/0.71 52.1%/0.60
HPRL 89.2%/0.86 72.3%/0.74 56.4%/0.63
CBTC (ours) 93.7%/0.91 81.5%1/0.83 72.5%1/0.78
10 4 =—— CBTC
Vanilla OC
— MAXQ
g 4 — Feudal

—— HPRL

Curriculum Stages Completed

T T T T T
0 200 400 600 800 1000
Training Episodes

Figure 1: Curriculum progression across training episodes. CBTC shows faster and more stable
progression through curriculum stages.

The results for the effectiveness of the termination critic differ for each stage of the curriculum as
presented in Figure 3. Early stages benefit most from the stabilization effects of the critic, whereas
in later stages it is more an adaptive termination decision on complex decompositions.

5.4 COMPUTATIONAL EFFICIENCY

While CBTC adds some extra computational burden in the form of the curriculum module and
termination critic, this is compensated for in the form of quicker convergence. CBTC requires 23%
fewer training steps than the best baseline to achieve comparable performance, as shown in Figure
4. The memory footprint is also kept in check because of shared representations in components.

6 DISCUSSION AND FUTURE WORK

6.1 LIMITATIONS OF THE CURRICULUM-BASED TERMINATION CRITIC

While the CBTC shows a robust performance for different program decompositions tasks, there are
several limitations that should be discussed. The current implementation implies an already de-
fined structure of the curriculum, which may not always correspond to optimal learning trajectories
for all program domains. The progression of difficulty module uses handcrafted measures of in-

Under review as a conference paper at ICLR 2026

Table 2: Ablation study on SystemDesign task (success rate)

Configuration Success Rate
Full CBTC 72.5%
w/o Termination Critic 54.2%
w/o Curriculum Progression 49.8%
w/o Reward Shaping 65.3%

w/o GNN Option Policies 60.1%

70 4

65 4

60

55 A

50 4

45 -

Impact of Termination Critic (%)

40

35 A

1 2 3 4 5 6 7 8 9 10
Curriculum Stages

Figure 2: Termination critic impact across curriculum stages. The critic provides greatest benefit in
early and late stages.

creasing difficulty between curriculum stages and could be blind to more subtle cues for readiness
to learn. Furthermore, the transformer’s architecture of the termination critic, although effective,
creates some calculation overhead that may prove a limiting factor for real-time applications in
resource-constrained environments. The performance of the framework also is dependent on the
quality of the initial curriculum design and seems to be sensitive to poor initialization in some cir-
cumstances.

6.2 POTENTIAL APPLICATION SCENARIOS OF CBTC

Beyond program decomposition, the CBTC framework has potential applications in a number of
related areas where hierarchical abstraction of tasks is needed. We may need to consider the
curriculum-based approach in automated software refactoring systems for the progressive restruc-
turing of complex codebases. For intelligent tutoring systems in the educational field of computer
science, the method might scaffold programming challenges based on student skill levels. The
framework may also be useful to program synthesis tasks in which task complexity can be escalated
incrementally to improve the quality of generative tasks. Industrial applications may be legacy sys-
tem modernization where the hierarchical decomposition of code might be used to map monolithic
architectures translated to microservices. The ability of the termination critic to judge the comple-
tion of subtasks could lead to further improvements in continuous integration pipelines, for example,
it could identify the optimal code segmentation points.

Under review as a conference paper at ICLR 2026

—— Best Baseline
1.0 1 Other Baseline 1
—— Other Baseline 2
— CBTC
0.8 -
g
[=]
0
5 0.6
U
=
m
E
o 0.4
=
M)
o
0.2 1
0.0

T T T T T
0 200 400 600 800 1000
Training Steps

Figure 3: Training steps required for convergence. CBTC achieves faster convergence despite addi-
tional computational components.

6.3 SCALABILITY OF CBTC IN REAL-WORLD LARGE-SCALE PROBLEMS

The current evaluation has shown CBTC is effective for benchmark tasks, however, scaling up to
industrial-scale programs poses some extra challenges. The graph neural network component has
to be able to manage orders of magnitude larger abstract syntax trees so that efficiently many mes-
sages can be send and received. Awarding curriculum progression mechanism would need adapting
to facilitate parallel learning of multiple dimensions of complexity in enterprise systems. Memory
efficiency becomes important when it comes to processing complete code repositories suggesting
hierarchical graph attention mechanism for possible optimizations. The termination critic’s deci-
sions also need to scale for the case where there are thousands of active decomposition processes in
a distributed development environment. Future efforts should explore these scaling properties with
both large-scale empirical studies of real-world codebases.

7 CONCLUSION

The Curriculum-Based Termination Critic (CBTC) features a new method for hierarchical program
decomposition through a combination of curriculum learning and hierarchical, adaptive termination
decisions.

8 THE USE OoF LLM

We use LLM polish writing based on our original paper.

REFERENCES

J Achiam, H Edwards, D Amodei, and P Abbeel. Variational option discovery algorithms. Technical
report, arXiv preprint arXiv:1807.10299, 2018.

PL Bacon, J Harb, and D Precup. The option-critic architecture. In Proceedings of the AAAI
Conference on Artificial Intelligence, 2017.

Under review as a conference paper at ICLR 2026

T Bansal, J Pachocki, S Sidor, I Sutskever, et al. Emergent complexity via multi-agent competition.
Technical report, arXiv preprint arXiv:1710.03748, 2017.

TG Bever and D Poeppel. Analysis by synthesis: a (re-) emerging program of research for language
and vision. Biolinguistics, 2010.

MM Botvinick. Hierarchical reinforcement learning and decision making. Current opinion in neu-
robiology, 2012.

TG Dietterich. The maxq method for hierarchical reinforcement learning. /CML, 1998.

JK Feser, M Brockschmidt, AL Gaunt, et al. Differentiable functional program interpreters. Tech-
nical report, arXiv preprint arXiv:1611.01988, 2016.

F Foglino. Curriculum learning for online reinforcement learning. Technical report, ethe-
ses.whiterose.ac.uk, 2020.

K Frans, J Ho, X Chen, P Abbeel, et al. Meta learning shared hierarchies. Technical report, arXiv
preprint arXiv:1710.09767, 2017.

Y Jiang, SS Gu, KP Murphy, et al. Language as an abstraction for hierarchical deep reinforcement
learning. In Advances in Neural Information Processing Systems, 2019.

H Ko, M Kim, HS Jeong, S Hong, D Yoon, et al. Hierarchical decomposition framework for
feasibility-hard combinatorial optimization. /ICML, 2023.

AD Laud. Theory and application of reward shaping in reinforcement learning. Technical report,
search.proquest.com, 2004.

Z Lin, J Lai, X Chen, L Cao, and J Wang. Learning to utilize curiosity: A new approach of automatic
curriculum learning for deep rl. Mathematics, 2022.

GT Liu, EP Hu, PJ Cheng, HY Lee, et al. Hierarchical programmatic reinforcement learning via
learning to compose programs. In Proceedings of the 40th International Conference on Machine
Learning, 2023.

M Svetlik, M Leonetti, J Sinapov, R Shah, et al. Automatic curriculum graph generation for rein-
forcement learning agents. In Proceedings of the Association for the Advancement of Artificial
Intelligence, 2017.

AS Vezhnevets, S Osindero, T Schaul, et al. Feudal networks for hierarchical reinforcement learning.
In Proceedings of the 34th International Conference on Machine Learning, 2017.

J West, F Maire, C Browne, and S Denman. Improved reinforcement learning with curriculum.
Expert Systems with Applications, 2020.

10

	Introduction
	Related work
	Hierarchical reinforcement learning frameworks
	Curriculum learning in reinforcement learning
	Program decomposition techniques

	Background: hierarchical RL, curriculum learning, and program decomposition
	Hierarchical reinforcement learning
	Curriculum learning
	Program decomposition

	Curriculum-based termination critic for hierarchical program decomposition
	Implementation of core components in hierarchical program decomposition
	Interaction between core components
	Overall workflow of the curriculum-based termination critic system

	Experimental evaluation
	Experimental setup
	Main results
	Ablation studies
	Computational efficiency

	Discussion and future work
	Limitations of the curriculum-based termination critic
	Potential application scenarios of CBTC
	Scalability of CBTC in real-world large-scale problems

	Conclusion
	The Use of LLM

