
Under review as a conference paper at ICLR 2022

G3: REPRESENTATION LEARNING AND GENERATION
FOR GEOMETRIC GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

A geometric graph is a graph equipped with geometric information (i.e., node coor-
dinates). A notable example is molecular graphs, where the combinatorial bonding
is supplement with atomic coordinates that determine the three-dimensional struc-
ture. This work proposes a generative model for geometric graphs, capitalizing on
the complementary information of structure and geometry to learn the underlying
distribution. The proposed model, Geometric Graph Generator (G3), orchestrates
graph neural networks and point cloud models in a nontrivial manner under an
autoencoding framework. Additionally, we augment this framework with a normal-
izing flow so that one can effectively sample from the otherwise intractable latent
space. G3 can be used in computer-aided drug discovery, where seeking novel
and optimal molecular structures is critical. As a representation learning approach,
the interaction of the graph structure and the geometric point cloud also improve
significantly the performance of downstream tasks, such as molecular property
prediction. We conduct a comprehensive set of experiments to demonstrate that G3

learns more accurately the distribution of given molecules and helps identify novel
molecules with better properties of interest.

1 INTRODUCTION

Geometric deep learning refers to the development of deep learning techniques for data from non-
Euclidean domains, such as graphs and manifolds (Bronstein et al., 2017). In recent years, graph
neural networks (GNN) emerged to be a promising family of architectures that models the relational
inductive bias ubiquitous to graph structured data (Battaglia et al., 2018; Zhou et al., 2018). With
the rise of deep generative modeling, various generative models have been adapted for graphs and
proven to be effective in learning the underlying distribution implicitly defined by a set of given
graphs (Goodfellow et al., 2014; Kingma & Welling, 2013; Rezende & Mohamed, 2015; van den
Oord et al., 2016; De Cao & Kipf, 2018; You et al., 2018b; Jin et al., 2018; Shi et al., 2020).

In this work, we consider a special type of graphs—geometric graphs—which are equipped with
geometric information in addition to the combinatorial structure (Pach, 2013). In practice, this
additional information corresponds to low-dimensional geometric structures and typically appears as
node coordinates in R2 or R3. The coordinates find broad uses in molecules (Van Aalten et al., 1996),
meshes (Alliez et al., 2005), and graph drawing (Frishman & Tal, 2008). This work aims to develop a
generative model that captures both the combinatorial and the geometric characteristics exhibited in a
given collection of geometric graphs.

One driving application of geometric graphs is molecule generation. In pharmacology, drug discovery
is the process of identifying new candidate medications in the form of molecules. The process is
known to be difficult, costly, and time-consuming (Paul et al., 2010), because of the discrete nature of
the search space and its vast size (estimated to contain at least 1033 molecules) (Polishchuk et al.,
2013). Recently, deep learning techniques have been developed to represent molecules as continuous
vectors and apply continuous optimization (Jin et al., 2018) or reinforcement learning (You et al.,
2018a) to conduct an efficient search. In almost all existing work based on the molecular-graph
approach, the graph is treated as a combinatorial object and the three-dimensional geometric informa-
tion serves as node features only. However, the atomic coordinates encode vital energy information
of the molecule and they can be instrumental for the inference of structure and state. Therefore, a

1

Under review as a conference paper at ICLR 2022

proper modeling of the geometric information is paramount for a more accurate representation of the
molecule in downstream tasks.

In this work, we develop an autoencoder for geometric graphs, orchestrating a GNN and a point cloud
model in a nontrivial manner. Besides the straightforward use of a GNN (Duvenaud et al., 2015;
Kearnes et al., 2016; Gilmer et al., 2017) to encode the combinatorial structure, we treat the nodes
with spatial coordinates as low-dimensional point clouds and use a point cloud model to encode
the geometry. Different from decoders merely based on graph structures in conventional graph
autoencoders, on the other hand, we decode the graph structure by first reconstructing the geometry.
Specifically, we use a folding-based technique (Yang et al., 2018; Pang et al., 2021) to map a template
of points to the correct geometry, from which the combinatorial structure is inferred. This way, both
sources of information are organically fused and processed. Furthermore, to fulfill the generative
capability, we augment the autoencoder with a normalizing flow (Kobyzev et al., 2019; Dinh et al.,
2016; 2014), so that one is able to effectively sample from the otherwise intractable latent space.

The proposed geometric graph generator, G3, addresses geometry that is rarely considered in past
graph generative models. A naive alternative to incorporate node coordinates is to treat them as part
of features when consumed by a GNN. This approach, however, biases the geometry by the graph
structure owing to local neighborhood aggregation—the global geometry may be compromised. For
geometric graphs, the structure itself is combinatorial and discrete, while the geometry is continuous.
These two sources of information are often complementary and benefit from collaborative processing.
Our strategy is to exploit both graph techniques and point cloud techniques to maximally retain
information from the two sources.

To evaluate the effectiveness of G3, we focus on molecule applications and use popular datasets
(QM9 and ChEMBL) that contain atomic coordinates. We demonstrate that G3 outperforms a
number of representative graph generative models in generating novel and valid molecules and it also
significantly outperforms either a GNN or a point model alone for property prediction. Appealingly,
G3 decodes molecules substantially faster than do many popular models. Furthermore, with the use
of Bayesian optimization in concert with a trained model, we can identify better molecules under
metrics of interest than do existing methods.

2 RELATED WORK

Generative models refer to a class of machine learning models that can learn the underlying distribu-
tion, implicitly defined by a given set of data, and to sample from it. Noteworthy generative models in
the deep learning era include variational autoencoders (VAE) (Kingma & Welling, 2013), generative
adversarial networks (GAN) (Goodfellow et al., 2014) and normalizing flows (NF) (Kobyzev et al.,
2019; Dinh et al., 2016; 2014). Among them, NF bears a unique advantage in estimating the density
(likelihood). For training, NF directly optimizes the likelihood, whereas VAE maximizes a lower
bound of it (called the ELBO Kingma & Welling (2013)) and GAN minimizes the discrepancy
between the input and the transformed noise distribution.

Under these generative models, a graph can be generated in a sequential or one-shot manner:
the former samples nodes and edges incrementally while the latter samples a graph in its entirety.
Combining GAN and reinforcement learning, MolGAN (De Cao & Kipf, 2018) and GCPN (You et al.,
2018a) generate molecules in a one-shot and sequential fashion, respectively. MolecularRNN (Popova
et al., 2019) is an autoregressive model based on recurrent neural networks; it performs validity checks
during the sequential generation process and rejects invalid structures. JT-VAE (Jin et al., 2018)
is a VAE-based tree model that constructs the molecular graph sequentially from sub-components.
Popova et al. (2019) point out that JT-VAE may suffer ambiguity in the conversion of the tree
structure to a molecular graph, affecting property optimization. GraphNVP (Madhawa et al., 2019)
and GraphAF (Shi et al., 2020) are recently proposed NF-based models that parameterize the mapping
from a latent vector to a graph by using a flow. The former employs one-shot sampling while the
latter is sequential.

Molecules admit representations other than graphs. An alternative is the simplified molecular-input
line-entry system (SMILES) (Weininger, 1988), a string notation that universally describes molecular
structures. Grammar VAE (GVAE) (Kusner et al., 2017) and syntax-directed VAE (SD-VAE) (Dai
et al., 2018) are VAE-based models that process SMILES strings and apply grammatical rules to

2

Under review as a conference paper at ICLR 2022

sequentially reconstruct the strings. Another family of models, which are motivated by quantum
chemistry principles, models molecules as point clouds and learns a physically robust representation
to predict, e.g., molecular energies and equilibrium conformations. Schütt et al. (2018) propose
SchNet, a network with continuous-filter convolution layers that model interactions between atoms
and learn a representation that is invariant to translation and rotation. Using the same filters, Gebauer
et al. (2019) devise Generative-SchNet (G-SchNet), which accurately models the target molecule
distribution and generates novel 3D conformations that are relatively stable.

In addition to the graph structure, our work treats nodes as a point cloud, which is a collection of
points in R3. Point clouds are a prominent subject in computer vision and computer graphics; they
are obtained through, e.g., LIDAR scanning of object surfaces (Yang et al., 2018). Deep learning
with point clouds is faced with challenges in defining the convolution operator (Bruna et al., 2013;
Bronstein et al., 2017; Schonsheck et al., 2018; Jin et al., 2019). Volumetric CNN (Wu et al.,
2015; Qi et al., 2016; Maturana & Scherer, 2015) applies convolution filters on voxels obtained from
discretization of the three-dimensional space. Multiview CNN (Su et al., 2015; Qi et al., 2016) reduces
point clouds to a collection of 2D images and applies gridded convolutions on them. PointNet (Qi
et al., 2017a;b) uses point-wise MLPs to featurize individual points, followed by a symmetric pooling
that generates a permutation-invariant global description.

3 GEOMETRIC GRAPH GENERATOR

In this section, we present G3. The model is an autoencoder that contains interacting modules to
process and reconstruct the geometry (i.e., node coordinates), the structure (i.e., edges and edge
types), and additional features (e.g., node features). Such a sophisticated autoencoder allows forming
a more accurate representation of the geometric graph and learning better the input distribution.

A proper processing of the geometric and combinatorial information is crucial to the success of G3

and downstream tasks. For example, an authentic representation of the node coordinates serves as the
basis for decoding both the node and the edge types: the training hinges on an accurate registration
between the reconstructed point cloud and the ground truth. The straightforward adaptation of GNNs
for encoding the geometric information (as node features) results in poor coordinate reconstruction
and worse generation quality overall. Moreover, one can naively reconstruct coordinates and node
features with a single decoder. However, mixing two modes of information together introduces
unnecessary bias through, e.g., the difference in scales. Hence, separate but dependent decoders for
features and geometry render a more accurate reconstruction.

3.1 NOTATION

Let n be the number of nodes, df be the number of node features, de be the number of edge types, and
dc be the dimension of the node coordinates (typically two or three). We denote a geometric graph as
G = (A,X), where A ∈ {0, 1}n×n×de is the adjacency tensor and X = [C,F] ∈ Rn×(dc+df) is the
node matrix, where each note vector xi = [ci, fi] is a concatenation of coordinates ci ∈ R1×dc and
features fi ∈ R1×df . For molecules, the node features are one-hot encoding of the atom type, and
the edge types correspond to bond types.

3.2 ENCODER

The purpose of the encoder is to use a latent vector to represent both the geometry and the structure
of G. It contains two modules: a point encoder that maps the point cloud C to a geometry descriptor
zp; and a graph encoder that takes A and F as input and maps them to a structure descriptor zg . Both
descriptors are concatenated to form the latent representation z = [zp, zg] ∈ Rdz .

A usual graph encoder processes the structure information A and node features F by using a GNN.
When the coordinate information C is available, one could have treated C as part of the node features
and feed them into the GNN, indiscriminately of F . However, the geometry information of a graph is
often complementary to the structure. Hence, a drawback of such an approach is that one heavily
relies on the local neighborhoods from graph structures to parameterize the geometry, resulting in a
strong bias toward the structure. A notable feature of our design is that we separate the geometry

3

Under review as a conference paper at ICLR 2022

from the structure when encoding a geometric graph; we will show an ablation study supporting this
design subsequently.

This idea offers a means to process all node information, including features F and coordinates C,
independently of the combinatorial structure, as an additional parameterization over the pure use of a
GNN. In what follows, we describe the two encoder modules and defer details of the specific network
architecture in the appendix.

Point Encoder. In this module, we treat each row of C as a point and use a point cloud architecture
to obtain the geometry descriptor zp. First, a multilayer perceptron (MLP) is applied point-wise to
the point cloud to amplify the feature dimensions. The point-wise features are then passed through a
series of multi-headed attention blocks (Vaswani et al., 2017) to further featurize the points. These
attention-based blocks are more effective than simple point-wise MLPs used in PointNet (Qi et al.,
2017a) as they are able to leverage global information, i.e. features on all other points, to produce
rich and expressive point-wise features. At last, we use a global max-pooling over the points followed
by an additional MLP to yield the geometry descriptor zp.

Graph Encoder. This module takes the graph adjacency tensor and the node feature matrix as
inputs and outputs a structure descriptor zg. Virtually all GNNs serve the purpose; some are even
specialized to molecules (e.g., Duvenaud et al. (2015); Kearnes et al. (2016); Gilmer et al. (2017)).
Our empirical investigation finds that GINE, Graph Isomorphism Network with Edge features (Xu
et al., 2018), obtains a good and stable performance for our purpose.

3.3 DECODER

Decoding a graph is substantially harder than encoding one. A common idea is to employ a
sequence model and decode nodes and edges one by one Popova et al. (2019). Training such a
model is increasingly more challenging for long sequences (i.e., large graphs). On the other hand,
approaches decoding the adjacency tensor also face scalability challenges owing to theO(n2) degrees
of freedom Samanta et al. (2020). In this work, we exploit the unique opportunity offered by a
geometric graph to decode first the geometry, then the point-wise features, and lastly the structure.

Specifically, we propose a three-step decoding process that decodes a graph G′ = (A′, X ′) from
z, where X ′ = [C ′, F ′]. The first step is to decode C ′, the coordinates for the point cloud, which
involves using the latent representation z to morph a template of points to the correct geometry. By
isolating the decoding of coordinates, we can leverage specialized architectures to achieve accurate
reconstructions of the geometry, which is crucial for the subsequent decoding of F ′ and A′. Secondly,
the reconstructed geometry C ′ is recycled along with the latent code z to predict the point-wise
features F ′. Finally, X ′ = [C ′, F ′] is used to infer the graph structure A′ through a link predictor.
This procedure sidesteps the scalability challenge of both the sequential generation approach and the
adjacency decoding approach.

In what follows, we describe each component of decoder modules and defer details of the specific
network architecture in the appendix.

Coordinate Decoder The idea of decoding a point cloud from a latent vector z is to successively
fold a template of points until it forms the desired geometry. Our coordinate decoder is inspired by
TearingNet (Pang et al., 2021), which is a refinement over FoldingNet (Yang et al., 2018; Tao, 2020),
a popular archetypal architecture for point cloud reconstruction. Note that the template design is
application-dependent; an effective template is guided by the geometry to be modeled. For example, a
spherical template with roughly equidistant points is more suitable for the three-dimensional structure
of molecules. This design is different from the original TearingNet architecture that uses a regular 2D
grid to model surfaces.

Feature Decoder To decode the point-wise features F ′, we apply the folding operations with the
decoded coordinates C ′ from the aforementioned coordinate decoder as the starting template. The
latent code z is replicated and concatenated to C ′, which is then forwarded through point-wise MLPs
to complete one set of folding. We repeat two sets of folding to arrive at the decoded features. The
architecture of the feature decoder is illustrated in Figure 1.

4

Under review as a conference paper at ICLR 2022

Figure 1: The G3 feature Decoder.

Link Predictor (Graph Decoder) The link predictor determines the existence of an edge (and
its type if so) for every pair of decoded nodes. A typical link predictor takes the inner product
between two nodes to indicate the strength of connection (Trouillon et al., 2016). However, such a
link predictor is oblivious to the geometry because a large inner product in 3D does not necessarily
indicate closeness. Rather, the displacement of two points, their respective neighborhoods, and their
neighbors’ features may all play a role in determining the existence and type of an edge. For example,
in molecules, the bond between a pair of atoms depends on their distance as well as the neighboring
atoms. Therefore, we augment the features of a decoded node xi from [ci, fi] to x̂i as

x̂i = [|ci − cn1
|, ..., |ci − cnk−1

|, fi, fn1
, ..., fnk−1

],

where n1, . . . , nk−1 are the node indices of the sorted k-nearest neighbors of xi; fi ∈ Rdf and ci ∈
Rdc are decoded features and coordinates, respectively; and the absolute sign indicates element-wise
absolute values. We then use these augmented features as well as the coordinate-wise displacement
|ci − cj | to define the link predictor. Formally,

l(i, j) = MLP([x̂i, x̂j , |ci − cj |]) ∈ Rde ,
LinkPredictor(i, j) = l(i, j) + l(j, i) ∈ Rde .

We highlight that our link predictor works remarkably well as a standalone module for molecules,
which can be characterized as a procedure for inferring inter-atomic bonds based on molecular
conformation and atom types. To the best of our knowledge, there are no reliable public software
available for this task, especially for large molecules with noise in coordinates or atom types.
Therefore, our proposed link predictor has its own value other than being a part of G3. We refer
appendix G for illustrating the outstanding performance of the standalone link predictor.

3.4 LATENT SPACE SAMPLING: NORMALIZING FLOW

To reliably sample from G3’s latent space, we make use of a normalizing flow model (Kobyzev
et al., 2019), which consists of a sequence of invertible transformations that map between an easily
sampled base distribution (e.g., standard normal) and an unknown distribution (e.g., the latent
distribution of our autoencoder). The densities of the two distributions are related by the Jacobian
of the transformations, so that log-likelihood of the unknown distribution can be computed and
optimized for training. In practice, we find that RealNVP (Dinh et al., 2016) to be a simple yet
effective model for our needs. After the training is finished, samples from the base distribution are
forwarded through the normalizing flow and subsequently decoded into the generated molecules.

3.5 OVERALL MODEL AND TRAINING LOSS

The overall architecture of G3 is outlined in Figure 2, which summarizes all the components described
in the preceding subsections. To train this model, we use a loss consisting of multiple terms with a
tunable weighting scheme: L = λ1 · LC + λ2 · LF + λ3 · LE + λ4 · LNF + λ5 · LR.
Node coordinate loss LC . In this loss, we use only the coordinate part C contained in the node
matrix X . In our experiments, we use the Sliced Wasserstein-2 distance (SW2) as our loss for robust
point cloud reconstructions (Rabin et al., 2011). Note that in the calculation of LC , every point c ∈ C
is identified with the nearest match c′ ∈ C ′ and vice versa. This correspondence allows us to feasibly
define the following losses LF and LE with differentiability. We remark that another commonly used
loss for point-cloud matching, Chamfer distance (Yang et al., 2018), can also be used here.

5

Under review as a conference paper at ICLR 2022

Figure 2: Overall architecture of G3.

Node feature loss LF . Since node correspondence is established, the difference between F and F ′
can be meaningfully quantified. When the rows are one-hot vectors, a cross-entropy loss is suitable;
otherwise, mean absolute error (MAE) or other losses may be appropriate.

Edge loss LE . The edge loss quantifies whether edge types are correctly inferred. Hence, a cross-
entropy loss between A and A′ is natural, where node correspondence is needed.

Normalizing flow loss LNF . The normalizing flow model is equipped with a standard negative
log-likelihood loss (Dinh et al., 2016).

Additional loss LR. This term enforces structural and other chemical constraints innate to the
specific application. Some constraints may be easily violated even if the decoding of nodes and edges
is reasonably accurate (as long as error exists, however small). Hence, a regularization that penalizes
the violation of the constraints helps improve semantic validity. For example, for molecules, one
incorrect decoding of a carbon atom to oxygen is enough to create an invalid molecule, because the
valence of oxygen is much smaller. In this case, we follow the work by Ma et al. (2018) and include
a soft valence regularization term LR to encourage higher validity of the generated molecules.

4 EXPERIMENTS

4.1 DATASETS AND BASELINE MODELS

We perform experiments on two benchmark datasets that come with atomic coordinate information:
QM9 (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014) and ChEMBL (Mendez et al., 2019; Davies
et al., 2015). The QM9 dataset contains 134k molecules with 4 atom types and up to 9 heavy atoms
per molecule. The ChEMBL dataset contains 1.5 million molecules, and the largest one has hundreds
of atoms. For feasible experimentation, we take a subset of it that contains 250k molecules with
19 atom types and up to 39 heavy atoms per molecule. We name this new dataset ChEMBL250k.
Details of dataset proprocessing are provided in the appendix.

We compare G3 with several representative architectures that feature a variety of generative ap-
proaches. SDVAE (Dai et al., 2018) is a syntax-directed VAE model that processes SMILES
representation of molecules and generates syntactically correct ones. MolGAN (De Cao & Kipf,
2018) combines GAN and reinforcement learning to generate molecules with optimized properties.
JT-VAE (Jin et al., 2018) is a VAE-based model that assembles chemical substructures, boasting high
validity of the generated molecules. GraphNVP (Madhawa et al., 2019) is a flow-based model with
a one-shot generation procedure. GraphAF (Shi et al., 2020) is another flow-based autoregressive
model that advertises high flexibility in density modeling. G-SchNet (Gebauer et al., 2019) is a
quantum-chemistry-inspired model that learns accurate conformations and sequentially generates
molecules close to the trained distribution.

4.2 GENERATION QUALITY

Metrics and processing. To evaluate the generative capability of different models, we measure the
validity, uniqueness, and novelty (V, U, N) on their generated molecules. Validity is the percentage of

6

Under review as a conference paper at ICLR 2022

molecules that pass RDKit’s sanitization check. Uniqueness is the portion of valid molecules that are
distinct. Novelty is the portion of valid molecules that do not appear in the training set.

In addition, we include metrics computed between the test and the generated molecules via MOSES
(Polykovskiy et al., 2020): Frechet ChemNet Distance (FCD), which measures the distance between
the two sets according to ChemNet’s penultimate layer’s activation; Fragment similarity (FRAG)
measures the similarity in fragments present in both sets of molecules; Internal Diversity (IntDiv2)
assesses the diversity within the generated molecules; LogP, QED, and Weight are the 1D Wasserstein
distances between the two sets on different chemical properties: LogP measures the lipophilicity
of a compound (Bhal, 2007); QED is the quantitative estimate of druglike-ness (Bickerton et al.,
2012); Weight is the sum of atomic weights in a molecule. All scores are computed on 10k generated
molecules.

In our experiments, G3 sometimes generates disconnected molecules, for which we treat the largest
connected component as the final generated molecule (breaking ties arbitrarily) for evaluation.
Additionally, we observe the normalizing flow cannot capture the autoencoder’s latent distribution
perfectly when trained on ChEMBL250k. Therefore, we interpolate between samples from the
normalizing flow and the nearest encoded training data before decoding.

MODEL V↑ U↑ N↑ FCD↓ FRAG↑ INTDIV2↑ LOGP↓ QED↓ WEIGHT↓
SDVAE 33.0 73.6 93.4 8.52 0.57 0.870 2.50 0.062 206.82
MOLGAN 74.5 23.1 52.5 3.69 0.66 0.869 0.63 0.028 2.17
JT-VAE 100 70.2 43.3 0.94 0.94 0.894 0.14 0.016 19.50
GRAPHNVP 86.6 83.5 56.5 3.83 0.86 0.886 1.06 0.027 1.04
GRAPHAF 100 69.8 86.1 7.86 0.22 0.826 0.74 0.057 62.83
G-SCHNET 79.2 94.1 63.9 1.99 0.90 0.892 0.38 0.007 5.06

G3 92.7 97.0 72.2 1.23 0.94 0.900 0.25 0.006 1.60

Table 1: Molecular scores on the QM9 dataset.

MODEL V↑ U↑ N↑ FCD↓ FRAG↑ INTDIV2↑ LOGP↓ QED↓ WEIGHT↓
SDVAE 32.8 81.9 94.0 28.09 0.47 0.889 5.25 0.213 331.57
MOLGAN 100 0.02 100 48.52 0.01 0.270 1.04 0.403 284.11
JT-VAE 100 97.8 99.9 7.39 0.86 0.854 0.84 0.189 72.45
GRAPHNVP 31.6 95.8 99.8 39.62 0.13 0.771 1.70 0.271 69.94
GRAPHAF 100 72.0 91.9 26.95 0.46 0.895 1.39 0.117 182.12

G3 78.2 99.4 94.1 7.28 0.95 0.893 0.59 0.067 64.10

Table 2: Molecular scores on the ChEMBL250k dataset.

Results and discussions. Results reported in Tables 1 and 2 invite a few observations. Overall, we
see that G3 has strong performances across all metrics in both QM9 and ChEMBL250k. Notably,
G3’s low FCD score indicates accurate modeling of the training distribution, while a high novelty
rate means G3 has not simply memorized the training set. This is important because a model can
always reproduce the training set to get perfect scores on e.g. FCD. In contrast, although JT-VAE has
better FCD and LogP scores on QM9, its low novelty is characteristic of overfitting. In addition, G3’s
validity scores are consistently the highest among the models with no hard valency checks (the others
have 100% validity), and G3’s high uniqueness and molecular diversity suggest it is able to avoid
mode collapse, which is evident in MolGAN. Furthermore, G3’s robust performance in LogP, QED,
and Weight implies that G3’s generated molecules are not only faithful to the training set in terms of
(sub)structure, but also with respect to various chemical properties.

Efficiency. G3’s performance on large molecular datasets is especially impressive considering its
one-shot generation approach and is far superior to other models in the same camp (GraphNVP,
MolGAN). Comparing to the best sequential models, e.g. JT-VAE, G3 can generate molecules as
good in quality in a much faster fashion, thanks to its one-shot nature. When benchmarked on a
machine with i7-8700K CPU, GeForce 1080 RTX GPU, and 16GB RAM, GraphAF and JT-VAE
took 4804.36s and 2642.97s to generate 10k molecules when trained on ChEMBL250k, respectively.
In contrast, G3 took 47.79s, which is approximately 55 times faster than JT-VAE and 100 times faster

7

Under review as a conference paper at ICLR 2022

than GraphAF. As discussed, the inefficiency of sequential generation models is mainly due to the
challenge of parallelization.

Latent space interpolation. Lastly, we present examples of G3’s generated molecules as well as
their local latent space in Figure 3. The surrounding molecules are decoded along two random
orthogonal axes starting from the center molecule highlighted by the blue box. The transition between
molecules are gradual and chemically sound, which illustrates G3’s great capability to smoothly
parameterize discrete molecules in its latent space. More qualitative examples can be found in the
appendix.

Figure 3: Latent space interpolation for QM9 (left) and ChEMBL250k (right).

4.3 ABLATION STUDY AND PROPERTY PREDICTION

To process the complementary geometry and structure information, we use a pair of point encoder
and graph encoder for G3. A natural question asks if two encoders are really necessary. Here, we
conduct an ablation study and compare G3 with two simpler models. The first one uses only the point
encoder and removes the graph encoder. Because of a lack of graph structure encoding, the edge
decoding quality entirely depends on node information. The second simplified model is to remove
the point encoder but retain the graph encoder. Since the graph encoder takes coordinates as part
of the input, the geometry information is still encoded, albeit through a GNN module that was not
designed to handle geometry in the first place.

ENCODER V↑ U↑ N↑ FCD↓ FRAG↑ INTDIV2↑ LOGP↓ QED↓ WEIGHT↓
POINT 93.0 96.5 74.6 1.67 0.90 0.897 0.22 0.006 2.84
GRAPH 92.6 95.2 72.4 1.57 0.92 0.897 0.34 0.008 2.74

BOTH 92.7 97.0 72.2 1.23 0.94 0.900 0.25 0.006 1.60

Table 3: Ablation molecular scores on the QM9 dataset.

We train the models on QM9 until convergence using the same hyperparameters and latent dimensions.
From Table 3, G3’s encoder achieves the best results in two-thirds of the metrics, and the remaining
third is split between the other approaches. We further highlight the combined encoder’s convincing
lead in FCD, which is the best single indicator of the quality of generated molecules in the absence of
overfitting. As a result, we find G3’s combined approach to be clearly favored.

To further indicate that the combination of geometry and graph information used in G3 learn a
meaningful latent representation for the molecules, we show downstream tasks for predicting chemical
properties. In the subsequent experiment, we show that a G3 encoder pretrained in a unsupervised
manner can be used to predict chemical properties of QM9 molecules with an additional MLP to fit

8

Under review as a conference paper at ICLR 2022

MODEL H-L ↓ INT. ENERGY↓ FREE ENERGY↓ HEAT CAPACITY↓
PRETRAINED GRAPH ENCODER 0.099 0.040 0.040 0.050
PRETRAINED G3 ENCODER 0.091 0.026 0.026 0.049
GRAPH ENCODER 0.033 0.014 0.020 0.013
G3 ENCODER 0.027 0.006 0.005 0.006

Table 4: Relative MAE on the test set for QM9 property prediction.

desired properties. Alternatively, one can also train G3’s encoder in a supervised manner to predict
the desired properties, which yield better results. The pretrained models are first trained on the QM9
dataset in an unsupervised manner for 80 epochs. The weights on the encoders are then frozen, and
an additional MLP is trained on the encoded vectors until convergence. The supervised models are
trained on the QM9 dataset until convergence.

We predict four properties that come with the QM9 dataset: Homo-Lumo energy (H-L), internal
energy, free energy, and heat capacity. In all cases, G3’s graph-point encoder significantly outperforms
the standalone graph encoder used in section 3.2. This further substantiates G3’s ability to leverage
the geometric and combinatorial features in a geometric graph more effectively by separating the
graph and the point encoder.

4.4 PROPERTY OPTIMIZATION

One use of generative models with latent spaces is to search for better molecules under metrics of
interest. Following the approach outlined by Kusner et al. (2017), we apply Bayesian optimization
(BO) on the G3 model pretrained from Table 1 and 2 to optimize two metrics: penalized logP and
QED. Penalized logP is logP less the synthetic accessibility score and the number of long cycles
(Bhal, 2007), and QED measures how likely a compound is to be a drug (Bickerton et al., 2012).

QM9 CHEMBL250K

PENALIZED LOGP QED PENALIZED LOGP QED
MODEL 1ST 2ND 3RD 1ST 2ND 3RD 1ST 2ND 3RD 1ST 2ND 3RD

SDVAE 4.96 4.85 4.12 0.528 0.515 0.509 5.04 2.09 1.95 0.843 0.809 0.806
GRAPHAF 2.50 2.24 2.24 0.593 0.588 0.584 3.09 2.53 2.49 0.830 0.821 0.820
JT-VAE 4.99 4.66 4.38 0.623 0.621 0.620 5.34 4.85 4.70 0.935 0.934 0.932

G3 5.97 5.64 5.37 0.640 0.621 0.614 5.46 4.94 4.82 0.941 0.929 0.927

Table 5: Best scores found for QM9 and ChEMBL250k.

The results for QM9 and ChEMBL250k are reported in Table 5. One sees that G3 consistently finds
the best molecule under both metrics. We remark that BO works better for low dimensional search
spaces (Frazier, 2018). The latent spaces of SDVAE and JT-VAE are of a similar nature to that of G3,
but GraphAF must use a latent space of the same dimension as the input space. Hence, BO may not
be the best method for GraphAF. Indeed, Shi et al. (2020) employs reinforcement learning to chase
for optimal metric values, which gives more promising results on ZINC250k. However, for fairness
of comparison, we opt to use BO for all methods. More details are provided in the appendix.

5 CONCLUSION

We have presented a generative model G3 for geometric graphs that are equipped with additional
geometry information. Geometric graphs appear in many practical applications, a notable one being
molecules, whose three-dimensional structure is rarely captured by existing graph generative models.
Our model is an autoencoder that employs both GNN architectures and point cloud architectures
to handle the complementary structure and geometry information. Moreover, a normalizing flow is
inserted into the latent space so that one can effectively sample new graphs. Experiment results show
that G3 is able to more accurately learn the distribution of given graphs and better predict molecular
properties. It helps discover novel molecules with better properties than do many representative graph
generative models.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Pierre Alliez, David Cohen-Steiner, Mariette Yvinec, and Mathieu Desbrun. Variational tetrahedral
meshing. In ACM SIGGRAPH 2005 Papers, pp. 617–625. 2005.

Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient flows: in metric spaces and in the
space of probability measures. Springer Science & Business Media, 2008.

Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, Caglar
Gulcehre, Francis Song, Andrew Ballard, Justin Gilmer, George Dahl, Ashish Vaswani, Kelsey
Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Pushmeet
Kohli, Matt Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. Relational inductive biases,
deep learning, and graph networks. Preprint arXiv:1806.01261, 2018.

Sanjivanjit K Bhal. Logp—making sense of the value. Advanced Chemistry Development, Toronto,
ON, Canada, pp. 1–4, 2007.

G Richard Bickerton, Gaia V Paolini, Jérémy Besnard, Sorel Muresan, and Andrew L Hopkins.
Quantifying the chemical beauty of drugs. Nature chemistry, 4(2):90–98, 2012.

Nicolas Bonnotte. Unidimensional and evolution methods for optimal transportation. PhD thesis,
Paris 11, 2013.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric
deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42,
2017.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

Hanjun Dai, Yingtao Tian, Bo Dai, Steven Skiena, and Le Song. Syntax-directed variational
autoencoder for structured data. arXiv preprint arXiv:1802.08786, 2018.

Mark Davies, Michał Nowotka, George Papadatos, Nathan Dedman, Anna Gaulton, Francis Atkinson,
Louisa Bellis, and John P Overington. Chembl web services: streamlining access to drug discovery
data and utilities. Nucleic acids research, 43(W1):W612–W620, 2015.

Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular graphs.
arXiv preprint arXiv:1805.11973, 2018.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components
estimation. arXiv preprint arXiv:1410.8516, 2014.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. arXiv
preprint arXiv:1605.08803, 2016.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán
Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular
fingerprints. Advances in neural information processing systems, 28:2224–2232, 2015.

Peter I Frazier. A tutorial on bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.

Yaniv Frishman and Ayellet Tal. Online dynamic graph drawing. IEEE Transactions on Visualization
and Computer Graphics, 14(4):727–740, 2008.

Niklas WA Gebauer, Michael Gastegger, and Kristof T Schütt. Symmetry-adapted generation of 3d
point sets for the targeted discovery of molecules. arXiv preprint arXiv:1906.00957, 2019.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. arXiv preprint arXiv:1704.01212, 2017.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27:2672–2680, 2014.

10

Under review as a conference paper at ICLR 2022

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
PMLR, 2015.

Pengfei Jin, Tianhao Lai, Rongjie Lai, and Bin Dong. Nptc-net: Narrow-band parallel transport
convolutional neural network on point clouds. arXiv preprint arXiv:1905.12218, 2019.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. arXiv preprint arXiv:1802.04364, 2018.

Steven Kearnes, Kevin McCloskey, Marc Berndl, Vijay Pande, and Patrick Riley. Molecular graph
convolutions: moving beyond fingerprints. Journal of computer-aided molecular design, 30(8):
595–608, 2016.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Ivan Kobyzev, Simon Prince, and Marcus A Brubaker. Normalizing flows: Introduction and ideas.
arXiv preprint arXiv:1908.09257, 2019.

Matt J Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar variational autoencoder.
arXiv preprint arXiv:1703.01925, 2017.

Tengfei Ma, Jie Chen, and Cao Xiao. Constrained generation of semantically valid graphs via
regularizing variational autoencoders. In Advances in Neural Information Processing Systems, pp.
7113–7124, 2018.

Kaushalya Madhawa, Katushiko Ishiguro, Kosuke Nakago, and Motoki Abe. Graphnvp: An invertible
flow model for generating molecular graphs. arXiv preprint arXiv:1905.11600, 2019.

Daniel Maturana and Sebastian Scherer. Voxnet: A 3d convolutional neural network for real-time
object recognition. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 922–928. IEEE, 2015.

David Mendez, Anna Gaulton, A Patrícia Bento, Jon Chambers, Marleen De Veij, Eloy Félix,
María Paula Magariños, Juan F Mosquera, Prudence Mutowo, Michał Nowotka, et al. Chembl:
towards direct deposition of bioassay data. Nucleic acids research, 47(D1):D930–D940, 2019.

János Pach. The beginnings of geometric graph theory. In Erdős Centennial, pp. 465–484. Springer,
2013.

Jiahao Pang, Duanshun Li, and Dong Tian. Tearingnet: Point cloud autoencoder to learn topology-
friendly representations. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 7453–7462, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32:
8026–8037, 2019.

Steven M Paul, Daniel S Mytelka, Christopher T Dunwiddie, Charles C Persinger, Bernard H Munos,
Stacy R Lindborg, and Aaron L Schacht. How to improve r&d productivity: the pharmaceutical
industry’s grand challenge. Nature reviews Drug discovery, 9(3):203–214, 2010.

Pavel G Polishchuk, Timur I Madzhidov, and Alexandre Varnek. Estimation of the size of drug-like
chemical space based on gdb-17 data. Journal of computer-aided molecular design, 27(8):675–679,
2013.

Daniil Polykovskiy, Alexander Zhebrak, Benjamin Sanchez-Lengeling, Sergey Golovanov, Oktai
Tatanov, Stanislav Belyaev, Rauf Kurbanov, Aleksey Artamonov, Vladimir Aladinskiy, Mark
Veselov, et al. Molecular sets (moses): a benchmarking platform for molecular generation models.
Frontiers in pharmacology, 11:1931, 2020.

11

Under review as a conference paper at ICLR 2022

Mariya Popova, Mykhailo Shvets, Junier Oliva, and Olexandr Isayev. Molecularrnn: Generating
realistic molecular graphs with optimized properties. arXiv preprint arXiv:1905.13372, 2019.

Charles R Qi, Hao Su, Matthias Nießner, Angela Dai, Mengyuan Yan, and Leonidas J Guibas.
Volumetric and multi-view cnns for object classification on 3d data. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 5648–5656, 2016.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 652–660, 2017a.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. Advances in neural information processing systems, 30:
5099–5108, 2017b.

Julien Rabin, Gabriel Peyré, Julie Delon, and Marc Bernot. Wasserstein barycenter and its application
to texture mixing. In International Conference on Scale Space and Variational Methods in
Computer Vision, pp. 435–446. Springer, 2011.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1–7, 2014.

Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows. In
Proceedings of the 32nd International Conference on Machine Learning, 2015.

Lars Ruddigkeit, Ruud Van Deursen, Lorenz C Blum, and Jean-Louis Reymond. Enumeration of 166
billion organic small molecules in the chemical universe database gdb-17. Journal of chemical
information and modeling, 52(11):2864–2875, 2012.

Bidisha Samanta, Abir De, Gourhari Jana, Vicenç Gómez, Pratim Chattaraj, Niloy Ganguly, and
Manuel Gomez-Rodriguez. Nevae: A deep generative model for molecular graphs. Journal of
Machine Learning Research, 21(114):1–33, 2020.

Stefan C Schonsheck, Bin Dong, and Rongjie Lai. Parallel transport convolution: A new tool for
convolutional neural networks on manifolds. arXiv preprint arXiv:1805.07857, 2018.

Kristof T Schütt, Huziel E Sauceda, P-J Kindermans, Alexandre Tkatchenko, and K-R Müller.
Schnet–a deep learning architecture for molecules and materials. The Journal of Chemical Physics,
148(24):241722, 2018.

Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang. Graphaf: a
flow-based autoregressive model for molecular graph generation. arXiv preprint arXiv:2001.09382,
2020.

Teague Sterling and John J Irwin. Zinc 15–ligand discovery for everyone. Journal of chemical
information and modeling, 55(11):2324–2337, 2015.

Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. Multi-view convolutional
neural networks for 3d shape recognition. In Proceedings of the IEEE international conference on
computer vision, pp. 945–953, 2015.

An Tao. Unsupervised point cloud reconstruction for classific feature learning.
https://github.com/AnTao97/UnsupervisedPoint-CloudReconstruction, 2020.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Complex
embeddings for simple link prediction. In International Conference on Machine Learning, pp.
2071–2080. PMLR, 2016.

Daan MF Van Aalten, R Bywater, John BC Findlay, Manfred Hendlich, Rob WW Hooft, and Gert
Vriend. Prodrg, a program for generating molecular topologies and unique molecular descriptors
from coordinates of small molecules. Journal of computer-aided molecular design, 10(3):255–262,
1996.

12

Under review as a conference paper at ICLR 2022

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. WaveNet: A generative model for
raw audio. arXiv preprint arXiv:1609.03499, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: Sequence to sequence for sets.
arXiv preprint arXiv:1511.06391, 2015.

Hanchen Wang, Qi Liu, Xiangyu Yue, Joan Lasenby, and Matt J Kusner. Unsupervised point cloud
pre-training via occlusion completion. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 9782–9792, 2021.

David Weininger. Smiles, a chemical language and information system. 1. introduction to methodol-
ogy and encoding rules. Journal of chemical information and computer sciences, 28(1):31–36,
1988.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
Xiao. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1912–1920, 2015.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Foldingnet: Point cloud auto-encoder via
deep grid deformation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 206–215, 2018.

Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. Graph convolutional
policy network for goal-directed molecular graph generation. In Advances in neural information
processing systems, pp. 6410–6421, 2018a.

Jiaxuan You, Rex Ying, Xiang Ren, William L Hamilton, and Jure Leskovec. Graphrnn: Generating
realistic graphs with deep auto-regressive models. arXiv preprint arXiv:1802.08773, 2018b.

Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li,
and Maosong Sun. Graph neural networks: A review of methods and applications. arXiv preprint
arXiv:1812.08434, 2018.

13

Under review as a conference paper at ICLR 2022

A EXPERIMENTAL DETAILS

Datasets We preprocess each molecule by centering it based on the 3D coordinates and aligning its
orientation with the principal axes via PCA. The molecules in the datasets have different number of
atoms. Hence, we pad each graph with “phantom nodes” to reach the maximum molecule size in the
dataset. The phantom nodes are indicated by one of the node features, and we also treat nonexistence
of edges as an edge type.

Importantly, the phantom nodes need artificial coordinates. We cannot naively allocate all the
phantom nodes to the origin, because overlapping coordinates cause non-unique correspondences in
the point-cloud registration, making the learning of atom and edge types impossible. In practice, we
use an extra coordinate dimension and assign the phantom coordinates for the i-th phantom node as
(0, 0, i) or (0, 0, 0, i) if the original point cloud is in 2D or 3D, respectively.

In addition, we make a distinction between each atom type and its aromatic counterpart whenever
possible. For example, a carbon atom may be part of an aromatic ring, in which case we mark its
atom type as aromatic carbon to distinguish it from an ordinary carbon atom. This facilitates the
reconstruction of ring structures in the link predictor, as it can predict aromatic bonds easily by
checking if the atom types are aromatic.

Note that another popularly used benchmark, ZINC250k (Sterling & Irwin, 2015), does not contain
coordinate information and hence we omit it. However, the scales of ChEMBL250k and ZINC250k
are rather close, and their results unsurprisingly share similar trends when cross-checked against the
performance of baseline models.

Models For G3, we use the same architecture and identical number of layers and hidden dimensions
on both QM9 and ChEMBL250k, without separate fine tuning. Such a practice helps corroborate
robustness of the model under different data size and complexity. The latent dimension used for
QM9 is [dp, dg] = [10, 30], and [35, 25] for ChEMBL250k. The additional graph latent dimensions
is required to accurately decode the diverse atom types present in ChEMBL250k, which is more than
twice than that in QM9.

NAME MODEL GENERATION REPRESENT.

SDVAE VAE SEQUENTIAL SMILES
MOLGAN GAN ONE-SHOT GRAPH
G-SCHNET AR SEQUENTIAL POINT CLOUD
JT-VAE VAE SEQUENTIAL GRAPH
GRAPHNVP NF ONE-SHOT GRAPH
GRAPHAF NF SEQUENTIAL GRAPH

G3 NF ONE-SHOT GEOMETRIC GRAPH

Table 6: Summary of baseline models.

We did not check G-SchNet’s performance on ChEMBL250k for two reasons. First, G-SchNet
excels at reconstructing and generating conformers, which are the 3D structures of molecules that are
crucial for various computations in quantum chemistry. The coordinates of ChEMBL250k, however,
come from molecular graphs and are all in 2D. Second, G-SchNet’s sequential generation process
utilizes all previously placed atoms to predict the position of the new atom at each step, which scales
poorly with respect to the size of molecules. As many ChEMBL250k molecules have more than 100
atoms after adding Hydrogens, the computational resource required to train a G-SchNet model on
ChEMBL250k is likely to be prohibitively high.

All baseline results are obtained by running the implementation provided by the authors, with default
hyperparameters. The baseline results generally match the reported ones from the original papers.
One discrepancy occurs on GraphAF with QM9, which is caused by the disabling of a filter that
ignores small molecules. Turning off the filter amounts to a more fair comparison because small
molecules are still sensible results. The V, U, N metrics for MolGAN on QM9 are also somewhat off,
which is likely a symptom of GAN’s training instability.

14

Under review as a conference paper at ICLR 2022

Code G3 is implemented with the Pytorch framework. All relevant code as well as the trained
models will be made available upon publication.

B ARCHITECTURE DETAILS

In this section, we specify the architecture used to produce the reported experiment results. Let
MLP(n, h, o, l) denote a (point-wise) multi-layer perceptron that has input dimension n, hidden
dimension h, output dimension o, and number of hidden layers l. Let MHA(n, h) be the multi-
headed attention block with embedding dimension n and h heads. The implementation of multi-
headed attention is borrowed from Paszke et al. (2019).

Point Encoder As illustrated in Figure 4, the G3 point encoder is :

MLP(n, 256, 768, 1)→MHA(256, 3)→MHA(256, 3)→ GlobalMaxPooling

→MLP(768, 256, dp, 1)

Figure 4: The G3 Point Encoder.

Graph Encoder Let GINE(h, l) denote a GINE kernel (Xu et al., 2018) with embedding dimen-
sion h and l hidden layers in the MLP. Let Set2Set be a Set2Set global pooling layer (Vinyals et al.,
2015). We first use linear layers to embed the node and edge features to 256 dimensional vectors.
The graph encoder is

GINE(256, 3)→ GINE(256, 3)→ GINE(256, 3)→ Set2Set→MLP(512, 256, dg, 2)

A Batchnorm (Ioffe & Szegedy, 2015) layer is applied after every GINE convolution.

Coordinate Decoder This module is inspired by (Pang et al., 2021). Let U be the template with
the i-th row denoded as ui, z = [zp, zg] be the latent vector, and Y ′ be the output with the i-th row
denoded as y′i. Define the FoldingNet F, where F(U, z) = Y ′. It performs the following operation
for each point i:

y1
i ←MLP(ui, z)

y2
i ←MLP(y1

i , z)

y′i ←MLP(y2
i , z)

Define the TearingNet T, where T(U,X, z) = Y ′. It performs the following operation for each point
i:

y1
i ←MLP(ui, xi, z)

y′i ←MLP(ui, y
1
i , xi, z)

The coordinate decoder does the following operations:

C1 ← F(U, z)

U1 ← T(U,X1, z) + U

C ′ ← F(U1, z)

Where C ′ with the i-th row as c′i are the decoded coordinates. The MLPs all have two hidden layers
with hidden dimensions 1024.

15

Under review as a conference paper at ICLR 2022

Feature Decoder Let C ′ be the decoded coordinates with the i-th row denoded as c′i, and z =
[zp, zg] be the latent vector. Using the same FoldingNet notation as above, the feature decoder does
the following:

F ′ ← F(C ′, z)

Where F ′ with the i-th row as f ′i are the decoded features. The MLPs all have two hidden layers with
hidden dimensions 1024.

Link Predictor Let dx = 2((da + dc) · k) − dc. The MLP inside the link predictor is
MLP(dx,1024,de,3).

C HYPERPARAMETERS

Experiment on generation quality G3: For QM9, the latent vector z = [zp, zg] has dimension
10 + 30 and the loss weighting is (λ1, λ2, λ3, λ4, λ5) = (10, 1, 1, 10−3, 10). For ChEMBL250k, the
latent dimension is 35 + 25 and the loss weighting is (10, 0.1, 9, 10−4, 5).

GraphAF: In this model, there is an option to filter out generated molecules with fewer than m atoms.
Since no other models use filtering, we set m = 0 for a fair comparison. Because larger molecules
are more likely to be novel and unique, the scores reported by the original authors are higher than
those we obtain. Moreover, we have tried best efforts to tune hyperparameters for QM9 as the authors
did not release their setting.

Other models: We use the default hyperparameters released by the authors for QM9. For
ChEMBL250k, we borrow those used for ZINC250k. We find this to be a reasonable approach
because ZINC250k and ChEMBL250k have the same number of molecules, and the maximum
number of atoms per molecule is also quite close: 38 and 39, respectively. As such, it is expected that
the resulting performance on these two datasets is similar, which is indeed the case.

Experiment on property optimization In each iteration of the Bayesian optimization, a Gaussian
process is used to fit the explored data, and a batch of new candidates are suggested based on the use
of an acquisition function. For all models, we use training molecules as the initial set of points and
perform five iterations of Bayesian optimization, wherein the acquisition function is EI (expected
improvement). In each iteration, 60 candidates are generated.

The implementation is provided by Kusner et al. (2017) via a custom build of Theano. To conduct
Bayesian optimization on the baseline models, we use the default hyperparameters released by the
authors whenever available, and follow the practice above otherwise.

D LOSS DETAILS

For completeness, in what follows we give the detailed expressions for all the training losses. They
are generally straightforward or have been defined in the literature.

D.1 COORDINATE LOSS

The Wasserstein distance is intimately connected with the study of Optimal Transport. Let (Ω,F) be a
measurable space, and P(Ω) be the set of all probability measures on (Ω,F). Define two probability
measures µ, ν ∈ P2(Ω), where P2(Ω) = {µ ∈ P(Ω) :

∫
Ω
‖x‖2µ(dx) < ∞}. The Wasserstein-2

distance W2(µ, ν) is defined as:

W 2
2 (µ, ν) = inf

γ∈C(µ,ν)

∫
Ω×Ω

‖x− y‖2γ(dx, dy)

Where C(µ, ν) is the set of all couplings between µ, ν that satisfies: γ(A × Ω) = µ(A),∀A ∈ F ,
γ(Ω×B) = µ(B),∀B ∈ F , and F is the sigma algebra associated with Ω. It is known thatW2(µ, ν)
defines a metric on P(Ω) (Ambrosio et al., 2008).

16

Under review as a conference paper at ICLR 2022

In general, W2(µ, ν) is difficult to compute, especially in high dimensions. However, it has a simple
form in one-dimension:

W2(µ, ν) =

∫ 1

0

|F−1
µ (τ)− F−1

ν (τ)|2dτ

Where Fµ, Fν denote the cumulative distribution functions associated with µ, ν, respectively. The
simple one-dimensional form of W2(µ, ν) inspires the usage of sliced Wasserstein distance, which is
the expected value of the projected one-dimensional Wasserstein distance. Define the push-forward
operation ∗ as: f∗µ(A) = µ(f−1(A)),∀A ∈ F , and the projection map as Θ(x) = 〈θ, x〉 for a
normalized direction θ. Formally, the sliced Wasserstein-2 distance SW2(µ, ν) in d-dimension is:

SW2(µ, ν) =

∫
Sd−1

W2(Θ∗(µ),Θ∗(ν))dθ

where dθ is the uniform measure on Sd−1. Bonnotte (2013) has shown that SW2(µ, ν) also defines a
metric on P(Ω), and it induces the same topology as W2(µ, ν) when Ω is compact.

In practice, we compute SW2(µ, ν) by approximating the integral via Monte Carlo sampling direc-
tions on the sphere. We then compute the projection of the point clouds onto the sampled directions,
sort the one-dimensional projections, and average their differences. Through experimentation, we
found that 200 is an appropriate number of directions to sample.

D.2 NODE FEATURE LOSS LF AND EDGE LOSS LE

Let C ∈ Rn×dc be the original point cloud, where each row ci := Ci,: gives the coordinates of a point.
Similarly, let C ′ ∈ Rn×dc be the reconstructed point cloud with c′i := C ′i,:. Define the permutation
matrix σ as:

σij =

{
1, if j = arg mink ‖ci − c′k‖
0, otherwise.

Let F, F be the original and the reconstructed node feature matrices, respectively. The node feature
loss is defined as:

LF =
1

n

n∑
i=1

H(Fi,:, F
′
i,:, w

N),

where F ′ = σF is the reconstructed node feature matrix that is aligned with F ; wN is the weighting
vector for each coordinate; and H(x, y, w) is the weighted cross entropy between probability vectors
x and y:

H(x, y, w) = −
∑
i

wixi log(yi).

Let A,A be the original and the reconstructed adjacency tensors, respectively. The edge loss is
defined as:

LE =
1

n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

H(Ai,j,:, A
′
i,j,:, w

E),

where A′ is the reconstructed adjacency tensor that is aligned with A, satisfying A′:,:,k = σA:,:,kσ
T

for k = 1, 2, ..., de; and wE is the weighting vector for the edge classes. Note the exclusion of j = i
in the inner summation; self-loops are not counted.

We use the following weighting for the cross entropies:

wN = 1, wE = ln(1�D),

where D is a probability vector that gives the empirical distribution of classes computed from data;
and the operations � and ln are element-wise.

17

Under review as a conference paper at ICLR 2022

D.3 NORMALIZNG FLOW LOSS LNF

Let z ∈ RD be a random vector with density pz(z) and let x be a vector resulting from a sequence of
K invertible transformations from z:

x = fK ◦ fK−1 ◦ ... ◦ f2 ◦ f1(z).

Define z0 = z, zi = fi(zi−1) for i = 1, ...,K, and zK = x. By the change-of-variable formula, the
density of x can be expressed as

log px(x) = log pz(z)−
K∑
i=1

log

∣∣∣∣det

(
∂fi
∂zi−1

)∣∣∣∣ . (1)

If z is standard normal, then

log pz(z) = −1

2
‖z‖2 − D

2
log 2π. (2)

In our work, we use RealNVP Dinh et al. (2016) to parameterize the mappings. Specifically, a
mapping f(u) = v is defined as

v1:d = u1:d

vd+1:D = ud+1:D � exp(MLPs(u1:d)) + MLPt(u1:d),

where d = 1
2D. One easily calculates that the Jacobian of f is

∂f

∂u
=

(
I 0

∂vd+1:D

∂u1:d
diag(exp(MLPs(u1:d)))

)
.

Therefore,

det

(
∂f

∂u

)
= exp

D−d∑
j=1

MLPs(u1:d)j

 . (3)

Substituting equation 2 and equation 3 into equation 1, we obtain the negative log-likelilhood loss

− log px(x) =

K∑
i=1

D−d∑
j=1

MLPis((zi−1)1:d)j +
1

2
‖z0‖2 +

D

2
log 2π. (4)

D.4 ADDITIONAL LOSS LR

We follow the approach outlined in Ma et al. (2018) to introduce a soft valence regularization to
penalize the excess of valence capacity for each atom, thereby encouraging the decoder to output
chemically valid molecules. In particular, define LR =

∑n
i=1 σ(V (i) − U(i)) for each molecule,

where σ is the ReLU function and U(i) and V (i) are the valence and capacity of atom i, respectively.
The soft (thus differentiable) version is:

U(i) =
∑
r

u(r)F ′i,r,

V (i) =
∑
j 6=i

∑
k

h(k)A′i,j,k,

where F ′ and A′ are the reconstructed and aligned node feature matrix and adjacency tensor, re-
spectively. Here, u(r) is the valence of node type r, determined from data; and h(k) is the capacity
for edge type k. Specifically, h(k) = 1, 2, 3, 1.5 for single, double, triple, and aromatic bonds,
respectively. Moreover, u(r) and h(k) are both 0 for phantom nodes and edges.

E G3 PROPERTIES

A typical pitfall for many graph-based models is the ambiguity under node permutations. Reordering
the nodes does not change the graph itself, but the latent representation of the graph may change if
not properly modeled. Moreover, a single latent vector may not be able to decode an adjacency tensor
with an arbitrary node permutation. Thanks to the geometry, our model G3 is able to identify node
correspondence and maintain desirable permutation and translation invariance.

18

Under review as a conference paper at ICLR 2022

Proposition E.1. The G3 encoder and link predictor are invariant to input node permutations as
well as translations on the coordinates.

Proof. The G3 encoder is composed of a point encoder and a graph encoder. The point encoder
is invariant to node permutations because the MLP is weight sharing for all points and the global
pooling is permutation invariant. The graph encoder is also invariant to node permutations because
the graph convolution layers of MoNet are. The overall latent vector is a concatenation of the outputs
of these two encoders and thus is also invariant to node permutations. Additionally, the point clouds
are preprocessed so that each is centered at the origin, invariant to translations.

The link predictor takes pairwise nodes as input and is therefore invariant to node permutations. In
addition, node coordinates are used always in the form of displacements. Hence, the link prediction
is always unchanged regardless of translation.

F QUALITATIVE EXAMPLES

In Figure 5, we show the generated examples for QM9 as well as results of latent space interpolation.
They correspond to the results reported in Table 1. The generated samples and interpolation results
for ChEMBL250k are in Figure 6, which correspond to the results reported in Table 2.

Figure 5: Generated molecules for QM9

19

Under review as a conference paper at ICLR 2022

Figure 6: Generated molecules for ChEMBL250k

20

Under review as a conference paper at ICLR 2022

G EXPERIMENTS ON THE STANDALONE LINK PREDICTOR

In this section, we empirically demonstrate the effectiveness of our link predictor as a standalone
model. The task is to predict the edge types for all edges in the graph given the ground truth node
types and coordinates for all nodes. We train the link predictor on QM9 and ChEMBL250k until
convergence, then report the accuracy and the F-1 score on the test set. The classification reports
are computed by using scikit-learn, where the "ZERO" type corresponds to the non-existence of a
bond. In addition, we provide visualized comparisons between the ground truth molecules and the
reconstructed molecules with ground truth nodes and predicted edges.

EDGE TYPE PRECISION RECALL F-1 SCORE SUPPORT

ZERO 0.99999 0.99999 0.99999 778401
SINGLE 0.99855 0.99842 0.99848 198214
DOUBLE 0.98009 0.98150 0.98080 15246
TRIPLE 0.99972 0.99972 0.99972 7234
AROMATIC 0.99974 1.00000 0.99987 15592

AGGREGATE METRICS VALUE VALUE VALUE SUPPORT

MACRO AVG 0.99562 0.99593 0.99577 1014687
WEIGHTED MACRO AVG 0.99941 0.99940 0.99940 1014687
ACCURACY - - 0.99940 1014687

Table 7: Standalone G3 link predictor’s performance on the test set of QM9

EDGE TYPE PRECISION RECALL F-1 SCORE SUPPORT

ZERO 0.99984 0.99982 0.99984 37573897
SINGLE 0.97573 0.98228 0.97899 714020
DOUBLE 0.91250 0.87825 0.89505 89694
TRIPLE 0.98789 0.97759 0.98271 3838
AROMATIC 0.99904 0.99917 0.99910 633722

AGGREGATE METRICS VALUE VALUE VALUE SUPPORT

MACRO AVG 0.97500 0.96742 0.97114 39015171
WEIGHTED MACRO AVG 0.99920 0.99921 0.99920 39015171
ACCURACY - - 0.99921 39015171

Table 8: Standalone G3 link predictor’s performance on the test set of ChEMBL250k

We remark that while link prediction is pairwise on nodes, the inclusion of neighbor information
allows it to faithfully reconstruct complex structures like aromatic rings. Overall, G3’s link predictor
attains near perfect aggregate F-1 score and accuracy on both QM9 and ChEMBL250k. It therefore
serves as a viable standalone model for bond prediction in molecules.

21

Under review as a conference paper at ICLR 2022

Figure 7: Left: 50 ground truth molecules from the QM9 test set. Right: the same molecules with edges
reconstructed from the ground truth nodes by the link predictor. All 50 molecules in the left figure are
reconstructed exactly.

22

Under review as a conference paper at ICLR 2022

Figure 8: Left: 50 ground truth molecules from the ChEMBL250k test set. Right: the same molecules with
edges reconstructed from the ground truth nodes by the link predictor. 46 out of 50 molecules in the left figure
are reconstructed exactly.

23

Under review as a conference paper at ICLR 2022

H VISUALIZATION OF GEOMETRIC FEATURES

In this section, we provide qualitative examples for the learned geometric features in the point encoder.
Similar to Wang et al. (2021), we present the channel-wise activation before the global pooling step
in the point encoder of G3 pretrained on ChEMBL250k. Intuitively, the difference in the level of
activation reveals the geometric primitives that the neurons focus on.

In general, we observe that G3’s point encoder can identify aromatic rings in molecules based purely
on geometry; i.e. no bond information is provided. For example, Figure 9 shows that the 63rd neuron
identifies rings to the right end of the molecules (see the red atoms).

In addition, different neurons can partition a molecule into meaningful sub-components. In Figure 10,
we show neurons that are excited by the five-member ring on the left, the benzene ring in the middle,
and the benzene ring on the right, respectively. In Figure 11, the top figure presents a neuron that
identifies two rings on the right as a group, whereas the bottom figures showcase more discerning
neurons that distinguish the two rings separately.

Figure 9: Consistency of neuron activation on six-member rings. Top row (from left to right): the
molecular graphs of CN(C)C1CCCCC1NC(=O)c1ccc(O)cc1, Cc1ccc(CC(CC(N)C(=0)O)C(=O)O)cc1 and
Cc1ccnc(N2CCN(CCC3Cn4c(-c5cc(C)c(O)c(C)c5)c(C)c5cccc(c54)O3)CC2)c1. Bottom row: the 63rd neuron’s
activation on the associate molecules, singling out (in red) the rings to the right.

24

Under review as a conference paper at ICLR 2022

Figure 10: Top left: The molecular graph for CCOC(=O)NC1=NC(c2ccc(OCc3ccccc3)cc2)CN1C(C)C. Top
right: the 172nd neuron’s activation on this molecule as a point cloud, identifying the five-member ring on the
left. Bottom left: the 241st neuron’s activation on this molecules, identifying the benzene ring in the middle.
Bottom right: the 571st neuron’s activation on this molecule, singling out the benzene ring on the right. Red
indicates higher activation values.

25

Under review as a conference paper at ICLR 2022

Figure 11: Top left: The molecular graph of CC(=O)OC1C(C(=O)NC2CC2)OC(n2cnc3c(N)ncnc32)C1OC(C)=O.
Top right: the 56th neuron’s activation on this molecule, identifying the two rings on the right as a group.
Bottom left: the 663rd neuron’s activation on this molecule, singling out the six-member ring on the right.
Bottom right: the 670th neuron’s activation on this molecule, identifying the five-member ring on the right. Red
indicates higher activation values.

26

	Introduction
	Related Work
	Geometric Graph Generator
	Notation
	Encoder
	Decoder
	Latent Space Sampling: Normalizing Flow
	Overall Model and Training Loss

	Experiments
	Datasets and Baseline Models
	Generation Quality
	Ablation Study and Property Prediction
	Property Optimization

	Conclusion
	Experimental Details
	Architecture Details
	Hyperparameters
	Loss Details
	Coordinate Loss
	Node Feature Loss LF and Edge Loss LE
	Normalizng Flow Loss LNF
	Additional Loss LR

	G3 Properties
	Qualitative Examples
	Experiments on the Standalone Link Predictor
	Visualization of Geometric Features

