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ABSTRACT

We study the effects of nonlinear recurrent activations on the approximation prop-
erties of recurrent neural networks (RNNs). Previous works indicate that in the
linear setting, RNNs show good approximation performance when the target se-
quential relationship is smooth and has fast decaying memory. Otherwise, RNNs
may suffer from the so-called “curse of memory”, meaning that an exponentially
large number of neurons is required for accurate approximation. A natural ques-
tion is whether the recurrent nonlinearity has a substantial effect on RNNs’ ap-
proximation capacity and approximation speed. In this paper, we present some
negative results in this direction. We discover that, while the addition of nonlin-
earity does not shrink the hypothesis space, in the sense that nonlinear RNNs can
still approximate linear functionals with the same approximation rates established
for linear RNNs, it does not essentially alleviate the limitations of RNNs either.
In particular, we prove that nonlinear RNNs fail to be universal approximators of
arbitrary nonlinear functionals, and any linear functional that can be efficiently
approximated must also possess an exponentially decaying memory.

1 INTRODUCTION

Recurrent neural networks (RNNs) (Rumelhart et al., 1986) are one of the most popular machine
learning models to learn the relationship between sequential or temporal data. They have wide
applications from time series prediction (Connor et al., 1994), text generation (Sutskever et al.,
2011), speech recognition (Graves & Jaitly, 2014) to sentiment classification (Tang et al., 2015).
However, when there are long-term dependencies in the data (Bengio et al., 1994; Hochreiter et al.,
2001), empirical results show that RNN may encounter difficulties in learning.

In the previous works (Li et al., 2021; 2022a), a theoretical framework of functional approximation
has been proposed to study the long-term dependencies, since the input-output relationship can be
mathematically understood as a sequence of functionals. It is found that in the linear setting, the
decaying memory, which is defined by the decay rates of linear target functionals, is a crucial prop-
erty that enables efficient approximation. The key limitation of this analysis is that it only applies to
RNNs with linear recurrent activations. We will hereafter call these models “linear RNNs”.

In this paper, we study the effects of nonlinear recurrent activations on the approximation properties
of recurrent neural networks. A natural question is whether nonlinear recurrent activations will
improve RNNs’ expressive power since the addition of nonlinearities to other neural network models
can significantly improve their approximation capacity (Cybenko, 1989; Hornik et al., 1989; Hornik,
1991; 1993; Stinchcombe, 1999; Shen et al., 2019; 2022). However, it is not even an obvious
result that RNNs with nonlinear recurrent activations (“nonlinear RNNs”) can approximate arbitrary
linear functionals. This is because the hypothesis space of nonlinear RNNs does not contain that of
the linear RNNs. We discover that the addition of nonlinear recurrent activations does not reduce
RNN’s expressive power in the sense that nonlinear RNNs still can approximate the same class of
linear functionals. The rates of the approximation by nonlinear RNNs are given and illustrated by
numerical examples. These are analogous to the previous results on linear RNNs.

Since the nonlinear recurrent activations make the models nonlinear, we also investigate the ap-
proximation of nonlinear target functionals. However, unlike the fully-connected counterparts, the
addition of nonlinear recurrent activations does not significantly increase RNNs’ expressive capa-
bility. We give counter-examples showing that nonlinear RNNs are not universal approximators of
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nonlinear functionals. In particular, we identify several classes of nonlinear functionals that cannot
be universally approximated by nonlinear RNNs, including homogeneous functionals with degree
greater than one, and disjoint-additive statistical functionals (Martin & Mizel, 1964). Furthermore,
we prove an inverse approximation theorem that implies nonlinear RNNs do not outperform linear
ones with respect to memory decay requirement, i.e. they also suffer from the “curse of memory” (Li
et al., 2021). More precisely, we show that any linear functionals that can be efficiently approxi-
mated by nonlinear RNNs must also have an exponentially decaying memory - a result previously
established for linear RNNs implying its inability to capture long-term memory.

To summarize, our main contributions are:

1. The hypothesis space of nonlinear RNNs is not smaller than the linear RNN hypothesis
space (Theorem 4.1 and Theorem 4.2).

2. The hypothesis space of nonlinear RNNs is not much larger than the linear RNNs’ hypoth-
esis space.

• There are several classes of nonlinear functionals that cannot be universally approxi-
mated (Proposition 4.1 and Proposition 4.2).

• Linear functionals that can be efficiently approximated by nonlinear RNNs must have
an exponentially decaying memory (Theorem 4.3).

Organization. In Section 2, we review the related work on approximation capacity and approxi-
mation rates of RNNs and effects of nonlinearity on other neural networks structures. The approx-
imation problem formulation and relevant definitions are given in Section 3. The main theoretical
results and corresponding numerical illustrations are presented in Section 4. All the proofs and
numerical details are included in appendices.

2 RELATED WORK

In Li et al. (2021; 2022a), the universal approximation theorems and approximation rates results
characterize the density and speed of linear RNNs applied to linear functionals. In particular, it
has been proved that the linear functionals that can be efficiently approximated by linear RNNs
must have an exponentially decaying memory. Li et al. (2022b) gives the universal approximation
theorem and corresponding rates for recurrent encoder-decoder architectures (with linear RNNs
as both encoders and decoders). These results establish a theoretical foundation for the empirical
observation that recurrent architectures are ineffective in learning sequential relationships with long-
term memories. However, the main limitation of the above results is the linear setting for both
models and targets. In this work, we establish approximation results for nonlinear RNNs in the
context of functional approximation.

A number of approximation results have been obtained for nonlinear recurrent neural networks (Fu-
nahashi & Nakamura, 1993; Doya, 1993; Chow & Li, 2000; Maass et al., 2007). However, most
of these works focus on target sequential relationships generated by underlying dynamical systems
in the form of difference or differential equations, and the time horizon therein is often limited to a
compact set. By contrast, our work does not include such assumptions as the long-term memory is
more reasonable to be investigated under the functional-approximation framework and infinite-time
horizon. There are also several approximation results for randomized RNN-type networks, including
reservoir computing (Grigoryeva & Ortega, 2019; Gonon et al., 2020) and echo state networks (Grig-
oryeva & Ortega, 2018; Gonon & Ortega, 2021; Li & Yang, 2022). The main difference is that the re-
current weights therein are randomly generated and then fixed without training. For example, (Grig-
oryeva & Ortega, 2018) shows that echo state networks can approximate arbitrary sequential rela-
tionships generated from an underlying dynamical system of the form dht

dt = F (ht, xt), yt = c⊤ht.
We emphasize that the present work is concerned with general linear or nonlinear functionals, not
necessarily possessing this representation, and it is shown that nonlinear RNNs (with or without
trainable recurrent weights) are not universal approximators under this functional-approximation
setting. Moreover, although nonlinear activations in fully-connected neural networks vastly im-
prove the approximation power (Yarotsky, 2017; Petersen & Voigtlaender, 2018; Montanelli & Yang,
2020; Shen et al., 2019; 2021; 2022), we prove that nonlinear recurrent activations do not achieve
this effect alone.
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3 PROBLEM FORMULATION AND PRIOR RESULTS ON LINEAR RNNS

Sequential approximation as a functional approximation problem. The goal of sequential
modeling is to learn a relationship between an input sequence x = {xt} and a corresponding
output sequence {yt}. The time index t can be discrete or continuous. For ease of analysis, we
adopt the continuous-time setting in (Li et al., 2021), where t ∈ R. This is also a natural setting
for irregularly sampled time series (Lechner & Hasani, 2020). We consider the d-dimensional input
space X = C1

0,T,K(R,Rd), which is continuously differentiable with respect to time and vanishes
at infinity in the sense that xt = x∞ for some 0 < T ≤ t ≤ ∞, with the supremum norm
∥x∥X := supt∈R ∥xt∥∞. Without loss of generality, we also assume xt = 0 for t ≤ 0 and the
derivatives of input is bounded: ∥dxt

dt ∥∞ ≤ K,∀t.
We assume the input and output sequences are related by a family of underlying functionals

yt = Ht({xt}), t ∈ R, (1)

where Ht : X 7→ R is a functional. Now, the sequential approximation problem can be formulated
as the approximation of target functionals {Ht : t ∈ R} by model functionals {H̃t : t ∈ R}, where
H̃t(·) is contained in certain hypothesis space H̃, such as various classes of neural networks. We say
a sequence of target functionals {Ht : t ∈ R} can be uniformly approximated by model functionals,
if for any tolerance ϵ > 0, there exists {H̃t : t ∈ R} ∈ H̃ such that

sup
t∈R

sup
∥x∥X≤1

|Ht(x)− H̃t(x)| ≤ ϵ. (2)

In general, the overall hypothesis space H̃ can be divided into the union of hypothesis spaces with
different complexities indexed by m:

H̃ =

∞⋃
m=1

H̃m, (3)

where m usually denotes the number of parameters. The approximation rate is characterized by the
following relationship between the complexity m and approximation error:

R(m) = min
H̃t∈

⋃m
i=1 H̃i

sup
t∈R

sup
∥x∥X≤1

|Ht(x)− H̃t(x)|. (4)

The continuous-time RNN architecture. First, we introduce the same continuous-time formula-
tion of RNNs as (Li et al., 2021):

dht

dt
= σ(Wht + Uxt), (5)

ŷt = c⊤ht. (6)

Here, ŷt ∈ R is the prediction, and ht ∈ Rm denotes the hidden state. As a common practice, we
set the initial hidden state h0 = 0.1 The hyper-parameter m is also known as the hidden dimension
of recurrent neural networks. For different hidden dimensions m, the RNN is parameterized by
trainable weights (c,W,U), where c ∈ Rm is the readout, W ∈ Rm×m is the recurrent kernel
and U ∈ Rm×d is the input kernel. Obviously, the complexity of the RNN hypothesis space is
characterized by the hidden dimension m. The nonlinearity arises from the activation σ(·), which is
a scalar nonlinear function performed element-wisely, such as tanh, hardtanh, sigmoid, ReLU and
so on. The hypothesis space of RNNs with different activations are denoted by Hσ(·).

Prior results on linear RNNs. Before we present the nonlinear results, we first review the previ-
ous approximation theory established for linear RNNs. We begin with the definitions on functionals.

Definition 3.1 Let {Ht : t ∈ R} be a sequence of functionals.

1. (Linear) Ht is linear if for any λ, λ′ ∈ R and x,x′ ∈ X , Ht(λx + λ′x′) = λHt(x) +
λ′Ht(x

′).
1This is consistent with practical applications such as TensorFlow and PyTorch, where the initial value of

hidden state is set to be zero by default.

3



Under review as a conference paper at ICLR 2023

2. (Continuous) Ht is continuous if sup{x∈X ,∥x∥X≤1} |Ht(x)| < ∞.

3. (Time-homogeneous) {Ht : t ∈ R} is time-homogeneous if the input-output relationship
is invariant about time shift: Ht+τ (x(τ)) = Ht(x) for all t, τ ∈ R, where x(τ) is defined
by x(τ)s = xs+τ .

4. (Causal) Ht is causal if it does not depend on future values of the input. That is, if x,x′

satisfy xt = x′
t for any t ≤ t0, then Ht(x) = Ht(x

′) for any t ≤ t0.

5. (Regular) Ht is regular if for any sequence {x(n) : n ∈ N} such that x(n)
s → 0 for almost

every s ∈ R, then limn→∞ Ht(x
(n)) = 0.

Given the above definitions, we have the following representation for linear functionals.

Theorem 3.1 (Riesz-Markov-Kakutani representation theorem) Assume H : X 7→ R is a linear
and continuous functional, there exists a unique, vector-valued, regular, countably additive signed
measure µ on R such that

H(x) =

∫
R
x⊤
s dµ(s) =

d∑
i=1

∫
R
xs,idµi(s). (7)

In addition, we have ∥H∥ := sup∥x∥X≤1 |H(x)| = ∥µ∥1(R) :=
∑

i |µi|(R).

Based on this representation theorem, one can further obtain that linear functionals {Ht : t ∈ R}
with properties in Definition 3.1 can be represented by the following convolutional form

Ht(x) =

∫
R
x⊤
t−sρ(s)ds, t ∈ R, (8)

and the representation function ρ : [0,∞) → Rd is a measurable and integrable function with
∥ρ∥L1([0,∞)) = supt∈R ∥Ht∥. The details can be found in Appendix A.1 or Li et al. (2021).

It is straightforward to verify that the linear RNN hypothesis space also satisfies Definition 3.1.
The key results of linear RNNs (Li et al., 2021; 2022a) are that: i) Any functionals satisfying
Definition 3.1 can be universally approximated by linear RNNs, and the latter can be formulated
as a convolution on input signals with exponential-sums: H̄t(x) =

∫
R c⊤eWsUxt−sds;2 (ii) The

approximation rate R(m) can be characterized by the hidden dimension m in target functionals’
smoothness and memory decay. See Theorem A.1 and Theorem A.2 for precise statements. An
important insight uncovered here is that the target memory pattern can be precisely defined as the
decay rate of ρ(·). Moreover, the inverse approximation theorem established in (Li et al., 2022a)
states that the linear functionals that can be efficiently approximated by linear RNNs must have an
exponentially decaying memory. These results together suggest the curse of memory phenomenon
in the linear RNN setting.

We emphasize that all above results, including the Riesz representation for target functionals,
exponential-sums representation for RNN functionals and the approximation theorems, rely on the
linearity. However, general nonlinear functionals, and also nonlinear RNNs, do not possess a con-
volution form, hence it is impossible to derive approximation results via the above representation
procedure directly. This leads to the main results in the next section.

4 MAIN RESULTS

In this section, we present the main approximation results for nonlinear RNNs when applied to both
linear and nonlinear targets. We discuss in the following two aspects.

1. Nonlinearity is not worse. In Section 4.1, we prove that given a sequence of linear target
functionals satisfying Definition 3.1, nonlinear RNNs can achieve the uniform approxima-
tion (see Equation (2)), and one can characterize the corresponding approximation rate (see
Equation (4)). Both of them appear similar to those of linear RNNs.

2The functional approximation problem ∥H̄t −Ht∥ is then reduced to the function approximation problem
∥c⊤eWsU − ρ(s)∥.
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2. Nonlinearity is not better. On the side of nonlinear targets (Section 4.2), we give sev-
eral counter-examples of nonlinear functionals that satisfy properties 2-5 in Definition 3.1,
cannot be uniformly approximated by nonlinear RNNs. These negative results indicate
that the recurrent nonlinearity is not enough for RNNs to approximate arbitrary nonlinear
functionals. On the side of linear targets (Section 4.3), we further prove an inverse approx-
imation theorem of linear functionals satisfying Definition 3.1 for nonlinear RNNs with
tanh/sigmoid activations. This is again a negative result, which suggests that even with
nonlinear activations, the RNN still face the same problem of “curse of memory” as its
linear counterpart.

4.1 APPROXIMATION OF LINEAR FUNCTIONALS BY NONLINEAR RNNS

In this section, we first consider the approximation of functionals with properties defined in Def-
inition 3.1 as they can be approximated universally by linear RNNs (Li et al., 2021; 2022a). The
following result shows the approximation capacity of nonlinear RNNs is not smaller than linear
RNNs.

Theorem 4.1 (Universal approximation of linear functionals) Let {Ht : t ∈ R} be a family of
linear, continuous, causal, regular and time-homogeneous functionals on X . Assume the activation
σ(·) is continuous and monotonically-increasing, and satisfies the following assumptions

σ(0) = 0, σ′(0) = 1, |σ′(z)| ≤ M, |σ′(z)− σ′(0)| ≤ M |σ(z)|, |σ′′(z)| ≤ M |σ′(z)| (9)

for some constant M > 0. Then, for any ϵ > 0, there exists a sequence of nonlinear RNNs {H̃t :

t ∈ R} ∈ H̃σ such that

sup
t∈R

∥Ht − H̃t∥ ≡ sup
t∈R

sup
∥x∥X≤1

|Ht(x)− H̃t(x)| ≤ ϵ. (10)

One can verify that tanh, which is commonly-used in practice for RNNs, is an activation satisfying
the conditions (9). The proof of Theorem 4.1 is given in Appendix A.3.

Based on the above universal approximation result, a natural question one may further have is,
whether adding the nonlinear recurrent activations changes the approximation efficiency. We prove
the same approximation rate as the linear setting (Li et al., 2021; 2022a). The key concepts are the
memory and smoothness of target functionals. Define the maps t 7→ Ht(ei) for i = 1, . . . , d, where
ei is the constant input signal defined by ei = ei1{t≥0} with ei as the standard basis vector in Rd.

Theorem 4.2 (Approximation rate of linear functionals) Assume the same conditions as in The-
orem 4.1. Consider the output of constant signals

yi(t) = Ht(ei), i = 1, . . . , d. (11)

Suppose there exist constants α ∈ N+, β, γ > 0, such that for i = 1, . . . , d, k = 1, . . . , α + 1,
yi(t) ∈ C(α+1)(R), and

eβty
(k)
i (t) = o(1) as t → +∞, (12)

sup
t≥0

|eβty(k)i (t)|
βk

≤ γ. (13)

Then, there exists a universal constant C(α) only depending on α, such that for any m ∈ N+, there
exists a sequence of width-m nonlinear RNN functionals {H̃t : t ∈ R} ∈ H̃σ

m such that

R(m) = sup
t∈R

∥Ht − H̃t∥ ≡ sup
t∈R

sup
∥x∥X≤1

|Ht(x)− H̃t(x)| ≤
C(α)γd

βmα
. (14)

The proof is included in Appendix A.4. Theorem 4.2 shows that, as long as the activation function
σ(·) satisfies the conditions in Equation (9), such as the tanh activation, nonlinear RNNs can obtain
the same approximation rate as linear RNNs.
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Figure 1: Numerical illustration for approximation capacity of RNNs with different activations.
The target functionals are linear functionals with the exponential-sum memory pattern ρ1 and Airy
function memory pattern ρ2. We see good performance of linear, tanh and hardtanh activations for
both the exponential-sum and Airy example. Similar phenomena hold for the Airy function example.
The increase of approximation errors at higher hidden dimensions might be related to optimization
difficulties, since we select a fixed range of epochs for all hidden dimensions and activations. The
details of numerical experiments can be found in Appendix B.

.

We now illustrate that RNNs with different activations can perform similarly with numerical exam-
ples (see Figure 1). Let the input dimension d = 1, we consider linear functionals in Equation (8)
with two different memory patterns:

ρ1(t) =

b∑
i=1

aie
wit, wi ≤ 0, (15)

ρ2(t) = Ai
(
s(t− t0)

)
, Ai(t) =

1

π
lim
ξ→∞

∫ ξ

0

cos(
u3

3
+ tu)du. (16)

The linear functional with an exponential-sum memory pattern can be represented (exactly) by a
linear RNN with a hidden dimension no less than b. The Airy function is an oscillatory function
between the time [0, t0] and an exponential decaying function over [t0,∞). The linear functional
with Airy function memory pattern cannot be represented exactly but still can be approximated
by RNNs with linear/tanh/hardtanh activations sufficiently well. In the numerical experiments, we
estimate the approximation error between Ht and H̃t by

sup
t∈R

Ex∈X |Ht(x)− H̃t(x)|. (17)

The expectation is taken over samples of piece-wise constant signals with the values sampled from
a uniform distribution U [−0.1, 0.1]. As the RNN is trained for a sufficiently long time, the esti-
mated approximation error in Figure 1 reflects the similarity of approximation errors for different
activations.

4.2 APPROXIMATION OF NONLINEAR FUNCTIONALS BY NONLINEAR RNNS

We now consider the nonlinear target functionals that satisfy properties 2-5 in Definition 3.1. The
question is whether nonlinear RNNs can uniformly approximate any such nonlinear functionals.
The answer is negative and we give some counter-examples.

4.2.1 HOMOGENEOUS FUNCTIONALS CANNOT BE APPROXIMATED BY TANH RNNS

Consider the homogeneous functionals with degree p > 0:

Ht(κx) = κpHt(x), ∀κ. (18)
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Figure 2: Numerical illustrations for the difficulty of approximating homogeneous functionals by
RNNs. The memory ρ1 and ρ2 are defined in Equation (15) and (16).

An example is the monomial functional Ht(x) =
∫∞
0

(xp
t−s)

⊤ρsds. This monomial functional is
linear if and only if p = 1.

We show that the sequence of homogeneous functionals with degree p > 1 cannot be universally
approximated by nonlinear RNNs with the tanh activation.

Proposition 4.1 There exists a sequence of homogeneous functionals {Ht : t ∈ R} with an homo-
geneity degree p > 1 and an ϵ > 0, such that there is no tanh RNN {H̃t : t ∈ R} approximating
{Ht : t ∈ R} uniformly with an approximation error smaller than ϵ.

The proof is given in Appendix A.5.

We illustrate this result with numerical examples (see Figure 2). Take d = 1 and p = 2, we construct
the monomial functionals with the same memory patterns ρ1 and ρ2 (see Equation (15) and (16))
as the linear functionals. The approximation error is still estimated with the same approach as
Figure 1. The results in Figure 2 reflect the difficulty of approximating homogeneous functional, as
the estimated approximation error does not decrease as the hidden dimension increases.

4.2.2 STATISTICAL FUNCTIONALS CANNOT BE APPROXIMATED BY TANH RNNS

Besides the homogeneous functionals in the previous section, we further identify a class of nonlinear
functionals - statistical functionals - that cannot be approximated by nonlinear RNNs. We begin with
the definition of statistical functionals.

Definition 4.1 Two real-valued inputs x1 and x2 are said to be equimeasurable, if for every Borel
set B on (−∞,∞), x−1

1 (B) and x−1
2 (B) are measurable and have equal measure.

As is defined in Martin & Mizel (1964), for equimeasurable input x1 and x2, statistical functionals
satisfy the following property:

H(x1) = H(x2). (19)

According to the representation theorem of continuous disjoint-additive statistical functionals (Mar-
tin & Mizel, 1964), i.e. H(x) =

∫
R f(xs)

⊤ρsds, we further consider the sequence of disjoint-
additive statistical functionals:

Ht(x) =

∫
R
ft(xs, s)ds. (20)

By Definition 3.1, the continuous, disjoint-additive, statistical, causal and time-homogeneous func-
tionals can be represented by

Ht(x) =

∫ t

−∞
f(xs, t− s)ds. (21)

Based on the homogeneity property stated in Section 4.2.1, we define the p-sub-homogeneity.
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Definition 4.2 (p-sub-homogeneity) For p > 1, we say a functional sequence {Ht : t ∈ R} has
p-sub-homogeneity, if for any bounded input ∥x∥X < c0, and any κ ∈ (0, 1),

Ht(κx) ≤ κpHt(x). (22)

An example of nonlinear statistical functional is Ht(x) =
∫ t

−∞ P (x)ρ(t − s)ds, where P (x) =∑
pi∈P qix

pi is a polynomial. If the smallest degree minP > 1, Ht(x) has the p-sub-homogeneity.

We show that continuous, causal, disjoint-additive, statistical and time-homogeneous functionals
with p-sub-homogeneity cannot be universally approximated by RNNs with tanh activations.

Proposition 4.2 There exists a sequence of continuous, causal, disjoint-additive, statistical and
time-homogeneous functionals {Ht : t ∈ R} with p-sub-homogeneity (p > 1) and an ϵ > 0,
such that there is no tanh RNN {H̃t : t ∈ R} approximating {Ht : t ∈ R} uniformly with an
approximation error smaller than ϵ.

The proof is given in Appendix A.6.

Remark 4.1 Gonon et al. (2020) investigates the approximation of nonlinear functionals using
ReLU RNNs with randomly generated weights, and their approximation results are established in
L2-norm. By contrast, the negative results developed in this section are for tanh RNNs and in L∞-
norm, which is quite different in the approximation setting.

4.3 INVERSE APPROXIMATION OF LINEAR FUNCTIONALS BY NONLINEAR RNNS

Previous results give some classes of functionals that cannot be approximated by nonlinear RNNs.
Now, we show a different type of negative result, in the form of an inverse approximation theorem,
which is also known as Bernstein-type approximation results (Bernstein, 1914).

In Li et al. (2022a), such a result was proved for linear RNNs: If a class of linear functionals
can be efficiently approximated by linear RNNs, it must possess exponentially decaying memory
pattern ρ(t). That is, only functionals with exponentially decaying memory can be approximated
efficiently by linear RNNs. An important question is whether the addition of nonlinearity alleviates
this limitation and allows an efficient approximation of functionals. In this section, we show that the
answer is negative, and a similar inverse approximation result holds for RNNs with tanh activations.

Theorem 4.3 (Inverse approximation theorem) Assume that the activation function σ(·) is tanh,
and {Ht : t ∈ R} is a family of linear, continuous, causal, regular and time-homogeneous function-
als on X . Consider the output of constant signals

yi(t) = Ht(ei) ∈ C(α+1)(R), i = 1, . . . , d, α ∈ N+. (23)

Suppose there exists a sequence of nonlinear RNNs {H̃t : t ∈ R} ∈ H̃σ with an increasing hidden
dimension m approximating {Ht : t ∈ R} in the following sense:

lim
m→∞

sup
t≥0

|ỹ(k)i,m(t)− y
(k)
i (t)| = 0, i = 1, . . . , d, k = 1, . . . , α+ 1, (24)

where
ỹi,m(t) = H̃t(ei), i = 1, . . . , d. (25)

Moreover, assume that the recurrent kernel matrix Wm in the nonlinear RNN is a special Hurwitz
matrix, that is, there exists a diagonal positive-definite matrix Dm and a negative-definite matrix
Nm such that Wm = DmNm. Define nm = maxj∈[m] Re(λj), where {λj}mj=1 collects all the
eigenvalues of Nm. Define dm = minj∈[m](Dm)jj . Assume that the parameters in nonlinear RNNs
are uniformly bounded and there exits constants β, θ > 0 such that lim supm→∞

nm

θdm
< −β, then

we have
eβty

(k)
i (t) = o(1) as t → +∞, i = 1, . . . , d, k = 1, . . . , α+ 1. (26)

Here, we only give the proof sketch to show the meaning and implications of Theorem 4.3. For the
detailed proof, see Appendix A.7. Similar results can also be obtained for the sigmoid activation.
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Define vt = dht

dt , then ỹ
(1)
i,m(t) = c⊤vt,m. We know ỹ

(1)
i,m(t) decays exponentially if vt,m decays

exponentially. For |z| sufficiently small, the similarity of different activations σ(z), i.e. tanh and
linear, is quite clear (see the left panel of Figure 3). Therefore, the limiting behavior for different
activations in this small region is the same (see the right panel of Figure 3), that is, vt decays
exponentially if vt decays. The remaining problem is whether the nonlinear dynamics will enter this
small region eventually. We show the validity and correctness via the Lyapunov function analysis.

We construct the Lyapunov function for the tanh RNN dynamics as follows:

V (v) =

m∑
i=1

∞∑
j=1

1

2jDii
v2ji . (27)

The derivative of this Lyapunov function shows that vt decays exponentially with the rate
limt→∞ eβt∥v(t)∥∞ = 0, which implies eβtỹ

(1)
i,m(t) = o(1) for all m ∈ N+, and hence

eβty
(1)
i (t) = o(1). This is the essential reason for tanh/sigmoid recurrent activations do not funda-

mentally change the memory pattern of RNNs.

Figure 3: The left panel shows the closeness between tanh and linear activations when |z| is small.
If the dynamics enters this small region at any time, the behavior of nonlinear RNNs is similar to
that of linear RNNs. This can be guaranteed by constructing a Lyapunov function V (v) defined in
Equation (27).

Remark 4.2 In general, the inverse approximation theorem is supposed to hold for a Hurwitz matrix
W , which can be decomposed into the product of a symmetric positive-definite matrix S and a
negative-definite matrix N (Duan & Patton, 1998). The Lyapunov function analysis here does not
work for general Hurwitz matrices, but the numerical evidence in Appendix C.2 shows that vt still
converges to 0 exponentially fast.

5 CONCLUSION

In this paper, we analyze the approximation properties of RNNs with nonlinear recurrent activa-
tions. We show that nonlinear RNNs’ performance on linear targets is not worse compared with
linear RNNs. However, the additional recurrent nonlinearity does not give the same type of univer-
sal approximation of nonlinear targets, and also fail to enlarge the concept space of linear targets.
Moreover, the approximation of linear targets by nonlinear RNNs is not better than linear RNNs
in the sense that the “curse-of-memory” phenomenon still exists. In summary, adding nonlinear
recurrent activations to RNNs does not significantly help in the approximation sense.

9
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A THEORETICAL RESULTS AND PROOFS

A.1 UNIVERSAL APPROXIMATION AND APPROXIMATION RATE OF LINEAR FUNCTIONALS BY
LINEAR RNNS

We include the statements of the universal approximation theorem and approximation rate for linear
functionals by linear RNNs from Li et al. (2021).

Theorem A.1 (Universal approximation for linear functionals by linear RNNs (Li et al., 2021))
Let {Ht : t ∈ R} be a family of linear, continuous, causal, regular and time-homogeneous function-
als on X . Then, for any ϵ > 0, there exists {H̄t : t ∈ R} ∈ H̄linear such that

sup
t∈R

∥Ht − H̄t∥ ≡ sup
t∈R

sup
∥x∥X≤1

|Ht(x)− H̄t(x)| ≤ ϵ. (28)

Theorem A.2 (Approximation rates for linear functionals by linear RNNs (Li et al., 2021))
Assume the same conditions as Theorem A.1. Consider the output of constant signals

yi(t) = Ht(ei), i = 1, . . . , d.

Suppose there exists constants α ∈ N+, β, γ > 0 such that for i = 1, . . . , d, k = 1, . . . , α + 1,
yi(t) ∈ C(α+1)(R) and

eβty
(k)
i (t) = o(1) as t → +∞,

sup
t≥0

|eβty(k)i (t)|
βk

≤ γ.

Then, there exists a universal constant C(α) only depending on α, such that for any m ∈ N+, there
exists a sequence of width-m RNN functionals {H̄t : t ∈ R} ∈ H̄linear

m such that

R(m) = sup
t∈R

∥Ht − H̄t∥ ≡ sup
t∈R

sup
∥x∥X≤1

|Ht(x)− H̄t(x)| ≤
C(α)γd

βmα
. (29)

Remark A.1 An important step to notice is the construction of W̄ (the recurrent kernel matrix) in
these approximation results is a diagonal negative definite matrix.

A.2 PROOFS OF PRELIMINARY PROPOSITIONS AND LEMMAS

Proposition A.1 (Universal approximation for linear RNNs by nonlinear RNNs) For any lin-
ear RNN {H̄t : t ∈ R}, there exists a sequence of nonlinear RNN {H̃t : t ∈ R} with activations
satisfying Equation (9) that can approximate the linear RNN with the following error bound:

sup
t∈R

sup
∥x∥X≤1

|H̄t(x)− H̃t(x)| ≤
ϵ

2
. (30)

Proof. We first assume the linear RNN used in Theorem A.1 achieves an error ϵ
2 is represented by

the parameters (c̄, W̄ , Ū). After rescaling, this RNN is the same as the linear RNN represented by
(Mc̄, W̄ , 1

M Ū) for any scalar M ̸= 0. We only need to find Mϵ such that the nonlinear RNN H̃t

represented by (Mϵc̄, W̄ , 1
Mϵ

Ū) satisfies the following estimate:

sup
t∈R

sup
∥x∥X≤1

|H̄t(x)− H̃t(x)| ≤
ϵ

2
,

where the linear RNN H̄t is represented by (Mϵc̄, W̄ , 1
Mϵ

Ū), and it is equivalent to find Mϵ such

that the nonlinear RNN H̃t represented by (Mϵc̄, W̄ , Ū) satisfies the following estimate:

sup
t∈R

sup
∥x∥X≤ 1

Mϵ

|H̄t(x)− H̃t(x)| ≤
ϵ

2
,

where the linear RNN H̄t is constructed by (Mϵc̄, W̄ , Ū).

12
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Define ṽs = dh̃s

ds , v̄s =
dh̄s

ds . With the conditions (9) on activations, one can write down the dynamics
of ṽs and v̄s by

dṽs
ds

= diag
(
σ′(σ−1(ṽs)

))
(W̄ ṽs + Ū

dxs

ds
),

dv̄s
ds

= W̄ v̄s + Ū
dxs

ds
.

Take the difference of dṽs
ds and dv̄s

ds , and notice that W̄ is a diagonal matrix by construction, we have

d(v̄s − ṽs)

ds
= W̄ (v̄s − ṽs) +

(
I − diag

(
σ′(σ−1(ṽs)

)))
(W̄ ṽs + Ū

dxs

ds
),

v̄s − ṽs =

∫ s

0

eW̄ (s−r)

(
I − diag

(
σ′(σ−1(ṽr)

)))
(W̄ ṽr + Ū

dxr

dr
)dr.

Based on the above representation of v̄s − ṽs, we can rewrite H̃t(x)− H̄t(x) in the following way:

H̄t(x)− H̃t(x) =Mϵc
⊤
∫ t

0

ṽs − v̄sds

=Mϵc
⊤
∫ t

0

∫ s

0

eW̄ (s−r)(I − diag
(
σ′(σ−1(ṽr)

)))
(W̄ ṽr + Ū

dxr

dr
)drds

=Mϵc
⊤
∫ t

0

∫ t

r

eW̄ (s−r)

(
I − diag

(
σ′(σ−1(ṽr)

)))
(W̄ ṽr + Ū

dxr

dr
)dsdr

=Mϵc
⊤
∫ t

0

(−W̄ )−1(I − e(t−r)W̄ )

(
I − diag

(
σ′(σ−1(ṽr)

)))
(W̄ ṽr + Ū

dxr

dr
)dr

=−Mϵc
⊤
∫ t

0

(I − e(t−r)W̄ )

(
I − diag

(
σ′(σ−1(ṽr)

)))
ṽrdr

+Mϵc
⊤
∫ t

0

(−W̄ )−1(I − e(t−r)W̄ )

(
I − diag

(
σ′(σ−1(ṽr)

)))
Ū
dxr

dr
dr.

According to Lemma A.1, we get ∥ṽr∥∞ < C
Mϵ

for all r if Mϵ > M1, with C as a constant related

to W̄ , Ū ,M . Moreover, since dxr

dr = 0 for r > T , we have ∥ṽr∥∞ < Ce−β0(t−T )

Mϵ
for some constant

β0 > 0.

Also, since the derivative for inputs is bounded by K, the scaled input derivatives can be bounded
by ∥dxr

dr ∥∞ ≤ K
Mϵ

. According to Lemma A.2, there exists M2 related to c̄, W̄ , Ū , ϵ, C,M, T, β0,
such that for Mϵ > M2 > M1, we have

∥(I − e(t−r)W̄ )

(
I − diag

(
σ′(σ−1(ṽr)

)))
∥∞ <

ϵ

4m∥c∥∞CT
,

∥(−W̄ )−1(I − e(t−r)W̄ )

(
I − diag

(
σ′(σ−1(ṽr)

)))
Ū∥∞ <

ϵ

4m∥c∥∞KT
,

∥(I − e(t−r)W̄ )

(
I − diag

(
σ′(σ−1(ṽr)

)))
∥∞ <

ϵ

2m∥c∥∞C/β0
.

(i) If t < T , we have

|H̄t(x)− H̃t(x)| ≤Mϵm∥c∥∞
ϵ

4m∥c∥∞CT
T sup

0<r<t
∥ṽr∥∞

+Mϵm∥c∥∞
ϵ

4m∥c∥∞KT
T sup

0<r<t
∥dxr

dr
∥∞

<
ϵ

4
+

ϵ

4
=

ϵ

2
.
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(ii) If t > T , we have

|H̄t(x)− H̃t(x)| ≤Mϵm∥c∥∞
ϵ

4m∥c∥∞CT
T sup

0<r<T
∥ṽr∥∞

+Mϵm∥c∥∞
ϵ

4m∥c∥∞KT
T sup

0<r<T
∥dxr

dr
∥∞

+Mϵm∥c∥∞
ϵ

2m∥c∥∞C/β0

∫ ∞

T

∥vr∥∞dr

≤ ϵ

4
+

ϵ

4
+Mϵm∥c∥∞ · ϵ

2m∥c∥∞C/β0

C/β0

Mϵ

<
ϵ

2
+

ϵ

2
= ϵ.

In summary, we proved that |H̄t(x)− H̃t(x)| < ϵ for all x ∈ X .

Lemma A.1 There exists M1 depending on W̄ , Ū ,M , such that for all Mϵ > M1, there exists a
constant C > 0 such that for any s,

∥ṽs∥∞ <
C

Mϵ
.

Moreover, if dxs

ds = 0 for s > T , we have ∥ṽs∥∞ < Ce−β0(s−T )

Mϵ
, s > T for some β0 > 0.

Proof. By the general formula of ṽs and x0 = 0, we get

ṽs =

∫ s

0

e
∫ s
r

diag
(
σ′
(
σ−1(ṽq)

))
W̄dqdiag

(
σ′(σ−1(ṽr)

))
Ū
dxr

dr
dr. (31)

By the integration by parts, we have

ṽs =e
∫ s
r

diag
(
σ′
(
σ−1(ṽq)

))
W̄dqdiag

(
σ′(σ−1(ṽr)

))
Ūxr|sr=0

−
∫ s

0

e
∫ s
r

diag
(
σ′
(
σ−1(ṽq)

))
W̄dq

[
d

dr
diag

(
σ′(σ−1(ṽr)

))
− diag

(
σ′(σ−1(ṽr)

))2

W̄

]
Ūxrdr

=diag
(
σ′(σ−1(ṽr)

))
Ūxs

−
∫ s

0

e
∫ s
r

diag
(
σ′
(
σ−1(ṽq)

))
W̄dq

[
d

dr
diag

(
σ′(σ−1(ṽr)

))
− diag

(
σ′(σ−1(ṽr)

))2

W̄

]
Ūxrdr

=diag
(
σ′(σ−1(ṽr)

))
Ūxs

−
∫ s

0

e
∫ s
r

diag
(
σ′
(
σ−1(ṽq)

))
W̄dq

∗
[

diag
(
σ′′(σ−1(ṽr)

))
diag

(
W̄ ṽR + U

dxr

dr

)
− diag

(
σ′(σ−1(ṽr)

))2

W̄

]
Ūxrdr.

First, we show that for sufficiently large Mϵ, ∥ṽs∥∞ < 1
2M for all s. Notice the activation function

satisfies |σ′(z)− σ′(0)| ≤ Mσ(z), we have the following matrix inequality:

1

2
I < I −Mdiag(v) < diag

(
σ′(σ−1(ṽq)

))
< I +Mdiag(v) <

3

2
I.

Choose M1 large enough, such that

M∥U∥∞
1

M1
+

∫ ∞

0

e
1
2w(s−r)

(
M(∥W̄∥∞

1

2M
+ ∥U∥∞

K

M1
)+M2∥W̄∥∞

)
∥U∥∞

1

M1
dr <

1

2M
,

where w is the eigenvalue of W̄ with the largest real part. By the construction of W̄ , w < 0.
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We further show that T := inf{s
∣∣∥vs∥∞ = 1

2M } = ∞. Otherwise, if T < ∞, by the conditions
|σ′(z)| ≤ M, |σ′(z)− 1| ≤ M |σ(z)|, |σ′′(z)| ≤ M |σ′(z)|, we have

∥ṽT ∥∞ ≤M∥U∥∞∥xs∥∞

+

∫ s

0

e
1
2w(s−r)(M(∥W̄∥∞

1

2M
+ ∥U∥∞

K

M1
) +M2∥W̄∥∞)∥U∥∞∥xt∥∞dr

≤M∥U∥∞∥xs∥∞

+

∫ ∞

0

e
1
2w(s−r)(M(∥W̄∥∞

1

2M
+ ∥U∥∞

K

M1
) +M2∥W̄∥∞)∥U∥∞∥xt∥∞dr

≤
M∥U∥∞ +

∫∞
0

e
1
2w(s−r)(M(∥W̄∥∞ 1

2M + ∥U∥∞ K
M1

) +M2∥W̄∥∞)∥U∥∞dr

Mϵ

<
1

2M
.

One can see that the integral representation of ṽs is bounded, therefore, we have for all Mϵ > M1,
∥ṽs∥∞ < 1

2M for any s. This results in the contradiction with ∥vT ∥∞ = 1
2M .

Set C = M∥U∥∞ +
∫∞
0

e
1
2w(s−r)(M(∥W̄∥∞ 1

2M + ∥U∥∞ K
M1

) +M2∥W̄∥∞)∥U∥∞dr, repeating
the above inequalities gives that ∥vt∥∞ < C

Mϵ
for any t, if Mϵ > M1.

If dxr

dr = 0 for r > T , we get

ṽr = e
∫ r
T
σ′(σ−1(ṽs))W̄dsṽT , r > T.

Then we can obtain that for β0 = − 1
2 maxj∈[m] Re(λj), where {λj}mj=1 collects all the eigenvalues

of W̄ ,

∥ṽr∥∞ <
Ce−β0(t−T )

Mϵ
, t > T.

Lemma A.2 There exists M2 depending on c̄, W̄ , Ū , ϵ, C,M, T, β0, such that for all Mϵ > M2 >
M1,

∥(I − e(t−r)W̄ )

(
I − diag

(
σ′(σ−1(ṽr)

)))
∥∞ <

ϵ

4m∥c∥∞CT
,

∥(−W̄ )−1(I − e(t−r)W̄ )

(
I − diag

(
σ′(σ−1(ṽr)

)))
Ū∥∞ <

ϵ

4m∥c∥∞KT
,

∥(I − e(t−r)W̄ )

(
I − diag

(
σ′(σ−1(ṽr)

)))
∥∞ <

ϵ

2m∥c∥∞C/β0
.

Proof. Based on the inequality of matrix norm and properties of activation functions, we get∥∥∥∥(I − e(t−r)W̄ )

(
I − diag

(
σ′(σ−1(ṽr)

)))∥∥∥∥
∞

<

∥∥∥∥(I − diag
(
σ′(σ−1(ṽr)

)))∥∥∥∥
∞

≤ M∥diag(ṽr)∥∞

<
MC

Mϵ
.∥∥∥∥(−W̄ )−1(I − e(t−r)W̄ )

(
I − diag

(
σ′(σ−1(ṽr)

)))
Ū

∥∥∥∥
∞

<

∥∥∥∥(−W̄ )−1∥∞∥
(
I − diag

(
σ′(σ−1(ṽr)

)))
∥∞∥Ū

∥∥∥∥
∞

≤ M∥(−W̄ )−1∥∞∥diag(ṽr)∥∞∥Ū∥∞

< ∥(−W̄ )−1∥∞∥Ū∥∞
MC

Mϵ
.

In order to get the desired inequalities, it is sufficient to set

M2 = max

{
M1,

4mMC2∥c̄∥∞T

ϵ
,
4mMCK∥c̄∥∞∥W̄−1∥∞∥Ū∥∞T

ϵ
,
2mMC2∥c̄∥∞/β0

ϵ

}
.
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A.3 PROOF OF THEOREM 4.1

Proof of Universal approximation for linear functionals by nonlinear RNNs. By the universal
approximation theorem for linear functionals by linear RNNs (Theorem A.1), and the universal
approximation theorem for linear RNNs by tanh RNNs (Proposition A.1), we have

sup
t∈R

∥Ht − Ĥt∥ ≡ sup
t∈R

sup
∥x∥X≤1

|Ht(x)− Ĥt(x)| ≤
ϵ

2
,

sup
t∈R

∥Ĥt − H̃t∥ ≡ sup
t∈R

sup
∥x∥X≤1

|Ĥt(x)− H̃t(x)| ≤
ϵ

2
,

which yields the desired estimate

sup
t∈R

∥Ht − H̃t∥ ≡ sup
t∈R

sup
∥x∥X≤1

|Ht(x− H̃t(x))| ≤ ϵ.

The assumption for activations in Equation (9) does not hold for hardtanh but the approximation
result still holds.

Proof of universal approximation for linear functionals by hardtanh RNNs. For any ϵ > 0, sup-
pose that the linear RNN in Theorem A.1 with an error ϵ

2 is represented by (c̄, W̄ , Ū). By the
construction of linear RNNs, we know W̄ is a diagonal negative matrix. With proper rescaling of
c̄ and Û , we obtain the following bound without changing the universal approximation estimate of
linear RNNs:

∥h̄t∥∞ =

∥∥∥∥∫ t

−∞
eW̄ (t−s)Ūxsds

∥∥∥∥
∞

≤ 1

2∥W̄∥∞
,

∥Ūxt∥∞ ≤ 1

2
.

Set ĉ = c̄, Ŵ = W̄ , Û = Ū , we get

sup
t∈R

sup
∥x∥X≤1

|H̄t(x)− Ĥt(x)| ≡ 0 ≤ ϵ

2
.

According to Theorem A.1, we have

sup
t∈R

∥Ht − H̄t∥ ≡ sup
t∈R

sup
∥x∥X≤1

|Ht(x)− H̄t(x)| ≤
ϵ

2
.

Combining the above inequalities gives that

sup
t∈R

∥Ht − Ĥt∥ ≡ sup
t∈R

sup
∥x∥X≤1

|Ht(x)− Ĥt(x)|

≤ sup
t∈R

sup
∥x∥X≤1

|Ht(x)− H̄t(x)|+ sup
t∈R

sup
∥x∥X≤1

|H̄t(x)− Ĥt(x)|

≤ ϵ.

A.4 PROOF OF THEOREM 4.2

Proof of approximation rates for linear functionals by tanh RNNs. By the approximation rate
theorem for linear functionals by linear RNNs (Theorem A.2), and proper rescaling from the univer-
sal approximation theorem for linear RNNs by tanh RNNs (Proposition A.1), we have

sup
t∈R

∥Ht − H̄t∥ ≡ sup
t∈R

sup
∥x∥X≤1

|Ht(x)− H̄t(x)| ≤
C(α)γd

βmα
,

sup
t∈R

∥H̄t − H̃t∥ ≡ sup
t∈R

sup
∥x∥X≤1

|H̄t(x)− H̃t(x)| ≤ ϵ
C(α)γd

βmα
,
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which gives

sup
t∈R

∥Ht − H̃t∥ ≡ sup
t∈R

sup
∥x∥X≤1

|Ht(x− H̃t(x))| ≤ (1 + ϵ)
C(α)γd

βmα
.

Let the quantity Mϵ in Proposition A.1 go to infinity, we get ϵ → 0. This completes the proof.

Remark A.2 The conditions (9) for activations do not hold for hardtanh, but the corresponding
approximation rate can be similarly achieved. This result is natural based on the universal approx-
imation of linear functionals by hardtanh RNNs.

A.5 PROOF OF PROPOSITION 4.1

Proof. We will present the proof for p = 2 and generalize it to any p > 1 in the following remark.

Assume the universal approximation theorem holds for homogeneous functionals by tanh RNNs.
For any ϵ > 0, there exists a tanh RNN represented by (c,W,U), such that

sup
t

sup
∥x∥X≤1

|Ht(x)− H̃t(x)| ≤ ϵ.

Take x as an input such that Ht(x) ̸= 0 for t ≥ 0. Without loss of generality, assume Ht(x) > 0
for t ≥ 0. Moreover, we set ϵ = 1

2 |Ht(κx)| = 1
2 |κ

2Ht(x)|, where the constant κ will be given later.
By the universal approximation theorem, there exists H̃t such that for any t,

|Ht(κx)− H̃t(κx)| ≤ ϵ,

|Ht(x)− H̃t(x)| ≤ ϵ.

Construct a linear RNN H̄t with the same parameters (c,W,U). Since H̄t(x) = H̃t(x) ≡ 0 for
t ≤ 0, there always exists a t > 0 such that for δ = 1

2 ,

|H̄t(κx)− H̃t(κx)| ≤ δ|H̃t(κx)|,
|H̄t(x)− H̃t(x)| ≤ δ|H̃t(x)|.

This is feasible due to h̄0 = h̃0,
dh̄0

dt = dh̃0

dt .

Now we take κ = 1
10 , δ = 1

2 , by continuity, we have (1− δ)(1− 1
2κ

2) > (1+ δ) 1κ (κ
2 + 1

2κ
2), then

H̄t(x) ≥ (1− δ)H̃t(x)

≥ (1− δ)(Ht(x)−
1

2
κ2Ht(x))

> (1 + δ)
1

κ
(κ2Ht(x) +

1

2
κ2Ht(x))

= (1 + δ)
1

κ
(Ht(κx) +

1

2
κ2Ht(x))

≥ (1 + δ)
1

κ
H̃t(κx)

≥ 1

κ
H̄t(κx).

However, we know that the linear RNN H̄t satisfies H̄t(x) =
1
κH̄t(κx). Note that H̄t(x) > (1 −

δ)(1− 1
2κ

3Ht(x))Ht(x) > 0, we get the contradiction.

Remark A.3 The above proof is given for p = 2. For general p ≥ 1, we just need to select a
corresponding κ ∈ (0, 1), such that (1− δ)(1− 1

2κ
p) > (1 + δ) 1κ (κ

p + 1
2κ

p). This is equivalent to
solve for a κ ∈ (0, 1), such that

1 >
1

2
κp +

1 + δ

1− δ

1

κ
(κp +

1

2
κp).

This is feasible because limκ→0
1
2κ

p + 1+δ
1−δ

1
κ (κ

p + 1
2κ

p) = 0.
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A.6 PROOF OF PROPOSITION 4.2

Proof. Based on the proof of homogeneous functionals, we can further utilize the property of sub-
homogeneous, i.e. κpHt(x) ≥ Ht(κx), to construct the contradiction in a similar approach for
p = 2. For κ = 1

10 , δ = 1
2 , by continuity we have (1− δ)(1− 1

2κ
2) > (1 + δ) 1κ (κ

2 + 1
2κ

2), then

H̄t(x) ≥ (1− δ)H̃t(x)

≥ (1− δ)(Ht(x)− 0.5κ2Ht(x))

> (1 + δ)
1

κ
(κ2Ht(x) + 0.5κ2Ht(x))

> (1 + δ)
1

κ
(Ht(κx) + 0.5κ2Ht(x))

≥ (1 + δ)
1

κ
H̃t(κx)

≥ 1

κ
H̄t(κx).

Therefore, we get the contradiction when the statistical functionals with p-sub-homogeneity can be
uniformly approximated by tanh RNNs.

A.7 PROOF OF THEOREM 4.3

Proof of inverse approximation theorem for linear functionals by nonlinear tanh RNNs.
Without loss of generality, we give the proof for α = 0 and k = 1. The dynamics of hid-
den states of tanh RNNs are described by the following differential equations:

dht

dt
= σ(Wht + Uxt),

h0 = 0.

Define vt =
dht

dt , then we have vt = σ(Wht + Uxt). Notice that σ′(z) = 1 − σ(z)2 holds for the
tanh activation, the dynamics of vt satisfies

dvt
dt

= σ′(Wht + Uxt)(Wvt + U
dxt

dt
)

= (I − diag(σ(Wht + Uxt))
2)(Wvt + U

dxt

dt
),

= (I − diag(vt)2)(Wvt + U
dxt

dt
),

v0 = 0.

We also consider a special class of constant inputs xt = x01{t≥0}, x0 ∈ Rd. Then for any t > 0,

dvt
dt

= (I − diag(vt)2)Wvt,

v0 = σ(Wx0).

The proof is based on the construction of the Lyapunov function. Define

V (v) =

m∑
i=1

∞∑
j=1

1

2jDii
v2ji ,

where vi is the i-th coordinate of v. It is straightforward to verify that V (v) ≥ 0, and V (v) = 0 if
and only if v = 0.

Since the special Hurwitz matrix W can be decomposed into W = DN , where D is a positive
diagonal matrix and N is a negative definite matrix. We can derive the global stability of vt as
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follows:
dV (vt)

dt
=

m∑
i=1

∞∑
j=1

1

Dii
v2j−1
i,t

dvi,t
dt

= v⊤t D
−1

( ∞∑
j=1

diag(vt)2j−2

)
dvt
dt

= v⊤t D
−1(I − diag(vt)2)−1(I − diag(vt)2)Wvt

= v⊤t D
−1Wvt

= v⊤t Nvt ≤ 0.

For any bounded input, we get ∥v0∥ ≤ 1− ι for some ι > 0. Therefore, we further have
dV (vt,m)

dt
≤ −αmV (vt,m),

where m is the hidden dimension, αm = nm

θdm
with θ =

∑∞
j=1

1
2j (1− ι)2j−2 as a constant related to

ι. Define β = infm∈N+ αm. Based on the Lyapunov exponential stability theorem, we establish the
exponential stability of vt,m, i.e. eαmtvt,m = o(1). Since ỹ

(1)
i,m(t) = c⊤vt,m, we get eβtỹ(1)i,m(t) =

o(1) for all m ∈ N+, which gives eβty(1)i (t) = o(1) for i = 1, · · · , d.

Remark A.4 The above proof is given for the tanh activation, but it can be generalized to the
sigmoid scenario using the following Lyapunov analysis:

dvt
dt

= diag(vt)
(
I − diag(vt)

)
Wvt,

V (v) =

m∑
k=1

− ln(1− vk)

Dkk
,

dV (vt)

dt
= v⊤t Nvt ≤ 0.

B DETAILS OF NUMERICAL ILLUSTRATIONS

In all numerical experiments, the training epochs are set as 40000 and the batch size is 128. The
optimizers and learning rates used are Adam (0.01) and SGD (0.1), respectively. The kernel weights
(W and U ) are randomly initialized using the TensorFlow orthogonal initializer. As there is no
significant difference in terms of loss curve trends, the results reported in the main text are all
trained by Adam. Every training is repeated independently for 10 times.

In the exponential-sum example, we set the number of exponential components as b = 8 and the
path length as 64. In the Airy function example, the constant t0 is 3.0 while the scale s0 is 2.5. The
path length is also 64.

The RNNs used in numerical experiments to approximate target functionals are trained over a varied
range of hidden dimensions, that is, [2, 22, 23, . . . , 27].

C DETAILS OF LYAPUNOV ANALYSIS

In this section, we present the numerical evidence for recurrent matrices as special Hurwitz and
general Hurwitz matrices. The special Hurwitz matrices form a subclass of Hurwitz matrices with
the decomposition W = DN , where D is a positive diagonal matrix and N is a negative definite
matrix. The general Hurwitz matrix can be decomposed into the product of a symmetric positive-
definite matrix S and a negative-definite matrix N (Duan & Patton, 1998).

C.1 SPECIAL HURWITZ: W = DN

In Figure 4 and Figure 5, we show the trajectories of hidden states and corresponding Lyapunov
function values for the input dimension d = 2 and d = 16. The inputs here are constant signals with
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random values xt = x01{t≥0}. The Lyapunov function is defined as

V (v) =

m∑
i=1

∞∑
j=1

1

2jDii
v2ji .

The monotonically-decreasing function values show the stability of hidden dynamics.
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Figure 4: Trajectories of tanh RNNs with a special Hurwitz recurrent kernel W =

[
−2 −1
−0.5 −1

]
=[

1 0
0 0.5

] [
−2 −1
−1 −2

]
and the corresponding Lyapunov function. The input dimension is d = 2.
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Figure 5: Trajectories of tanh RNNs with a randomly generated special Hurwitz recurrent kernel W
and the corresponding Lyapunov function. The input dimension is d = 16.
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C.2 GENERAL HURWITZ: W = SN

In Figure 6 and Figure 7, we show the trajectories of hidden states and corresponding quasi-
Lyapunov function values for the input dimension d = 2 and d = 16. The inputs here are also
constant signals with random values xt = x01{t≥0}. We construct the quasi-Lyapunov function by
taking the diagonal components of S as the matrix D. That is,

V quasi(v) =

m∑
i=1

∞∑
j=1

1

2jSii
v2ji .
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Figure 6: Trajectories of tanh RNNs with a Hurwitz recurrent kernel W =

[
−2.6 −2.2
−1.7 −1.6

]
=[

1 0.6
0.6 0.5

] [
−2 −1
−1 −2

]
and the corresponding quasi-Lyapunov function. The input dimension is

d = 2.
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Figure 7: Trajectories of tanh RNNs with a randomly generated Hurwitz recurrent kernel W and the
corresponding quasi-Lyapunov function. The input dimension is d = 16.

22


	Introduction
	Related work
	Problem formulation and prior results on linear RNNs
	Main results
	Approximation of linear functionals by nonlinear RNNs
	Approximation of nonlinear functionals by nonlinear RNNs
	Homogeneous functionals cannot be approximated by tanh RNNs
	Statistical functionals cannot be approximated by tanh RNNs

	Inverse approximation of linear functionals by nonlinear RNNs

	Conclusion
	Theoretical results and proofs
	Universal approximation and approximation rate of linear functionals by linear RNNs
	Proofs of preliminary propositions and lemmas
	Proof of Theorem 4.1
	proof of Theorem 4.2
	Proof of Proposition 4.1
	proof of Proposition 4.2
	proof of Theorem 4.3

	Details of numerical illustrations
	Details of Lyapunov analysis
	Special Hurwitz: W = DN
	General Hurwitz: W = SN


