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ABSTRACT

Communication is a prerequisite for collaboration. When scaling networks of AI-
powered agents, communication must be versatile, efficient, and portable. These
requisites, which we refer to as the Agent Communication Trilemma, are hard
to achieve in large networks of agents. We introduce Agora, a meta protocol
that leverages existing communication standards to make LLM-powered agents
solve complex problems efficiently. In Agora, agents typically use standardised
routines for frequent communications, natural language for rare communications,
and LLM-written routines for everything in between. Agora sidesteps the Agent
Communication Trilemma and robustly handles changes in interfaces and mem-
bers, allowing unprecedented scalability with full decentralisation and minimal
involvement of human beings. On large Agora networks, we observe the emer-
gence of self-organising, fully automated protocols that achieve complex goals
without human intervention.

1 INTRODUCTION

Human language evolved primarily for communication purposes (Fedorenko et al., 2024). Despite
its inherent ambiguity, natural language provides great versatility and allows humans and machines
to collaborate and achieve complex goals that they otherwise could not (Russell & Norvig, 2016).

Decades of literature in computer science explored how to foster collaboration between agents mod-
elled as programs (Wooldridge & Jennings, 1995; Gilbert, 2019). Several research papers design
networks of agents to solve complex problems by leveraging each model’s specialisation, the so-
called rule-based agents paradigm (Wooldridge, 2009). Despite its influence, such a paradigm faces
two major limitations: agents hardly adapt to environmental changes and require structured data that
limits their versatility (Gilbert & Terna, 2000).

With the advent of Large Language Models (LLM) (Vaswani et al., 2017; Brown et al., 2020), there
has been a resurgent interest in networks of collaborative agents. LLMs can solve a variety of
problems (Achiam et al., 2023; Dubey et al., 2024a) expressed in natural language as they excel at
following instructions (Schulman et al., 2017; Rafailov et al., 2024). LLMs also showed remarkable
improvements at handling structured data such as graphs and formatted languages (Kassner et al.,
2020; Collins et al., 2022; Jin et al., 2023; Lin et al., 2024).

In terms of performance (e.g., accuracy on classification), the literature suggests that specialised
LLMs outperform general purpose models (Hu et al., 2021; Zhang et al., 2024), as well as mitigating
the difficulties of handling gargantuan models and the drawbacks of data and model centralisation
(Song et al., 2023).

Thus, we hypothesise that:

Hypothesis

A network of heterogeneous LLMs can automate various complex tasks with nearly no hu-
man supervision via specialised and efficient protocols.

1
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However, networks of LLM-powered agents face three key challenges that make communication
at scale significantly more difficult:

• LLMs are heterogeneous: different LLMs have different architectures, makers, capabilities
and usage policies.1

• LLMs are (mostly) general-purpose tools: enumerating and standardising each task they
can perform is infeasible.

• LLMs are expensive: the computational footprint and inference time of “small” LLMs
dwarfs that of comparable, specialised APIs.

Scalable communication between heterogeneous LLMs must be versatile, i.e., capable of handling
a variety of use cases, efficient, i.e., requiring the least computational effort, and portable, i.e.,
supporting the protocol should require the least human effort possible. The above-mentioned issues
constitute the Agent Communication Trilemma, which we expand in Section 3.

In light of this, the aim of this paper is the following:

Key Contribution

We design and implement a communication protocol between heterogeneous LLM-powered
agents and assess its feasibility and scalability for solving high-order tasks.

We sidestep the Trilemma with Agora, a meta protocol that relies on the dual use of structured data
for frequent communications and natural language for infrequent ones. With Agora, we instantiate
large networks of LLM-powered agents that solve complex tasks autonomously by leveraging effi-
cient communications schemas. In such networks, we observe agents develop an emergent fully
automated protocol to solve a complex task starting from an instruction expressed in natural
language. We believe that this observation can serve as a basis to renew interest in emergent proto-
cols/languages in large networks of LLMs (Lazaridou et al., 2018; Chaabouni et al., 2019; Lazaridou
& Baroni, 2020; Chaabouni et al., 2022).

The paper is structured as follows. We first outline the key challenges that constitute the Agent
Communication Trilemma (Section 3); we then detail how Agora addresses the Trilemma and serves
as a communication protocol for networks of LLMs (Section 4). Finally, in Section 5, we provide
two fully functional demos2: the former, with two agents, to clarify Agora’s operating principles; the
latter, with 100, to prove Agora’s scalability and show the emergence of self-organising behaviours.

2 RELATED WORK

Multi-agent LLMs and communication. At the time of writing, Multi-Agent-Systems of Large
Language Models (MAS-LLM) have become an active area of research (Guo et al., 2024) after the
upsurge of LLMs as general purpose problem solvers (Brown et al., 2020; Achiam et al., 2023;
Dubey et al., 2024b). Many fields have adapted techniques from the MAS-LLM paradigm to solve
problems single models fail at, including reasoning and math (Li et al., 2024), Theory of Mind (Cross
et al., 2024; Li et al., 2023b), planning (Singh et al., 2024), alignment to human values (Pang et al.,
2024), and simulation of games, economics, and political scenarios (Bakhtin et al., 2022; Hua
et al., 2023; Wu et al., 2024a). The common intuition of these works is that by breaking a task into
sub-components (Hong et al., 2023) and allocating a large number of specialised models (Li et al.,
2024) to each of them (Li et al., 2023a), one can achieve higher performance and observe emergent
behaviours that otherwise would not occur.

On the other hand, a key requisite for solving complex tasks in large networks of MAS-LLMs
is effective and efficient communication. In large networks, LLMs must agree on the actions to
take (Chen et al., 2023): works such as Agashe et al. (2023) and Liang et al. (2023) studied how
LLMs debate to foster collaboration on high-order tasks (Du et al., 2023). Another recent line of

1Heterogeneity is not unique to agents of LLMs, yet, compared to classic MAS agents, LLMs come with
deeper representations of the surrounding environment and are thus more challenging to standardise.

2Our code is available anonymously at anonymous.4open.science/r/agora-protocol-demo.
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research explores the topology of the MAS-LLM network as a facilitator to reach consensus (Chen
et al., 2024).

LLMs for simulations and emergence of protocols. A few seminal works studied how emergent
communication and protocols arise between neural networks that manipulate symbols (Havrylov
& Titov, 2017; Lazaridou et al., 2018; Lazaridou & Baroni, 2020). Written before the rise of
LLMs, these works inspired researchers to explore how spontaneous collaboration emerges in MAS-
LLMs (Wu et al., 2024b), with application to simulation of societies (Gao et al., 2024). Of partic-
ular interest for this paper are the works by Chaabouni et al. (2019) and Chaabouni et al. (2022).
Chaabouni et al. (2019) describes how emergent communication systems between neural networks
privilege longer messages. Chaabouni et al. (2022) posits the existence of “scaling laws” (Kaplan
et al., 2020) for large networks of MAS-LLMs in which the dataset, task complexity, and population
size are the key to observe emergent behaviours.

3 THE AGENT COMMUNICATION TRILEMMA

Figure 1: The Trilemma and how our
solution (Agora) balances efficiency,
portability and versatility.

An agent is a computer system that, in an envi-
ronment, is capable of autonomous actions (the so-
called ‘agency’ (Horty, 2001)) to meet its design objec-
tive (Wooldridge & Jennings, 1995; Wooldridge, 2009,
p. 15). Just as humans must negotiate and cooperate to
achieve shared goals, so too must agents within multi-
agent systems (Wooldridge, 2009, p. 24-25). However,
when designing communication protocols for heteroge-
neous networks (i.e., networks where agents have differ-
ent architectures, capabilities and design constraints), we
run into difficulties when attempting to optimise for three
properties at the same time:

• Versatility: communication between agents should support a wide variety of messages,
both in terms of content and format;

• Efficiency: the computational cost of running an agent and networking cost of communi-
cation should be minimal;

• Portability: supporting the communication protocol should require the least implementa-
tion effort by the largest number of agents involved.

We name the trade-off between such properties the Agent Communication Trilemma, which is
illustrated in Figure 1. In the next sections, we will discuss how an LLM-powered communication
protocol can trade off versatility, efficiency, and portability.

3.1 VERSATILE VS. PORTABLE COMMUNICATION

In networks of agents, versatility and portability are at tension for two fundamental reasons (Olivé,
2007). A prerequisite for two agents who communicate is (1) a shared conceptual understanding of
the topic on which they communicate. For instance, two agents can communicate about the weather
if they both ‘know’ what it means to be sunny, rainy and overcast. For example, they should share
a similar notion of describing and measuring temperature (e.g., in degrees Celsius). In addition,
(2) agents must encode and decode messages in a way that is intelligible for both. Continuing
the weather example, if two agents exchange data using JSON objects, both the sender and the
receiver must know the syntax (e.g., the keys of a JSON object, such as temperature) and the
semantics (e.g. temperature is a 32-bit floating point value representing the temperature, in
central London, as measured in degrees Celsius) of the exchanged messages.

In complex scenarios, defining routines whose syntax and semantics satisfy requisites (1) and (2)
may be difficult. For example, a programmer has to manually implement a method to decode (or
decode) messages to (or from) other agents. Additionally, the programmer must explicitly instruct
the agent about how to manipulate and reason about the message content, often by interpreting API
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documentation describing the semantics of the message. Therefore, there is a trade-off between the
breadth of messages (versatility) and the implementation cost (portability).

An example of high-portability, low-versatility is the Open Banking Platform (OBP), which uses a
well-defined Open API schema for data transfer (OBL, 2024). OBP is highly portable because it
uses a fixed range of well-known concepts which developers can implement; however, it is restricted
to discussing a narrow domain of banking data and is thus not versatile. On the other end of the
spectrum, rules-based Semantic Web agents (Berners-Lee et al., 2001) that exchange RDF (Beckett
et al., 2014) encoded documents are highly versatile since ontologies (Wooldridge, 2009, p. 180)
enable the description of structured relations between essentially any concept. Still, they require
developers to program agents to implement the specific ontologies used by the network (e.g., if a set
of RDF triples states that the temperature is 38°C, an agent must be able to interpret the concepts of
“temperature” and “Celsius”).

3.2 EFFICIENT VS. VERSATILE AND PORTABLE COMMUNICATION

As previously mentioned, rule-based agents excel at the tasks they are designed to solve but hardly
adapt to new environments. Decades of research in reinforcement learning (Sutton, 2018) and then
in deep reinforcement learning (Arulkumaran et al., 2017; Henderson et al., 2018), introduced a
paradigm where agents learn to optimise their reward as proxy of the task we want them to solve.
Agentic-LLMs, i.e., multi-agent systems powered by language models, is a recent paradigm for
machine-to-machine communication that relies mostly on their proficiency at handling natural lan-
guage and following instructions (Li et al., 2023a).

Natural language is highly expressive, making it a suitable choice for versatile communication (Rus-
sell & Norvig, 2016). Additionally, LLMs trained on massive corpora seem to develop an implicit
understanding of various concepts that abstracts and makes communication independent from
their internal architecture. Moreover, LLMs can integrate external tools, write code and invoke
APIs with relatively little or no training (Schick et al., 2024), since the only requirement is a natural-
language description of the tool and its parameters.

Conversely, natural language as a communication medium has two major drawbacks. While en-
gineering and hardware improvements (Dubey et al., 2024b) mitigate costs over time, the compu-
tational requirements of invoking an LLM dwarf those of comparable APIs, representing a major
bottleneck for scaling networks of LLMs. On the other hand, using closed-source pay-per-usage
LLMs hosted by third parties is expensive and raises concerns in terms of replicability of the re-
sults (La Malfa et al., 2023). Additionally, natural language is inherently ambiguous: while LLMs
have a certain degree of “common sense” to fulfil requests, non-determinism and natural language
specifics leave space for errors that routines minimise (for instance, if someone asks for the temper-
ature in Fahrenheit and the agent has a tool that returns the temperature in Celsius, the model must
know that Celsius and Fahrenheit are both units of measure for temperature). These factors make
LLMs and natural language more prone to errors than other alternatives like handwritten APIs.

In conclusion, RESTful APIs (efficient), RDF tuples (portable) and natural language (versatile)
are all trade-offs in the Trilemma. While some approaches are more useful in practice than others,
the fact that no communication format achieves all three properties simultaneously suggests that we
need a hybrid communication protocol that leverages all of them. The next section outlines our
solution.

4 AGORA: A COMMUNICATION PROTOCOL LAYER FOR LLMS

The key to solving the Communication Trilemma involves accepting that no single protocol can
achieve optimal efficiency, portability and versatility at the same time. In this section we introduce
Agora, a meta protocol that takes advantage of the unique capabilities of LLMs to sidestep the
Trilemma by adapting different communications methods for different scenarios.

The most powerful LLMs share three key properties:

• They can understand, manipulate, and reply to other agents using natural language;

4
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(a) An illustration of Agora and how it abstracts
the underlying implementation, communication, and
physical layers.

(b) Stack of technologies to build
Agora.

Figure 2: How Agora fits into a standard communication protocol stack.

• They excel at following instructions, including writing code to implement routines (Schick
et al., 2024; Hou et al., 2023; Liu et al., 2024);

• They can autonomously negotiate protocols and reach consensus on strategies and be-
haviours to adopt in complex scenarios (Chen et al., 2023; Fu et al., 2023).

At its core, Agora uses different communication formats depending on the circumstances; an agent
can support a wide breadth of communications (high versatility) while handling the majority of the
total volume of requests with efficient routines (high efficiency). Moreover, the entire negotiation
and implementation workflow is handled by the LLMs and requires no human supervision (high
portability). The concept of protocol documents (PD), which we sketch in Figure 3 and discuss in
the next section, lies at the core of Agora’s functionalities.

In the next sections, we illustrate the hierarchy of communication methods Agora supports natively
and the concept of PD; we then provide an example of how Agora works and how it enables versatile,
efficient, and portable communication. We conclude by emphasising how one can integrate and build
upon Agora with further technological layers independently from its underlying technologies.

4.1 COMMUNICATION IN (AN) AGORA

Agora introduces a machine-readable way to transfer and refer to protocols, namely the protocol
documents (PDs). A PD is a plain-text description of a communication protocol.3 PDs are self-
contained, implementation-agnostic, and contain everything an agent needs to support a protocol:
this means that most descriptions of existing protocols, such as RFCs, are also suitable PDs. How-
ever, instead of relying on a central body to assign identifiers, a PD is uniquely identified by its hash
(for multiplexing).

In Agora, the most frequent communications have dedicated efficient routines, and the least frequent
ones use inefficient but flexible LLMs and natural language. In particular:

• When possible, frequent communications are handled through traditional protocols, for
which there are standard, human-written implementations (e.g., OBP);

• For communications that happen less frequently (or for which there are no standard pro-
tocols), agents can use structured data as an exchange medium (which can be handled by
LLM-written routines);

• For communications that might be frequent for one side but not the other, the agents still
use structured data, but one side can choose to use an LLM, while the other uses a routine;

3Throughout this paper, we use the word “protocol” to refer to any standardised description of structured
communication.
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Figure 3: How a protocol document is negotiated between LLM-powered agents (left) and used for
future efficient communications.

• For rare communications or when a routine fails unexpectedly, the agents can resort to
natural language.

It is entirely up to the agent to handle a query using a human-written routine, an LLM-written
routine, or an LLM (or a combination of these three). This gives the agent maximum flexibility
over how to process queries.4 In the Demo (Section 5.3), we will illustrate the trade-off between the
versatility of a communication protocol and its expected usage.

Hierarchical communications support any form of communication (maximum versatility) , al-
though in practice an LLM is invoked in very rare cases (maximum efficiency). Moreover, since
LLMs can implement routines on their own (since PDs fully describe the syntax and semantics of a
protocol), human programmers only need to provide an overview of the tools the agent has access
to, which means that the implementation effort required on the human side is minimal (maximum
portability). In other words, Agora sidesteps the Communication Trilemma by employing rou-
tines for frequent requests and resorting to natural language when agents need to negotiate efficient
ways to solve a problem or errors occur.

4.2 AN EXAMPLE OF COMMUNICATION OVER AGORA

We now describe how two agents, Alice and Bob, can efficiently communicate over Agora using a
PD routine, as illustrated in Figure 3. Alice initially sends a query with the hash of its corresponding
PD. Bob uses the hash to determine if he has a corresponding routine. If so, he calls it and handles
the communication without invoking the LLM. Otherwise, Bob handles the response with the LLM
itself.

If Bob uses an LLM to reply several times to queries that follow a given protocol over time, to the
point where using an LLM every time becomes expensive, he can use the LLM to write a routine
that handles future communications.

If the routine fails or the communication is a one-off instance that does not require a protocol, Alice
and Bob use natural language, which is again handled by the LLM. Natural language is also available
to bootstrap communication between nodes that have never interacted before, as well as to negotiate
new protocols. That said, the lower cost of routines and the lack of ambiguity are strong incentives
for agents to prefer structured data.

Note that PDs can be shared with other nodes in the network, which means that two agents that have
never interacted before can use protocols developed by other agents.

In the Appendix A, we provide details of five use cases of Agora to further show its versatility as
a personal assistant and data analysis tool, and how it leverages compositionality and scalability to
reduce costs.

4Forcing or nudging a model to use a specific communication style can improve efficiency, yet its discussion
is out of the scope of this paper. One can, for example, specify in the system prompt of an LLM to negotiate a
protocol whenever possible.
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4.3 AGORA AS A LAYER ZERO PROTOCOL

Figure 2 illustrates that Agora is implementation and technology agnostic. The implementation of
the agents themselves (e.g., LLMs), the database used to store data (e.g., VectorDB, SQL, Mon-
goDB, etc.), the language in which implementations are written (Python, Java, etc.) and the nature
of tools are all abstracted.

At the same time, PDs can refer to other protocol documents, and since routines can call other
routines, agents can build upon previous negotiations to solve more complex tasks.

Finally, the versatility and portability of Agora make it straightforward to handle the addition or
removal of a node, a change in the capabilities of a node, or a change in the goals of the network, as
illustrated in the demo, Section 5.3.

All these factors contribute to making Agora a natural Layer Zero protocol, i.e. a foundation layer,
for higher-order communication and collaboration between LLMs. We hope our protocol can fuel
theoretical and applied research on complex protocols, negotiation schemes, and consensus algo-
rithms in large networks of LLMs.

5 AGORA IN PRACTICE

We implement and showcase two scenarios where Agora can be applied. The former, with two
agents whose objective is to exchange some data; the latter, with 100, to test Agora scalability
and the capacity of LLM-powered agents to autonomously coordinate in complex scenarios. For
space reasons, the scenarios are further expanded in Appendices C and D; here, we instead focus on
their functionalities and the key observations we drew in terms of efficiency/versatility/portability,
reduction of costs, scalability and emergent behaviours of fully automated networks of LLMs.

5.1 IMPLEMENTATION DETAILS

The design of Agora for our working demos follows three key principles:

• Minimality. Agora enforces the basic standards that allow for efficient negotiation and use
of protocols, leaving everything else to PDs or other higher-order standards;

• Decentralisation. Agora does not rely on central authorities, with any collection of nodes
being able to use Agora independently;

• Full backward compatibility. Agora supports existing communication protocols and
schemas such as OpenAPI and JSON-Schema.

From a practical point of view, Agora uses HTTPS as base communication layer and JSON as
format to exchange metadata. When sending a message in a given protocol, an agent sends a JSON
document with three keys: the protocol hash, the body of the request formatted according to the
protocol, and a non-empty list of sources from which the protocol can be downloaded. The receiver
downloads the PD from its preferred source and, upon checking that the hash matches, stores it
for future uses. This hash-based identification system ensures that any node can reference any PD
without relying on a central authority to assign identifiers. Where PDs are stored is entirely up to the
agents; aside from regular cloud storage, hash-based indexing makes decentralised storage options
(such as IPFS Benet (2014)) viable. Additionally, since essentially all protocols can be stored as
PDs, Agora has full backwards compatibility with existing protocols (although human programmers
are encouraged to provide existing, standardised implementations instead of having the LLM re-
implement them from scratch).

To simplify negotiation, an agent can expose an endpoint with a list of supported protocols: a poten-
tial sender can thus compare the list with its own to automatically determine if there is a common
protocol. The sender can also use a potentially unsupported protocol, although the receiver can
choose to reject it by returning a predefined error message.

Refer to Appendix B for a more formal description of Agora.

7
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5.2 DEMO: RETRIEVING WEATHER DATA

Consider two agents, Alice and Bob. Alice is a Llama-3-405B (Dubey et al., 2024b) powered agent
managing the bookings of a guided tour service in London.5 Bob is a GPT-4o (Achiam et al., 2023)
agent for weather service that provides weather forecasts for a given date and location. As part of
the user interaction loop, Alice notifies the user if heavy raining is expected on a booked date.

To check the weather, she initially uses her LLM to send a natural language query to Bob (phase
A1):

Alice - Natural Language

What is the weather forecast for London, UK on 2024-09-27?

Bob uses his Toolformer LLM (Schick et al., 2024) to query his database (phase B1) and returns a
natural language reply (phase B2):

Bob - Natural Language

The weather forecast for London, UK, on 2024-09-27 is as follows:
“Rainy, 11 degrees Celsius, with a precipitation of 12 mm.”

Over time, the cost of invoking an LLM for phases A1 and B2 dominate all the other costs; Al-
ice and Bob thus decide to develop a protocol. Alice checks if Bob already supports a suitable
protocol but finds none. Therefore, she decides to negotiate a protocol with Bob. After a few
rounds of negotiation, Alice and Bob agree on the following protocol: Alice sends a JSON docu-
ment with two fields, location and date, and Bob replies with a JSON document containing
three fields, namely temperature (in degrees Celsius), precipitation (in millimetres), and
weatherCondition (one of “sunny”, “cloudy”, “rainy” and “snowy”). From there on, Alice
specifies the protocol hash when performing a query. An example of exchanged message (excluding
Agora’s metadata) is:

Alice - PD

{"location": "London, UK", "date": "2024-09-27"}

Both Alice and Bob independently decide to write a routine to handle their side of the communica-
tion. From now on, Alice and Bob do not need to use the LLM to transmit traffic data: a routine
now automates phases A1, B1 and B2 and leverages the costs of invoking the respective LLMs.

A cost analysis. In our demo, negotiating the protocol and implementing the routines cost 0.043
USD in API calls, compared to an average cost of 0.020 USD for a natural-language exchange. This
means that, as long as Alice and Bob use the agreed-upon protocol more than twice, Agora reduces
the overall cost. Please refer to Appendix C for a transcription of the negotiation process and the
final protocol.

As a final note, we stress that the entire communication happened without human intervention.
Additionally, should Bob become unavailable, Alice can simply reuse the PD with a new node that
may use a different LLM/database/technology stack.

5.3 DEMO: A NETWORK OF 100 AGENTS

We now show the scaling capabilities and emergent behaviours of Agora by considering a net-
work of 100 LLM-powered agents. In particular, we scale the number of agents, which, as posited

5While Llama-3 models can be hosted locally, for the sake of a proper comparison with GPT-4o and Gemini,
we use a cloud provider, namely SambaNova (https://sambanova.ai).
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Figure 4: Illustration of how in an Agora network with 100 agents (left; for clarity, only the relevant
sub-network is displayed), an emergent protocol for food delivery emerges (right).

in Chaabouni et al. (2022), is a requisite for the emergence of complex behaviours in multi-agent
networks.

We design a network of 85 assistant agents interacting with 15 server agents, all powered by LLMs.
The server agents offer various services, such as booking hotel rooms, calling taxis, ordering food,
etc. An example of a sub-network for food delivery is sketched in Figure 4, left. Their specialisation
is handled via prompting, as in Deshpande et al. (2023); Joshi et al. (2023); Li et al. (2023a). As part
of their workflow, server agents must interact with several tools and databases; additionally, some
servers need to interact with other servers to complete assistants’ requests (e.g., taxi services use the
traffic data agent to adjust estimated fares for a run). We bootstrap the network by leveraging the
underlying communication layer (as described in Section 4 and Figure 2) and inform the nodes of
which URLs correspond to which node, as well as manually creating the connection links between
agents (e.g. the Taxi Service server knows that the server on port 5007 is a traffic server, but it does
not know how to communicate with it and what information it requires);

To showcase the portability of Agora throughout the network, we use different database technologies
(SQL and MongoDB) and different LLMs, both open- and closed-source (GPT-4o, Llama-3-405B,
and Gemini 1.5 Pro (Reid et al., 2024)). We then generate 1000 random queries, which range from
simple ones, such as requesting today’s weather, to more complex ones, like booking rooms in ski
resorts, buying tickets for movies, ordering one of each dish from a menu, and so on. For each query,
assistants receive a JSON document (which represents the task data) and are tasked with fulfilling
the request and returning a parsed response that follows a given schema. Queries are distributed
among assistants following a Pareto distribution, to simulate some assistants sending significantly
more requests than others. Each node can also read and share PDs to one of three protocol databases.
Overall, these design decisions result in a very heterogeneous network, testing the limits of Agora.
Refer to Appendix D for further implementation details.

Emergent protocols in large networks. Once the connections are established and the networks
can send and receive messages, we observe several noteworthy behaviours. As PDs are progressively
shared between agents (see Figure 5b), we observe the emergence of a decentralised consensus on
the appropriate protocols for a given task. An example of this behaviour involves ordering food
from restaurants: an agent queries another to request food to be delivered to a certain address. The
restaurant agent requests a delivery driver from a food delivery service, who, in turn, checks with
the traffic data agent to see if the traffic is smooth enough to fulfil the delivery. None of the agents
know each other’s roles and the protocols involved beyond their immediate communication. Still,
the interaction of the various agents creates an automated workflow that takes care of everything.
The emergence of such a protocol is illustrated in Figure 4 (right). In contrast with some recent
literature on the emergence of complex protocols (Chaabouni et al., 2019), we observe that with
the proper incentives (i.e., efficiency), agents in Agora escape the inefficient trap of committing to
longer messages in large scale communications.

A cost analysis. We compare the cost of running our Agora network against one that uses natural
language for all communications. As shown in Figure 5a, at the beginning Agora’s cost-efficiency

9
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Figure 5: Summary of the efficiency of Agora for the demo with 100 agents.

marginally outperforms the network that relies only on natural language; this gap increases over
time, with progressively more Agora-powered nodes relying on LLM-written routines. The overall
cost in API queries for running 1000 queries in the natural language network is 36.23 USD, com-
pared to Agora’s 7.67 USD: in other words, executing this demo with Agora is approximately five
times cheaper than with regular natural language. Continuing the demo for more queries would have
led to an even larger cost difference.

6 CONCLUSIONS

In this paper, we introduced Agora, a meta protocol that sidesteps the Agent Communication
Trilemma by using a mix of natural language and structured protocols. We showed that Agora
agents can negotiate, implement and use protocols, creating self-organising networks that solve
complex tasks. Additionally, we demonstrated the scalability of Agora by testing a 100-agent demo
and achieving a five-fold reduction in costs compared to natural language-only communication. Our
results showcase the power of negotiation as a basis for efficient, scalable, and decentralised agent
networks. As LLMs continue to improve and as interactions between them increase, LLM-powered
agent networks have the potential to surpass the scale limitations of single LLMs. Developing
frameworks and protocols that enable decentralised, flexible and efficient communication, either
through Agora or other technologies, can lay the foundations for a future where complex activities
are partially, if not fully, automated by LLMs.
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A AGORA: USE CASES

S1. Agora as a personal assistant.

A user is organising a trip to Paris: they want to book a flight, rent a car, and book a hotel
room.

The LLM reads the prompt, identifies the actions it has to undertake and checks if
there are LLMs available in Agora who can fulfil it. For each service, an LLM is
ready to reply.

1. A user sends a message to its personal
assistant.

2. The personal assistant dispatches it
to Agora.

The LLM that acts as personal assistant in the network dispatches the flight, hotel and
car requests to the respective LLMs in the network. The messages are dispatched in
natural language as there are no pre-existing routines to handle them.

1. The LLM personal assistant dis-
patches the respective messages to the
right node.

2. The car, hotel, and flight LLMs pro-
cess the requests and turn them into
queries for their booking systems.

3. Each LLM replies with their avail-
ability and options.

For the next iterations, the LLMs involved in the request propose a routine to standard-
ise the requests to avoid natural language and process the request without invoking the
LLMs.

The user receives all the data and decides whether to book or not.
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S2. Security and scalability.

An LLM (Alice) collects some historical data from another LLM (Bob) that has access to a
database whose internal mechanism and implementation are to keep private.

Alice submits a request to collect some
historical records from Bob. The request
is formatted in natural language.

Alice submits another request to Bob.

Bob negotiates a protocol to query its
data and writes a shared document proto-
col in JSON.

Alice now uses the protocol to query data from Bob.

Bob directly turns the JSON they re-
ceives from Alice into a query for its
Database.

In this way: Bob does not invoke the
LLM and the database internals are
not exposed.
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S3. Compositional tasks.

An LLM (Alice) wants to (1) analyse some market data and then (2) compute some metrics.
Two LLMs in the network can do that.

1. Alice retrieves the protocol documents
from a database.

2. Alice finds out that there are two
protocol documents that can be used to
achieve its goal.

1. Alice submits a request to the first
agent to retrieve the data using the first
protocol document.

2. Alice receives the data as expected.

1. Alice submits a request to the second
LLM to compute some metrics on the
data using the second protocol document.

2. Alice receives the metrics as expected.
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S4. Scalable consensus in large networks.

An LLM (Alice) wants to collect and aggregate data points from N ≫ 1 resources. There
is no protocol to handle that, and each resource has its own implementation, possibly not
public.

1. Alice submits the requests in natural
language.

2. Each queried LLM processes the re-
quest, turns it into a routine to retrieve
the data and sends it back to Alice.

Alice wants to retrieve more data and queries the network another time.

1. One or more receivers suggest using a
protocol document for the next iterations.

2. Alice agrees and uses the protocols
with as many resources as possible.

The successive communications will increasingly use protocol documents, thus not
necessitating the receiver to process the query with the LLM.
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S5. Scaling complex NLP routines.

An LLM (Alice) wants to retrieve data from a system powered by an LLM (Bob) that, in
turns, obtains its data from a search engine (i.e., the LLM is combined with a RAG). Bob has
to (1) turn the natural language request into a query, (2) retrieve the data from the RAG, and
(3) return a summary.

Alice queries Bob to retrieve some data. There is no routine to handle any of the three
phases, so Bob has to invoke the LLM twice to turn the query into a format to invoke
the RAG and then perform the summarisation.

Alice queries Bob again; this time, Bob asks to use a routine to query directly the
RAG.

Any query that complies with the document protocol now skips the first phase and
directly invokes the RAG.
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B AGORA SPECIFICATION

In this section, we provide a more formal description of Agora.

B.1 TRANSACTIONS

An Agora transaction operates as follows. Suppose that an agent, Alice, is trying to communicate
with another agent Bob:

• Alice sends to Bob over HTTPS a JSON document containing three fields:
– protocolHash: The hash of the protocol document. If natural language is used,

then the value of protocolHash is null;
– protocolSources: A list of URIs where the protocol document can be found.

Must be empty if protocolHash is null and non-empty otherwise;
– body: A string containing the body of the request as specified by the given protocol.

• If Bob does not have the protocol document, he fetches it (either from the sources provided
by Alice or from another repository);

• If Bob is unable to use the protocol, he returns a JSON document with one field, namely
status, which is equal to “rejected”;

• Otherwise, Bob computes the response using the LLM, routines, or a combination of both;
• Bob sends as response a JSON document with the following fields:

– status: a string indicating the status of the response (can be “success” or “failure”);
– body: the response returned by the agent.

• Note that "status":"failure" must be used only for errors that are not covered by
the protocol document (e.g., the agent failing to instantiate the LLM); when the protocol
prescribes how to handle an error, the agent should return "status":"success" and
the correct error message as body.

B.2 PROTOCOL DOCUMENTS

A protocol document is identified by its SHA1 hash. Protocol documents can refer to other protocol
documents by adding a preamble containing the protocol hash and at least one source for the protocol
document. Further discussions concerning the optimal way to reference other protocol documents
is left to future work.

B.3 PREFERRED PROTOCOLS

In order to signal to other agents which protocols are supported by default, an agent can expose
an endpoint /.wellknown. This endpoint returns a JSON object where each key is a supported
protocol hash and each value is a non-empty list of protocol sources.
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C EXAMPLE OF NEGOTIATION PROCESS BETWEEN TWO AGENTS

We report the negotiation process between Alice and Bob for a protocol to transmit weather forecast.
Note that while the LLMs used Markdown-style formatting, for the sake of readability we replaced
Markdown syntax with the corresponding typeset style.

Alice

Hello. I’m here to negotiate a protocol to query a weather forecast service. The service
should accept a date and a location as input and return the predicted weather condition,
temperature, and precipitation for that day.
Before we start, I’d like to clarify the rules for our negotiation. We should focus on designing
a simple and unambiguous protocol that specifies the exact format of the messages sent and
received. We shouldn’t worry about how the messages will be delivered, and we should
assume that the implementation will receive a string and return a string.
To begin, I propose that we use a JSON-based protocol. The input message could be a JSON
object with two properties: “date” and “location”. The output message could be a JSON
object with three properties: “temperature”, “precipitation”, and “weatherCondition”.
What are your thoughts on this proposal?
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Bob

Your proposal aligns well with the goal of keeping the protocol simple and unambiguous.
Using a JSON-based protocol for both the input and output messages is a good approach.
Here’s a more detailed specification for the protocol:
Input Message The input message will be a JSON object with the following structure:

{
"date": "YYYY-MM-DD",
"location": "string"

}

• date: A string representing the date for which the weather forecast is requested,
in the format YYYY-MM-DD.

• location: A string representing the location for which the weather forecast is
requested.

Output Message The output message will be a JSON object with the following structure:
{

"temperature": number,
"precipitation": number,
"weatherCondition": "string"

}

• temperature: A number representing the predicted temperature for that day in
°C.

• precipitation: A number representing the predicted precipitation for that day
in mm.

• weatherCondition A string representing the predicted weather condition for
that day. Possible values are “sunny”, “cloudy”, “rainy”, “snowy”.

Example
Input:
{

"date": "2023-10-01",
"location": "New York"

}

Output:
{

"temperature": 22.5,
"precipitation": 5.0,
"weatherCondition": "cloudy"

}

If you agree with this structure, we can finalize the protocol.

Alice

LLM response: I agree with the proposed protocol structure. It aligns well with the require-
ments and is simple and unambiguous.
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Finalised Protocol

Name: Weather Forecast Query Protocol
Description: A protocol for querying the weather forecast for a given date and location.
Input Message The input message will be a JSON object with the following structure:
{

"date": "YYYY-MM-DD",
"location": "string"

}

• date: A string representing the date for which the weather forecast is requested,
in the format YYYY-MM-DD.

• location: A string representing the location for which the weather forecast is
requested.

Output Message The output message will be a JSON object with the following structure:
{

"temperature": number,
"precipitation": number,
"weatherCondition": "string"

}

• temperature: A number representing the predicted temperature for that day in
°C.

• precipitation: A number representing the predicted precipitation for that day
in mm.

• weatherCondition A string representing the predicted weather condition for
that day. Possible values are ”sunny”, ”cloudy”, ”rainy”, ”snowy”.

Example
Input:
{

"date": "2023-10-01",
"location": "New York"

}

Output:
{

"temperature": 22.5,
"precipitation": 5.0,
"weatherCondition": "cloudy"

}
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D 100 AGENT DEMO - FULL DESCRIPTION

D.1 IMPLEMENTATION NOTES

We implemented our demo in Python, using Flask servers as basis for our agents. Each agent is
either a user or a server:

• Users receive a random task, some randomly generated data and a description of the task
data (including its schema). Their objective is to execute the requested action and return a
reply according to a certain schema. This allows us to generate a large number of queries
without needing to handcraft them. Note that all tasks are single-round, i.e. they can be
fulfilled in one round of communication;

• Servers receive queries from other users and reply to them using a combination of three
types of tools:

– Database tools, which involve connecting to a personal SQL or MongoDB database
(assigned at random). Depending on the server, some databases are initialised with
dummy data;

– Mock tools, which are simplifications of actual tools (e.g., for taxi service agents, the
assignTaxi tool is a mock tool that, instead of actually sending a taxi to a location,
mimics the request flow);

– External tools, which are tools that enable the agent to start a Agora communica-
tion with a predefined server, although no information about the respective agents’
schema is provided. In other words, the skiLodge agent can open a channel with
the weatherService agent

Moreover, we added three protocol databases, which are simple Flask servers that host protocol
documents. The first protocol database is a peer with the second one, the latter of which is also a
peer with the third protocol database (but the first protocol database is not a peer of the third one).
Every 10 executed queries, one protocol databases shares its protocol documents with its peers. This
simulates the propagation of protocol documents between different databases.

Picking a Protocol Users track the number of communications with a given server about a certain
type of task until it hits one of two thresholds: one for using a protocol instead of natural language
and one for negotiating a protocol ex novo.

When the first threshold is hit, the user invokes the LLM to check if either the server or the reference
protocol database (which is randomly assigned to the user at the start of the demo) already have
a suitable protocol. If there are none, the user continues using natural language until the second
threshold is hit: in that case, the user begins a negotiation with the server and submits the final
protocol to the reference protocol database.

Similarly, each server has a counter that tracks the number of natural language communications
with any user since the last negotiation. Once the counter hits a threshold, the server requests a
negotiation with the user, regardless of how many of the tracked queries were sent by the current
user. After negotiation, the counter is reset.

In our demo, we set the thresholds for the user to respectively 3 and 5 communications, and the
threshold for the server to 10.

APIs For GPT-4o and Gemini 1.5 Pro, we used respectively the OpenAI and Google API. For
Llama 3 405b, we used the SambaNova API. Prices per million tokens are reported in Table 1.

Bootstrapping Quality-of-Life Extensions For the sake of bootstrapping the network, while im-
plementing the demo we added two features to our nodes:

• Providing each node with a simple protocol for multi-round communication in natural lan-
guage;

• Allowing the protocol document to include machine-readable metadata, such as the name
or a short description of the protocol. This helps an agent to determine quickly which
protocols, among a list of potential protocols, can be suitable for a certain task.
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Table 1: Prices per million tokens at the time of writing.

MODEL PRICE (USD / 1M TOKENS)
Prompt Completion

GPT-4o 5.00 15.00
Llama 3 405b 5.00 10.00
Gemini 1.5 Pro 3.50 10.50

We leave whether these features should be integrated with the Agora standard, or whether they
should be handled using PDs only, to future work.

D.2 EXPERIMENTAL SETUP

Preliminary Tests We first ran a series of qualitative tests to determine which among the consid-
ered LLMs (OpenAI GPT 4o, Llama 3 405b, Gemini 1.5 Pro) were the most suitable for negotiation
and programming. We found that while all three LLMs were capable of negotiating and implement-
ing protocols, GPT 4o was the most robust, followed by the Llama 3 405b and finally Gemini 1.5
Pro. Surprisingly, the main factor behind the brittleness of Gemini 1.5 Pro was not the model’s
inherent performance, but rather the lack of robustness of the API itself: even with tailored retry
systems, the API sometimes failed to respond in a nondeterministic manner (i.e. the same query
would at times succeed and at times fail). We believe that our experience was due to temporary
server issues, rather than fundamental problems with the model.

LLM Distribution In light of our preliminary results, we manually assigned a model to each
server node, following a power law consistent with our findings (9 nodes with GPT-4o, 4 nodes with
Llama 3 405b, 2 nodes with Gemini 1.5 Pro). User agents were instead randomly assigned one of
the three LLMs with uniform distribution. Overall, the breakdown of nodes by model is:

• GPT-4o: 38 nodes (9 server nodes, 29 user nodes)
• Llama 3 405b: 32 nodes (4 server nodes, 28 user nodes)
• Gemini 1.5 Pro: 30 nodes (2 server nodes, 28 user nodes)

Out of 1000 queries, 8 (representing thus 0.8% of the total query volume) failed due to Google’s
Gemini API not responding. This phenomenon was unrelated to the use of Agora, with 500 Internal
Server errors appearing both in the Agora demo and the natural language counterfactual with roughly
the same frequency.

Task Distribution To simulate the heterogeneity in communication frequency (i.e. how some
nodes tend to be more active than others), we assigned to each user a “query budget” (which rep-
resents how many queries are sent by a given user) following a Pareto distribution with shape pa-
rameter equal to 0.5, adapted so that each user has at least 1 query. The query budget is then split
between three randomly chosen types of queries using a Pareto law with a shape parameter of 1
and a minimum of 1 query per type (unless the budget is less than 3 queries). See Figure 6 for a
visualisation of the distribution.

D.3 ADDITIONAL OBSERVATIONS

Cost Breakdown The breakdown of cost by activity is as follows:

• Natural language communication: 54%;
• Negotiation: 6%;
• Checking the suitability of existing protocols 22%;
• Implementing the protocols: 17%;

Note that negotiation, despite being the most expensive activity (since it involves several rounds of
communication), actually represented the smallest contribution to the total cost, with cheaper but
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Figure 6: Distribution of query budgets for users. The y axis is logarithmic.

more frequent operations (i.e. sending natural language messages and checking the suitability of
protocols) making up the largest portion.

Similar Protocols Due to the (intentional) partial insulation of nodes in the network, sometimes
similar protocols emerged independently. Nevertheless, agents using different default protocols were
still able to communicate by picking one of the available protocols; for the sake of simplicity, the
preferred protocol is chosen by the sender.
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