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ABSTRACT

Deep object recognition models have been very successful over benchmark
datasets such as ImageNet. How accurate and robust are they to distribution
shifts arising from natural and synthetic variations in datasets? Prior research on
this problem has primarily focused on ImageNet variations (e.g., ImageNetV2,
ImageNet-A). To avoid potential inherited biases in these studies, we take a
different approach. Specifically, we reanalyze the ObjectNet dataset' recently
proposed by Barbu et al. containing objects in daily life situations. They showed
a dramatic performance drop of the state of the art object recognition models on
this dataset. Due to the importance and implications of their results regarding
the generalization ability of deep models, we take a second look at their analysis.
We find that applying deep models to the isolated objects, rather than the entire
scene as is done in the original paper, results in around 20-30% performance
improvement. Relative to the numbers reported in Barbu et al., around 10-15%
of the performance loss is recovered, without any test time data augmentation.
Despite this gain, however, we conclude that deep models still suffer drastically
on the ObjectNet dataset. We also investigate the robustness of models against
synthetic image perturbations such as geometric transformations (e.g., scale,
rotation, translation), natural image distortions (e.g., impulse noise, blur) as well
as adversarial attacks (e.g., FGSM and PGD-5). Our results indicate that limiting
the object area as much as possible (i.e., from the entire image to the bounding
box to the segmentation mask) leads to consistent improvement in accuracy and
robustness. Finally, through a qualitative analysis of ObjectNet data, we find that
i) a large number of images in this dataset are hard to recognize even for humans,
and ii) easy (hard) samples for models match with easy (hard) samples for humans.
Overall, our analyses show that ObjecNet is still a challenging test platform for
evaluating the generalization ability of models. Code and data are available at
https://github.com/aliborji/ObjectNetReanalysis.git’.

1 INTRODUCTION

Object recognition® can be said to be the most basic problem in vision sciences. It is required
in the early stages of visual processing before a system, be it a human or a machine, can
accomplish other tasks such as searching, navigating, or grasping. Application of a convolutional
neural network architecture (CNN) known as LeNet (LeCun et al., 1998), albeit with new bells
and whistles (Krizhevsky et al., 2012), revolutionized not only computer vision but also several
other areas. With the initial excitement gradually damping, researchers have started to study the
shortcomings of deep models and question their generalization ability. From prior research, we
already know that CNNs: a) lack generalization to out of distribution samples (e.g., Recht et al.
(2019); Barbu et al. (2019); Shankar et al. (2020); Taori et al. (2020); Koh et al. (2020)). Even after
being exposed to many different instances of the same object category, they fail to fully capture the
concept. In stark contrast, humans can generalize from only few examples (a.k.a few-shot learning),
b) perform poorly when applied to transformed versions of the same object. In other words, they

'"https://objectnet.dev/

2See https://openreview.net/forum?id=Q4EUywJIkqr for reviews and discussions. A
prelimnary version of this work has been published in Arxiv (Borji, 2020).

3Classification of an object appearing lonely in an image. For images containing multiple objects, object
localization or detection is required first.
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are not invariant to spatial transformations (e.g., translation, in-plane and in-depth rotation, scale)
as shown in (Azulay & Weiss, 2019; Engstrom et al., 2019; Fawzi & Frossard, 2015), as well as
noise corruptions (Hendrycks & Dietterich, 2019; Geirhos et al., 2018b), and c¢) are vulnerable
to imperceptible adversarial image perturbations (Szegedy et al., 2013; Goodfellow et al., 2014;
Nguyen et al., 2015). Majority of these works, however, have used either the ImageNet dataset or its
variations, and thus might be biased towards ImageNet characteristics. Utilizing a very challenging
dataset that has been proposed recently, known as ObjectNet (Barbu et al., 2019), here we seek to
answer how well the state of the art CNNs generalize to real world object recognition scenarios.
We also explore the role of spatial context in object recognition and answer whether it is better to
use cropped objects (using bounding boxes) or segmented objects to achieve higher accuracy and
robustness. Furthermore, we study the relationship between object recognition, scene understanding,
and object detection. These are important problems that have been less explored.

Several datasets have been proposed for training and testing object recognition models, and to study
their generalization ability (e.g., ImageNet by Deng et al. (2009), Places by Zhou et al. (2017),
CIFAR by Krizhevsky et al. (2009), NORB by LeCun et al. (2004), and iLab20M by Borji et al.
(2016)). As the most notable one, ImageNet dataset has been very instrumental for gauging the
progress in object recognition over the past decade. A large number of studies have tested new ideas
by training deep models on ImageNet (from scratch), or by finetuning pre-trained (on ImageNet)
classification models on other datasets. With the ImageNet being retired, the state of the object
recognition problem remains unclear. Several questions such as out of distribution generalization,
“superhuman performance” (He et al., 2016) and invariance to transformations persist. To rekindle
the discourse, recently Barbu et al. (2019) introduced the ObjectNet dataset which according to their
claim has less bias than other recognition datasets*. This dataset is supposed to be used solely as
a test set and comes with a licence that disallows the researchers to finetune models on it. Images
are pictured by Mechanical Turk workers using a mobile app in a variety of backgrounds, rotations,
and imaging viewpoints. ObjectNet contains 50,000 images across 313 categories, out of which 113
are in common with ImageNet categories. Astonishingly, Barbu et al. found that the state of the art
object recognition models perform drastically lower on ObjectNet compared to their performance
on ImageNet (about 40-45% drop). Our principal goal here it to revisit the Barbu et al.’s analysis
and measure the actual performance drop on ObjectNet compared to ImageNet. To this end, we
limit our analysis to the 113 overlapped categories between the two datasets. We first annotate
the objects in the ObjectNet scenes by drawing boxes around them. We then apply a number of
deep models on these object boxes and find that models perform significantly better now, compared
to their performance on the entire scene (as is done in Barbu et. al). Interestingly, and perhaps
against the common belief, we also find that training and testing models on segmented objects,
rather than the object bounding box or the full image, leads to consistent improvement in accuracy
and robustness over a range of classification tasks and image transformations (geometric, natural
distortions, and adversarial attacks). Lastly, we provide a qualitative (and somewhat anecdotal)
analysis of extreme cases in object recognition for humans and machines.

2 RELATED WORK

Robustness against synthetic distribution shifts. Most research on assessing model robustness
has been focused on synthetic image perturbations (e.g., spatial transformations, noise corruptions,
simulated weather artifacts, temporal changes (Gu et al., 2019), and adversarial examples) perhaps
because it is easy to precisely define, implement, and apply them to arbitrary images. While models
have improved significantly in robustness to these distribution shifts (e.g., Zhang (2019); Zhang
et al. (2019); Cohen & Welling (2016)), they are still not as robust as humans. Geirhos et al. (2018b)
showed that humans are more tolerant against image manipulations like contrast reduction, additive
noise, or novel eidolon-distortions than models. Further, humans and models behave differently
(witnessed by different error patterns) as the signal gets weaker. Zhu et al. (2016) contrast the
influence of the foreground object and image background on the performance of humans and models.

Robustness against natural distribution shifts. Robustness on real data is a clear challenge for
deep neural networks. Unlike synthetic distribution shifts, it is difficult to define distribution shifts
that occur naturally in the real-world (such as subtle changes in scene composition, object types,
and lighting conditions). Recht et al. (2019) closely followed the original ImageNet creation process

*ObjectNet dataset, however, has it own biases. It consists of indoor objects that are available to many
people, are mobile, are not too large, too small, fragile or dangerous.
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Figure 1: Sample images from the ObjectNet ImageNet ObjectNet
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to build a new test set called ImageNetV2. They reported a performance gap of about 11% (top-1
acc.) between the performance of the best deep models on this dataset and the original test set.
Similar observations have been made by Shankar et al. (2020). By evaluating 204 ImageNet models
in 213 different test conditions, Taori et al. (2020) found that a) current synthetic robustness does not
imply natural robustness. In other words, robustness measures for synthetic distribution shifts are
weakly predictive of robustness on the natural distribution shifts, b) robustness measurements should
control for accuracy since higher robustness can sometimes be explained by the higher accuracy on
a standard unperturbed test set, and c) training models on larger and more diverse data improves
robustness but does not lead to full closure of the performance gap. A comprehensive benchmark of
distribution shifts in the wild, known as WILDS, has recently been published by Koh et al. (2020),
encompassing different data modalities including vision. In D’ Amour et al. (2020), authors regard
“underspecification” a major challenge to the credibility and generalization of modern machine
learning pipelines. An ML pipeline is underspecified when it returns models that perform very
well on held-out test sets during training but perform poorly at deployment time.

Contextual interference. Context plays a significant role in pattern recognition and visual
reasoning (e.g., Bar (2004); Torralba & Sinha (2001); Rabinovich et al. (2007); Heitz & Koller
(2008); Galleguillos & Belongie (2010)). The extent to which visual context is being used by deep
models is still unclear. Unlike models, humans are very good at exploiting context when it is helpful
and discard it when it causes ambiguity. In other words, deep models do not understand what is
the foreground object and what constitutes the background®. Nagarajan et al. (2020) mention that
ML models utilize features (e.g., image background) which are spuriously correlated with the label
during training. This makes them fragile at the test time when statistics slightly differ. As we argue
here, this is one of the main reasons why deep models are so vulnerable to geometric and adversarial
perturbations. Geirhos et al. (2020) have studied this phenomenon under the “shortcut learning”
terminology from a broader perspective.

Insights from human vision. CNNs turn out to be good models of human vision and can
explain the first feed-forward sweep of information (See Kriegeskorte (2015) for a review).
They, however, differ from human visual processing in several important ways. Current object
recognition methods do not rely on segmentation, whereas figure-ground segmentation plays a
significant role in human vision, in particular for the encoding of spatial relations between 3D object
parts (Biederman, 1987; Serre, 2019). Some computer vision works, predating deep learning, have
also shown that pre-segmenting the image before applying the recognition algorithms, improves
the accuracy (Malisiewicz & Efros, 2007; Rabinovich et al., 2007; Rosenfeld & Weinshall, 2011).
Unlike the human vision system, CNNs are hindered drastically in crowded scenes (e.g., Volokitin
et al. (2017)). CNNs rely more on texture whereas humans pay more attention to shape (Geirhos
et al., 2018a). Utilizing minimal recognizable images, Ullman et al. (2016) argued that the human
visual system uses features and processes that are not used by current deep models.

3As an example, consider a model that is trained to classify camels vs. cows, with camels always shown
in sandy backgrounds and cows shown against grassy backgrounds. Although such a model does well during
training, it gets confused when presented with cows in sandy backgrounds at test time (Beery et al., 2018). See
also Rosenfeld et al. (2018) for another example in the context of object detection
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3 EXPERIMENTS AND RESULTS

3.1 ACCURACY AND ROBUSTNESS AGAINST NATURAL DISTRIBUTION SHIFTS

A critic of Barbu et al. (2019). Barbu et al.’s work is a great contribution to the field to answer
how well object recognition models generalize to the real-world circumstances and to control for
biases in data collection. It, however, suffers from a major shortcoming that is making no distinction
between “object detection” and “object recognition”. This confusion brings along several concerns:

1. They use the term “object detector” to refer to “object recognition” models. Object
detection and object recognition are two distinct, yet related, tasks. FEach one has
its own models, datasets, evaluation measures, and inductive biases. For example, as
shown in Fig. 1, images in object recognition datasets (e.g., ImageNet) often contain a
single object, usually from a closeup view, whereas scenes in object detection datasets
(e.g., MS COCO (Lin et al., 2014), Openlmages (Kuznetsova et al., 2018)) usually have
multiple objects. Objects in the detection datasets vary more in some parameters such as
occlusion and size. For instance, there is a larger variation in object scale in detection
datasets (Singh & Davis, 2018). This discussion also relates to the distinction between
“scene understanding” and “object recognition”. To understand a complex scene, as
humans we look around, fixate on individual objects to recognize them, and accumulate
information over fixations to perform more complex tasks such as answering a question or
describing an event. To avoid biases in recognition datasets (e.g., typical scales or object
views), we propose to (additionally) use detection datasets to study object recognition. We
will discuss this further in Section 4.

2. Instead of applying models to isolated objects, Barbu et al. apply them to cluttered scenes
containing multiple objects. Unlike ImageNet where the majority of images include only a
single object, ObjectNet images have multiple objects in them and are often more cluttered.
Therefore, the drop in performance of models on ObjectNet can be merely due to the fact
that pretrained models on ImageNet have been trained on individual objects.

3. In addition to top-1 accuracy, Barbu et al. also report top-5 accuracy. One might argue that
this may suffice in dealing with scenes containing multiple objects. Top-5 accuracy was
first introduced in Russakovsky et al. (2015) to remedy the issues with the top-1 accuracy.
The latter can be overly stringent by penalizing predictions that appear in the image but do
not correspond to the target label. Top-5 accuracy itself, however, has two shortcomings.
First, a model can still be penalized if all of the five guesses exist in the image, but none is
the image label. Both scores fall short in addressing the images with counter-intuitive
labels (e.g., when non-salient objects are labeled; Appx. E). Second, on fine-grained
classification tasks (ImageNet has several fine-grained classes e.g., dogs), allowing five
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predictions can make certain class distinctions trivial (Shankar et al., 2020). For example,
there are five turtles in the ImageNet class hierarchy (mud turtle, box turtle, loggerhead
turtle, leatherback turtle, and terrapin) that are difficult to distinguish. A classifier may
trick the score by generating all of these labels for a turtle image to ensure it predicts the
correct label. Shankar et al. proposed to use multi-label accuracy as an alternative to top-5
score. Each image has a set of target labels (i.e., multi-label annotations). A prediction
is marked correct if it corresponds to any of the target labels for that image. This score,
however, may favor a model that generates correct labels but may confuse the locations over
amodel that is spatially more precise but misses some objects (See also Beyer et al. (2020)).
Regardless, since multi-label annotations for ObjectNet are not available, we report both
top-1 and top-5 scores when feeding isolated objects to models.

Bounding box annotation. The 113 object categories in the ObjectNet dataset, overlapped with
the ImageNet, contain 18,574 images in total. On this subset, the average number of images per
category is 164.4 (min=55, max=284). Fig. 8 in Appx. A shows the distribution of the number of
images per category on this dataset (envelope and dish drying rack are the most and least frequent
objects, respectively). We drew a bounding box around the object corresponding to the category
label of each image. If there were multiple nearby objects from the same category (e.g., chairs
around a table), we tried to include all of them in the bounding box. Some example scenes and their
corresponding bounding boxes are given in Fig. 1. Appx. H shows more stats on ObjectNet.

Object recognition results. We employ six widely-used state of the art deep neural
networks including AlexNet (Krizhevsky et al., 2012), VGG-19 (Simonyan & Zisserman, 2014),
GoogleNet (Szegedy et al., 2015), ResNet-152 (He et al., 2016), Inception-v3 (Szegedy et al.,
2016)6, and MNASNet (Tan et al., 2019). AlexNet, VGG-19, and ResNet-152 have also been used
in the ObjectNet paper (Barbu et al., 2019). We use the PyTorch implementation of these models’.
Since the code from the ObjectNet paper is unavailable (at the time of preparing this work), in
addition to applying models to bounding boxes and plotting the results on top of the results from the
ObjectNet paper, we also run our code on both the bounding boxes and the full images. This allows a
fair comparison and helps mitigate possible inconsistency in data processing methods (e.g., different
data normalization schemes or test time data augmentation such as rotation, scale, color jittering,
cropping, etc.).

Fig. 2 shows an overlay of our results in Fig. 1 from the ObjectNet paper. As can be seen, applying
models to the object bounding box instead of the entire scene improves the accuracy about 10-15%.
Although the gap is narrower now, models still significantly underperform on ObjectNet than the
ImageNet dataset. Using our code, the improvement going from full image to bounding boxes is
around 20-30% across all tested models (the right panel in Fig. 2). Our results using the full image
are lower than Barbu et al.’s results using the full image (possibly because we do not utilize data
augmentation). This relative difference entails that applying their code to bounding boxes will likely
improve the performance beyond 10% that we obtained here. Assuming 25% gain in performance
on top of their best results when using boxes, will still not close the performance gap which indicates
that ObjectNet remains a challenging dataset for testing object recognition models.

Breakdown of accuracy over the 113 categories is shown in Appx. B (Figs. 9 & 10 over isolated
objects and Figs. 11 & 12 over the full image). Interestingly, in both cases, almost all models, except
GoogLeNet on isolated objects and AlexNet on the full image, perform the best over the safety pin
category. Inspecting the images from this class, we found that they have a single safety pin often
held by a person (perhaps about the same distance from the camera thus similar scales). The same
story is true about the banana class which is the second easiest category using the bounding boxes.
This object becomes much harder to recognize when using the full image (26.88% vs. 70.3% using
boxes) which highlights the benefit of applying models to isolated objects rather than scenes.

3.2 ACCURACY AND ROBUSTNESS AGAINST SYNTHETIC DISTRIBUTION SHIFTS

3.2.1 ROBUSTNESS AGAINST COMMON IMAGE CORRUPTIONS

Previous work has shown that ImageNet-trained CNNs generalize poorly over a wide range of
image distortions (e.g., Hendrycks & Dietterich (2019); Azulay & Weiss (2019); Dodge &
Karam (2017)). These works, however, have applied CNNs to the whole scene. Here, we

Barbu et al. have used Inception-v4.
"https://pytorch.org/docs/stable/torchvision/models.html
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Figure 3: Left two panels) Average top-1 and top-5 accuracy of models over 1130 images from the ObjectNet
dataset corrupted by 14 natural image distortions. Right two panels) Average classification accuracy per each of
the 113 categories (left) and each of the 14 distortion types (right). In all cases, applying models to the isolated
object (using bounding boxes) leads to higher robustness than applying them to the full image.

ask whether applying the models to the bounding boxes can improve robustness against image
distortions. Following Hendrycks & Dietterich (2019), we systematically test how model accuracy
degrades if images are corrupted by 14 different types of distortions including Gaussian noise,
shot noise, impulse noise, defocus blur, glass blur, motion blur, zoom
blur, snow, frost, fog, brightness, contrast, elastic transform, and JPEG
compression at 3 levels of corruption severity. Fig. 36 (Appx. F) shows sample images along
with their distortions. Ten images from each of the 113 categories of ObjectNet (1130 images in
total) were fed to three models including VGG-19, Inception-v3, and ResNet-152.

Aggregate results over the full image and the object bounding box (both resized to 224 x 224
pixels) are shown in Fig. 3. All three models are more robust when applied to the object bounding
box than the full image at all corruption levels, using both top-1 and top-5 scores (left two panels).
Among models, ResNet-152 performs better and is the most robust model. It is followed by the
Inception-v3 model. For nearly all of the 113 object categories, using bounding boxes leads to higher
robustness than using the full image (the third panel). Similarly, using bounding boxes results in
higher robustness against all distortion types (the right-most panel). Across distortion types, shown
in Figs. 37 & 38 (Appx. F), ResNet-152 consistently outperforms the other two models at all severity
levels, followed by Inception-v3. It seems that models are hindered more by impulse noise, frost,
zoom blur, and snow distortions. The top-1 accuracy at severity level 2 on these distortions is below
20%. Opverall, we conclude that limiting the object area only to the bounding box leads not only
to higher prediction accuracy but also to higher robustness against image distortions. Extrapolating
this approach, can we improve robustness by shrinking the object region even further by using the
segmentation masks? We will thoroughly investigate this question in the next subsections.

3.2.2 ROBUSTNESS AGAINST ADVERSARIAL PERTURBATIONS

Despite being very accurate, CNNs are highly vulnerable to adversarial inputs (Szegedy et al.,
2013; Goodfellow et al., 2014). These inputs are crafted carefully and maliciously by adding
small imperceptible perturbations to them (e.g., altering the value of a pixel up to 8 units under
the {.,-norm; pixels in the range [0, 255]). Here we apply the ImageNet pretrained models to 1130
images that were selected above. The models are tested against the Fast Gradient Sign Method
(FGSM) (Goodfellow et al., 2014) at two perturbation budgets in the untargeted white-box setting.

Table. 1 shows the results. We find Full Image Bounding Box

that models are more resilient against Model [ =2/255 ¢ = 8/255] ¢ = 2/255 ¢ = 8/255
the FGSM attack when applied to the VGG-19 | 0.53/2.48 0.09/0.71 | 3.27/10.44 1.06/5.66
bounding box than the full image, Inception-v3|3.18/10.62 142/4.42 | 9.03/25.13 4.87/156
While the input size is the same in _ResNet152[2.39/1034 1.15/4.96 |10.62/26.64 6.64/19.73

both cases (224x224), the adversary
has more opportunity to mislead the
classifier in the full image case since a larger fraction of pixels play an insignificant role in
the decisions made by the network. This aligns with observations from the visualization tools
(e.g., Selvaraju et al. (2017)) revealing that CNNs indeed rely only on a small subset of image
pixels to elicit a decision. One might argue that the lower robustness on the full images could be
due to training and test discrepancy (i.e., training models on single objects and applying them to the
entire scene). To address this, in the next subsection we train and test models in the same condition.

Table 1: Robust accuracy (top-1/top-5) against FGSM attack.
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3.3 THE INFLUENCE OF THE SURROUNDING CONTEXT ON ROBUSTNESS

Despite a large body of
literature on whether and
how much visual context
benefits CNNs in terms of
accuracy and robustness®,
the matter has not been
settled yet (e.g., Bar (2004);
Torralba & Sinha (2001); = 4]~ werenesanainn
Rabinovich et al. (2007);
Rosenfeld et al. (2018);  °*| ' -
Heitz & Koller (2008); °'| et E S " e~
Divvala et al. (2009); Zhu  CoU™=t Tl reccecoe g rrwemceemoéed
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(2020);  Malisiewicz &  Figure 4: The effect of background subtraction (a.k.a foreground detection)
Efros (2007)). To study on adversarial robustness (here against the FGSM attack). Two models
how context surrounding are trained and tested on clean and noisy data from MNIST (left) and
an object impacts model FashionMNIST (right) datasets. In the noise case, the object is overlaid
accuracy and robustness in in a white noise field (no noise on the object itself).

more detail, we conducted

two experiments. In the first one, we trained two CNNs (2 conv layers, each followed by a pooling
layer and 2 final fc layers) on MNIST and Fashion MNIST datasets, for which it is easy to derive
the foreground masks (Figs. 39 & 40; Appx. G). CNNs were trained on either the original clean
images or the foreground objects placed on a white noise background. We then tested the models
against the FGSM attack w/o background subtraction. With background subtraction, we essentially
assume that the adversary has access only to the foreground object (i.e., effectively removing
the perturbations that fall on the background). As results in Fig. 4 show, background subtraction
improves the robustness substantially using both models and over both datasets.
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To examine whether the above conclusion generalizes to more complex natural scenes, we ran a
second experiment. First, we selected images from ten classes of the MS COCO dataset including
chair, car, book, bottle, dinning table, umbrella, boat, motorcycle, sheep,
and cow. Objects from these classes come with a segmentation mask (one object per image; 100
images per category; 1000 images in total). Around 32.7% of the image pixels fall inside the object
bounding box and around 58.1% of the bounding box pixels fall inside the object mask. Fig. 5 shows
a sample chair alongside its bounding box and its segmentation mask.

We then trained three ResNet-18
models (finetuned on ImageNet), ©
one per each input type: 1) full
image, 2) bounding box, and
3) segmented object (placed in
a dark background). Models
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in each case (e.g., by avoiding Figure 5: Model accuracy against adversarial perturbations (left) and
overfitting). The test accuracy9 noise corruptions (middle). The right panel shows a sample chair image
of models in order are 66.9%, along with its bounding box and segmentation mask.

78%, and 80.3%. One reason

behind lower prediction accuracy using boxes might be because multiple objects may fit inside

8Majority of such works are focused on model accuracy
® Taori et al. (2020) argue that robustness scores should control for accuracy as more predictive models in
general are more robust. To avoid this issue we used models that have about the same standard accuracy.



Published as a conference paper at ICLR 2021

2

-
A

& 8 M
0 75

— Full image

— Bounding Box | 20

— Seq. Mask
65
w /—m

1l 2 3 4 5 & 7 B8 5% 115 5 90 w0 45 30 0 30 45 80 W 50 40 30 20 10 ¢ 10 20 30 40 530
scale ratio rotation angle (to left)  translation amount  (to right)

-
3

accuracy

&

3

Figure 6: Performance (top-1) of the ResNet-18 model against geometric transformations.

the bounding box (e.g., for elongated objects such as broom). Model performance against FGSM
and ¢, PGD-5 (Projected Gradient Descent by Madry et al. (2017)) adversarial attacks are shown
in Fig. 5 (left panel). We observe that training models on segmented objects leads to higher
adversarial robustness against both types of attacks. The improvement is more pronounced at higher
perturbations. We also considered a condition in which we masked the perturbations that fall on the
background, denoted as “Seg. Mask + FG” in the figure. We noticed even higher robustness against
the attacks by removing the background perturbations. These results encourage using foreground
detection as an effective adversarial defense.

The middle panel in Fig. 5 shows model robustness against noise corruptions (averaged over the
14 distortions used in Section 3.2.1). Here again, we find that using segmentation masks leads to
higher robustness compared to the full image and object boxes. “Seg. Mask + FG” leads to the best
robustness among the input types. While it might be hard to draw a general conclusion regarding
the superiority of the segmentation masks over bounding boxes in object recognition accuracy, our
investigation suggests that using masks leads to a significant boost in adversarial robustness with
little or no drop in standard accuracy. Our results offer an upper bound in the utility of segmentation
masks in robustness. More work is needed to incorporate this feat in CNNs (i.e., using attention).

3.3.1 ROBUSTNESS AGAINST GEOMETRIC TRANSFORMATIONS

We also tested the ResNet-18 model (i.e., trained over the full image, the bounding box, and the
segmented object on ObjectNet; as above) against three geometric transformations including scaling,
in-plane rotation, and horizontal translation. Fig. 6 shows the results over the 300 test images that
were used in the previous subsection. We find that the model trained on segmentation masks is more
robust than the other two models over all three geometric transformations, followed by the models
trained on the object bounding boxes and the full image, in order.

3.4 QUALITATIVE INSPECTION OF OBJECTNET IMAGES AND ANNOTATIONS

During the annotation of ObjectNet images, we came across the following observations: a) Some
objects look very different when they are in motion (e.g., the fan in row 4 of Fig. 34 in Appx. D),
or when they are shadowed or occluded by other objects (e.g., the hammer in Fig. 34 row 4), b)
Some object instances differ a lot from the typical instances in the same class (e.g., the helmet in
Fig. 34 row 5; the orange in Fig. 33 row 5), ¢) Some objects can be recognized only through reading
their captions (e.g., the pet food container in Fig. 33 row 2), d) Some images have wrong labels
(e.g., the pillow in Fig. 33 row 2; the skirt in Fig. 33 row 1; the tray in Fig. 34 row 2; See also Appx.
E), e) Some objects are extremely difficult for humans (e.g., the tennis racket in Fig. 34 row 4; the
shovel in Fig. 33 row 4; the tray in Fig. 33 row 1), f) In many images, objects are occluded by hands
holding them (e.g., the sock and the shovel in Fig. 33 row 4), g) Some objects are hard to recognize
in dim light (e.g., the printer in Fig. 33 row 2), and h) Some categories are often confused with other
categories in the same set. Example sets include {bath towel, bed sheet, full sized towel, dishrag or
hand towel}, {sandal, dress shoe (men), running shoe}, {t-shirt, dress, sweater, suit jacket, skirt},
{ruler, spatula, pen, match}, {padlock, combination lock}, and {envelope, letter}.

The left panel in Fig. 7 shows four easy (highly confident correct predictions) and four hard (highly
confident misclassifications) for ResNet-152 over six ObjectNet categories. In terms of the difficulty
level, easy(difficult) objects for models appear easy(difficult) to humans too. Also, our qualitative
inspection shows that ObjectNet includes a large number of objects that can be recognized only after
a careful examination (the right panel in Fig. 7). More examples are given in Appx. C.
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Figure 7: Left) Four easiest (highest classification confidence; 1st rows) and four hardest (lowest confidence;
2nd rows) samples per category from the ObjectNet dataset for the ResNet-152 model (predictions shown in
blue). The easy samples seem to be easier for humans (qualitatively), while the harder ones also seem to be
harder. Right) A collection of challenging objects from the ObjectNet dataset for humans. Can you guess the
category of the annotated objects in these images? Keys are: row 1: skirt, fan, desk lamp, safety pin, still
camera, and spatula, row 2: vase, shovel, vacuum cleaner, printer, remote control, and pet food container,
and row 3: sandal, vase, match, spatula, stuffed animal, and shovel. Appxs. C & D contain more examples.

4 TAKEAWAYS AND DISCUSSION

Our investigation reveals that deep models perform significantly better when applied to isolated
objects rather than the entire scene. The reason behind this is two-fold. First, there is less variability
in single objects compared to scenes containing multiple objects. Second, deep models (used
here and also in ObjectNet paper) have been trained on ImageNet images which are less cluttered
compared to the ObjectNet images. We anticipate that training models from scratch on large scale
datasets that contain isolated objects will likely result in even higher accuracy. Assuming around
30% increase in performance (at best) on top of Barbu et al.’s results using bounding boxes still
leaves a large gap of at least 15% between ImageNet and ObjectNet which means that ObjectNet is
indeed much harder. It covers a wider range of variations than ImageNet including object instances,
viewpoints, rotations, occlusions, etc which pushes the limits of object recognition models. Hence,
despite its limitations and biases, ObjectNet dataset remains a great platform to test deep models in
realistic situations.

We envision four research directions for the future work in this area. First, background subtraction
is a promising mechanism and should be investigated further over large scale datasets (given the
availability of high-resolution masks; e.g., MS COCOQO). We found that it improves robustness
substantially over various types of image perturbations and attacks. Humans can discern the
foreground object from the image background with high precision. This feat might be the key to
robustness and hints towards an interplay and feedback loop between recognition and segmentation
that is currently missing in CNNs. Second, measuring human performance on ObjectNet will
provide a useful baseline for gauging model performance. Barbu et. al report an accuracy of around
95% when they asked subjects to mention the objects that are present in the scene. This task,
however, is different from recognizing isolated objects similar to the regime that was considered
here (i.e., akin to rapid scene categorization tasks; See Serre et al. (2007)). Besides, error patterns
of models and humans (e.g., Borji & Itti (2014)), in addition to crude accuracy measures, will
inform us about the differences in object recognition mechanisms between humans and machines.
It could be that models work in a completely different fashion than the human visual system. Third,
as discussed in Section 3.1, multi-label prediction accuracy is more appropriate for evaluating
recognition models. Annotating all objects in ObjectNet images will thus provide an additional
dimension to assess models. In this regard, we propose a new task where the goal is to recognize
objects in their natural contexts. This task resembles (cropped) object recognition and object
detection, but it is slightly different (i.e., the goal here is to recognize an object limited by a
bounding box given all available information in the scene). This is essentially an argument against
the recognition-detection dichotomy. Finally, it would be interesting to see how well the state of
the art object detectors perform on the ObjectNet dataset (e.g., over overlapped classes between
ObjectNet and MS COCO (Lin et al., 2014)). We expect a significant drop in detection performance
since it is hard to recognize objects in this dataset.

From a broader perspective, our study reinforces the idea that there is more to scene understanding
then merely learning statistical correlations. In particular, background subtraction and visual context
are crucial in robust recognition and demand further investigation in future studies.
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A FREQUENCY OF THE IMAGES PER CATEGORY
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Figure 8: Frequency of the images (one object label per image) over the 113 categories of ObjectNet overlapped
with the ImageNet. The right bar chart is the continuation of of the left one.

14



Published as a conference paper at ICLR 2021

B MODEL ACCURACY PER CATEGORY USING BOXES VS. FULL IMAGE
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Figure 10: Performance of models on object bounding boxes (from left to right: ResNet, Inception3, and

MNASNet).
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Figure 11: Performance of models on the entire image (from left to right: AlexNet, VGG, and GoogLeNet).

17



Published as a conference paper at ICLR 2021

Accuracy %

0
o

Safety pin
Plunger
Ennis racket
ilet paper roll
il
Hair dryer
Paper tovel
ron (for clothes)
Desk lamp
Banana
Jeans
Remete control
Vacuum cleaner-
Weight (exercise)
Nail (fastener)
Braom
spatula
Water battle
Pill battle
Band Ald
Ruler
Match
Fan
Sleeping bag -
Pen |
paintorusn |
Padlock
Dress 4
Lighter -
Backpack |
Microwave

Screw
ik
Taster
Can opener
Beer battle
Sandal
Printer

Bicycle
Plastic bag
Whistle

Crange

Dress shoe (men)
Strainer

Running shoe
Keyboard

Laptop {open)

Wine bottle
Speaker

Wallet

sunglasses

Bottle cap

Butcher's knife
CoffeefFrench press
™

Shovel

Computer mouse
Dishrag or hand towel
Portable heater

Bath towel

Helmet.

Monitor

Ta

Mug
Lemon |

Tshirt

Salt shaker-
Lipstick |

umbrella
Weight scale
Soap dispenser.
Binder (closed)
Stuffed animal
Tapat
Tie
Letter opener-
Drying rack for plates

Measuring cup
Vase

Drinking Cup
Swimming trunks
Basket

Sock

Suit jacket

Clothes hamper
Combination fock
Doormat

Mixing / Salad Bowl
Soup Bowl

Bread loaf

Figure 12: Performance of models on the entire image (from left to right: ResNet, Inception3, and MNASNet).
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C EASIEST AND HARDEST OBJECTS FOR THE RESNET-152 MODEL

True: analog clock; digital clock True: analog clock; digital clock True: analog clock; digital clock True: analog clock; digital clock
pred: analog clock pred: analog clock Pred: analog clock

confidence: 11565.05 confidence: 11307.61 confidence: 10159.05

Pred: analog clock
confidence: 9294.60

N

U AR TRRR Y

(a) Correctly classified; highest confidences

True: analog clock; digital clock True: analog clock: digital clack True: analog clock; digital clock True: analog clock: digital clock
Pred: digital clock Pred I clock Pred: analog clock Pred: digital clock
«confidence: 2370.85 confidence: 2504.20 confidence: 2537.13 confidence: 2553.00

(b) Correctly classified; lowest confidences

True: analog clock; digital clock
Pred: stopwatch, stop watcl
confidence: 5616.48

True: analog clock; digital clock True: analog clock; digital clock
pred: wall clock pred: wall cloc
confidence: 7347.53 confidence: 7008.05

True: analog clock; digital clock
Pred: CD player

confidence: 5942.38

(c) Misclassified; highest confidences

True: analog clock; digital clock True: analog clock: digital clock True: analog clock: digital clock True: analog clock: digital clock
Pred: pencil sharpener Pred: remote control, remote Pred: car mirror Pred: tape player
confidence: 1761.55 confidence: 1910.67 confidence: 1934.90 confidence: 1935.67

(d) Misclassified; lowest confidences

Figure 13: Correctly classified and misclassified examples from the Alarm clock class by the ResNet model.
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True: banana True: banana True: banana True: banana
Pred: banana Pred: banana Pred: banana Pred: banana
confidence: 31912.80 confidence: 31890.56 confidence: 21602.54 confidence: 20568.75

(a) Correctly classified; highest confidences

True: banana True: banana True: banana True: banana
Pred: banana Pred: banana Pred: banana Pred: banana

confidence: 2094.72 confidence: 2618.57 confidence: 2693.78 confidence: 2800.47
> = —

(b) Correctly classified; lowest confidences

True: banana True: banana
Pred: ecl Pred: slug
confidence: 27447 86 «confidence: 20724 10

True: banana
Pred: loggerhead, loggerhead turtle, Caretta caretta Pred: electric ray, crampfish, numbfish, torpedo
confidence: 17284 65 confidence: 983177

True: banana

(c) Misclassified; highest confidences

True: banana
pred: table lamp
confidence: 2236.00

True: banana
Pred: rock python, rock snake, Python sebae
confidence: 2487.76

True: banana
Pred: stole
confidence: 2583.60

True: banana
Pred: nematode, nematode worm, roundworm
confidence: 2613.84

(d) Misclassified; lowest confidences

Figure 14: Correctly classified and misclassified examples from the Banana class by the ResNet model.
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True: Band Aid T;ue Band Aid Tme Bsnd Ald True: Band Aid
Pred: Band Aid and Aid Pred: Band Aid
confidence: 12695.12 cwnﬁden\:e 9135.46 cvnﬁden(e 9060 40 confidence: 7594.91

| R |

(a) Correctly classified; highest confidences

True: Band Aid True: Band Aid True: Band Aid True: Band Aid
Pred: Band Aid Pred: Band Aid Pred: Band Aid Pred: Band Aid
confidence: 1671.35 confidence: 1703.91 confidence: 2082.16 confidence: 2082.87

(b) Correctly classified; lowest confidences

True: Band Aid
Pred: spoanbill
confidence: 13251.90

True: Band Aid True Eand A1d True: Band Aid
Pred: paper towel Pred: walking stick, walkingstick, stick insect
confidence: 6833.14 (nﬂﬁdErI(e 6265 90 confidence: 5651.57

Ld ~

(c) Misclassified; highest confidences

True: Band Aid True: Band Aid True: Band Aid
Pred: packet Pred: spatula
confidence: 1525.37 confidence: 1700.47

True: Band Aid
Pred: paper towel
confidence: 1868.13

(d) Misclassified; lowest confidences

Figure 15: Correctly classified and misclassified examples from the Band-Aid class by the ResNet model.
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True: park bench True: park bench
Pred: park bench Pred: park bench
confidence: 5202.56

True: park bench
Pred: park bench
confidence: 2815.64

(a) Correctly classified; highest confidences. Only three benches were correctly classified.

True: park bench True: park bench True: park bench
Pred: bannister, banister, balustrade, balusters, handrail Pred: chest Prad: mailbag, postbag
confidence: 5748.96 confidence: 5637.88 confidence: 5435.86

= ¥ - =

True: park bench

(b) Misclassified; highest confidences

True: park bench True: park bench
Pred: bathtub, bathing tub, bath, tub Pred: lumbermill, sawmill
«confidence: 1328.44 «confidence: 1463.88

True: park bench
Pred: ashcan, trash can, garbage can, wastebin
confidence: 1502.44

True: park bench
Pred: plane, carpenter's plane, woodworking pl
confidence: 1525.86

(c) Misclassified; lowest confidences

Figure 16: Correctly classified and misclassified examples from the Bench class by the ResNet model.
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True: plate True: plate

red: plate
confidence: 3313.07

Pred: plate
«confidence: 3425.91

(a) Correctly classified; highest confidences. Only two plates were correctly classified.

True: plate
Pred: chambered nautilus, pearly nautilus, nautilus. Pred: solar dish, solar collector, solar furnace Pred: washbasin, handbasin, washbow, lavabo, wash-hand basin
confidence: 24865.78 confidence: 11458.05 confidence: 10977.83

True: plate

red: tray
confidence: 8820.06

s

(b) Misclassified; highest confidences

True: plate True: plate
Pred: carton pred: CD player Pred: dishwasher, dish washer, dishwashing machine
confidence: 1760.73 confidence: 1907.58 confidence: 1940.11

True: plate
Pred: toilet seat
confidence: 2011.79

(c) Misclassified; lowest confidences

Figure 17: Correctly classified and misclassified examples from the Plate class by the ResNet model.
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True: broom True: broom True: broom True: broom

Pred: broom Pred: broom Pred: broom Pred: broom
confidence: 24573.35 confidence: 24318.40 confidence: 18780.31 confidence: 18660.74

(a) Correctly classified; highest confidences

True: broom
Pred: brc
confidence: 2974.55

True: broom True: broom True: broom
Pred: broom red: br ed: broom
confidence: 2293.61 confidence: 2859.43 confidence: 2966.96

—

(b) Correctly classified; lowest confidences

True: broom True: broom True: broom True: broom
Pred: swab, swob, mop pred: paintbrush Pred: swab, swob, mop Pred: swab, swob. mop
confidence: 18234.50 confidence: 8232.83 confidence: 6226.43 confidence: 6170.28

(c) Misclassified; highest confidences

True: broom True: broom True: broom True: broor
Pred: swab, swob, mop Pred: swab, swob, mop Pred: unicycle. monocycle Pred: bobsled, bobsleigh, bob
confidence: 13 confidence: 1731.85 confidence: 1793.95 confidence: 1826.17

(d) Misclassified; lowest confidences

Figure 18: Correctly classified and misclassified examples from the Broom class by the ResNet model.
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True: candle, taper, wax light True: candle, taper, wax light
Pred: candle, taper, wax light Pred: candle. taper, wax light
confidence: 6907.49 confidence: 6296.90

True: candle, taper, wax light True: candle, taper, wax light
Pred: candle. taper, wax light Pred: candle. taper, wax light
confidence: 6210.78 confidence: 5368.99

(a) Correctly classified; highest confidences

True: candle, taper, wax light True: candle, taper, wax light True: candle, taper, wax light True: candle, taper, wax light
Pred: candle, taper, wax light Pred: candle, taper, wax light Pred: candle, taper, wax light Pred: candle, taper, wax light
confidence: 2553.21 confidence: 2570.30 confidence: 2582.35 confidence: 2582.4%

(b) Correctly classified; lowest confidences

True: candle, taper, wax light True: candle, taper, wax light True: candle, taper, wax light True: candle, taper, wax light
Pred: drumstick Pred: water jug Pred: espresso Pred: paper towel
«confidence: 6791.88 confidence: 6735.67 confidence: 6603.08 confidence: 6472.42

(c) Misclassified; highest confidences

True: candle, taper, wax light True: candle, taper, wax light True: candle, taper, wax light True: candle, taper, wax light
Pred: paper towel Pred: pencil box, pencil case Pred: toilet tissue, tailet paper, bathroom ti Pred: spindle
confidence: 141229 confidence: 1524 20 confidence: 1539.17 confidence: 154377

(d) Misclassified; lowest confidences

Figure 19: Correctly classified and misclassified examples from the Candle class by the ResNet model.
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True: electric fan, blower True: electric fan, blower
Pred: electric fan, blower Pred: electric fan, blower
confidence: 14490.84 confidence: 12645.26

True: electric fan, blower True: electric fan, blower
Pred: electric fan, blower Pred: electric fan, blower
confidence: 24841.02 confidence: 19321.64

(a) Correctly classified; highest confidences

True: electric fan, blower True: electric fan, blower True: electric fan, blower True: electric fan, blower
Pred: electric fan, blower Pred: electric fan, blower Pred: electric fan, blower Pred: electric fan, blower
confidence: 2384.93 confidence: 3133.33 confidence: 3232.25 confidence: 3313.66

(b) Correctly classified; lowest confidences

True: electric fan, blower True: electric fan, blower
Pred: strainer Pred: space heater
confidence: 782146 confidence: 7324.47

True: electric fan, blower True: electric fan, blower
Pred: coil, spiral, volute, whorl, helix Pred: washbasin, handbasin. washbowl, lavabo,
confidence: 9081.06 confidence: 8264.96

(c) Misclassified; highest confidences

True: electric fan, blower True: electric fan, blower True: slectric fan, blower True: electric fan, blower
Pred: spindle J k Pred: ruler Pred: studio couch, day bed
confidence: 1987.89 confidence: 2126.72 confidence: 2151.12 confidence: 2174.27

(d) Misclassified; lowest confidences

Figure 20: Correctly classified and misclassified examples from the Fan class by the ResNet model.
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True: rule, ruler True: rule, ruler True: rule, ruler True: rule, ruler
Prad: rule, ruler Pred: rule, ruler Pred: rule, ruler Pred: rule, ruler
confidence: 8443.61 confidence: 7720.62 confidence: 7702.28

(a) Correctly classified; highest confidences

True: rule, ruler True: rule, ruler True: rule, ruler True: rule, ruler
Pred: rule, ruler Pred: rule, ruler Pred: rule, ruler Pred: rule, ruler
confidence: 2187.15 confidence: 2383.77 confidence: 2479.62 confidence: 2558.28

T 7

(b) Correctly classified; lowest confidences

True: rule, ruler True: rule, ruler True: rule, ruler True: rule, ruler
Pred: shield, buckler Pred: broom Pred: barrel, cask d: bow
confidence: 6915.35 confidence: 6834.99 confidence: 6525.00 confidence: 5282.87

(c) Misclassified; highest confidences

True: rule, ruler
Pred: solar dish, selar collector, solar furna
confidence: 1800.33

True: rule, ruler True: rule, ruler True: rule, ruler
Pred: letter opener, paper knife, paperknife Pred: marimba, xylophane Pred: sundial
confidence: 1638.30 confidence: 164067 confidence: 1783.18
= 3

(d) Misclassified; lowest confidences

Figure 21: Correctly classified and misclassified examples from the Ruler class by the ResNet model.
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True: safety pin True: safety pin True: safety pin True: safety pin
Pred: safety pin Pred: safety pin Pred: safety pin Pred: safety pin
confidence: 1752213 confidence: 1582572 confidence: 15821.03 confidence: 15268 64

W N\

(a) Correctly classified; highest confidences

True: safety pin True: safety pin True: safety pin
Pred: safety pin Pred: safety pin Pred: safety pin
confidence: 1940.80 confidence: 2382.33 confidence: 2570.20

True: safety pin
Pred: safety pin
confidence: 2860.74

(b) Correctly classified; lowest confidences

True: safety pin True: safety pin True: safety pin True: safety pin
Pred: buckle Pred: buckle Pred: screwdriver Pred: comet, horn, trumpet, trump
confidence: 4259.52 confidence: 3621.98 confidence: 340114 confidence: 3000.43

(c) Misclassified; highest confidences

True: safety pin
Pred: washbasin, handbasin. washbow], lavabo,
confidence: 1840.18

True: safety pin True: safety pin
Pred: syringe Pred: corkscrew, bottle screw
confidence: 1886.19 confidence: 1900.41

True: safety pin
Pred: bucket, pail
confidence: 2124.06

(d) Misclassified; lowest confidences

Figure 22: Correctly classified and misclassified examples from the Safety-pin class by the ResNet model.
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True: teapot True: teapot
Pred: teapot Pred: teapot
confidence: 14919 82 confidence: 8506.84

True: teapot True: teapot
Pred: teapot Pred: teapot
confidence: 8504.05 confidence: 654799

(a) Correctly classified; highest confidences

True: teapot True: teapot True: teapot
Pred: teapot Pred: teapot Pred: teapot
confidence: 2092 48 confidence: 3134.45 confidence: 3422 79

True: teapat
Pred: teapot
confidence: 3537.42

(b) Correctly classified; lowest confidences

True: teapot True: teapot b pol Tue: teapot
Pred: coffeepot Pred: coffeepot pred: spotlight, spot Pred: piggy bank. penny bank
confidence: 11363.34 confidence: 7481.92 confidence: 7467.95 confidence: 6648.30

(c) Misclassified; highest confidences

b True: teapot
Pred: breastplate, aegis, egis Pred: can opener, tin opener Pred: pencil sharpener red: mo
«confidence: 1608 .59 confidence: 1745.15 confidence: 1902.08 confidence: 1930.22

(d) Misclassified; lowest confidences

Figure 23: Correctly classified and misclassified examples from the Teapot class by the ResNet model.
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True: television, television system True: television, television system
Pred: television, television system Pred: television, television system
confidence: 9568.09 confidence: 7425.13

True: television, television system True: television, television system
Pred: television, television system Pred: television, television systam
confidence: 7007 63 confidence: §934.23

(a) Correctly classified; highest confidences

True: television, television system True: television, television system True: television, television system True: television, television system
Prad: television, television system Prad: television, television system Pred: television, television system Pred: television, television system

confidence: 2866.35 confidence: 3028.26 confidence: 3072.96 confidence: 3163.10

(b) Correctly classified; lowest confidences

True: television, television system True: television, television system True: television, television system True: television, television system
Pred: monitor red: monitor Pred: home theater, eatre red: monitor
confidence: 10565.55 confidence: 7257.91 confidence: 6762.91 confidence: 6068.62

True: television, television system
Pred: projector
confidence: 1496.78

(c) Misclassified; highest confidences

True: television, television system
Pred: dishwasher, dish washer, dishwashing mac
confidence: 168122

True: television, television system
pred: guillotine
confidence: 1700.47

True: television, television system
Pred: loudspeaker, speaker, speaker unit, loud
confidence: 1713.86

Figure 24: Correctly classified and misclassified examples from the TV class by the ResNet model.

(d) Misclassified; lowest confidences
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True: sock True: sock True: sock True: sock

red: soc ed: soc) ed: s0¢
confidence: 5583.08 confidence: 5436.29 confidence: 510131 confidence: 5061.05

(a) Correctly classified; highest confidences

True: sock True: sock True: sock True: sock
Pred: sock Pred: sock Pred: sock Pred: sock
confidence: 1319.64 confidence: 1744.67 confidence: 1785.30 confidence: 2166.55

/7

(b) Correctly classified; lowest confidences

True: sock

True: sock
Pred: ice bear, polar bear, Ursus Maritimus, T
confidence: 6131.67

True: sock

True: sock
Pred: conch
confidence: 5511.23

Pred: coil, spiral, volute, wherl, helix
confidence: 7811.01

red: bib
confidence: 5649.13

(c) Misclassified; highest confidences

True: sock
Pred: African grey, African gray, Psittacus er
confidence: 1368.09

True: sock True: sock True: sock
Pred: toilet tissue, toilet paper, bathroom ti Pred: notebook, notebook computer pred: pick, plectrum, plectron
confidence: 1389.77 confidence: 1461.72 confidence: 1464.35

(d) Misclassified; lowest confidences

Figure 25: Correctly classified and misclassified examples from the Sock class by the ResNet model.
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True: sunglasses, dark glasses, shades True: sunglasses, dark glasses, shades True: sunglasses, dark glasses, shades
Pred: sunglasses, dark glasses, shades Pred: sunglasses, dark glasses, shades Pred: sungl
confidence: 1127419 confidence: 8091.27

True: sunglasses, dark glasses, shades
Pred: sunglasses, dark glasses, shades
confidence: 7116.14 confidence: 6735.34

(a) Correctly classified; highest confidences

True: sunglasses, dark glasses, shades True: sunglasses, dark glasses, shades True: sunglasses, dark glasses, shades
Prad: sunglasses, dark glasses, shades Prad: sunglasses, dark glasses, shades Pred: sunglass
confidence: 1781.91 confidence: 2137.39

True: sunglasses, dark glasses, shades

confidence: 2460.96

(b) Correctly classified; lowest confidences

True: sunglasses, dark glasses, shades True: sunglasses, dark glasses, shades True: sunglasses, dark glasses, shades True: sunglasses, dark glasses, shades
Pred: hair slide Pred: bow pred: shovel Pred: quill, quill pen
confidence: 5489.31 confidence: 5307.30

confidence: 6984.68 confidence: 5799.98

=

(c) Misclassified; highest confidences

True: sunglasses, dark glasses, shades True: sunglasses, dark glasses, shades True: sunglasses, dark glasses, shades
ed: stethoscope Pred: hook, claw
confidence: 1486.41 confidence: 1880.85 confidence: 1914.77

True: sunglasses, dark glasses, shades
Pred: washbasin, handbasin, washbowl. lavabo,
confidence: 1969.17

(d) Misclassified; lowest confidences

Figure 26: Correctly classified and misclassified examples from the Sunglasses class by the ResNet model.
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True: bow tie, bow-tie, bowtie; Windsor tis
Pred: bow tie, bow-tie, bowtie
confidence: 10565.04

True: bow tie, bow-tie, bowtie; Windsor tie
Pred: Windsor tie
confidence: 1595.46

True: bow tie, bow-tie, bowtie; Windsor tie
pred: quill, quill pen
confidence: 576532

True: bow tie, bow-tie, bowtie; Windsor tie
Pred: lighter, light, igniter, ignitor
confidence: 1350.36

True: bow tie, bow-tie, bowtie; Windsor tie
Pred: bow tie, bow-tie, bowtie
confidence: 7996.65

True: bow tie, bow-tie, bowtie; Windsor tie
Pred: Windsor tie
confidence: 5641.94

(a) Correctly classified; highest confidences

True: bow tie, bow-tie, bowtie; Windsor tie
Pred: Windsor tie
confidence: 1753.56

True: bow tie, bow-tie, bowtie; Windsor tie
Pred: Windsor tie
confidence: 2103.46

(b) Correctly classified; lowest confidences

True: bow tie, bow-tie, bowtie; Windsor tie
Pred: quilt, comforter, comfort, puff
confidence: 5417 63

True: bow tie, bow-tie, bowtie; Windsor tie
Pred: cloak
confidence: 5415.11

(c) Misclassified; highest confidences

True: bow tie, bow-tie, bowtie; Windsor tie
Pred: fur coat
confidence: 1644.45

True: bow tie, bow-tis, bowtie; Windsor tis
Pred: Band Aid
66.

(d) Misclassified; lowest confidences

True: bow tie, bow-tie, bowtie; Windsor tie
Pred: bow tie, bow-tie, boy
confidence: 4445.79

True: bow tie, bow-tie, bowtie; Windsor tie
Pred: Windsor tie
confidence: 2179.31

True: bow tie, bow-tie, bowtie; Windsor tie
pred: pillow
confidence: 5198.27

True: bow tie, bow-tie, bowtie; Windsor tie
Pred: plane, carpenter's plane, woodworking pl
confidence: 1666.35

Figure 27: Correctly classified and misclassified examples from the Tie class by the ResNet model.
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True: coffee mug True: coffee mug True: coffee mug True: coffee mug
Pred: coffee mug Pred: coffee mug Pred: coffee mug Pred: coffee mug
«confidence: 8893.26 confidence: 8592.39 confidence: 8100.21 confidence: 7285.46

(a) Correctly classified; highest confidences

True: coffee mug True: coffee mug True: coffee mug True: coffee mug
Pred: coffee mug Pred: coffee mug Pred: coffee mug Pred: coffee mug
confidence: 2407.07 confidence: 2419.65 confidence: 2644.31 confidence: 2871.74

(b) Correctly classified; lowest confidences

True: coffee mug True: coffee mug True: coffee mug True: coffee mu
Pred: espresso Pred: bucket, pail Pred: bucket, pail Pred: bucket, pail
confidence: 7833.21 confidence: 7698.19 confidence: 7177.25 confidence: 6962.62

(c) Misclassified; highest confidences

True: coffee mu
Pred: hand blower, blow dryer, blow drier, hai
confidence: 1871.22

True: coffee mug True: coffee mug
Pred: pencil box, pencil case Pred: seat belt, seatbelt
confidence: 1427.70 confidence: 1635.89

True: coffes mug
Pred: thimble
confidence: 1894.94

=

(d) Misclassified; lowest confidences

Figure 28: Correctly classified and misclassified examples from the Mug class by the ResNet model.
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True: hammer True: hammer True: hammer True: hammer
Pred: hammer Pred: hammer Pred: hammer Pred: hammer
confidence: 10935.19 confidence: 10803.53 confidence: 10183.10 confidence: 9609.05

(a) Correctly classified; highest confidences

True: hammer True: hammer True: hammer True: hammer
Pred: hammer Pred: hammer Pred: hammer Pred: hammer
confidence: 2126.60 confidence: 2273.21 confidence: 2616.73 confidence: 2693.54

(b) Correctly classified; lowest confidences

True: hammer True: hammer True: hammer True: hammer
Pred: hatchet Pred: nail red: nail Pred: drumstick
confidence: 8234.60 confidence: 6874.75 confidence: 5558.18 confidence: 5039.22

(c) Misclassified; highest confidences

True: hammer True: hammer True: hammer True: hammer
Pred: cowboy hat, ten-gallon hat Pred: wardrobe, closet, press Pred: spatula Pred: scabbard

confidence: 1378.01 confidence: 1412.52 confidence: 1739.33 confidence: 1764.97

(d) Misclassified; lowest confidences

Figure 29: Correctly classified and misclassified examples from the Hammer class by the ResNet model.

35



Published as a conference paper at ICLR 2021

“True: mountain bike, all-terrain bike, off-roa
Pred: mountain bike, all-terrain bike, off-roa
confidence: 8057.65

True: mountain bike, all-terrain bike, off-roa
Pred: bicycle-built-for-two, tandem bicycle, t
confidence: 6573.90

True: mountain bike, all-terrain bike, off-roa
Pred: mountain bike, all-terrain bike, off-roa
confidence: 6814.81

True: mountain bike, all-terain bike, off-roa
Pred: bicycle-built-for-two, tandem bicycle, t
confidence: 1815.43

True: mountain bike, all-terrain bike, off-roa
Pred: tricycle, trike, velocipede
confidence: 8664 .21

True: mountain bike, all-terrain bike, off-roa
Pred: tricycle, trike, velocipede
confidence: 1482 .00

(a) Correctly classified; highest confidences

True: mountain bike, all-terrain bike, off-roa True: mountain bike, all-terrain bike, off-roa
Pred: mountain bike, all-terrain bike, off-roa Pred: bicycle-built-for-two, tandem bicycle, t
confidence: 1847.42 confidence: 2039.34

(b) Correctly classified; lowest confidences

True: mountain bike, all-terrain bike, off-roa True: mountain bike, all-terrain bike, off-roa
Pred: unicycle, monocycle pred: moped
confidence: 6251 .82 «confidence: 6197 52

(c) Misclassified; highest confidences

True: mountain bike, all-terrain bike, off-roa True: mountain bike, all-terrain bike, off-roa
Pred: stethoscope pred: sandal
confidence: 1554 57 «confidence: 1571.45

(d) Misclassified; lowest confidences

True: mountain bike, all-terrain bike, off-roa
Pred: mountain bike, all-terrain bike, off-roa
confidence: 6487.60

True: mountain bike, all-terrain bike, off-roa
Pred: bicycle-built-for-two, tandem bicycle, t
confidence: 2278.79

True: mountain bike, all-terrain bike, off-roa
pred: moped
confidence: 5933.46

True: mountain bike, all-terrain bike, off-roa
Pred: vacuum, vacuum cleaner
confidence: 1758.17

Figure 30: Correctly classified and misclassified examples from the Bicycle class by the ResNet model.
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True: cellular telephone, cellular phone, cell
pred: cellular telephene, cellular phone, cell
confidence: 10665.56

True: cellular telephone, cellular phone, cell
Pred: cellular telephene, cellular phone, cell
confidence: 9585 .89

True: cellular telephone, cellular phane, cell
pred: cellular telephone, cellular phone. cell
confidence: 9293.75

True: cellular telephone, cellular phane, cell
pred: cellular telephone, cellular phone. cell
confidence: 7459.86

(a) Correctly classified; highest confidences

True: cellular telephone, cellular phone, cell True: cellular telephone, cellular phone, cell True: cellular telephone, cellular phone, cell
Pred: cellular telephone, cellular phone, cell Pred: cellular telephone, cellular phone, cell Pred: cellular telephone, cellular phone. cell
confidence: 2423.16 confidence: 3189.54 confidence: 3369.83

True: cellular telephone, cellular phone, cell
Pred: cellular telephone, cellular phone. cell
confidence: 3413.28

(b) Correctly classified; lowest confidences

True: cellular telephone, cellular phone, cell True: cellular telephone, cellular phane, cell
d: iPod ed: remote control, remote

confidence: 7368.46 confidence: 7056.28

True: cellular telephone, cellular phone, cell
d: iPod

True: cellular telephone, cellular phane, cell
d: iPod

confidence: 7976.08 confidence: 7848.55

(c) Misclassified; highest confidences

True: cellular telephone, cellular phone, cell True: cellular telephone, cellular phone, cell True: cellular telephone, cellular phane, cell True: cellular telephone, cellular phane, cell
usetra Pred: hamster Pred: iPod Pred: grand piano, grand
confidence: 1544 77 confidence: 1613 51 «confidence: 1720 .61 confidence: 1782.43

(d) Misclassified; lowest confidences

Figure 31: Correctly classified and misclassified examples from the Cellphone class by the ResNet model.
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True: barber chair; folding chair; rocking cha
Pred: folding chair
confidence: 6751.08

True: barber chair; folding chair; rocking cha
Pred: rocking chair, rocker
confidence: 5182.64

True: barber chair; folding chair; rocking cha
Pred: rocking chair, rocker
confidence: 5094.25

True: barber chair; folding chair; rocking cha
Pred: rocking chair, rocker
confidence: 4857.59

(a) Correctly classified; highest confidences

True: barber chair; folding chair; rocking cha
Pred: barber chair
confidence: 1909.26

True: barber chair; folding chair; racking cha
Pred: barber chair
confidence: 1963.52

True: barber chair; folding chair; rocking cha
Pred: rocking chair, rocker
confidence: 2072.94

True: barber chair; folding chair; rocking cha
Pred: folding chair
confidence: 2122.33

(b) Correctly classified; lowest confidences

True: barber chair; folding chair; rocking cha True: barber chair; folding chair; rocking cha True: barber chair; folding chair; rocking cha True: barber chair; folding chair; rocking cha
d: sombrero Pred: pencil sharpener Pred: dining table, board red: trombone
confidence: 6396.59 confidence: 6364.76 «confidence: 5563.83 confidence: 5505.87
-

(c) Misclassified; highest confidences

True: barber chair; folding chair; rocking cha
Pred: vacuum, vacuum cleaner
confidence: 1721.79
=

S

True: barber chair; folding chair; racking cha True: barber chair; folding chair; rocking cha True: barber chair; folding chair; rocking cha
Pred: hook, claw Pred: sleeping bag Pred: bathtub, bathing tub. bath, tub
confidence: 1757.58 confidence: 1784.31 confidence: 1785.60

(d) Misclassified; lowest confidences

Figure 32: Correctly classified and misclassified examples from the Chair class by the ResNet model.
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D SOME CHALLENGING EXAMPLES FOR HUMANS

Figure 33: A selection of challenging objects that are hard to be recognized by humans. Can you guess the
category of the annotated objects in these images? Keys are as follows:

row 1: (skirt, skirt, desk lamp, safety pin, still camera, spatula, tray),

row 2: (vase, pillow, sleeping bag, printer, remote control, pet food container, detergent),

row 3: (vacuum cleaner, vase, vase, shovel, stuffed animal, sandal, sandal),

row 4: (sock, shovel, shovel, skirt, skirt, match, spatula),

row 5: (padlock, padlock, microwave, orange, printer, trash bin, tray)
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Figure 34: A selection of challenging objects that are hard to be recognized by humans (continued from above).
Can you guess the category of the annotated objects in these images? Keys are as follows:

row 1: (remote control, ruler, full sized towel, ruler, remote control, remote control, remote control),

row 2: (remote control, calendar, butter, bookend, ruler, tray, desk lamp),

row 3: (envelope, envelope, drying rack for dishes, full sized towel, drying rack for dishes, drinking cup, desk
lamp),

row 4: (desk lamp, desk lamp, dress, tennis racket, fan, fan, hammer),

row 5: (printer, toaster, printer, helmet, printer, printer, printer)
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E ANNOTATION ISSUES IN OBJECT RECOGNITION DATASETS

(b) picket fence (c)African elephant (d) lakeshore

desictop computer [NRSEERho: espresso_maker _J serewdriver carpenter's_kit [ digital_watch

T 2 - hot_pot buckle
desk e stove F‘_—__, purse

mouse strainer NS 1 cellular_telephone
8 - N

< k\'ﬂc\\u*\\r letter opener

screen T

» wuog

| o= -
— “Q Wr

flute oboe
Band Aid stove spotlight mortarboard

matchstick lips
projector academic_gown

cup seat_belt |8 v il
lighter "

black_and_gold_gatick spider

garden_spider

Figure 35: Top: Some examples from the ImageNet dataset highlighting why multi-label annotations are
necessary: (a) Multiple objects. Here, the image label is desk but screen, monitor, coffee mug and many
more objects in the scene could count as correct labels, (b) Non-salient object. A scene where the target label
picket fence is counter intuitive because it appears in the image background, while classes groom, bow-tie,
suit, gown, and possibly hoopskirt are more prominently displayed in the foreground. c¢) Synonym or subset
relationships: This image has ImageNet label African elephant, but can be labeled tusker as well, because every
African elephant with tusks is a tusker. d) Unclear images: This image is labeled lake shore, but could also
be labeled seashore as there is not enough information in the scene to distinguish the water body between a
lake or sea. Image compiled from (Shankar et al., 2020). Bottom: Some annotation problems in the ImageNet
dataset. Example images along with their ground truth (GT) labels (red) and predicted classes (PC) by a model
(blue) are shown. Top-left) Similar labels, Top-right) non-salient GT, Bottom-left) challenging images, and
Bottom-right) incorrect GT. Please see Lee et al. (2017) for details.
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F ANALYSING MODEL ROBUSTNESS OVER NATURALLY DISTORTED IMAGES

Severity

brightness

contrast

defocus
blur

elastic
transform

fog

frost

gaussian
noise

e Laeoah, Ea iy,

glass blur o g ey ey

impulse
noise

jpeg
compression

motion blur

shot noise

shnow

zoom blur

Figure 36: Sample images alongside their corruptions at 3 severity levels.
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Figure 37: Top-1 (dashed lines) and Top-5 (solid lines) accuracy of models over 14 natural image distortions
at 3 severity levels (using object bounding box).
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Figure 38: Top-1 (dashed lines) and Top-5 (solid lines) accuracy of models over 14 natural image distortions
at 3 severity levels (using full image).
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G ADVERSARIAL DEFENSE USING FOREGROUND DETECTION ON MNIST

AND FASHION MNIST
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Figure 39: Top-left) Model, trained on clean MNIST data, is attacked by FGSM, Top-right) Foreground
detection over a model that has been trained on clean data. Bottom-left) Model, trained on noisy MNIST
data, is attacked by FGSM, Bottom-right) Foreground detection of a model that has been trained on noisy data.
Noisy data is created by overlaying an object over white noise i.e., noise X (1- mask) + object. We find that
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background subtraction together with edge detection improves robustness.
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Figure 40: Top-left) Model, trained on clean FashionMNIST data, is attacked by FGSM, Top-right) Foreground
detection over a model that has been trained on clean data. Bottom-left) Model, trained on noisy FashionMNIST
data, is attacked by FGSM, Bottom-right) Foreground detection of a model that has been trained on noisy data.
Noisy data is created by overlaying an object over white noise i.e., noise X (1- mask) + object. We find that
background subtraction together with edge detection improves robustness.
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H STATISTICS OF OBJECTNET DATASET

object size ratio

00 0z 04 0.6 0.8 10
object size [ image size

[IR=T)

067
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o

0.2 0.4 0.6 0.8

Object scale
Figure 41: Top: Distribution of object scale in ObjectNet dataset (113 annotated classes), Bottom: Distribution
object scale in ILSVRC2012-2014 single-object localization (dark green) and PASCAL VOC 2012 (light blue)

validation sets. Object scale is fraction of image area occupied by an average object instance. Please see Fig.
16 in Russakovsky et al. (2015) .
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Figure 42: Distribution of object location in ObjectNet (113 annotated classes).
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