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ABSTRACT

We give simpler, sparser, and faster algorithms for differentially private fine-
tuning of large-scale pre-trained language models, which achieve the state-of-
the-art privacy versus utility tradeoffs on many standard NLP tasks. We pro-
pose a meta-framework for this problem, inspired by the recent success of highly
parameter-efficient methods for fine-tuning. Our experiments show that differen-
tially private adaptations of these approaches outperform previous private algo-
rithms in three important dimensions: utility, privacy, and the computational and
memory cost of private training. On many commonly studied datasets, the util-
ity of private models approaches that of non-private models. For example, on the
MNLI dataset we achieve an accuracy of 87.8% using RoBERTa-Large and 83.5%
using RoBERTa-Base with a privacy budget of ε = 6.7. In comparison, absent
privacy constraints, RoBERTa-Large achieves an accuracy of 90.2%. Our findings
are similar for natural language generation when privately fine-tuning GPT-2. Our
experiments also show that larger models are better suited for private fine-tuning:
while they are well known to achieve superior accuracy non-privately, we find that
they also better maintain their accuracy when privacy is introduced.

1 INTRODUCTION

Deep learning models are well known to leak sensitive information about the dataset when trained
using conventional methods (Shokri et al., 2017; Carlini et al., 2019; 2021). To combat this issue,
models can instead be trained to guarantee differential privacy (DP) (Dwork et al., 2006b), a strong
notion of data privacy which limits the influence of any individual training point on the final model.
While DP is one of the few approaches capable of providing machine learning models with rigorous
privacy guarantees, it generally comes at a cost in terms of test accuracy. One oft-cited explanation
is that the constraint of DP necessitates much more training data (Tramèr & Boneh, 2021; Feldman,
2020; Brown et al., 2021). Unfortunately, more training data may be hard to acquire, particularly in
settings where privacy is a concern.

Parallel to these developments, Transformer-based (Vaswani et al., 2017) large language models
(LLMs), including the BERT (Devlin et al., 2019; Liu et al., 2019) and GPT (Radford et al., 2018;
2019; Brown et al., 2020) families, have enabled significant progress in natural language process-
ing, achieving state-of-the-art accuracy in almost every task considered. These models are first
pre-trained on an extremely large and diverse public dataset. The weights are then fine-tuned for
∗Authors contribute equally to this work and are listed in alphabetical order.
†The work of Da Yu is done while he was an intern at Microsoft Research Asia.
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Figure 1: An illustration of our framework. First, the model is pre-trained on a large, public dataset.
Next, new parameters are introduced and privately fine-tuned on a smaller, private, task-specific
dataset. The original parameters are frozen during this process. Finally, the fine-tuned new pa-
rameters may be released publicly and plugged-in to the model for downstream tasks, while still
preserving privacy of the private dataset.

Table 1: Accuracy of fine-tuning for downstream tasks with RoBERTa-Large (in %). Our results
achieve accuracy comparable to full fine-tuning non-privately, while simultaneously guaranteeing
differential privacy. We choose δ =1e-5 for SST-2 and QNLI and δ =1e-6 for MNLI and QQP due
to their dataset sizes. Implementation details are in Section 4.1.

Method MNLI SST-2 QQP QNLI Avg. Trained params
Non-private fine-tuning 90.2 96.4 92.2 94.7 93.4 100%
Our results (ε = 6.7) 87.8 95.3 87.4 90.8 90.3 0.94%

each task of interest using a much smaller task-specific dataset. For example, a single pre-trained
GPT-family model may be fine-tuned for various downstream tasks, such as email reply suggestion,
sentence completion in text editors, language translation, and more. This two-stage paradigm can
naturally be adapted to solve tasks in private learning, automatically addressing the aforementioned
data shortage issue via the massive scale of the public pre-training dataset. One may pre-train the
model on public data as usual,1 but then fine-tune the model privately.

Despite the success of these models, task-specific fine-tuning introduces a number of technical chal-
lenges. In the non-private setting, the immense size of LLMs makes it impractical to fine-tune the
full model and store a separate copy of the parameters for hundreds of downstream tasks. Things
only get worse with privacy, which leads to overheads in terms of running time, memory usage,
and most importantly, accuracy. The magnitude of noise introduced to a model due to DP grows
as the model size increases (Bassily et al., 2014; Abadi et al., 2016; Bun et al., 2014), which can
overwhelm any signal for larger models. A recent line of work in the non-private literature has
proposed parameter-efficient methods to alleviate the issues of storage and computational cost for
fine-tuning (Houlsby et al., 2019; Li & Liang, 2021; Aghajanyan et al., 2020; Hu et al., 2021; Ma-
habadi et al., 2021). The main focus of our work is to explore parameter-efficiency in the context of
private learning.

1.1 OUR CONTRIBUTIONS

Our primary contribution is to show that advanced parameter-efficient methods can lead to sim-
pler and significantly improved algorithms for private fine-tuning. Our framework is illustrated in
Figure 1. Our findings and contributions are summarized as follows:

State-of-the-art utility and privacy. Empirical evaluation of our algorithms reveals that they
achieve state-of-the-art accuracy versus privacy tradeoffs, improving upon the previous best (Yu

1Despite the fact that the pre-training data is public, there may nonetheless be privacy concerns related
to personal or copyrighted data. However, since these pre-trained models have already been released, any
associated privacy loss has already been incurred.
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et al., 2021b). More importantly, for many fine-tuning tasks, the utility of models trained with DP
approaches that of non-private models. For example, privately fine-tuning RoBERTa-Large on the
MNLI data set (Williams et al., 2018), we achieve an accuracy of 87.8% with a privacy budget of
(ε = 6.7, δ = 1e-6). Without privacy guarantees, RoBERTa-Large achieves an accuracy of 90.2%
(GPT-3 is known to achieve 91.7% (Hu et al., 2021)); see Table 1 for a summary. We also explore
private natural language generation tasks, fine-tuning GPT-2 models on the E2E dataset (Novikova
et al., 2017). Again, the utility approaches non-private levels: we achieve a ROUGE-L score of
0.6755 with GPT-2-Large and (ε = 5.4, δ = 1e-5), compared to 0.72 without privacy.

Larger models are better. Prior work has consistently shown that larger language models achieve
better accuracy for downstream tasks. Our results give evidence that this phenomenon extends to
the private setting. For example, on the MNLI dataset, RoBERTa-Base achieves an accuracy of
83.5% whereas RoBERTa-Large achieves an accuracy of 87.8%, both under a privacy budget of
(ε = 6.7, δ = 1e-6). Similarly, privately fine-tuning with E2E, GPT-2-Small, GPT-2-Medium,
and GPT-2-Large achieve ROUGE-L scores of 0.6219, 0.6645 and 0.6755 respectively, all under
a privacy budget of (ε = 5.4, δ = 1e-5). While established in the non-private setting, we find
this phenomenon quite surprising under DP. There is often a tension when choosing private model
architectures: larger models may have higher capacity, but necessitate the introduction of more
noise. Consequently, smaller and simpler private models achieve the better accuracy in several
settings (Papernot et al., 2019; Tramèr & Boneh, 2021). In contrast, our experiments show that
fine-tuning the biggest models achieves the best accuracy.2

Simpler, sparser, and faster. Beyond accuracy concerns, DP requirements also lead to significant
overheads in terms of computation and memory usage. The large number of parameters contributes
to the high cost of training LLMs, and things get worse under privacy, which has been documented to
increase training time by up to two orders of magnitude (Carlini et al., 2019; Subramani et al., 2021).
The parameter-efficient approaches we employ partially offset this issue: as we only update a small
fraction of the total number of parameters, training becomes considerably more computationally
and memory efficient. Furthermore, as in the non-private setting, this framework leads to a modular
design, where a single large pre-trained model can be augmented with lightweight modifications for
each individual downstream task.

To the best of our knowledge, we are the first to fine-tune GPT-2-Large using differential privacy,
the largest model trained thus far using DP. Given our state-of-the-art results for a variety of stan-
dard NLP tasks using advanced fine-tuning techniques, we believe that our paper will serve as a
benchmark for further work in this direction. For example, the best average accuracy achieved by
the prior work of Yu et al. (2021b) on four standard NLP tasks in Table 1 is 83.9% using ε = 8 (and
the same δ as in Table 1), whereas we can achieve an average accuracy of 90.3% using ε = 6.7 by a
combination of better algorithms, larger models, and new privacy accounting techniques.

Finally, though recently considered elsewhere (see Section 5), we put further focus on the framing of
public pre-training and private fine-tuning as an important conceptual direction in DP deep learning.

2 PRELIMINARIES AND PRIOR ALGORITHM BASELINES

Recall the formal definition of differential privacy.

Definition 2.1 (Differential Privacy (DP) (Dwork et al., 2006b;a)). A randomized algorithm
A is (ε,δ)-differentially private if for any two neighboring datasets D and D′, which dif-
fer in exactly the data pertaining to a single user, and for all sets S of possible outputs:
Pr[A(D) ∈ S] ≤ eε Pr[A(D′) ∈ S] + δ.

We review prior techniques for private fine-tuning.

2An alternative perspective is that what we currently think of as “large” language models are relatively
small, and we are yet to reach the point where the benefits of model size on accuracy are outweighed by the
drawbacks.
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2.1 FULL FINE-TUNING VIA DPSGD

To train a machine learning model with privacy, the most popular algorithm is the celebrated DP
stochastic gradient descent (DPSGD) (Song et al., 2013; Bassily et al., 2014; Abadi et al., 2016).
This optimization method serves as a drop-in replacement for SGD, augmenting it with the addition
of per-example gradient clipping and Gaussian noise addition steps. These two steps serve to limit
and mask the contribution of a single example. Two key points to note are that a) per-example
gradient clipping incurs significant computational and memory overheads in most implementations,
and b) noise introduced due to privacy grows as the square-root as the number of model parameters.
With this tool in place, the most basic fine-tuning strategy is to train all parameters using DPSGD.

2.2 REPARAMETRIZED GRADIENT PERTURBATION

To mitigate the limitations of DPSGD, a recent work of Yu et al. (2021b) introduced an elegant
method called reparametrized gradient perturbation (RGP). RGP exploits the implicit low-rank
structure in the gradient updates of SGD to substantially improve upon DPSGD. Specifically, they
reparametrize each layer’s weight matrix W into LR + W̃ , where L and R are low-rank gradient-
carrier matrices and W̃ is the residual weight. The authors show that one can obtain a low-
dimensional projection of W ’s gradient by taking gradients only of the low-rank matrices L and R
(and not the high-rank W̃ ). Privacy is introduced by clipping and noising these low-dimensional gra-
dients of L andR. While this low-dimensional projection loses some of the signal inW ’s gradient, it
turns out to contain enough to still achieve high accuracy. At the same time, the low-dimensional gra-
dients alleviate the aforementioned issues related to privatization, significantly reducing the memory
consumption and noise introduced.

3 OUR APPROACH

3.1 A META-FRAMEWORK

We introduce our approach as a meta-framework for private deep learning, which abstracts the key
principles of recent fine-tuning methods.

Suppose f(WPT;x) is a pre-trained model where WPT are the pre-trained weights and x is any
input. We create a new fine-tuning model

fFT(WPT, θ;x) (1)

which incorporates additional trainable parameters θ, where dim(θ) � dim(WPT). That is, the
number of new parameters in θ is a small fraction of the original number of parameters in the pre-
trained weights WPT. Fine-tuning is done by running DPSGD on the additional parameters θ, while
freezing the weights of pre-trained model WPT. The new parameters are initialized to θ0 such that

fFT(WPT, θ0;x) = f(WPT;x). (2)

The initialization condition (2) is very important, as it ensures that fine-tuning starts at the pre-trained
model and improves it by modifying the parameters θ. Most fine-tuning methods are additive and
have the following special form:

fFT(WPT, θ;x) = f(WPT + π(θ);x), (3)

i.e., they modify the pre-trained weights by adding a correction term π(θ) parametrized by θ.

Recent work in the non-private literature has described concrete instantiations of this frame-
work (Houlsby et al., 2019; Mahabadi et al., 2021; Hu et al., 2021), which (crucially) are effective
when dim(θ) � dim(WPT). In the non-private setting, such reparametrizations are useful for re-
ducing the computation and memory required for fine-tuning, and enable lightweight and plug-in
modifications to the base model for different downstream tasks. At the same time, they maintain (or
sometimes surpass) the accuracy achieved by full fine-tuning.

We give some intuition as to why parameter-efficient methods can to be more effective for private
fine-tuning, especially on smaller datasets. For simplicity, we assume that the fine-tuning method
is additive as in (3), such that the fine-tuned weights WFT = WPT + π(θ). We can imagine that
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WFT lies on a manifold passing through WPT of very small dimension (equal to the dimension of
θ) compared to the dimension of WPT. Even if the parameters θ are very noisy due to the noise
added during DPSGD, we will always stay in this manifold. In particular, we are not disturbing
the pre-trained weights in most directions (those orthogonal to the manifold near WPT). If we run
DPSGD on all the weights instead, then we add noise in all directions, thus potentially unlearning
the knowledge learned during pre-training, especially in low data regimes. However, this intuition
may not always be true; see the remark at the end of our experiments on NLU tasks.

Besides substantial gains in the accuracy, the above method of reparametrization has several other
advantages:

• A single pre-trained model such as BERT or GPT is generally applied to hundreds of down-
stream tasks via fine-tuning. Private fine-tuning using previous methods requires updating
all parameters and storing a different copy of the fine-tuned model per task. This creates
substantial overheads for storing and deploying, and can be very expensive in practice. On
the other hand, the reparametrization (1) means that we only need to store a single pre-
trained model that can be shared across many downstream tasks. Each downstream task
requires only a small number of new parameters that can be plugged in.

• Differentially private training requires computing and storing per-example gradients, which
increases the memory footprint. In our approach, however, learning is done in a much lower
dimension, hence saving on the memory cost as compared to prior works.

• Finally, we expect that (1) also gives a more communication-efficient method of fine-tuning
in distributed settings such as federated learning, due to the significantly smaller number
of parameters learned during fine-tuning.

3.2 INSTANTIATING THE META-FRAMEWORK

In this section, we discuss a few ways to instantiate our meta-framework. This list is non-exhaustive,
but covers the methods we employ in our experiments.

3.2.1 FINE-TUNING VIA LOW-RANK ADAPTATION

Low-Rank Adaptation (LoRA) (Hu et al., 2021) is an additive fine-tuning scheme as defined in (3).
For each dense weight matrix W i

PT of size a × b in the pre-trained network, we add a low-rank
correction term LiRi, i.e.,

W i = W i
PT + LiRi, (4)

where Li ∈ Ra×r, Ri ∈ Rr×b are new trainable parameters. Hu et al. (2021) apply this repa-
rameterization only to the Transformer attention weights (Wq,Wv), and freeze all other weights
(e.g., Wk and Wo and those in the feed-forward layers). The rank r is typically chosen to be small,
e.g., r = 4, 16, 64. Since most parameters in Transformer architectures are dense weight matrices,
choosing a small r results in a nearly square-root reduction in the number of parameters.

3.2.2 FINE-TUNING VIA ADAPTERS

Houlsby et al. (2019) propose adapter-based fine-tuning, in which we modify the architecture of
the pre-trained model by adding new “adapter” layers after each attention and feed-forward layer.
Adapter layers are bottleneck layers with residual connections. Specifically, given an input x, an
adapter layer A performs

A(x) = U(τ(D(x))) + x, (5)

where U is an up-projection affine linear map, D is a down-projection affine linear map, and τ
is a non-linear activation function such as the Gaussian error Linear Unit (GeLU) (Hendrycks &
Gimpel, 2016). If x has dimension d, then U ∈ Rd×r, D ∈ Rr×d for some r � d. Thus, the num-
ber of introduced parameters is significantly less than the number of parameters in the pre-trained
model. When fine-tuning, the parameters of the original model are frozen, and only parameters of
the adapter layers, as well as layer normalizations, are modified. Note that fine-tuning with adapters
is not an additive fine-tuning framework as in (3), but is captured by the broader framework in (1).
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Table 2: Memory and speed comparison for RoBERTa-Large. The rank is chosen as r = 16 for
RGP and LoRA. The speed is measured by the wall-clock time for training one epoch of the SST-2
dataset on a single Tesla V100 GPU with gradient accumulation for batch size 2000.

Method Memory (GB) Speed (seconds per epoch)
Full fine-tuning (DPSGD) 27.9 715
RGP 9.1 296
DP LoRA 6.1 271

3.2.3 FINE-TUNING VIA COMPACTER

The recent work of Mahabadi et al. (2021) introduces Compacters (Compact adapters), a method
which further improves the parameter efficiency of adapters. This is done by replacing the dense
matrices in the up-projection U and down-projection D by tensor products of smaller matrices, thus
reducing the number of trainable parameters. Specifically, they replace the dense matrix M` in the
adapter layer ` by a low-rank parameterized hypercomplex multiplication (LPHM) layer, i.e., each
dense matrix M` ∈ Ra×b is expressed as

M` =

n∑
i=1

Ai ⊗
(
S`
iT

`
i

)
(6)

where Ai ∈ Rn×n, S`
i ∈ Ra/n×k, T `

i ∈ Rk×b/n and ⊗ is the matrix Kronecker product. Note
the matrices Ai are not indexed by the layer ` because these matrices are shared among all the
adapter layers. Since each adapter layers has two dense matrices (one for up-projection and one for
down-projection), if there are L adapter layers, this reduces the number of parameters from L(2ab)
to L(2(a + b)k) + n3. In practice, a and b are chosen to be either the model dimension d or the
intermediate representation dimension r in the adapters, n is typically chosen to be a small constant
such as n = 2, 4, 8, 12 and k is chosen to be 1.

3.2.4 WHY DOES PARAMETER-EFFICIENT TUNING WORK?

Theoretical explanation of success of parameter-efficient fine-tuning methods is active area of re-
search in deep learning. Indeed, since trends have consistently shown that model accuracy increases
with size, how can one achieve competitive accuracy while fine-tuning less than 1% of the param-
eters? One popular hypothesis is intrinsic dimensionality (Li et al., 2018), which posits that the
minimum number of parameters needed to train a machine learning model may be much less than
the total number of model parameters. Aghajanyan et al. (2020) explore this hypothesis in the con-
text of fine-tuning LLMs, showing that one can achieve most of their accuracy by training only a very
small number of parameters (chosen via a random projection). Perhaps surprisingly, they find that
as the model size increases, intrinsic dimension decreases, in the limit exhibiting zero-shot learning.
While we did not explore this hypothesis in the context of DP due to computational restrictions, we
believe it may be an interesting lens through which one can understand the effectiveness of private
parameter-efficient fine-tuning.

3.3 COMPARISION WITH BASELINE ALGORITHMS

We highlight some key algorithmic differences between our proposed methods and the baselines of
full fine-tuning and RGP.

• DPSGD and RGP both require updating all parameters of the pre-trained model, whereas
our proposed methods update only a tiny fraction (between 0.05% and 1%). The rightmost
columns of Tables 3 and 4 list the number of parameters trained by these algorithms.

• RGP performs a low-rank decomposition of weight matrices which is similar to LoRA,
though there are subtle differences. Recall that in RGP, at the beginning of each iteration
t, the historical weight matrix Wt−1 is decomposed to find a low-rank product LR. The
gradients on L and R are then projected back to the full parameter space to perform the
descent step. Hence, RGP keeps modifying the pre-trained weights during learning.
LoRA can be viewed as a simplification of RGP. LoRA reparametrizesWFT := WPT +LR,
where the pre-trained weight matrix WPT is frozen during training. Hence, compared to
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Table 3: Accuracy for fine-tuning with RoBERTa-Base (in %). The privacy parameters are ε = 6.7,
and δ =1e-5 for SST-2 and QNLI and 1e-6 for MNLI and QQP. Bold indicates the best accuracy
with DP. Numbers for non-private fine-tuning are from Liu et al. (2019) and Hu et al. (2021).

Method MNLI SST-2 QQP QNLI Avg. Trained params

Full w/o DP 87.6 94.8 91.9 92.8 91.8 100%DP 53.1 82.6 74.4 63.9 68.5
LoRA w/o DP 87.5 95.1 90.8 93.3 91.7 0.24%
RGP3 DP 80.1 91.6 85.5 87.2 86.1 100%
Adapter DP 83.4 92.5 85.6 87.5 87.3 1.4% (r = 48)
Compacter DP 82.6 92.3 84.7 85.1 86.2 0.055% (r = 96, n = 8)
LoRA DP 83.5 92.2 85.7 87.3 87.2 0.94% (r = 16)

RGP, LoRA eliminates the decomposition and the projection to the full parameter space at
each iteration, simplifying the implementation and reducing the running time and memory
cost. This is summarized in Table 2. We observe that DP LoRA reduces the memory cost
by about 33% and the training speed by 8%. As we will see, this simplification also results
in improved utility.

• Neither full fine-tuning nor RGP fall into our meta-framework described by (1). Thus, if a
pre-trained model is to be applied to several downstream tasks, one must store a separate
set of weights for each task, incurring a significant memory cost and losing the plug-in
functionality. In contrast, our methods are much more lightweight.

4 EXPERIMENTS

We experimentally evaluate our methods for DP fine-tuning to demonstrate their utility, pri-
vacy, and parameter-efficiency. We investigate both language understanding and text genera-
tion tasks to establish that our techniques are applicable to a variety of tasks and model ar-
chitectures. Our code is publicly available at https://github.com/AnonymousAKES/
Differentially-Private-Fine-tuning-of-Language-Models.

4.1 FINE-TUNING FOR LANGUAGE UNDERSTANDING TASKS

We first compare our methods with state-of-the-art fine-tuning algorithms using models from the
BERT family, which was used in the prior work (Yu et al., 2021b). Specifically, we use RoBERTa
models (Liu et al., 2019), which are pre-trained on public data collected from the web. RoBERTa-
Base has 125M parameters and RoBERTa-Large has 355M parameters. We choose four downstream
tasks: MNLI, QQP, QNLI, and SST-2 from GLUE (Wang et al., 2018), following Yu et al. (2021b).

Implementation Details: For fine-tuning with adapters, we may choose the intermediate repre-
sentation dimension r, shared across all adapter layers. For fine-tuning with Compacter, we can
choose both r and the Kronecker product kernel dimension n in (6). For LoRA fine-tuning, we add
bottleneck branches for both the attention layers and the feedforward layers, which differs slightly
from the addition of bottleneck branches for only the Wq and Wv matrices of the attention layers
as done by Hu et al. (2021). Given the same bottleneck representation dimension r in (4), our new
implementation uses twice as many trainable parameters as the original paper, and achieves some
improvements for learning with DP. We perform privacy accounting using the approach of Gopi
et al. (2021), which currently gives the tightest bounds.

Hyperparameter choice: Given the large number of hyperparameter choices, e.g., the interme-
diate representation dimension, learning rate, weight decay, privacy parameter δ, and model size,
an exhaustive grid search over all hyperparameters is expensive. Our hyperparameter choices are
informed by prior work and are as follows. For privacy parameters, we use δ = 1e-5 for SST-2
and QNLI and δ = 1e-6 for QQP and MNLI due to their dataset sizes, and use noise multipliers
0.92, 0.83, 0.66 and 0.65 for SST-2, QNLI, QQP, and MNLI, respectively, which is the same as Yu
et al. (2021b). In Appendix B, we run experiments under different privacy parameters. The proposed
framework performs well under a wide range choices of ε and δ. The clipping threshold is 10 for

3Numbers are from https://github.com/dayu11/Differentially-Private-Deep-Learning.
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Table 4: Accuracy for fine-tuning with RoBERTa-Large (in %). The privacy parameters are ε = 6.7,
and δ =1e-5 for SST-2 and QNLI and δ =1e-6 for MNLI and QQP. Bold indicates the best accuracy
with DP. Numbers for non-private fine-tuning are from Liu et al. (2019) and Hu et al. (2021).

Method MNLI SST-2 QQP QNLI Avg. Trained params
Full w/o DP 90.2 96.4 92.2 94.7 93.4 100%
LoRA w/o DP 90.6 96.2 91.6 94.9 93.3 0.23%
RGP DP 86.1 93.0 86.7 90.0 88.9 100%
Adapter DP 87.7 93.9 86.3 90.7 89.7 1.4% (r = 48)
Compacter DP 87.5 94.2 86.2 90.2 89.5 0.053% (r = 96, n = 8)
LoRA DP 87.8 95.3 87.4 90.8 90.3 0.94% (r = 16)

all methods. The batch size is 2000. In Appendix D, we show the performance of the proposed al-
gorithm is stable across a wide range of choices of clipping thresholds and batch sizes. For adapters
and Compacter, we follow the original papers and choose r from {16, 48, 96} and n from {4, 8, 12}.
For LoRA, we choose the best-performing rank r from the set {4, 16, 48, 64}. The best performing
hyperparameters are noted in Tables 3 and 4. We train for 20 epochs using AdamW (Loshchilov &
Hutter, 2019) with weight decay 1e-2 and search over four learning rates {5e-4, 1e-3, 2e-3, 5e-3}.
Results: We report the prediction accuracy in Tables 3 and 4. Our experiments using RoBERTa-
Base serve as a direct comparison to Yu et al. (2021b) who only trained the base model, whereas
RoBERTa-Large experiments demonstrate the significance of using larger models. Our key find-
ings are: (1) On all datasets, our methods achieve the best accuracy while training a tiny fraction
of parameters; larger models give significant improvements. (2) Noticeable improvements in ε ver-
sus Yu et al. (2021b) are primarily due to new privacy accountants based on Fourier-based numerical
composition (Koskela et al., 2020; 2021; Gopi et al., 2021); we use the accountant in Gopi et al.
(2021) since it is the most efficient. (3) Private adapters provide the best average performance for
RoBERTa-Base, whereas LoRA outperforms all other methods for RoBERTa-Large.

Remark: While our experiments indicate that full fine-tuning does not achieve competitive perfor-
mance, there could be a choice of hyperparameters that improves upon the reported numbers, e.g.,
“mega” batch sizes (in the millions) in Anil et al. (2021). We note that our main message is that one
does not need to fine-tune all parameters to achieve the best accuracy. Nevertheless, it is interesting
to wonder if full fine-tuning with DPSGD can match the accuracy of parameter-efficient methods. A
positive answer would imply that private and non-private fine-tuning conceptually mirror each other.

Update: A concurrent work by Li et al (Li et al., 2022) show that using a larger batch size and
training with full-precision improves the performance of full fine-tuning via DPSGD, and obtains
similar performance as our algorithms. Thus, poor performance of DPSGD in our experiments is
due to the suboptimal choice of hyperparameters and also due to precision issues, although we use
same hyperparameters for all the algorithms. We run new experiments with hyperparameters of (Li
et al., 2022) in full precision mode, and get improvements around 1% even for our algorithms. We
report these findings in Appendix C.

4.2 FINE-TUNING FOR NATURAL LANGUAGE GENERATION (NLG)

Next, we study private fine-tuning for text generation problems using the GPT-2 series of models on
the End-2-End (E2E) NLG challenge (Novikova et al., 2017), one of the primary benchmarks used
in recent works on non-private fine-tuning (Hu et al., 2021; Li & Liang, 2021). We use GPT-2-Small
(117M parameters), GPT-2-Medium (345M parameters), and GPT-2-Large (774M parameters).4 To
the best of our knowledge, we are the first to privately fine-tune for E2E or fine-tune GPT-2-Large.
The purpose of this section is not to evaluate various fine-tuning algorithms, but to show that private
fine-tuning is competitive with non-private fine-tuning for text generation problems. Due to the high
cost of training, we report experimental results only for fine-tuning with LoRA.

In Appendix F, we present additional experiments on NLG that include private fine-tuning of the
GPT-2-XL model with 1.5 billion parameters. Other noticeable points in the additional experiments

4https://huggingface.co/transformers/model_doc/gpt2.html.
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Table 5: Metrics on the E2E NLG task (ε = 5.4, δ =1e-5). Non-DP results from Hu et al. (2021).

Method BLEU NIST MET ROUGE-L CIDEr
GPT-2-Small + DP 59.26 6.13 36.6 64.1 1.63
GPT-2-Medium + DP 64.2 7.77 40.02 66.45 2.00
GPT-2-Large + DP 64.51 8.22 41.5 67.55 2.13
GPT-2-Medium 70.4 8.85 46.8 71.8 2.53
GPT-2-Large 70.4 8.89 46.8 72.0 2.47

include 1) we show improved performance using better hyperparameters; 2) we test different privacy
parameters; 3) we consider a new dataset DART (Nan et al., 2021).

E2E NLG challenge: The E2E dataset in Novikova et al. (2017) contains template-like information
in the restaurant domain to be mapped to natural language with end-to-end training. The dataset
consists of 42K training samples, 4.6K validation samples, and 4.6K test samples. We use standard
metrics such as BLUE, ROUGE-L, etc., used in (Hu et al., 2021) for evaluation.

Hyperparameter choice: For LoRA, we choose the bottleneck rank r = 4 in (4) and fine-tune Wq

and Wv matrices of the attention layers as in the original paper. We optimize using AdamW with
learning rate 2e-4, weight decay 1e-2 and train our models for 5 epochs using batch size 64. We take
the gradient clipping parameter to be 1.0 and set the noise multiplier as 0.5.

Results: The results of our experiments are summarized in the Table 5, which reiterate the main
themes of this paper: private fine-tuning with a parameter-efficient approach performs close to their
non-private counterparts and show consistent improvement in the utility as the model size increases.

5 RELATED WORK

Some work studies private language models on more traditional architectures such as
LSTMs (Hochreiter & Schmidhuber, 1997), either training with DPSGD (McMahan et al., 2018;
Carlini et al., 2019) or related heuristics (Ramaswamy et al., 2020). Though pre-training on public
data is suggested (McMahan et al., 2018), public data appears to only be used in one of these works
for honest hyperparameter selection (Ramaswamy et al., 2020). A few more recent works consider
training LLMs with DP. Anil et al. (2021) privately train BERT-Large from scratch, compared to
our work which focuses on private fine-tuning. (Hoory et al., 2021; Basu et al., 2021) perform
private full fine-tuning of BERT models. Hoory et al. (2021) achieve accuracy which is comparable
to the non-private model, but additionally supplement the public pre-training data with additional
domain-relevant material, while we use off-the-shelf pre-trained models. Basu et al. (2021) observe
significant drops in utility, compared to our parameter-efficient methods which do not. While Kerri-
gan et al. (2020) consider public pre-training and private fine-tuning, their experiments are on much
smaller architectures (i.e., feedforward networks with three hidden layers). A simultaneous work
of Ginart et al. (2022) investigates private prediction (rather than learning) for next-token predic-
tion. A subsequent work by Senge et al. (2021) also investigates the effect of private fine-tuning on
various NLP tasks.

In a concurrent work, Li et al. (2022) also investigate DP fine-tuning of LLMs. In several cases, their
results demonstrate qualitatively similar findings as ours. While our experiments focus primarily on
parameter-efficient fine-tuning methods, interestingly, they show that private full fine-tuning can
also achieve comparable utility if the experimental setup is configured properly, e.g., using suitable
hyperparameters. In Appendix C, we run experiments under the setup in Li et al. (2022). We show
their setup can also improve the performance of our methods.

6 CONCLUSION

So far, DP deep learning has focused on training models from scratch. The spectacular success of
transfer learning in real-world applications, however, shows that private fine-tuning is an equally per-
tinent problem to study and deserves more attention. We show that by combining recent advances in
NLP, parameter-efficiency, privacy accounting, and using larger models, one can privately fine-tune
models whose utility approaches that of non-private models. We hope our work inspires more study
on the core problem of private fine-tuning, which we believe to be a central direction for research in
private machine learning, leading to more interaction between the LLM and DP communities.
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Table 6: Test accuracy for fine-tuning RoBERTa-Large with different privacy parameters. The num-
ber of training samples is denoted by n. The values of σ are noise multipliers. Numbers in the
brackets are the changes compared to the results in Table 4 (ε = 6.7, δ = Θ(1/n)).

Taks σ δ = 1/n δ = 1/10n δ = 1/100n δ = 1/1000n Accuracy (in %)
MNLI 1.88 ε = 1 ε = 1.35 ε = 1.49 ε = 1.61 86.8 (-1.0%)
QQP 1.88 ε = 1 ε = 1.40 ε = 1.54 ε = 1.67 85.2 (-2.2%)
QNLI 3.01 ε = 1 ε = 1.48 ε = 1.64 ε = 1.79 88.0 (-2.8%)
SST-2 3.63 ε = 1 ε = 1.47 ε = 1.64 ε = 1.80 93.1 (-2.2%)

MNLI 0.91 ε = 3 ε = 4.12 ε = 4.51 ε = 4.89 87.4 (-0.4%)
QQP 0.93 ε = 3 ε = 4.10 ε = 4.49 ε = 4.86 86.8 (-0.6%)
QNLI 1.29 ε = 3 ε = 4.45 ε = 4.90 ε = 5.33 89.9 (-0.9%)
SST-2 1.52 ε = 3 ε = 4.37 ε = 4.83 ε = 5.25 94.1 (-1.2%)

A ADDITIONAL RELATED WORK

There exist other parameter-efficient tuning methods which we did not evaluate in our work. Some
of these include random subspace projection (exploiting intrinsic dimensionality (Li et al., 2018;
Aghajanyan et al., 2020)), prefix and prompt tuning (Li & Liang, 2021; Lester et al., 2021), tuning
only biases (Cai et al., 2020; Ben Zaken et al., 2021), and other architecture variants including
Adapters (Pfeiffer et al., 2021; Rücklé et al., 2020). An interesting direction for future work is
to see whether parameter-efficient tuning approaches specifically designed for the private setting
can achieve higher utility. We also mention zero-shot learning, in which no task-specific dataset is
required and thus perfect privacy is achieved. Currently, zero-shot approaches achieve low utility
compared to fine-tuning, though it is possible that future models may narrow this gap.

Finally, our investigation fits more broadly into a line of work employing public data for private
data analysis. Some works on image classification consider pre-training on a large public dataset
and fine-tuning on a smaller private dataset (Abadi et al., 2016; Papernot et al., 2019; Tramèr &
Boneh, 2021; Luo et al., 2021). In particular, Luo et al. (2021) investigate the role of parameter
efficiency in private fine-tuning ResNet models, and propose strategies to choose which parameters
to fine-tune. One line of work uses unlabeled public data to train a student model (Papernot et al.,
2017; 2018; Bassily et al., 2018), including one work simultaneous to our own for natural language
generation Tian et al. (2022). Another recent idea uses a small amount of public data to identify a
lower-dimensional subspace of the gradients in which to perform private descent (Zhou et al., 2021;
Yu et al., 2021a; Kairouz et al., 2021). A simultaneous work of Amid et al. (2021) uses public data
in the mirror map for a private mirror descent algorithm. Finally, other works (both theoretical and
experimental) investigate the role of public data in private query release, synthetic data generation,
and prediction (Ji & Elkan, 2013; Beimel et al., 2016; Alon et al., 2019; Nandi & Bassily, 2020;
Bassily et al., 2020a;b; Liu et al., 2021).

B EXPERIMENTS WITH DIFFERENT PRIVACY PARAMETERS

Now we test our framework under different privacy constraints. Specifically, we run LoRA on the
language understanding tasks with various choices of privacy parameters ε and δ. We consider both
RoBERTa-Base and RoBERTa-Large.

For the RoBERTa-Large model, we set ε = 1 and 3 with δ being the same as those in Section 4.
We use the PRV accountant (Gopi et al., 2021). After getting the noise multipliers, we also reduce
the value of δ and report the corresponding value of ε. The hyperparameters are the same as those
in Section 4. We run experiments on all four tasks, i.e., MNLI (n ∼ 392k), QQP (n ∼ 364k),
QNLI (n ∼ 104k), and SST-2 (n ∼ 67k). We report the results in Table 6. The performance
of our framework is decent even with very tight privacy budgets. For instance, with ε < 2 and
δ = 1/1000n, the accuracy gap between the non-private baseline is only 3.8 for MNLI and 2.1 for
SST-2.
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Figure 2: Test accuracy (in %) of fine-tuning the RoBERTa-Base model on MNLI and SST-2 with
various choices of ε.

Table 7: Accuracy for fine-tuning downstream tasks with RoBERTa-Base (in %). Experiments are
run with full-precision. We also scale up the batch size according to the dataset size compared to
SST-2. The privacy parameters are ε = 6.7, and δ =1e-5 for SST-2 and QNLI and 1e-6 for MNLI
and QQP.

Method MNLI SST-2 QQP QNLI Average Accuracy

Full w/o DP 87.6 94.8 91.9 92.8 91.8
DP 83.2 85.9 86.2 84.8 85.0

Adapter DP 84.6 92.9 87.4 89.2 88.5
LoRA DP 84.5 92.7 87.1 88.3 88.2

For the RoBERTa-Base model, we try various choices of ε. The values of ε are chosen from
[0.1, 0.5, 1, 3, 5, 8, 12]. All other settings are the same as those in Section 4. We run experiments on
the MNLI and SST-2 datasets. The results are presented in Figure 2. Our framework performs well
for a wide range of ε. We note that our algorithm achieves meaningful accuracy even for very tight
privacy parameters ε = 0.5 and 1. Such values of ε are rarely explored when training deep models
with differential privacy.

C FINE-TUNING FOR LANGUAGE UNDERSTANDING TASKS WITH LARGE
BATCH SIZE AND FULL-PRECISION

Li et al. (2022) show the performance of fine-tuning the full model can be significantly improved
with proper configuration. In this section, we re-evaluate the tasks in Table 3 and 4 under the
configuration in Li et al. (2022) and show such a configuration also improves the performance of
our methods.

The configuration in Li et al. (2022) has two major differences compared to that in Section 4.1.
The first difference is Li et al. (2022) run experiments with full-precision while the experiments

Table 8: Accuracy for fine-tuning downstream tasks with RoBERTa-Large (in %). Experiments are
run with full-precision. We also scale up the batch size according to the dataset size compared to
SST-2. The privacy parameters are ε = 6.7, and δ =1e-5 for SST-2 and QNLI and δ =1e-6 for
MNLI and QQP.

Method MNLI SST-2 QQP QNLI Average Accuracy

Full w/o DP 90.2 96.4 92.2 94.7 93.4
DP 86.4 90.9 87.5 89.4 88.6

Adapter DP 88.6 94.5 87.8 91.6 90.6
LoRA DP 89.0 95.3 88.4 92.4 91.3
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Figure 3: Test accuracy (in %) of fine-tuning RoBERTa-Base with differentially private LoRA on
the SST-2 dataset. Our algorithm performs well on a wide range of hyperparameters.

Table 9: Non-private metrics on the E2E NLG task, using full fine-tuning.

Method BLEU NIST MET ROUGE-L CIDEr
GPT-2-Medium 68.2 8.62 46.2 71.0 2.47
GPT-2-Large 68.5 8.78 46.0 69.9 2.45

in Section 4.1 use half-precision. Using half-precision is a common approach to speed up NLP
experiments (Ott et al., 2018). However, half-precision may incur underflow issue which impacts
the model performance (Micikevicius et al., 2017). The second difference is they use larger batch
size for larger datasets. For example, the batch size for MNLI is roughly six times larger than the
batch size for SST-2 in Li et al. (2022). In Section 4.1, we use the same batch size for all datasets.

We follow the above setup and re-evaluate DP-LoRA and DP-Adapter. The results are in Table 7
and 8. The results of full fine-tuning with differential privacy are directly adopted from Li et al.
(2022). The configuration in Li et al. (2022) further improves the strong results in Table 3 and 4.
For example, we achieve 89.0% accuracy on the MNLI dataset, which is only 1.2% lower than the
accuracy without DP constraint. Moreover, the benefit of the proposed framework over full fine-
tuning is still clear. The average accuracy of the proposed algorithms is∼3% higher than that of full
fine-tuning.

D ON THE INFLUENCE OF HYPERPARAMETERS

Here we demonstrate that our algorithms perform well for a wide range of hyperparameters. We
study two hyperparameters that are directly related to the variance of noise: clipping threshold and
batchsize. The clipping threshold is chosen from [0.1, 1.0, 3.0, 5.0, 10.0] and the batchsize is chosen
from [200, 500, 1000, 2000, 4000]. We note that we keep the number of updates the same as that in
Section 4 when the batchsize is changed. We fine-tune the RoBERTa-Base model with differentially
private LoRA (r = 16) on the SST-2 dataset. The results are presented in Figure 3. DP LoRA
performs well for all the hyperparameters considered. The gap between the best accuracy and the
worst accuracy is only 2%.

E FULL FINE-TUNING WITH GPT-2

All results in Table 5 (in the main body), both private and non-private, perform fine-tuning using
LoRA. In Table 9, we additionally report utility of non-private full fine-tuning. These numbers are
taken from Table 1 of Li & Liang (2021). In general, these numbers are slightly lower than those
obtained by performing non-private fine-tuning with LoRA.
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Table 10: Metrics on the E2E NLG task. Non-DP results from Hu et al. (2021), except for GPT-2-
XL, which was not reported in the paper. We ran GPT-2-XL with hyperparameters presented in Hu
et al. (2021). Bold indicates the best accuracy with DP. DP parameters are (ε = 6.0, δ = 1e-5). Val
perp stands for validation perplexity.

Method Val perp BLEU NIST MET ROUGE-L CIDEr
GPT-2-Small + DP 4.51 63.8 7.19 39.5 67.5 1.87
GPT-2-Medium + DP 4.02 65.5 8.45 42.7 67.9 2.23
GPT-2-Large + DP 3.87 66.7 8.63 44.0 67.8 2.33
GPT-2-XL + DP 3.79 66.1 8.53 43.0 68.1 2.28
GPT-2-Medium 3.19 70.4 8.85 46.8 71.8 2.53
GPT-2-Large 3.06 70.4 8.89 46.8 72.0 2.47
GPT-2-XL 3.01 69.4 8.78 46.2 71.5 2.49

Table 11: Metrics on the E2E NLG task. Bold indicates the best accuracy with DP. DP parameters
satisfy (ε = 3.0, δ = 1e-5), (ε = 3.4, δ = 1/10n), (ε = 3.9, δ = 1/100n) and (ε = 4.5, δ =
1/1000n). Val perp stands for validation perplexity.

Method Val perp BLEU NIST MET ROUGE-L CIDEr
GPT-2-Small + DP 4.59 62.7 7.03 39.2 66.4 1.85
GPT-2-Medium + DP 4.08 65.2 8.31 42.2 68.1 2.22
GPT-2-Large + DP 3.92 66.7 8.60 43.6 68.1 2.29
GPT-2-XL + DP 3.85 67.6 8.64 44.9 68.6 2.36

F ADDITIONAL EXPERIMENTS ON NATURAL LANGUAGE GENERATION

In this section, we perform additional experiments on private fine-tuning for text generation prob-
lems using the GPT-2 series of models. This includes the private fine-tuning of the GPT-2-XL model
with 1.5B parameters. There are three main points to note compared to our results in the main body:
1) We show an improved performance on E2E NLG challenge using better hyperparameters; 2) We
conduct experiments on E2E dataset with different privacy parameters to show that large language
models perform strong even with smaller privacy budgets; 3) Finally, we conduct new experiments
on DART dataset.

F.1 IMPROVING THE PERFORMANCE ON E2E NLG CHALLENGE

We improve the results of Table 5 with the following set of new hyperparameters.

Hyperparameter choice: For LoRA, we choose the bottleneck rank r = 4 in (4) and fine-tune Wq

and Wv matrices of the attention layers as in the original paper. We optimize using AdamW with
learning rate 4e-4, weight decay 1e-2 and train our models for 20 epochs. We use batch size 128. We
take the gradient clipping parameter to be 1.0 and the noise multiplier to be 0.6 for the accountant
in Gopi et al. (2021), achieving ε = 6.0, δ =1e-5.

Results: The results of our experiments are summarized in the Table 10.

F.2 EXPERIMENTS WITH DIFFERENT PRIVACY PARAMETERS

On E2E dataset, we test our framework with smaller privacy budgets (ε < 5 and δ � 1/n) where n
is the number of samples in the training data.

Hyperparameter choice: The hyperparameter choices are similar as in Section F.1. The only
difference is that we increase the noise multiplier to be 0.71 for the accountant in Gopi et al. (2021),
achieving the following (ε, δ) pairs: (ε = 3.0, δ =1e-5), (ε = 3.4, δ = 1/10n), (ε = 3.9, δ =
1/100n) and (ε = 4.5, δ = 1/1000n).

Results: The results of our experiments are summarized in the Table 11.

There are a couple of interesting observations comparing Table 11 with Table 10. First, we observe
that although privacy budget is tight in Table 11, the results are quite similar to Table 10, which
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Table 12: Metrics on the DART dataset. Non-DP results from Hu et al. (2021), except for GPT-2-
XL, which was not reported in the paper. We ran GPT-2-XL with hyperparameters presented in Hu
et al. (2021). Bold indicates the best accuracy with DP. DP parameters are (ε = 6.8, δ = 1e-5). Val
perp stands for validation perplexity. Unlike all other metrics, the lower the TER metric is the better
for the performance of the model.

Method Val perp BLEU MET TER
GPT-2-Small + DP 3.82 38.5 0.34 0.53
GPT-2-Medium + DP 3.30 42.0 0.36 0.51
GPT-2-Large + DP 3.10 43.1 0.36 0.5
GPT-2-XL + DP 3.00 43.8 0.37 0.5
GPT-2-Medium 2.67 47.1 0.39 0.46
GPT-2-Large 2.89 47.5 0.39 0.45
GPT-2-XL 2.83 48.1 0.39 0.46

shows that our methods also perform very well under stronger privacy guarantees. A more inter-
esting observation is that under smaller epsilon regimes, the performance for private fine-tuning of
GPT-2-XL model improves. Observe that the performance improvement is more prominent going
from GPT-2-Small to GPT-2-XL in this setting, which may indicate that larger models can be even
more effective in private learning when the privacy budgets are tight.

F.3 PERFORMING EXPERIMENTS ON DART DATASET

We study the DART dataset as a text generation problem for private fine-tuning of GPT-2 series of
models.

DART: DART was introduced as an open-domain data-to-text dataset by Nan et al. (2021). The
dataset consists of 62K training samples, 6.9K validation samples, and 12K test samples. In com-
parison to E2E, the dataset is larger and the task is more challenging.

Hyperparameter choice: The hyperparameter choices are similar as in the previous setting. The
only difference is that we use batch size 256 for the experiments on DART. This achieves ε =
6.8, δ =1e-5 on DART using the accountant in Gopi et al. (2021).

Results: The results of our experiments are summarized in the Table 12.
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