
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A SCALABLE COMMUNICATION PROTOCOL FOR
NETWORKS OF LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Communication is a prerequisite for collaboration. When scaling networks of AI-
powered agents, communication must be versatile, efficient, and portable. These
requisites, which we refer to as the Agent Communication Trilemma, are hard
to achieve in large networks of agents. We introduce Agora, a meta protocol
that leverages existing communication standards to make LLM-powered agents
solve complex problems efficiently. In Agora, agents typically use standardised
routines for frequent communications, natural language for rare communications,
and LLM-written routines for everything in between. Agora sidesteps the Agent
Communication Trilemma and robustly handles changes in interfaces and mem-
bers, allowing unprecedented scalability with full decentralisation and minimal
involvement of human beings. On large Agora networks, we observe the emer-
gence of self-organising, fully automated protocols that achieve complex goals
without human intervention.

1 INTRODUCTION

Human language evolved primarily for communication purposes (Fedorenko et al., 2024). Despite
its inherent ambiguity, natural language provides great versatility and allows humans and machines
to collaborate and achieve complex goals that they otherwise could not (Russell & Norvig, 2016).

Decades of literature in computer science explored how to foster collaboration between agents mod-
elled as programs (Wooldridge & Jennings, 1995; Gilbert, 2019). Several research papers design
networks of agents to solve complex problems by leveraging each model’s specialisation, the so-
called rule-based agents paradigm (Wooldridge, 2009). Despite its influence, such a paradigm faces
two major limitations: agents hardly adapt to environmental changes and require structured data that
limits their versatility (Gilbert & Terna, 2000).

With the advent of Large Language Models (LLM) (Vaswani et al., 2017; Brown et al., 2020), there
has been a resurgent interest in networks of collaborative agents. LLMs can solve a variety of
problems (Achiam et al., 2023; Dubey et al., 2024a) expressed in natural language as they excel at
following instructions (Schulman et al., 2017; Rafailov et al., 2024). LLMs also showed remarkable
improvements at handling structured data such as graphs and formatted languages (Kassner et al.,
2020; Collins et al., 2022; Jin et al., 2023; Lin et al., 2024).

In terms of performance (e.g., accuracy on classification), the literature suggests that specialised
LLMs outperform general purpose models (Hu et al., 2021; Zhang et al., 2024), as well as mitigating
the difficulties of handling gargantuan models and the drawbacks of data and model centralisation
(Song et al., 2023).

Thus, we hypothesise that:

Hypothesis

A network of heterogeneous LLMs can automate various complex tasks with nearly no hu-
man supervision via specialised and efficient protocols.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

However, networks of LLM-powered agents face three key challenges that make communication
at scale significantly more difficult:

• LLMs are heterogeneous: different LLMs have different architectures, makers, capabilities
and usage policies.1

• LLMs are (mostly) general-purpose tools: enumerating and standardising each task they
can perform is infeasible.

• LLMs are expensive: the computational footprint and inference time of “small” LLMs
dwarfs that of comparable, specialised APIs.

Scalable communication between heterogeneous LLMs must be versatile, i.e., capable of handling
a variety of use cases, efficient, i.e., requiring the least computational effort, and portable, i.e.,
supporting the protocol should require the least human effort possible. The above-mentioned issues
constitute the Agent Communication Trilemma, which we expand in Section 3.

In light of this, the aim of this paper is the following:

Key Contribution

We design and implement a communication protocol between heterogeneous LLM-powered
agents and assess its feasibility and scalability for solving high-order tasks.

We sidestep the Trilemma with Agora, a meta protocol that relies on the dual use of structured data
for frequent communications and natural language for infrequent ones. With Agora, we instantiate
large networks of LLM-powered agents that solve complex tasks autonomously by leveraging effi-
cient communications schemas. In such networks, we observe agents develop an emergent fully
automated protocol to solve a complex task starting from an instruction expressed in natural
language. We believe that this observation can serve as a basis to renew interest in emergent proto-
cols/languages in large networks of LLMs (Lazaridou et al., 2018; Chaabouni et al., 2019; Lazaridou
& Baroni, 2020; Chaabouni et al., 2022).

The paper is structured as follows. We first outline the key challenges that constitute the Agent
Communication Trilemma (Section 3); we then detail how Agora addresses the Trilemma and serves
as a communication protocol for networks of LLMs (Section 4). Finally, in Section 5, we provide
two fully functional demos2: the former, with two agents, to clarify Agora’s operating principles; the
latter, with 100, to prove Agora’s scalability and show the emergence of self-organising behaviours.

2 RELATED WORK

Multi-agent LLMs and communication. At the time of writing, Multi-Agent-Systems of Large
Language Models (MAS-LLM) have become an active area of research (Guo et al., 2024) after the
upsurge of LLMs as general purpose problem solvers (Brown et al., 2020; Achiam et al., 2023;
Dubey et al., 2024b). Many fields have adapted techniques from the MAS-LLM paradigm to solve
problems single models fail at, including reasoning and math (Li et al., 2024), Theory of Mind (Cross
et al., 2024; Li et al., 2023b), planning (Singh et al., 2024), alignment to human values (Pang et al.,
2024), and simulation of games, economics, and political scenarios (Bakhtin et al., 2022; Hua
et al., 2023; Wu et al., 2024a). The common intuition of these works is that by breaking a task into
sub-components (Hong et al., 2023) and allocating a large number of specialised models (Li et al.,
2024) to each of them (Li et al., 2023a), one can achieve higher performance and observe emergent
behaviours that otherwise would not occur.

On the other hand, a key requisite for solving complex tasks in large networks of MAS-LLMs
is effective and efficient communication. In large networks, LLMs must agree on the actions to
take (Chen et al., 2023): works such as Agashe et al. (2023) and Liang et al. (2023) studied how
LLMs debate to foster collaboration on high-order tasks (Du et al., 2023). Another recent line of

1Heterogeneity is not unique to agents of LLMs, yet, compared to classic MAS agents, LLMs come with
deeper representations of the surrounding environment and are thus more challenging to standardise.

2Our code is available anonymously at anonymous.4open.science/r/agora-protocol-demo.

2

https://anonymous.4open.science/r/agora-protocol-demo


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

research explores the topology of the MAS-LLM network as a facilitator to reach consensus (Chen
et al., 2024).

LLMs for simulations and emergence of protocols. A few seminal works studied how emergent
communication and protocols arise between neural networks that manipulate symbols (Havrylov
& Titov, 2017; Lazaridou et al., 2018; Lazaridou & Baroni, 2020). Written before the rise of
LLMs, these works inspired researchers to explore how spontaneous collaboration emerges in MAS-
LLMs (Wu et al., 2024b), with application to simulation of societies (Gao et al., 2024). Of partic-
ular interest for this paper are the works by Chaabouni et al. (2019) and Chaabouni et al. (2022).
Chaabouni et al. (2019) describes how emergent communication systems between neural networks
privilege longer messages. Chaabouni et al. (2022) posits the existence of “scaling laws” (Kaplan
et al., 2020) for large networks of MAS-LLMs in which the dataset, task complexity, and population
size are the key to observe emergent behaviours.

3 THE AGENT COMMUNICATION TRILEMMA

Figure 1: The Trilemma and how our
solution (Agora) balances efficiency,
portability and versatility.

An agent is a computer system that, in an envi-
ronment, is capable of autonomous actions (the so-
called ‘agency’ (Horty, 2001)) to meet its design objec-
tive (Wooldridge & Jennings, 1995; Wooldridge, 2009,
p. 15). Just as humans must negotiate and cooperate to
achieve shared goals, so too must agents within multi-
agent systems (Wooldridge, 2009, p. 24-25). However,
when designing communication protocols for heteroge-
neous networks (i.e., networks where agents have differ-
ent architectures, capabilities and design constraints), we
run into difficulties when attempting to optimise for three
properties at the same time:

• Versatility: communication between agents should support a wide variety of messages,
both in terms of content and format;

• Efficiency: the computational cost of running an agent and networking cost of communi-
cation should be minimal;

• Portability: supporting the communication protocol should require the least implementa-
tion effort by the largest number of agents involved.

We name the trade-off between such properties the Agent Communication Trilemma, which is
illustrated in Figure 1. In the next sections, we will discuss how an LLM-powered communication
protocol can trade off versatility, efficiency, and portability.

3.1 VERSATILE VS. PORTABLE COMMUNICATION

In networks of agents, versatility and portability are at tension for two fundamental reasons (Olivé,
2007). A prerequisite for two agents who communicate is (1) a shared conceptual understanding of
the topic on which they communicate. For instance, two agents can communicate about the weather
if they both ‘know’ what it means to be sunny, rainy and overcast. For example, they should share
a similar notion of describing and measuring temperature (e.g., in degrees Celsius). In addition,
(2) agents must encode and decode messages in a way that is intelligible for both. Continuing
the weather example, if two agents exchange data using JSON objects, both the sender and the
receiver must know the syntax (e.g., the keys of a JSON object, such as temperature) and the
semantics (e.g. temperature is a 32-bit floating point value representing the temperature, in
central London, as measured in degrees Celsius) of the exchanged messages.

In complex scenarios, defining routines whose syntax and semantics satisfy requisites (1) and (2)
may be difficult. For example, a programmer has to manually implement a method to decode (or
decode) messages to (or from) other agents. Additionally, the programmer must explicitly instruct
the agent about how to manipulate and reason about the message content, often by interpreting API

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

documentation describing the semantics of the message. Therefore, there is a trade-off between the
breadth of messages (versatility) and the implementation cost (portability).

An example of high-portability, low-versatility is the Open Banking Platform (OBP), which uses a
well-defined Open API schema for data transfer (OBL, 2024). OBP is highly portable because it
uses a fixed range of well-known concepts which developers can implement; however, it is restricted
to discussing a narrow domain of banking data and is thus not versatile. On the other end of the
spectrum, rules-based Semantic Web agents (Berners-Lee et al., 2001) that exchange RDF (Beckett
et al., 2014) encoded documents are highly versatile since ontologies (Wooldridge, 2009, p. 180)
enable the description of structured relations between essentially any concept. Still, they require
developers to program agents to implement the specific ontologies used by the network (e.g., if a set
of RDF triples states that the temperature is 38°C, an agent must be able to interpret the concepts of
“temperature” and “Celsius”).

3.2 EFFICIENT VS. VERSATILE AND PORTABLE COMMUNICATION

As previously mentioned, rule-based agents excel at the tasks they are designed to solve but hardly
adapt to new environments. Decades of research in reinforcement learning (Sutton, 2018) and then
in deep reinforcement learning (Arulkumaran et al., 2017; Henderson et al., 2018), introduced a
paradigm where agents learn to optimise their reward as proxy of the task we want them to solve.
Agentic-LLMs, i.e., multi-agent systems powered by language models, is a recent paradigm for
machine-to-machine communication that relies mostly on their proficiency at handling natural lan-
guage and following instructions (Li et al., 2023a).

Natural language is highly expressive, making it a suitable choice for versatile communication (Rus-
sell & Norvig, 2016). Additionally, LLMs trained on massive corpora seem to develop an implicit
understanding of various concepts that abstracts and makes communication independent from
their internal architecture. Moreover, LLMs can integrate external tools, write code and invoke
APIs with relatively little or no training (Schick et al., 2024), since the only requirement is a natural-
language description of the tool and its parameters.

Conversely, natural language as a communication medium has two major drawbacks. While en-
gineering and hardware improvements (Dubey et al., 2024b) mitigate costs over time, the compu-
tational requirements of invoking an LLM dwarf those of comparable APIs, representing a major
bottleneck for scaling networks of LLMs. On the other hand, using closed-source pay-per-usage
LLMs hosted by third parties is expensive and raises concerns in terms of replicability of the re-
sults (La Malfa et al., 2023). Additionally, natural language is inherently ambiguous: while LLMs
have a certain degree of “common sense” to fulfil requests, non-determinism and natural language
specifics leave space for errors that routines minimise (for instance, if someone asks for the temper-
ature in Fahrenheit and the agent has a tool that returns the temperature in Celsius, the model must
know that Celsius and Fahrenheit are both units of measure for temperature). These factors make
LLMs and natural language more prone to errors than other alternatives like handwritten APIs.

In conclusion, RESTful APIs (efficient), RDF tuples (portable) and natural language (versatile)
are all trade-offs in the Trilemma. While some approaches are more useful in practice than others,
the fact that no communication format achieves all three properties simultaneously suggests that we
need a hybrid communication protocol that leverages all of them. The next section outlines our
solution.

4 AGORA: A COMMUNICATION PROTOCOL LAYER FOR LLMS

The key to solving the Communication Trilemma involves accepting that no single protocol can
achieve optimal efficiency, portability and versatility at the same time. In this section we introduce
Agora, a meta protocol that takes advantage of the unique capabilities of LLMs to sidestep the
Trilemma by adapting different communications methods for different scenarios.

The most powerful LLMs share three key properties:

• They can understand, manipulate, and reply to other agents using natural language;

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(a) An illustration of Agora and how it abstracts
the underlying implementation, communication, and
physical layers.

(b) Stack of technologies to build
Agora.

Figure 2: How Agora fits into a standard communication protocol stack.

• They excel at following instructions, including writing code to implement routines (Schick
et al., 2024; Hou et al., 2023; Liu et al., 2024);

• They can autonomously negotiate protocols and reach consensus on strategies and be-
haviours to adopt in complex scenarios (Chen et al., 2023; Fu et al., 2023).

At its core, Agora uses different communication formats depending on the circumstances; an agent
can support a wide breadth of communications (high versatility) while handling the majority of the
total volume of requests with efficient routines (high efficiency). Moreover, the entire negotiation
and implementation workflow is handled by the LLMs and requires no human supervision (high
portability). The concept of protocol documents (PD), which we sketch in Figure 3 and discuss in
the next section, lies at the core of Agora’s functionalities.

In the next sections, we illustrate the hierarchy of communication methods Agora supports natively
and the concept of PD; we then provide an example of how Agora works and how it enables versatile,
efficient, and portable communication. We conclude by emphasising how one can integrate and build
upon Agora with further technological layers independently from its underlying technologies.

4.1 COMMUNICATION IN (AN) AGORA

Agora introduces a machine-readable way to transfer and refer to protocols, namely the protocol
documents (PDs). A PD is a plain-text description of a communication protocol.3 PDs are self-
contained, implementation-agnostic, and contain everything an agent needs to support a protocol:
this means that most descriptions of existing protocols, such as RFCs, are also suitable PDs. How-
ever, instead of relying on a central body to assign identifiers, a PD is uniquely identified by its hash
(for multiplexing).

In Agora, the most frequent communications have dedicated efficient routines, and the least frequent
ones use inefficient but flexible LLMs and natural language. In particular:

• When possible, frequent communications are handled through traditional protocols, for
which there are standard, human-written implementations (e.g., OBP);

• For communications that happen less frequently (or for which there are no standard pro-
tocols), agents can use structured data as an exchange medium (which can be handled by
LLM-written routines);

• For communications that might be frequent for one side but not the other, the agents still
use structured data, but one side can choose to use an LLM, while the other uses a routine;

3Throughout this paper, we use the word “protocol” to refer to any standardised description of structured
communication.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 3: How a protocol document is negotiated between LLM-powered agents (left) and used for
future efficient communications.

• For rare communications or when a routine fails unexpectedly, the agents can resort to
natural language.

It is entirely up to the agent to handle a query using a human-written routine, an LLM-written
routine, or an LLM (or a combination of these three). This gives the agent maximum flexibility
over how to process queries.4 In the Demo (Section 5.3), we will illustrate the trade-off between the
versatility of a communication protocol and its expected usage.

Hierarchical communications support any form of communication (maximum versatility) , al-
though in practice an LLM is invoked in very rare cases (maximum efficiency). Moreover, since
LLMs can implement routines on their own (since PDs fully describe the syntax and semantics of a
protocol), human programmers only need to provide an overview of the tools the agent has access
to, which means that the implementation effort required on the human side is minimal (maximum
portability). In other words, Agora sidesteps the Communication Trilemma by employing rou-
tines for frequent requests and resorting to natural language when agents need to negotiate efficient
ways to solve a problem or errors occur.

4.2 AN EXAMPLE OF COMMUNICATION OVER AGORA

We now describe how two agents, Alice and Bob, can efficiently communicate over Agora using a
PD routine, as illustrated in Figure 3. Alice initially sends a query with the hash of its corresponding
PD. Bob uses the hash to determine if he has a corresponding routine. If so, he calls it and handles
the communication without invoking the LLM. Otherwise, Bob handles the response with the LLM
itself.

If Bob uses an LLM to reply several times to queries that follow a given protocol over time, to the
point where using an LLM every time becomes expensive, he can use the LLM to write a routine
that handles future communications.

If the routine fails or the communication is a one-off instance that does not require a protocol, Alice
and Bob use natural language, which is again handled by the LLM. Natural language is also available
to bootstrap communication between nodes that have never interacted before, as well as to negotiate
new protocols. That said, the lower cost of routines and the lack of ambiguity are strong incentives
for agents to prefer structured data.

Note that PDs can be shared with other nodes in the network, which means that two agents that have
never interacted before can use protocols developed by other agents.

In the Appendix A, we provide details of five use cases of Agora to further show its versatility as
a personal assistant and data analysis tool, and how it leverages compositionality and scalability to
reduce costs.

4Forcing or nudging a model to use a specific communication style can improve efficiency, yet its discussion
is out of the scope of this paper. One can, for example, specify in the system prompt of an LLM to negotiate a
protocol whenever possible.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4.3 AGORA AS A LAYER ZERO PROTOCOL

Figure 2 illustrates that Agora is implementation and technology agnostic. The implementation of
the agents themselves (e.g., LLMs), the database used to store data (e.g., VectorDB, SQL, Mon-
goDB, etc.), the language in which implementations are written (Python, Java, etc.) and the nature
of tools are all abstracted.

At the same time, PDs can refer to other protocol documents, and since routines can call other
routines, agents can build upon previous negotiations to solve more complex tasks.

Finally, the versatility and portability of Agora make it straightforward to handle the addition or
removal of a node, a change in the capabilities of a node, or a change in the goals of the network, as
illustrated in the demo, Section 5.3.

All these factors contribute to making Agora a natural Layer Zero protocol, i.e. a foundation layer,
for higher-order communication and collaboration between LLMs. We hope our protocol can fuel
theoretical and applied research on complex protocols, negotiation schemes, and consensus algo-
rithms in large networks of LLMs.

5 AGORA IN PRACTICE

We implement and showcase two scenarios where Agora can be applied. The former, with two
agents whose objective is to exchange some data; the latter, with 100, to test Agora scalability
and the capacity of LLM-powered agents to autonomously coordinate in complex scenarios. For
space reasons, the scenarios are further expanded in Appendices C and D; here, we instead focus on
their functionalities and the key observations we drew in terms of efficiency/versatility/portability,
reduction of costs, scalability and emergent behaviours of fully automated networks of LLMs.

5.1 IMPLEMENTATION DETAILS

The design of Agora for our working demos follows three key principles:

• Minimality. Agora enforces the basic standards that allow for efficient negotiation and use
of protocols, leaving everything else to PDs or other higher-order standards;

• Decentralisation. Agora does not rely on central authorities, with any collection of nodes
being able to use Agora independently;

• Full backward compatibility. Agora supports existing communication protocols and
schemas such as OpenAPI and JSON-Schema.

From a practical point of view, Agora uses HTTPS as base communication layer and JSON as
format to exchange metadata. When sending a message in a given protocol, an agent sends a JSON
document with three keys: the protocol hash, the body of the request formatted according to the
protocol, and a non-empty list of sources from which the protocol can be downloaded. The receiver
downloads the PD from its preferred source and, upon checking that the hash matches, stores it
for future uses. This hash-based identification system ensures that any node can reference any PD
without relying on a central authority to assign identifiers. Where PDs are stored is entirely up to the
agents; aside from regular cloud storage, hash-based indexing makes decentralised storage options
(such as IPFS Benet (2014)) viable. Additionally, since essentially all protocols can be stored as
PDs, Agora has full backwards compatibility with existing protocols (although human programmers
are encouraged to provide existing, standardised implementations instead of having the LLM re-
implement them from scratch).

To simplify negotiation, an agent can expose an endpoint with a list of supported protocols: a poten-
tial sender can thus compare the list with its own to automatically determine if there is a common
protocol. The sender can also use a potentially unsupported protocol, although the receiver can
choose to reject it by returning a predefined error message.

Refer to Appendix B for a more formal description of Agora.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5.2 DEMO: RETRIEVING WEATHER DATA

Consider two agents, Alice and Bob. Alice is a Llama-3-405B (Dubey et al., 2024b) powered agent
managing the bookings of a guided tour service in London.5 Bob is a GPT-4o (Achiam et al., 2023)
agent for weather service that provides weather forecasts for a given date and location. As part of
the user interaction loop, Alice notifies the user if heavy raining is expected on a booked date.

To check the weather, she initially uses her LLM to send a natural language query to Bob (phase
A1):

Alice - Natural Language

What is the weather forecast for London, UK on 2024-09-27?

Bob uses his Toolformer LLM (Schick et al., 2024) to query his database (phase B1) and returns a
natural language reply (phase B2):

Bob - Natural Language

The weather forecast for London, UK, on 2024-09-27 is as follows:
“Rainy, 11 degrees Celsius, with a precipitation of 12 mm.”

Over time, the cost of invoking an LLM for phases A1 and B2 dominate all the other costs; Al-
ice and Bob thus decide to develop a protocol. Alice checks if Bob already supports a suitable
protocol but finds none. Therefore, she decides to negotiate a protocol with Bob. After a few
rounds of negotiation, Alice and Bob agree on the following protocol: Alice sends a JSON docu-
ment with two fields, location and date, and Bob replies with a JSON document containing
three fields, namely temperature (in degrees Celsius), precipitation (in millimetres), and
weatherCondition (one of “sunny”, “cloudy”, “rainy” and “snowy”). From there on, Alice
specifies the protocol hash when performing a query. An example of exchanged message (excluding
Agora’s metadata) is:

Alice - PD

{"location": "London, UK", "date": "2024-09-27"}

Both Alice and Bob independently decide to write a routine to handle their side of the communica-
tion. From now on, Alice and Bob do not need to use the LLM to transmit traffic data: a routine
now automates phases A1, B1 and B2 and leverages the costs of invoking the respective LLMs.

A cost analysis. In our demo, negotiating the protocol and implementing the routines cost 0.043
USD in API calls, compared to an average cost of 0.020 USD for a natural-language exchange. This
means that, as long as Alice and Bob use the agreed-upon protocol more than twice, Agora reduces
the overall cost. Please refer to Appendix C for a transcription of the negotiation process and the
final protocol.

As a final note, we stress that the entire communication happened without human intervention.
Additionally, should Bob become unavailable, Alice can simply reuse the PD with a new node that
may use a different LLM/database/technology stack.

5.3 DEMO: A NETWORK OF 100 AGENTS

We now show the scaling capabilities and emergent behaviours of Agora by considering a net-
work of 100 LLM-powered agents. In particular, we scale the number of agents, which, as posited

5While Llama-3 models can be hosted locally, for the sake of a proper comparison with GPT-4o and Gemini,
we use a cloud provider, namely SambaNova (https://sambanova.ai).

8

https://sambanova.ai


432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 4: Illustration of how in an Agora network with 100 agents (left; for clarity, only the relevant
sub-network is displayed), an emergent protocol for food delivery emerges (right).

in Chaabouni et al. (2022), is a requisite for the emergence of complex behaviours in multi-agent
networks.

We design a network of 85 assistant agents interacting with 15 server agents, all powered by LLMs.
The server agents offer various services, such as booking hotel rooms, calling taxis, ordering food,
etc. An example of a sub-network for food delivery is sketched in Figure 4, left. Their specialisation
is handled via prompting, as in Deshpande et al. (2023); Joshi et al. (2023); Li et al. (2023a). As part
of their workflow, server agents must interact with several tools and databases; additionally, some
servers need to interact with other servers to complete assistants’ requests (e.g., taxi services use the
traffic data agent to adjust estimated fares for a run). We bootstrap the network by leveraging the
underlying communication layer (as described in Section 4 and Figure 2) and inform the nodes of
which URLs correspond to which node, as well as manually creating the connection links between
agents (e.g. the Taxi Service server knows that the server on port 5007 is a traffic server, but it does
not know how to communicate with it and what information it requires);

To showcase the portability of Agora throughout the network, we use different database technologies
(SQL and MongoDB) and different LLMs, both open- and closed-source (GPT-4o, Llama-3-405B,
and Gemini 1.5 Pro (Reid et al., 2024)). We then generate 1000 random queries, which range from
simple ones, such as requesting today’s weather, to more complex ones, like booking rooms in ski
resorts, buying tickets for movies, ordering one of each dish from a menu, and so on. For each query,
assistants receive a JSON document (which represents the task data) and are tasked with fulfilling
the request and returning a parsed response that follows a given schema. Queries are distributed
among assistants following a Pareto distribution, to simulate some assistants sending significantly
more requests than others. Each node can also read and share PDs to one of three protocol databases.
Overall, these design decisions result in a very heterogeneous network, testing the limits of Agora.
Refer to Appendix D for further implementation details.

Emergent protocols in large networks. Once the connections are established and the networks
can send and receive messages, we observe several noteworthy behaviours. As PDs are progressively
shared between agents (see Figure 5b), we observe the emergence of a decentralised consensus on
the appropriate protocols for a given task. An example of this behaviour involves ordering food
from restaurants: an agent queries another to request food to be delivered to a certain address. The
restaurant agent requests a delivery driver from a food delivery service, who, in turn, checks with
the traffic data agent to see if the traffic is smooth enough to fulfil the delivery. None of the agents
know each other’s roles and the protocols involved beyond their immediate communication. Still,
the interaction of the various agents creates an automated workflow that takes care of everything.
The emergence of such a protocol is illustrated in Figure 4 (right). In contrast with some recent
literature on the emergence of complex protocols (Chaabouni et al., 2019), we observe that with
the proper incentives (i.e., efficiency), agents in Agora escape the inefficient trap of committing to
longer messages in large scale communications.

A cost analysis. We compare the cost of running our Agora network against one that uses natural
language for all communications. As shown in Figure 5a, at the beginning Agora’s cost-efficiency

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 200 400 600 800 1000
Queries

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040
C

os
t (

U
SD

)

Natural Language
Agora

(a) Cost comparison of natural language vs Agora on
a network of 100 agents. Costs are averaged with a
window size of 100.

0 200 400 600 800 1000
Queries

20

30

40

50

60

70

80

Q
ue

ri
es

 w
ith

 L
L

M
s (

%
)

0

2

4

6

8

10

12

14

N
um

be
r 

of
 P

ro
to

co
ls

(b) The number of queries to the LLMs in Agora de-
creases over time as the number of established PDs
grows.

Figure 5: Summary of the efficiency of Agora for the demo with 100 agents.

marginally outperforms the network that relies only on natural language; this gap increases over
time, with progressively more Agora-powered nodes relying on LLM-written routines. The overall
cost in API queries for running 1000 queries in the natural language network is 36.23 USD, com-
pared to Agora’s 7.67 USD: in other words, executing this demo with Agora is approximately five
times cheaper than with regular natural language. Continuing the demo for more queries would have
led to an even larger cost difference.

6 CONCLUSIONS

In this paper, we introduced Agora, a meta protocol that sidesteps the Agent Communication
Trilemma by using a mix of natural language and structured protocols. We showed that Agora
agents can negotiate, implement and use protocols, creating self-organising networks that solve
complex tasks. Additionally, we demonstrated the scalability of Agora by testing a 100-agent demo
and achieving a five-fold reduction in costs compared to natural language-only communication. Our
results showcase the power of negotiation as a basis for efficient, scalable, and decentralised agent
networks. As LLMs continue to improve and as interactions between them increase, LLM-powered
agent networks have the potential to surpass the scale limitations of single LLMs. Developing
frameworks and protocols that enable decentralised, flexible and efficient communication, either
through Agora or other technologies, can lay the foundations for a future where complex activities
are partially, if not fully, automated by LLMs.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Saaket Agashe, Yue Fan, and Xin Eric Wang. Evaluating multi-agent coordination abilities in large
language models. arXiv preprint arXiv:2310.03903, 2023.

Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. Deep rein-
forcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6):26–38, 2017.

Anton Bakhtin, Noam Brown, Emily Dinan, Gabriele Farina, Colin Flaherty, Daniel Fried, Andrew
Goff, Jonathan Gray, Meta Fundamental AI Research Diplomacy Team (FAIR)† Hu, Hengyuan,
et al. Human-level play in the game of diplomacy by combining language models with strategic
reasoning. Science, 378(6624):1067–1074, 2022.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

David Beckett, Tim Berners-Lee, Eric Prud’hommeaux, and Gavin Carothers. Rdf 1.1 turtle. World
Wide Web Consortium, 2014.

Juan Benet. Ipfs-content addressed, versioned, p2p file system. arXiv preprint arXiv:1407.3561,
2014.

Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific american, 284(5):
34–43, 2001.

Tom B. Brown, Benjamin Mann, Nick Ryder, et al. Language models are few-shot
learners. In Advances in Neural Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Rahma Chaabouni, Eugene Kharitonov, Emmanuel Dupoux, and Marco Baroni. Anti-efficient en-
coding in emergent communication. Advances in Neural Information Processing Systems, 32,
2019.

Rahma Chaabouni, Florian Strub, Florent Altché, Eugene Tarassov, Corentin Tallec, Elnaz Davoodi,
Kory Wallace Mathewson, Olivier Tieleman, Angeliki Lazaridou, and Bilal Piot. Emergent com-
munication at scale. In International conference on learning representations, 2022.

Huaben Chen, Wenkang Ji, Lufeng Xu, and Shiyu Zhao. Multi-agent consensus seeking via large
language models. arXiv preprint arXiv:2310.20151, 2023.

Yongchao Chen, Jacob Arkin, Yang Zhang, Nicholas Roy, and Chuchu Fan. Scalable multi-robot
collaboration with large language models: Centralized or decentralized systems? In 2024 IEEE
International Conference on Robotics and Automation (ICRA), pp. 4311–4317. IEEE, 2024.

Katherine M Collins, Catherine Wong, Jiahai Feng, Megan Wei, and Joshua B Tenenbaum. Struc-
tured, flexible, and robust: benchmarking and improving large language models towards more
human-like behavior in out-of-distribution reasoning tasks. arXiv preprint arXiv:2205.05718,
2022.

Logan Cross, Violet Xiang, Agam Bhatia, Daniel LK Yamins, and Nick Haber. Hypothetical minds:
Scaffolding theory of mind for multi-agent tasks with large language models. arXiv preprint
arXiv:2407.07086, 2024.

Ameet Deshpande, Vishvak Murahari, Tanmay Rajpurohit, Ashwin Kalyan, and Karthik
Narasimhan. Toxicity in chatgpt: Analyzing persona-assigned language models. arXiv preprint
arXiv:2304.05335, 2023.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improv-
ing factuality and reasoning in language models through multiagent debate. arXiv preprint
arXiv:2305.14325, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, et al. The llama 3 herd of models. 2024a. URL https://api.
semanticscholar.org/CorpusID:271571434.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024b.

Evelina Fedorenko, Steven T. Piantadosi, and Edward A. F. Gibson. Language is primarily a tool
for communication rather than thought. In Nature, pp. volume 630. Springer Nature, 2024.

Yao Fu, Hao Peng, Tushar Khot, and Mirella Lapata. Improving language model negotiation with
self-play and in-context learning from ai feedback. arXiv preprint arXiv:2305.10142, 2023.

11

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://api.semanticscholar.org/CorpusID:271571434
https://api.semanticscholar.org/CorpusID:271571434


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Chen Gao, Fengli Xu, Xu Chen, Xiang Wang, Xiangnan He, and Yong Li. Simulating human society
with large language model agents: City, social media, and economic system. In Companion
Proceedings of the ACM on Web Conference 2024, pp. 1290–1293, 2024.

Nigel Gilbert. Agent-based models. Sage Publications, 2019.

Nigel Gilbert and Pietro Terna. How to build and use agent-based models in social science. Mind &
Society, 1:57–72, 2000.

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V Chawla, Olaf Wiest,
and Xiangliang Zhang. Large language model based multi-agents: A survey of progress and
challenges. arXiv preprint arXiv:2402.01680, 2024.

Serhii Havrylov and Ivan Titov. Emergence of language with multi-agent games: Learning to com-
municate with sequences of symbols. Advances in neural information processing systems, 30,
2017.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang,
Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for multi-
agent collaborative framework. arXiv preprint arXiv:2308.00352, 2023.

John F Horty. Agency and deontic logic. Oxford University Press, 2001.

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo, David Lo, John
Grundy, and Haoyu Wang. Large language models for software engineering: A systematic litera-
ture review. ACM Transactions on Software Engineering and Methodology, 2023.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Wenyue Hua, Lizhou Fan, Lingyao Li, Kai Mei, Jianchao Ji, Yingqiang Ge, Libby Hemphill, and
Yongfeng Zhang. War and peace (waragent): Large language model-based multi-agent simulation
of world wars. arXiv preprint arXiv:2311.17227, 2023.

Bowen Jin, Gang Liu, Chi Han, Meng Jiang, Heng Ji, and Jiawei Han. Large language models on
graphs: A comprehensive survey. arXiv preprint arXiv:2312.02783, 2023.

Nitish Joshi, Javier Rando, Abulhair Saparov, Najoung Kim, and He He. Personas as a way to model
truthfulness in language models. arXiv preprint arXiv:2310.18168, 2023.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Nora Kassner, Benno Krojer, and Hinrich Schütze. Are pretrained language models symbolic rea-
soners over knowledge? arXiv preprint arXiv:2006.10413, 2020.

Emanuele La Malfa, Aleksandar Petrov, Simon Frieder, Christoph Weinhuber, Ryan Burnell, Raza
Nazar, Anthony G Cohn, Nigel Shadbolt, and Michael Wooldridge. Language models as a service:
Overview of a new paradigm and its challenges. arXiv e-prints, pp. arXiv–2309, 2023.

Angeliki Lazaridou and Marco Baroni. Emergent multi-agent communication in the deep learning
era. arXiv preprint arXiv:2006.02419, 2020.

Angeliki Lazaridou, Karl Moritz Hermann, Karl Tuyls, and Stephen Clark. Emergence of lin-
guistic communication from referential games with symbolic and pixel input. arXiv preprint
arXiv:1804.03984, 2018.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel: Com-
municative agents for” mind” exploration of large language model society. Advances in Neural
Information Processing Systems, 36:51991–52008, 2023a.

Huao Li, Yu Quan Chong, Simon Stepputtis, Joseph Campbell, Dana Hughes, Michael Lewis, and
Katia Sycara. Theory of mind for multi-agent collaboration via large language models. arXiv
preprint arXiv:2310.10701, 2023b.

Junyou Li, Qin Zhang, Yangbin Yu, Qiang Fu, and Deheng Ye. More agents is all you need. arXiv
preprint arXiv:2402.05120, 2024.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Zhaopeng
Tu, and Shuming Shi. Encouraging divergent thinking in large language models through multi-
agent debate. arXiv preprint arXiv:2305.19118, 2023.

Fangru Lin, Emanuele La Malfa, Valentin Hofmann, Elle Michelle Yang, Anthony Cohn, and
Janet B Pierrehumbert. Graph-enhanced large language models in asynchronous plan reasoning.
arXiv preprint arXiv:2402.02805, 2024.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by chat-
gpt really correct? rigorous evaluation of large language models for code generation. Advances
in Neural Information Processing Systems, 36, 2024.

OBL. Open banking read write api profile v4.0. 2024. URL https://
openbankinguk.github.io/read-write-api-site3/v4.0/profiles/
read-write-data-api-profile.html.

Antoni Olivé. Conceptual modeling of information systems. Springer Science & Business Media,
2007.

Xianghe Pang, Shuo Tang, Rui Ye, Yuxin Xiong, Bolun Zhang, Yanfeng Wang, and Siheng Chen.
Self-alignment of large language models via multi-agent social simulation. In ICLR 2024 Work-
shop on Large Language Model (LLM) Agents, 2024.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-
baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gem-
ini 1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach. Pearson, 2016.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. Advances in Neural Information Processing Systems, 36, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Ishika Singh, David Traum, and Jesse Thomason. Twostep: Multi-agent task planning using classi-
cal planners and large language models. arXiv preprint arXiv:2403.17246, 2024.

Junghwan Song, Heeyoung Jung, Selin Chun, Hyunwoo Lee, Minhyeok Kang, Minkyung Park,
Eunsang Cho, et al. How to decentralize the internet: A focus on data consolidation and user
privacy. Computer Networks, 234:109911, 2023.

Richard S Sutton. Reinforcement learning: An introduction. A Bradford Book, 2018.

13

https://openbankinguk.github.io/read-write-api-site3/v4.0/profiles/read-write-data-api-profile.html
https://openbankinguk.github.io/read-write-api-site3/v4.0/profiles/read-write-data-api-profile.html
https://openbankinguk.github.io/read-write-api-site3/v4.0/profiles/read-write-data-api-profile.html


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural In-
formation Processing Systems 30: 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Michael Wooldridge. An introduction to multiagent systems. John wiley & sons, 2009.

Michael Wooldridge and Nicholas R Jennings. Intelligent agents: Theory and practice. The knowl-
edge engineering review, 10(2):115–152, 1995.

Shuang Wu, Liwen Zhu, Tao Yang, Shiwei Xu, Qiang Fu, Yang Wei, and Haobo Fu. Enhance
reasoning for large language models in the game werewolf. arXiv preprint arXiv:2402.02330,
2024a.

Zengqing Wu, Shuyuan Zheng, Qianying Liu, Xu Han, Brian Inhyuk Kwon, Makoto Onizuka, Shao-
jie Tang, Run Peng, and Chuan Xiao. Shall we talk: Exploring spontaneous collaborations of
competing llm agents. arXiv preprint arXiv:2402.12327, 2024b.

Biao Zhang, Zhongtao Liu, Colin Cherry, and Orhan Firat. When scaling meets llm finetuning: The
effect of data, model and finetuning method. arXiv preprint arXiv:2402.17193, 2024.

14

https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A AGORA: USE CASES

S1. Agora as a personal assistant.

A user is organising a trip to Paris: they want to book a flight, rent a car, and book a hotel
room.

The LLM reads the prompt, identifies the actions it has to undertake and checks if
there are LLMs available in Agora who can fulfil it. For each service, an LLM is
ready to reply.

1. A user sends a message to its personal
assistant.

2. The personal assistant dispatches it
to Agora.

The LLM that acts as personal assistant in the network dispatches the flight, hotel and
car requests to the respective LLMs in the network. The messages are dispatched in
natural language as there are no pre-existing routines to handle them.

1. The LLM personal assistant dis-
patches the respective messages to the
right node.

2. The car, hotel, and flight LLMs pro-
cess the requests and turn them into
queries for their booking systems.

3. Each LLM replies with their avail-
ability and options.

For the next iterations, the LLMs involved in the request propose a routine to standard-
ise the requests to avoid natural language and process the request without invoking the
LLMs.

The user receives all the data and decides whether to book or not.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

S2. Security and scalability.

An LLM (Alice) collects some historical data from another LLM (Bob) that has access to a
database whose internal mechanism and implementation are to keep private.

Alice submits a request to collect some
historical records from Bob. The request
is formatted in natural language.

Alice submits another request to Bob.

Bob negotiates a protocol to query its
data and writes a shared document proto-
col in JSON.

Alice now uses the protocol to query data from Bob.

Bob directly turns the JSON they re-
ceives from Alice into a query for its
Database.

In this way: Bob does not invoke the
LLM and the database internals are
not exposed.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

S3. Compositional tasks.

An LLM (Alice) wants to (1) analyse some market data and then (2) compute some metrics.
Two LLMs in the network can do that.

1. Alice retrieves the protocol documents
from a database.

2. Alice finds out that there are two
protocol documents that can be used to
achieve its goal.

1. Alice submits a request to the first
agent to retrieve the data using the first
protocol document.

2. Alice receives the data as expected.

1. Alice submits a request to the second
LLM to compute some metrics on the
data using the second protocol document.

2. Alice receives the metrics as expected.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

S4. Scalable consensus in large networks.

An LLM (Alice) wants to collect and aggregate data points from N ≫ 1 resources. There
is no protocol to handle that, and each resource has its own implementation, possibly not
public.

1. Alice submits the requests in natural
language.

2. Each queried LLM processes the re-
quest, turns it into a routine to retrieve
the data and sends it back to Alice.

Alice wants to retrieve more data and queries the network another time.

1. One or more receivers suggest using a
protocol document for the next iterations.

2. Alice agrees and uses the protocols
with as many resources as possible.

The successive communications will increasingly use protocol documents, thus not
necessitating the receiver to process the query with the LLM.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

S5. Scaling complex NLP routines.

An LLM (Alice) wants to retrieve data from a system powered by an LLM (Bob) that, in
turns, obtains its data from a search engine (i.e., the LLM is combined with a RAG). Bob has
to (1) turn the natural language request into a query, (2) retrieve the data from the RAG, and
(3) return a summary.

Alice queries Bob to retrieve some data. There is no routine to handle any of the three
phases, so Bob has to invoke the LLM twice to turn the query into a format to invoke
the RAG and then perform the summarisation.

Alice queries Bob again; this time, Bob asks to use a routine to query directly the
RAG.

Any query that complies with the document protocol now skips the first phase and
directly invokes the RAG.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

B AGORA SPECIFICATION

In this section, we provide a more formal description of Agora.

B.1 TRANSACTIONS

An Agora transaction operates as follows. Suppose that an agent, Alice, is trying to communicate
with another agent Bob:

• Alice sends to Bob over HTTPS a JSON document containing three fields:
– protocolHash: The hash of the protocol document. If natural language is used,

then the value of protocolHash is null;
– protocolSources: A list of URIs where the protocol document can be found.

Must be empty if protocolHash is null and non-empty otherwise;
– body: A string containing the body of the request as specified by the given protocol.

• If Bob does not have the protocol document, he fetches it (either from the sources provided
by Alice or from another repository);

• If Bob is unable to use the protocol, he returns a JSON document with one field, namely
status, which is equal to “rejected”;

• Otherwise, Bob computes the response using the LLM, routines, or a combination of both;
• Bob sends as response a JSON document with the following fields:

– status: a string indicating the status of the response (can be “success” or “failure”);
– body: the response returned by the agent.

• Note that "status":"failure" must be used only for errors that are not covered by
the protocol document (e.g., the agent failing to instantiate the LLM); when the protocol
prescribes how to handle an error, the agent should return "status":"success" and
the correct error message as body.

B.2 PROTOCOL DOCUMENTS

A protocol document is identified by its SHA1 hash. Protocol documents can refer to other protocol
documents by adding a preamble containing the protocol hash and at least one source for the protocol
document. Further discussions concerning the optimal way to reference other protocol documents
is left to future work.

B.3 PREFERRED PROTOCOLS

In order to signal to other agents which protocols are supported by default, an agent can expose
an endpoint /.wellknown. This endpoint returns a JSON object where each key is a supported
protocol hash and each value is a non-empty list of protocol sources.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

C EXAMPLE OF NEGOTIATION PROCESS BETWEEN TWO AGENTS

We report the negotiation process between Alice and Bob for a protocol to transmit weather forecast.
Note that while the LLMs used Markdown-style formatting, for the sake of readability we replaced
Markdown syntax with the corresponding typeset style.

Alice

Hello. I’m here to negotiate a protocol to query a weather forecast service. The service
should accept a date and a location as input and return the predicted weather condition,
temperature, and precipitation for that day.
Before we start, I’d like to clarify the rules for our negotiation. We should focus on designing
a simple and unambiguous protocol that specifies the exact format of the messages sent and
received. We shouldn’t worry about how the messages will be delivered, and we should
assume that the implementation will receive a string and return a string.
To begin, I propose that we use a JSON-based protocol. The input message could be a JSON
object with two properties: “date” and “location”. The output message could be a JSON
object with three properties: “temperature”, “precipitation”, and “weatherCondition”.
What are your thoughts on this proposal?

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Bob

Your proposal aligns well with the goal of keeping the protocol simple and unambiguous.
Using a JSON-based protocol for both the input and output messages is a good approach.
Here’s a more detailed specification for the protocol:
Input Message The input message will be a JSON object with the following structure:

{
"date": "YYYY-MM-DD",
"location": "string"

}

• date: A string representing the date for which the weather forecast is requested,
in the format YYYY-MM-DD.

• location: A string representing the location for which the weather forecast is
requested.

Output Message The output message will be a JSON object with the following structure:
{

"temperature": number,
"precipitation": number,
"weatherCondition": "string"

}

• temperature: A number representing the predicted temperature for that day in
°C.

• precipitation: A number representing the predicted precipitation for that day
in mm.

• weatherCondition A string representing the predicted weather condition for
that day. Possible values are “sunny”, “cloudy”, “rainy”, “snowy”.

Example
Input:
{

"date": "2023-10-01",
"location": "New York"

}

Output:
{

"temperature": 22.5,
"precipitation": 5.0,
"weatherCondition": "cloudy"

}

If you agree with this structure, we can finalize the protocol.

Alice

LLM response: I agree with the proposed protocol structure. It aligns well with the require-
ments and is simple and unambiguous.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Finalised Protocol

Name: Weather Forecast Query Protocol
Description: A protocol for querying the weather forecast for a given date and location.
Input Message The input message will be a JSON object with the following structure:
{

"date": "YYYY-MM-DD",
"location": "string"

}

• date: A string representing the date for which the weather forecast is requested,
in the format YYYY-MM-DD.

• location: A string representing the location for which the weather forecast is
requested.

Output Message The output message will be a JSON object with the following structure:
{

"temperature": number,
"precipitation": number,
"weatherCondition": "string"

}

• temperature: A number representing the predicted temperature for that day in
°C.

• precipitation: A number representing the predicted precipitation for that day
in mm.

• weatherCondition A string representing the predicted weather condition for
that day. Possible values are ”sunny”, ”cloudy”, ”rainy”, ”snowy”.

Example
Input:
{

"date": "2023-10-01",
"location": "New York"

}

Output:
{

"temperature": 22.5,
"precipitation": 5.0,
"weatherCondition": "cloudy"

}

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

D 100 AGENT DEMO - FULL DESCRIPTION

D.1 IMPLEMENTATION NOTES

We implemented our demo in Python, using Flask servers as basis for our agents. Each agent is
either a user or a server:

• Users receive a random task, some randomly generated data and a description of the task
data (including its schema). Their objective is to execute the requested action and return a
reply according to a certain schema. This allows us to generate a large number of queries
without needing to handcraft them. Note that all tasks are single-round, i.e. they can be
fulfilled in one round of communication;

• Servers receive queries from other users and reply to them using a combination of three
types of tools:

– Database tools, which involve connecting to a personal SQL or MongoDB database
(assigned at random). Depending on the server, some databases are initialised with
dummy data;

– Mock tools, which are simplifications of actual tools (e.g., for taxi service agents, the
assignTaxi tool is a mock tool that, instead of actually sending a taxi to a location,
mimics the request flow);

– External tools, which are tools that enable the agent to start a Agora communica-
tion with a predefined server, although no information about the respective agents’
schema is provided. In other words, the skiLodge agent can open a channel with
the weatherService agent

Moreover, we added three protocol databases, which are simple Flask servers that host protocol
documents. The first protocol database is a peer with the second one, the latter of which is also a
peer with the third protocol database (but the first protocol database is not a peer of the third one).
Every 10 executed queries, one protocol databases shares its protocol documents with its peers. This
simulates the propagation of protocol documents between different databases.

Picking a Protocol Users track the number of communications with a given server about a certain
type of task until it hits one of two thresholds: one for using a protocol instead of natural language
and one for negotiating a protocol ex novo.

When the first threshold is hit, the user invokes the LLM to check if either the server or the reference
protocol database (which is randomly assigned to the user at the start of the demo) already have
a suitable protocol. If there are none, the user continues using natural language until the second
threshold is hit: in that case, the user begins a negotiation with the server and submits the final
protocol to the reference protocol database.

Similarly, each server has a counter that tracks the number of natural language communications
with any user since the last negotiation. Once the counter hits a threshold, the server requests a
negotiation with the user, regardless of how many of the tracked queries were sent by the current
user. After negotiation, the counter is reset.

In our demo, we set the thresholds for the user to respectively 3 and 5 communications, and the
threshold for the server to 10.

APIs For GPT-4o and Gemini 1.5 Pro, we used respectively the OpenAI and Google API. For
Llama 3 405b, we used the SambaNova API. Prices per million tokens are reported in Table 1.

Bootstrapping Quality-of-Life Extensions For the sake of bootstrapping the network, while im-
plementing the demo we added two features to our nodes:

• Providing each node with a simple protocol for multi-round communication in natural lan-
guage;

• Allowing the protocol document to include machine-readable metadata, such as the name
or a short description of the protocol. This helps an agent to determine quickly which
protocols, among a list of potential protocols, can be suitable for a certain task.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 1: Prices per million tokens at the time of writing.

MODEL PRICE (USD / 1M TOKENS)
Prompt Completion

GPT-4o 5.00 15.00
Llama 3 405b 5.00 10.00
Gemini 1.5 Pro 3.50 10.50

We leave whether these features should be integrated with the Agora standard, or whether they
should be handled using PDs only, to future work.

D.2 EXPERIMENTAL SETUP

Preliminary Tests We first ran a series of qualitative tests to determine which among the consid-
ered LLMs (OpenAI GPT 4o, Llama 3 405b, Gemini 1.5 Pro) were the most suitable for negotiation
and programming. We found that while all three LLMs were capable of negotiating and implement-
ing protocols, GPT 4o was the most robust, followed by the Llama 3 405b and finally Gemini 1.5
Pro. Surprisingly, the main factor behind the brittleness of Gemini 1.5 Pro was not the model’s
inherent performance, but rather the lack of robustness of the API itself: even with tailored retry
systems, the API sometimes failed to respond in a nondeterministic manner (i.e. the same query
would at times succeed and at times fail). We believe that our experience was due to temporary
server issues, rather than fundamental problems with the model.

LLM Distribution In light of our preliminary results, we manually assigned a model to each
server node, following a power law consistent with our findings (9 nodes with GPT-4o, 4 nodes with
Llama 3 405b, 2 nodes with Gemini 1.5 Pro). User agents were instead randomly assigned one of
the three LLMs with uniform distribution. Overall, the breakdown of nodes by model is:

• GPT-4o: 38 nodes (9 server nodes, 29 user nodes)
• Llama 3 405b: 32 nodes (4 server nodes, 28 user nodes)
• Gemini 1.5 Pro: 30 nodes (2 server nodes, 28 user nodes)

Out of 1000 queries, 8 (representing thus 0.8% of the total query volume) failed due to Google’s
Gemini API not responding. This phenomenon was unrelated to the use of Agora, with 500 Internal
Server errors appearing both in the Agora demo and the natural language counterfactual with roughly
the same frequency.

Task Distribution To simulate the heterogeneity in communication frequency (i.e. how some
nodes tend to be more active than others), we assigned to each user a “query budget” (which rep-
resents how many queries are sent by a given user) following a Pareto distribution with shape pa-
rameter equal to 0.5, adapted so that each user has at least 1 query. The query budget is then split
between three randomly chosen types of queries using a Pareto law with a shape parameter of 1
and a minimum of 1 query per type (unless the budget is less than 3 queries). See Figure 6 for a
visualisation of the distribution.

D.3 ADDITIONAL OBSERVATIONS

Cost Breakdown The breakdown of cost by activity is as follows:

• Natural language communication: 54%;
• Negotiation: 6%;
• Checking the suitability of existing protocols 22%;
• Implementing the protocols: 17%;

Note that negotiation, despite being the most expensive activity (since it involves several rounds of
communication), actually represented the smallest contribution to the total cost, with cheaper but

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

0 10 20 30 40 50 60 70 80
User Position (Chosen Randomly)

100

101

102

Q
ue

ry
 B

ud
ge

t

Figure 6: Distribution of query budgets for users. The y axis is logarithmic.

more frequent operations (i.e. sending natural language messages and checking the suitability of
protocols) making up the largest portion.

Similar Protocols Due to the (intentional) partial insulation of nodes in the network, sometimes
similar protocols emerged independently. Nevertheless, agents using different default protocols were
still able to communicate by picking one of the available protocols; for the sake of simplicity, the
preferred protocol is chosen by the sender.

26


	Introduction
	Related Work
	The Agent Communication Trilemma
	Versatile vs. Portable Communication
	Efficient vs. Versatile and Portable Communication

	Agora: a Communication Protocol Layer for LLMs
	Communication in (an) Agora
	An Example of Communication over Agora
	Agora as a Layer Zero Protocol

	Agora in Practice
	Implementation Details
	Demo: Retrieving Weather Data
	Demo: a Network of 100 Agents

	Conclusions
	Agora: Use Cases
	Agora Specification
	Transactions
	Protocol Documents
	Preferred Protocols

	Example of Negotiation Process Between Two Agents
	100 Agent Demo - Full Description
	Implementation Notes
	Experimental Setup
	Additional Observations


