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Abstract

Video Paragraph Captioning (VPC) aims to001
generate paragraph captions that summarises002
key events within a video. Despite recent003
advancements, challenges persist, notably in004
effectively utilising multimodal signals inher-005
ent in videos and addressing the long-tail dis-006
tribution of words. The paper introduces a007
novel multimodal integrated caption genera-008
tion framework for VPC that leverages infor-009
mation from various modalities and external010
knowledge bases. Our framework constructs011
two graphs: a ‘video-specific’ temporal graph012
capturing major events and interactions be-013
tween multimodal information and common-014
sense knowledge, and a ‘theme graph’ repre-015
senting correlations between words of a specific016
theme. These graphs serve as input for a trans-017
former network with a shared encoder-decoder018
architecture. We also introduce a node selec-019
tion module to enhance decoding efficiency020
by selecting the most relevant nodes from the021
graphs. Our results demonstrate superior per-022
formance across benchmark datasets.023

1 Introduction024

Dense video captioning (DVC) (Krishna et al.,025

2017) is a sub-branch of video captioning, which026

requires the model to first localise the important027

events in the video and then generate the associated028

captions. Video paragraph captioning (VPC) (Park029

et al., 2019) is a simplified version of DVC where030

the event segments in a video are assumed given;031

therefore, the event proposal generation step is not032

needed, and the ultimate goal is to generate better033

paragraph captions with the known events. While034

research in video captioning is recently becoming035

more popular, numerous challenges still persist.036

Firstly, most VPC works solely use visual informa-037

tion for generating captions (Park et al., 2019; Song038

et al., 2021). However, they overlook that videos039

naturally contain rich content with multimodal sig-040

nals such as additional speech text and an audio041

soundtrack. Incorporating these extra modalities 042

and unravelling their interactions can provide vital 043

cues for video understanding. Another challenge 044

is overcoming the long-tail distribution of words, 045

whereby the model tends to overfit on frequent 046

terms while neglecting objects, properties or be- 047

haviours that rarely appear in the training data. Past 048

natural language generation works have shown that 049

exploiting external data from knowledge graphs 050

can alleviate this issue and encourage more diverse 051

generated text (Zhou et al., 2019b). Finally, ex- 052

isting studies (Iashin and Rahtu, 2020b; Lei et al., 053

2020) simply feed the video’s feature embeddings 054

into the captioning model directly, leading to two 055

problems: 1) the model cannot effectively handle 056

the long sequence, and 2) it struggles to select the 057

relevant context from the long input stream. 058

As such, we address the aforementioned chal- 059

lenges by introducing GEM-VPC, a graph-based 060

novel framework for VPC that integrates informa- 061

tion from various modalities. Unlike past works 062

(Iashin and Rahtu, 2020b,a), rather than purely 063

feeding in the raw features as a long input stream, 064

we first convert the videos into a graphical structure 065

to capture high-level salient features and context. 066

We construct two types of graphs. The first is a 067

‘video-specific’ temporal graph, which aims to de- 068

pict the major events of the video in chronological 069

order whilst simultaneously representing interac- 070

tions between various multimodal information and 071

related commonsense knowledge. In particular, 072

nodes are represented using language class labels 073

to provide key details about the video contents in- 074

stead of using raw feature embeddings, which may 075

contain noisy information. To this end, we leverage 076

pretrained action/audio/object recognition models 077

and text parsers to extract linguistic information 078

such as the action label, sound label or object la- 079

bel from the visual features, audio features and 080

speech transcript to be used as nodes in the graph. 081

To alleviate the long-tail problem, we further en- 082
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hance the graph by incorporating language features083

from an external knowledge data source. While084

other VPC studies (Gu et al., 2023) using knowl-085

edge graphs typically employ static graphs like086

ConceptNet (Speer et al., 2017), we use a neu-087

ral knowledge model trained on existing common-088

sense knowledge graph datasets to generate diverse089

commonsense about human everyday experiences090

on-demand. These nodes are then connected with091

informative edge labels. We utilise sentences from092

the corpus to create a ‘theme graph’ to represent093

correlations between words relating to a specific094

theme with the motivation of providing corpus-095

level information for each sample during training.096

In the model training stage, both graphs are finally097

fed as supporting information into a transformer098

network. As some nodes in the graph may be noisy,099

we propose a node selection module to select only100

the most useful nodes from the video-specific and101

theme graphs when decoding the caption.102

The main contributions are to: 1) introduce a103

novel framework for VPC that leverages multi-104

modal commonsense knowledge to enhance video105

understanding. It incorporates heterogeneous video106

and theme graphs derived from various modalities,107

including visual, audio, and textual data, along with108

commonsense knowledge. 2) demonstrate the supe-109

rior performance of our model compared to state-of-110

the-art methods on two widely used benchmarks.111

3) conduct a comprehensive ablation analysis to112

dissect the contribution of different components.113

2 Related Work1114

Video Paragraph Captioning: Earlier works for115

VPC often employ an LSTM-based model for gen-116

erating the captions (Xiong et al., 2018; Zhang117

et al., 2018; Zhou et al., 2019a). Park et al. (2019)118

adopts adversarial training in their LSTM model119

by proposing a hybrid discriminator to measure120

the language characteristics, relevance to a video121

segment, and coherence of their generated captions.122

Transformer-based (Vaswani et al., 2017) meth-123

ods have become increasingly popular (Ging et al.,124

2020; Wang et al., 2021; Yamazaki et al., 2023; Gu125

et al., 2023). This was first introduced by (Zhou126

et al., 2018) for DVC and VPC, and each event in127

the video is decoded separately, resulting in con-128

text fragmentation and poor inter-event coherency.129

Later works have tried to alleviate this issue such130

1The main integration methods of past works are high-
lighted in Table 1 and 2

as in MART (Lei et al., 2020), which modified 131

Transformer-XL (Dai et al., 2019) and proposed a 132

memory module for remembering the video seg- 133

ments and the sentence history to improve future 134

caption predictions with respect to coherence and 135

repetition aspects. Yamazaki et al. (2023) extracts 136

local and global visual features and linguistic scene 137

elements and leverages a Transformer to simultane- 138

ously model the long-range dependencies between 139

features at an intra- and inter-event level. 140

Multimodal Video Captioning: Existing studies 141

have integrated multimodal features as extra infor- 142

mation for video captioning. Most works consider 143

the audio modality, with their frameworks first en- 144

coding the modalities separately with modality- 145

specific encoders, followed by a fusion unit to com- 146

bine the multiple streams together (Xu et al., 2017; 147

Rahman et al., 2019; Iashin and Rahtu, 2020a). 148

Other than video and audio modalities, previous 149

studies have suggested that considering speech fea- 150

tures can enhance model outputs (Iashin and Rahtu, 151

2020b). In Hessel et al. (2019) and Shi et al. (2019), 152

automatic speech recognition (ASR) was used to 153

extract human speech from narrated instructional 154

cooking videos for DVC while in Gu et al. (2023), 155

commonsense from knowledge graphs was incor- 156

porated into their captioning model where the ASR 157

was used as a source for constructing the graph. 158

Inspired by these methods, we consider the audio 159

and speech modality as model inputs. Unlike the 160

aforementioned approaches, we convert the videos 161

into a heterogeneous graph from language labels 162

extracted from the raw modality segments to rep- 163

resent relationships between key temporal events 164

and different modality information, and propose 165

a novel approach for explicitly incorporating the 166

external commonsense knowledge into the graph. 167

Some studies propose pretraining tasks to ex- 168

plicitly align the different modalities for improving 169

feature representation, after which the model is 170

fine-tuned to the captioning task. Common pre- 171

training objectives involve predicting whether an 172

ASR and video segment are aligned or predicting 173

masked speech segments and frames (Huang et al., 174

2020; Luo et al., 2020; Li et al., 2020). Genera- 175

tive pretraining objectives have been explored in 176

(Yang et al., 2023) and (Seo et al., 2022), which 177

proposed predicting the transcribed speech given 178

related video frames to jointly train the visual en- 179

coder and text decoder. Our framework requires no 180

pretraining, but can achieve comparable scores to 181

VPC models that utilise such methods. 182

2



Graphs for Video Analysis: Graph structures have183

been widely used in video-related tasks from video184

scene graph classification (Arnab et al., 2021),185

temporal action localisation (Zeng et al., 2019)186

to video question and answering (Jiang and Han,187

2020). Several studies have delved into ‘spatio-188

temporal’ graphs that try to represent interactions189

of features at a static time and relations between190

features across time. For the spatial component, nu-191

merous works connect objects and regions together192

within a timeframe and then connect identical or193

similar objects across time for the temporal compo-194

nent (Pan et al., 2020; Zhang et al., 2020; Jin et al.,195

2021; Min et al., 2022). In VPC, (Ji et al., 2022)196

proposed a multimodal heterogeneous graph that197

connects visual and text features within the same198

event. While they use the raw feature embeddings199

for node representation, which create large graphs200

with noisy information, we utilise the linguistic201

labels to provide a more high-level representation202

of the key semantic contents of the video and fur-203

ther propose a node selection module to filter out204

irrelevant nodes.205

3 Method206

Problem Definition: Given an untrimmed207

video v with temporally ordered events E =208

{ev1, ev2, ..., evN} where evt is the event at209

timestep t defined by a starting and ending times-210

tamp (esvt, e
e
vt) and N is the total number of events211

in the video, the task of VPC is to generate Y =212

{yv1, yv2, ..., yvN} where yvt is a matching textual213

description for evt.214

We first describes constructing the graphs as in-215

put for our VPC model. Two graphs (Section 3.1216

and 3.2) are built: 1) a commonsense-enhanced217

video-specific graph (VG), representing the main218

sequential events in the video with related common-219

sense and contextual information, and 2) a theme220

graph (TG) representing relationships between vo-221

cabulary of a specific theme. For the video-specific222

graphs, we propose two ways to construct the pri-223

mary nodes: 1) Utilising the video’s visual informa-224

tion (‘VF-method’) and 2) extracting information225

from the speech transcript (‘ASR-method’).226

3.1 Video-Specific Graph Creation227

3.1.1 Creating the Nodes - VF-Method228

Graphs created using the VF-method have 3 main229

node types: action, context (consisting of location,230

object, audio nodes), and commonsense nodes.231

Action Nodes: The action nodes describe the 232

main actions at each key event and are represented 233

using linguistic action class labels. To obtain these 234

labels, we download the video frames at 5fps. For 235

each event evt, we uniformly sample frames be- 236

tween the event’s starting and ending frames with a 237

step size of 10 and then feed every 16 frames into 238

a pretrained video action classification model for 239

each 16-frame segment. As the agent does not al- 240

ways perform a specific action (e.g. just standing or 241

no human agent in the video segment), we replace 242

the class label with ‘no action’ if the predicted class 243

probability is less than a threshold. When less than 244

the threshold and speech is detected by the audio 245

node, we replace the label with ‘speaking’. 246

Context Nodes: For extra scene context, we in- 247

clude location, object and audio nodes. For the lo- 248

cation and object nodes, we take the centre and last 249

frame of each event and leverage a Visual Question 250

Answering (VQA) model to extract open-ended 251

answers about the images. For the location node, 252

we ask the VQA model ‘what is the location?’ for 253

each of the 3 images and take the most common 254

answer as the location for each event. For the ob- 255

ject nodes, we obtain the object labels by asking 3 256

questions: ‘what objects are in this image?’, what 257

is in the background?’ and ‘who is in this image?’. 258

We further expand this object set by employing 259

an object detection model to detect objects from 260

the frames. Finally, the audio nodes represent the 261

sound information and can provide vital cues for 262

video understanding in addition to the visual infor- 263

mation. We sample 10 second segments of audio 264

data from the video and obtain the the top 2 pre- 265

dicted audio classes by confidence score for each 266

segment via a pretrained audio classifier. 267

Commonsense Nodes We also add external com- 268

monsense knowledge for richer graphs. Comet- 269

ATOMIC2020 (Hwang et al., 2021), a neural 270

knowledge model capable of dynamically generat- 271

ing commonsense about everyday events is adopted. 272

Given a head phrase and relation (e.g. cut a cake 273

CapableOf), Comet-ATOMIC2020 can produce a 274

tail phrase on-demand (e.g. celebrate birthday). 275

We use the action node class labels as the head 276

phrase and append 11 different relation tokens to 277

generate 5 commonsense inferences per relation. 278

The relation is described in Appendix E. 279

3.1.2 Creating the Nodes - ASR-Method 280

For videos where the speech modality is consid- 281

ered vital for video understanding, we introduce 282
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the ASR-method for creating the VG nodes. This is283

useful for how-to or cooking videos, where actions284

are explicitly described in the speech transcript,285

and visual information such as the location/scene286

may not be as important. There are 3 node types:287

Action Nodes: We extract the ASR between288

each event and use a pretrained Open Information289

Extraction (OpenIE) model to breakdown the syn-290

tactically complex speech sentences into a list of291

verbs (V) and related arguments (ARG). Given the292

sentence ‘I chop the onions and put the meat in293

the frying pan’, OpenIE can extract related argu-294

ments for the 2 verbs (‘chop’ and ‘put’): <ARG0,295

V, ARG1> = <I, chop, onions> and <ARG0, V,296

ARG1, ARG2> = <I, put, meat, in the frying297

pan>. The extracted verb and argument tuples298

from the speech segments within each event are299

then used as the action nodes for event ei. As the300

speech may contain irrelevant content, we tag the301

verbs in the ground-truth annotations and only re-302

tain tuples if the extracted verb has a high word303

embedding similarity score with at least one of the304

tagged verbs in the annotations. Moreover, we only305

retain words from the extracted arguments if it is a306

noun/adverb in the training annotations.307

Context Nodes: Instead of location nodes as308

introduced in the VF-method, we concatenate the309

action node labels within the same event to form310

a ‘contextual phrase node’. This represents similar311

information to the action nodes, but at a less fine-312

grained level with more context about surrounding313

actions. For the object nodes, we tag the nouns314

from the ASR segment, retaining only the tagged315

nouns if they appear in the training ground-truth316

annotations. The audio nodes are retrieved in the317

same way as the VF-method except we filter out318

any irrelevant sound labels. For example, with319

cooking videos, we retain cooking-related sounds320

(‘boiling’, ‘sizzling’, ‘frying’, ‘chopping’ etc).321

Commonsense Nodes We follow the VF-322

method but instead of using the action node in-323

formation as the head phrase, we find that better324

commonsense is generated when using the linguis-325

tic information inside the contextual phrase node326

to query Comet-ATOMIC2020.327

3.1.3 Connecting the VG Nodes328

For event evt, let ACt = {act1, ..., actk} be the329

action nodes, lt be the corresponding location node330

when the VF-method is used, or cpt be the contex-331

tual phrase node when the ASR-method is used,332

CKt = {ckt1, ..., cktm} are the commonsense333

nodes, Ot = {ot1, ..., otn} are the object nodes, 334

and AUt = {aut1, ..., autp} are the audio nodes. 335

To form the graph, all action nodes are first 336

connected in temporal order. To capture forward 337

information, we add a directed edge with the la- 338

bel occursAfter between each consecutive ac- 339

tion node and further capture backwards infor- 340

mation by adding a reversed edge with the label 341

occursBefore. Each location node lt or contex- 342

tual phrase node cpt is then connected to all the 343

nodes in ACt with the edge label atLocation 344

or hasContext. Next, commonsense nodes from 345

CKt are connected to the corresponding action 346

nodes from ACt that were used to generate the com- 347

monsense, using the commonsense relation token 348

as the edge label. For the object and audio nodes, 349

each node in Ot and AUt is connected with lt or cpt 350

with the edge label inScene and hasSound respec- 351

tively. For the VF-method, we additionally filter 352

out any irrelevant commonsense if the predicted 353

action class confidence score used to generate that 354

commonsense does not exceed a particular thresh- 355

old. Noisy audio or object labels are disregarded 356

at each timestep by converting the class labels to a 357

text embedding and only retaining those that have 358

a high cosine similarity score with any of the nodes 359

in ACt, CKt or lt. A depiction of the final graphs 360

using the VF- and ASR-method is in Appendix I. 361

3.2 Theme Graph Creation 362

We also create a theme graph for each action class 363

to incorporate corpus-level information. Given an 364

action predicted at evt, we collect the correspond- 365

ing ground-truth training sentence at evt and tag 366

the nouns, verbs and adverbs to build a vocabulary 367

for each action class. With the ASR-method, the 368

action classes are created by the k-means algorithm 369

to cluster the text embeddings of the action nodes. 370

We retain the top-n most frequent words for each 371

action class vocabulary and following Yao et al. 372

(2019), the individual words are connected based 373

on word co-occurrence statistics to form a graph. 374

PMI(i, j) = log
p(i, j)

p(i)p(j)
(1) 375

NPMI =
PMI

−log(p(i, j))
(2) 376

We utilise the normalised point-wise mutual in- 377

formation score (NPMI), where a positive score 378

implies high semantic correlation between words. 379

Here, p(i, j) = #S(i,j)
#S , p(i) = #S(i)

#S and p(j) = 380
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Figure 1: Architecture of GEM-VPC. At time t, the entire video-specific (VG) and theme graph (TG) corresponding
to the action at time t is fed into separate Graph Neural Networks. In the visual stream, visual features summed
with positional (PE) and token type embeddings (TE) are inputted into a Recurrent Transformer and the sequence
representation (Hv−CLS) is then used to select nodes from VG and TG in the node selection module. The selected
nodes plus TE are fed into another Recurrent Transformer in the node stream. Cross-attention is employed between
the visual and node stream and cross-attended features are finally fed into an MLP to predict the next word.

#S(j)
#S where #S(i) is the number of sentences in381

the corpus that contain word i, #S(i, j) is the num-382

ber of sentences that contain both words and #S383

is the number of sentences in the corpus. For the384

corpus, we use the ground-truth sentences from385

external datasets (see Section 4). A word-to-word386

connection is made only if the NPMI score exceeds387

0.10. A theme graph example is in Appendix F.388

3.3 VPC Model389

GEM-VPC (Figure 1) adopts a transformer-based390

shared encoder-decoder augmented with an exter-391

nal memory module to model temporal dependen-392

cies between events.393

1) Visual Stream: At each timestep t related to394

event et, we concatenate the visual features FV395

and predicted video captions FC from et. A [CLS]396

token is also prepended to learn the sequence repre-397

sentation. We denote the concatenated sequence as398

FV C = concat(FV , FC). FV C is fed into a trans-399

former with learnt positional and token type em-400

beddings (for indicating the token’s modality type),401

which applies multi-head self attention (MHA):402

MHA(Q,K, V ) = softmax(
QK√
dk

+M)V (3)403

404

where Q = XWQ, K = XWK , V = XW V ,405

WQ, WK , and W V are learnable parameters,406

X = FV C and M is a masked matrix to prevent 407

the model from attending to future words. The 408

outputted intermediate hidden state H̄ l
t is then fed 409

into another attention layer that performs MHA 410

between H̄ l
t and past memory states for capturing 411

history information. 412

2) Node Stream: For each event (timestep), a repre- 413

sentative action is extracted by using the predicted 414

action label with the highest confidence score out 415

of the predicted actions from evt. The matching 416

theme graph for that action class is then obtained 417

and fed through a Graph Attention Network (GAT) 418

to learn theme node embeddings. For encoding the 419

video-specific graph information, we feed the entire 420

graph into another GAT and extract the node em- 421

beddings corresponding to timestep t. We denote 422

the theme and video-specific graph node embed- 423

dings as TGemb ∈ RN×d and V Gemb ∈ RM×d, 424

where N , M are the number of nodes and d is the 425

embedding dimension. Specifically, we compute: 426

Hv−CLS = V isualStream(FV C) (4) 427
428

ps = softmax(WhH
t
v−CLS)

TWcNemb (5) 429

where Hv−CLS is the [CLS] representation from 430

the visual stream at time t, Wh and Wc are learn- 431

able, Nemb is either TGemb or V Gemb and ps con- 432

tains probability scores for each node. The top-n 433

nodes yielding the highest probabilities from each 434
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TGemb and V Gemb are then selected to be inputs435

for the node stream. Finally, we concatenate the436

selected nodes FN with the predicted captions FC437

and feed FNC = concat(FN , FC) through another438

transformer analogous to the one used in the visual439

stream. We do not add positional embeddings here440

as the selected nodes have no temporal order.441

3) Decoding the Caption Visual and node streams442

exchange information with cross attention:443

Hv−CA, Hn−CA = CrossAttention(Hv, Hn)
(6)444

Here, Hv and Hn are the outputs from the vi-445

sual and node stream respectively at time t while446

Hv−CA and Hn−CA are node attended visual fea-447

tures and visual attended node features respectively.448

The concatenation of Hv−CA and Hn−CA is finally449

fed into a linear (MLP) layer and the next word pre-450

dicted word is the argmax of the output.451

4) Encoding Recurrence To capture tempo-452

ral dependencies between events from previous453

timesteps, recent methods for encoding recurrence454

into transformer models are adopted for our visual455

and node stream. A) MART: memory augmented456

recurrent transformer (Lei et al., 2020), using multi-457

head attention to encode the memory state. Given458

the intermediate hidden state H̄ l
t , the memory up-459

dated intermediate hidden state H l
t is computed:460

H l
t = MHA(M l

t−1, H̄
l
t , H̄

l
t) (7)461

where Mt−1 is the past memory calculated by:462

C l
t = tanh(W l

mcM
l
t−1 +W l

scS
l
t + blc) (8)463

464
Z l
t = sigmoid(W l

mzM
l
t−1 +W l

szS
l
t + blz) (9)465

466
M l

t = (1− Zt
l )⊗ C l

t + Z l
t ⊗M l

t−1 (10)467

where ⊗ is the Hadamard product, W l
mc, W l

sc,468

W l
mz , W l

sz are trainable weights, blc and blz are469

trainable bias, C l
t is the internal cell state and Z l

t is470

the update gate that controls which information to471

retain from previous memory states. B) TinT: pro-472

posed by Yamazaki et al. (2023), utilising Hybrid473

Attention Mechanism (HAM) (Vo et al., 2021) to474

select information from previous hidden states:475

M l
t = [M l

t−1; H̄
l
t ] (11)476

477
Z l
t = HAM(M l

t−1, H̄
l
t) (12)478

479
H l

t = MLP (mean(Att([H̄ l
t ;Z

l
t]))) + H̄ l

t (13)480

Here, ‘;’ denotes concatenation along a new di- 481

mension, mean(Att((·)) is self-attention applied 482

on the new dimension and reduced by the mean 483

operation, Mt is the memory information at time t 484

(M l
0 = ∅) and H̄ l

t is defined as above. 485

4 Evaluation Setup2 486

Data: 1) ActivityNet Captions (Krishna et al., 487

2017) consists of 10,009 training and 4,917 valida- 488

tion videos on people performing complex activi- 489

ties. On average, each video contains 3.65 event 490

segments covering 36 seconds. We follow previous 491

works (Lei et al., 2020) and split the original val- 492

idation set into ae-val and ae-test. 2) YouCook2 493

(Zhou et al., 2018) is for dense video procedu- 494

ral captioning in the recipe domain. It contains 495

1,333 training and 457 validation samples com- 496

prised specifically of instructional cooking videos. 497

On average, videos are 5.26 minutes long with 7.7 498

event segments and each annotation for an event 499

is a language description of the procedure’s step 500

covering 1.96 seconds. We report our results on 501

the validation set (‘yc2-val’). 3)RecipeNLG (Bień 502

et al., 2020) is for recipe generation, consisting of 503

2,231,142 cooking recipes and food entities from 504

the recipes extracted using Named Entity Recogni- 505

tion. We use RecipeNLG as a supporting dataset to 506

compute the NPMI scores when constructing the 507

theme graphs for the YouCook2. 508

Evaluation Metrics: We follow previous VPC 509

works and evaluate with: BLEU-4 (B4) (Papineni 510

et al., 2002), METEOR (M) (Banerjee and Lavie, 511

2005), CIDEr (C) (Vedantam et al., 2015), and 512

ROUGE-L (R) (Lin, 2004). We also analyse the 513

repetitiveness and diversity of the captions by mea- 514

suring 2-gram diversity (Div2) (Shetty et al., 2017) 515

and 4-gram repetition (Xiong et al., 2018). 516

5 Results3 517

5.1 Performance Against SOTA 518

We compare GEM-VPC with prior SOTA on Ac- 519

tivityNet Captions’s ae-test split (Table 1) and 520

YouCook2’s validation split (Table 2). 521

Our best model (GEM-VPC w/ TinT decoder) 522

evidently outperforms most of the existing base- 523

lines. VLTinT w/ CL and w/o CL is the VLTinT 524

model trained with their novel contrastive loss (in 525

addition to the classic MLE loss) and without their 526

2Implementation details can be found in Appendix G
3Appendix J shows qualitative examples of generated cap-

tions from our model versus state-of-the-art
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ae-test
Model Conference Year Modalities Integration Method B4 ↑ M ↑ C ↑ R ↑ R4

VTrans (Zhou et al., 2018) CVPR 2018 V+F Concatenation 9.31 15.54 21.33 28.98 -
Trans-XL (Dai et al., 2019) ACL 2019 V+F Concatenation 10.25 14.91 21.71 30.25 8.54
MDVC (Iashin and Rahtu, 2020b) † CVPR 2020 V+S+A Concatenation 8.50 14.28 17.57 25.48 -
BMT (Iashin and Rahtu, 2020a) † BMVC 2020 V+A CM Attention 8.42 14.08 15.41 25.44 -
MART (Lei et al., 2020) ACL 2020 V+F Concatenation 9.78 15.57 22.16 - 5.44
MART-COOT (Ging et al., 2020) NeurIPS 2020 V+L Joint CM Space 10.85 15.99 28.19 - -
Trans-XLRG (Lei et al., 2020) ACL 2020 V+F Concatenation 8.85 10.07 14.58 20.34 -
Motion-Aware (Hu et al., 2023) ICASSP 2023 V+O CM Attention 11.90 16.54 30.13 - 4.12
Memory Trans. (Song et al., 2021) CVPR 2021 V+F Concatenation 11.74 15.64 26.55 - 2.75
VLTinT w/ CL (Yamazaki et al., 2023) AAAI 2023 V+L+O CM Attention 14.50 17.97 31.13 36.56 4.75
VLTinT w/ CL∗ (Yamazaki et al., 2023) AAAI 2023 V+L+O CM Attention 14.32 17.84 31.83 36.51 5.16
VLTinT w/o CL (Yamazaki et al., 2023) AAAI 2023 V+L+O CM Attention 13.80 17.72 30.59 36.11 -
GEM-VPC w/ No Recurrence - 2024 V+G(V+A+C) CM Attention 12.82 17.4 26.97 33.45 7.28
GEM-VPC w/ MART decoder - 2024 V+G(V+A+C) CM Attention 13.47 17.38 30.38 35.8 5.93
GEM-VPC w/ TinT decoder - 2024 V+G(V+A+C) CM Attention 14.54 17.99 32.62 36.51 5.17

Table 1: Automatic scores for ActivityNet ae-test. In ‘Modalities’, V=visual, F=optical flow, O=bounding box
object visual features, A=audio, S=speech, L=language, G(V+A+C)=graph built with visual, audio modality and
commonsense. † indicates results computed by ourselves. ∗ are computed by rerunning the model with our own
environment. ‘Integration Method’=how to integrate the distinct modalities (see Appendix H for specific meanings).

yc2-val
Model Conference Year Modalities Pretraining Integration Method B4 ↑ M ↑ C ↑ R ↑ R4

VTrans (Zhou et al., 2018) CVPR 2018 V+F ✗ Concatenation 7.62 15.65 32.26 - 7.83
Trans-XL (Dai et al., 2019) ACL 2019 V+F ✗ Concatenation 6.56 14.76 26.35 - 6.30
MART (Lei et al., 2020) ACL 2020 V+F ✗ Concatenation 8.00 15.90 35.74 - 4.39
MART-COOT (Ging et al., 2020) NeurIPS 2020 V+L ✗ Joint CM Space 9.44 18.17 46.06 - 6.30
Trans-XLRG (Lei et al., 2020) ACL 2019 V+F ✗ Concatenation 6.63 14.74 25.93 - 6.03
VLTinT (Yamazaki et al., 2023) AAAI 2023 V+L ✗ CM Attention 9.40 17.94 48.70 34.55 4.29
DECEMBERT (Tang et al., 2021) NAACL 2021 V+L+S ✓ CM Pretraining 11.92 20.01 58.02 40.22 -
MTrans+COOT+MIL-NCE PT (Tang et al., 2021) NAACL 2021 V+L ✓ Joint CM Space 11.05 19.79 55.57 37.51 -
MART+COOT+MIL-NCE PT(Tang et al., 2021) NAACL 2021 V+L ✓ Joint CM Space 11.30 19.85 57.24 37.94 -
GEM-VPC w/ No Recurrence - 2024 V+G(S+A+C) ✗ CM Attention 11.03 20.01 58.49 36.89 4.64
GEM-VPC w/ MART decoder - 2024 V+G(S+A+C) ✗ CM Attention 11.01 19.86 54.84 36.81 4.47
GEM-VPC w/ TinT decoder - 2024 V+G(S+A+C) ✗ CM Attention 11.47 19.72 56.00 37.48 4.91

Table 2: Automatic scores for baselines and GEM-VPC on YouCook2. The ‘Modalities’ and ‘Integration Method’
columns are the same as Table 1. Additionally, ‘G(S+A+C)’ is graph built with speech/audio modality and
commonsense, ‘CM Pretaining’ indicates the use of pretraining objectives like masked language modelling. The
‘Pretraining’ column indicates whether the model has been pretrained on an external video dataset.

contrastive loss respectively. Specifically, GEM-527

VPC w/ TinT decoder outperforms VLTinT w/ CL528

on BLEU-4, METEOR and CIDEr and all met-529

rics when considering the VLTinT w/o CL variant530

which is optimised using the same MLE loss as531

our model. For a more accurate comparison, we532

rerun VLTinT w/ CL (with their optimal parame-533

ters) in our own environment and record the results534

under VLTinT w/ CL∗. As shown, GEM-VPC w/535

TinT decoder yields higher BLEU-4, METEOR536

and CIDEr scores than VLTinT w/ CL∗ with simi-537

lar ROUGE and R4. While R4 does not outperform538

some baselines, the lower repetition does not neces-539

sarily mean good caption quality as lower repetition540

can be simply achieved by generating words unre-541

lated to the video content. Hence, a strong model542

should have a balance of high n-gram metrics and543

a low repetition score. Examining YouCook2, our544

model variants achieve higher n-gram scores with545

relatively low repetition of 4.6-4.9 compared to 546

baselines with no pretraining (first 6 baselines). 547

Even when comparing with the last 3 baselines 548

with pretraining methods and a large separate in- 549

structional video dataset (HowTo100M Miech et al. 550

(2019)), we achieve similar scores with our best 551

CIDEr score (58.49) outperforming all baselines. 552

5.2 Ablation Studies 553

Different Input Modalities: Our model is exam- 554

ined with different modality settings in Table 3. 555

Using visual features alone (Exp # 1⃝) for both 556

datasets yields the worst performance with the 557

lowest scores across all n-gram metrics. Using 558

nodes only (Exp # 2⃝) can substantially improve 559

the scores, although this produces higher repeti- 560

tion and lower diversity. We also find that the 561

setting using visual features combined with node 562

features results in significant performance improve- 563
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ActivityNet (ae-test)
Exp # V VG TG A S B4 ↑ M ↑ C ↑ Div2 ↑ R4 ↓

1⃝ ✓ ✗ ✗ ✗ ✗ 12.90 16.92 28.27 75.65 6.00
2⃝ ✗ ✓ ✓ ✗ ✗ 10.63 16.51 20.75 74.83 7.66
3⃝ ✓ ✓ ✗ ✗ ✗ 13.27 17.24 28.99 74.29 6.93
4⃝ ✓ ✗ ✓ ✗ ✗ 13.12 17.09 27.97 75.02 7.01
5⃝ ✓ ✓ ✓ ✗ ✗ 13.47 17.38 30.38 75.74 5.93
6⃝ ✓ ✓ ✓ ✓ ✗ 13.16 17.40 29.88 76.24 5.80

YouCook2 (yc2-val)
1⃝ ✓ ✗ ✗ ✗ ✗ 7.12 15.25 30.12 70.75 3.66
2⃝ ✗ ✓ ✓ ✗ ✗ 9.91 18.65 44.50 65.38 6.33
3⃝ ✓ ✓ ✗ ✗ ✗ 10.82 19.42 54.73 67.11 4.65
4⃝ ✓ ✗ ✓ ✗ ✗ 8.06 16.35 36.68 69.96 3.72
5⃝ ✓ ✓ ✓ ✗ ✗ 11.03 20.01 58.49 67.08 4.64
6⃝ ✓ ✓ ✓ ✓ ✗ 9.73 18.50 53.33 68.22 4.36
7⃝ ✓ ✗ ✗ ✗ ✓ 10.94 19.90 57.45 71.55 1.94
8⃝ ✓ ✓ ✓ ✗ ✓ 11.56 19.98 58.70 70.46 2.61

Table 3: GEM-VPC performance with different in-
put modalities. ActivityNet (with MART decoder);
YouCook2 (with No Recurrence setting). Exp # is the ex-
periment number and V, VG, TG, A, S stand for visual,
video-specific graph, theme graph, audio and speech.

ment across all metrics (Exp # 5⃝). Comparing564

3⃝ and 4⃝, inputting visual+VG features exhibit565

higher n-gram metrics than using visual+TG fea-566

tures for both datasets, indicating that the VG pro-567

vide more useful information representative of the568

video content. R4 and Div2 scores remain similar569

for ActivityNet, but that for YouCook2 yields lower570

repetition/higher diversity. However as previously571

noted, lower repetition/higher diversity does not572

mean good caption quality if the n-gram metrics573

are also low. Overall, we show that incorporating574

video-specific information and the TG corpus-level575

information (Exp # 5⃝) is superior. We further ex-576

perimented by adding a separate stream to process577

the raw audio features. Comparing 5⃝ and 6⃝ for578

both datasets, adding audio information slightly im-579

proves the repetition/diversity at the cost of lower580

B4 and CIDEr. This could be due to a misalign-581

ment in the audio track and the video’s topic e.g.582

there are cases where users upload background mu-583

sic unrelated to the video contents. Moreover, we584

examine noisy background audio that could po-585

tentially confuse the model. For YouCook2, by586

examining unprocessed speech features (Exp # 7⃝),587

inputting the visual and speech transcript can pro-588

duce competitive performance. However, this can589

be further enhanced by incorporating node infor-590

mation from VG and TG as seen in 8⃝ which yields591

the highest B4 and CIDEr out of all the settings592

whilst maintaining competitive Div2 and R4.593

Different Decoders: We evaluated different594

methods for encoding recurrence using MART,595

TinT, and a ‘No Recurrence’ setting, as in the last596

Figure 2: Sum of n-gram metrics on ActivityNet (ae-
val+ae-test) (left) and YouCook2 (yc2-val) (right) across
samples with different number of events.

three rows of Table 1/2 for ActivityNet/YouCook2. 597

For ActivityNet, the TinT decoder achieved the best 598

results across all metrics, followed by MART, with 599

the No Recurrence setting performing the worst, 600

indicating the importance of a recurrent memory 601

module. Conversely, YouCook2 results showed 602

that the No Recurrence setting yielded the highest 603

METEOR (20.0) and CIDEr (58.5) scores, while 604

TinT improved BLEU-4 and ROUGE-L but had 605

the lowest METEOR and R4. This suggests that 606

encoding recurrence benefits captioning if the cur- 607

rent timestep relies on past information. We anal- 608

ysed samples by their total timesteps and plotted 609

the average sum of n-gram metrics for each group 610

in Figure 2. For YouCook2, even without recur- 611

rence, decoding captions for samples with more 612

timesteps wasn’t necessarily more complex. How- 613

ever, for ActivityNet, scores decreased with more 614

timesteps, highlighting the need for recurrent in- 615

formation. This aligns with the MART paper’s 616

findings on ActivityNet, though YouCook2 wasn’t 617

tested in their study (Lei et al., 2020). 618

6 Conclusion 619

We introduced GEM-VPC, a novel framework for 620

video captioning (VPC) that leverages multimodal 621

information and external knowledge. We construct 622

a commonsense-enhanced video-specific graph for 623

key events and context, and a theme graph from 624

ground-truth captions to represent word relation- 625

ships. These graphs are processed by separate 626

GNNs, and a node selection module identifies use- 627

ful nodes for caption decoding. The selected nodes 628

and supporting information (visual, audio, etc.) are 629

fed into a transformer with multiple streams for 630

different modalities, followed by a cross-attention 631

module for inter-stream information exchange. Ex- 632

periments on benchmark datasets demonstrate that 633

GEM-VPC outperforms existing baselines, gener- 634

ating coherent and visually-grounded captions. 635
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7 Limitations636

Our model pipeline requires the use of pretrained637

models and pre-built methods like action detec-638

tors, audio classifier, text parsers and OpenIE mod-639

els in the data pre-processing stage. As to date,640

these models and methods are mainly available641

for the English language but not for low-resource642

languages that have relatively less data available643

for training natural language processing systems.644

Moreover, we emphasise that the metrics used for645

evaluation are also only capable of judging English-646

written language. Nevertheless, our framework and647

pipeline can still be reproduced and as such, for648

future studies, experiments can be re-run on other649

languages once models and data become readily650

available.651
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A Video-Specific Graph Statistics968

Total count for the different node types for the Ac-969

tivityNet and YouCook2 video-specific graphs. On970

average, the ActivityNet and YouCook2 graphs971

have 57.04 and 127.83 nodes respectively with the972

largest graphs containing 259 and 304 nodes re-973

spectively.974

Node Type ActivityNet YouCook2

Action 74,017 43,555
Location 54,802 -
Contextual Phrase - 13,464
Object 198,905 64,379
Audio 49,496 2,848
Commonsense 472,534 97,147

Table 4: Count of different node types for both the
ActivityNet and YouCook2 video-specific graphs.

B Node Type Importance975

To examine the importance of different node types976

in the video-specific graph, for each video sample977

during inference, we extract the top-10 selected978

nodes chosen by our node selection module at979

each event timestep. Then, for each node type,980

we count the frequency of selected nodes across981

the timesteps and divide the count by the total num-982

ber of nodes (of that same type) that are present983

in the video-specific graph to get the proportion984

(normalised count). Finally, the proportions com-985

puted from each video sample is averaged across986

the validation set. This number reflects the ex-987

pected probability that a node of a specific type988

will be selected to be part of the top-10 nodes. The989

results for both datasets is shown in the table below.990

For example, 48.99% in the table means that for991

ActivityNet video-specific graphs, if the node is992

an action node, then it has 48.99% chance to be in993

the top-10 nodes as ranked by our node selection994

module.995

Node Type ActivityNet (%) YouCook2 (%)

Action 48.99 51.48
Location 54.30 -
Contextual Phrase - 55.56
Object 39.79 43.61
Audio 54.24 59.76
Commonsense 30.80 10.74

Table 5: Average proportion of selected nodes for each
node type in the video-specific graphs for both Activi-
tyNet and YouCook2.

Examining Table 5, for both ActivityNet and 996

YouCook2, the node types with the highest average 997

selected proportions were the location/contextual 998

phrase, audio and action nodes, indicating that 999

these node types tend to be more vital for video 1000

understanding. Action nodes having a high chance 1001

of being selected is not surprising, as this node cap- 1002

tures information closely aligned with the VPC task 1003

where the aim is to generate captions describing the 1004

action and events in the video segment. Similarly 1005

for ActivityNet, the location nodes may be impor- 1006

tant as the action/events happening in the video are 1007

often closely related to location e.g. videos about 1008

water skiing often happen in locations with water. 1009

Moreover, for YouCook2, the contextual phrase 1010

nodes are most likely significant as they provide 1011

similar information to the action nodes. The large 1012

percentage of audio nodes selected for both datasets 1013

may be unexpected at first as raw video sounds tend 1014

to contain noisy background information. However, 1015

as mentioned in Section 3.1, we already perform 1016

extra post-processing in an attempt to retain only 1017

the relevant audio labels. For both datasets, the 1018

node type with the second least selection proba- 1019

bility are object nodes with on average, 39-44% 1020

considered as important. This is however still a 1021

relatively large proportion, suggesting that object 1022

nodes are significant for VPC. Finally, we observe 1023

that a majority of the commonsense nodes were 1024

not useful, especially for YouCook2, despite the 1025

large count of commonsense nodes in both graphs 1026

(see Appendix A). This is perhaps attributed to the 1027

fact that Comet-ATOMIC2020 focuses on gener- 1028

ating social commonsense such as people’s reac- 1029

tions, intents and desires relating to a specific event. 1030

However, we find that the ground-truth captions are 1031

often limited in detail whereby annotators do not 1032

always describe such information but mainly just 1033

simply focus on stating what is visually happening 1034

in the video. Nevertheless, a relatively large propor- 1035

tion of 30.8% is still selected from the ActivityNet 1036

video-specific graphs, suggesting that this social 1037

commonsense knowledge can still provide useful 1038

contextual cues for videos that are similar in nature 1039

to the ones in ActivityNet. 1040

C Number of Nodes Selected 1041

We report the performance of our model when 1042

changing the different maximum number of nodes 1043

that can be selected from each video-specific graph 1044

and each theme graph per timestep. Results for the 1045
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ActivityNet and YouCook2 dataset are displayed1046

in Table 6 and Table 7 respectively. For Activi-1047

tyNet, the best n-gram and repetition scores can be1048

achieved when using 20 nodes (10 nodes selected1049

from each of the video-specific and theme graphs at1050

each timestep) or 40 nodes (20 nodes selected from1051

each graph at each timestep). For YouCook2, we1052

find that the best performance stabilises at around1053

60-80 total nodes.1054

ActivityNet
# Nodes B4 ↑ M ↑ C ↑ R ↑ Div2 ↑ R4 ↓

10 13.80 17.40 31.21 35.88 75.22 6.50
20 13.91 17.40 31.45 36 75.19 6.41
40 13.91 17.47 30.68 35.97 75.75 6.18
60 13.51 17.38 30.74 35.82 75.21 6.42

Table 6: Performance of our model by setting differ-
ent maximum number of nodes that can be selected
from our node selection module at each timestep on
ActivityNet. All results are reported using the model w/
MART decoder with video and node input features.

YouCook2
# Nodes B4 ↑ M ↑ C ↑ R ↑ Div2 ↑ R4 ↓

10 10.39 18.82 52.24 35.52 65.87 5.47
20 10.73 19.27 54.21 35.97 67.63 4.80
40 10.88 19.58 57.38 36.69 66.03 5.40
60 11.03 20.01 58.49 36.89 67.08 4.64
80 11.23 20.04 57.84 36.78 67.77 4.75

Table 7: Performance of our model by setting different
maximum number of nodes that can be selected from our
node selection module at each timestep on YouCook2.
All results are reported using the model w/o Recurrence
with video and node input features.

D Performance Across Different Video1055

Categories1056

To examine how our model performs across dif-1057

ferent types of videos, we compute the average1058

sum of BLEU-4, METEOR, CIDEr and ROUGE-L1059

across 14 different categories for the ActivityNet1060

validation and testing split. These categories are1061

provided by the user when uploading the video1062

and roughly represent the video’s main topic. For1063

this experiment, 3 different types of input modali-1064

ties are tested: 1) using video visual features only1065

(visual), 2) using visual features combined with1066

node features chosen by the node selection module1067

(visual + nodes), and 3) using visual features com-1068

bined with node features and audio features (visual1069

+ nodes + audio).1070

Examining Figure 3, when comparing video ver- 1071

sus visual + nodes, we find that visual + nodes does 1072

better than visual only in all categories except for 1073

‘Travel & Events’, ‘Autos & Vehicles’, and ‘Sci- 1074

ence & Technology’. In particular, the largest gap 1075

occurs in the 2 latter categories. A reason for this 1076

may be due to a lack of action classes related to 1077

these categories in which the TimeSformer model 1078

is capable of predicting, which subsequently affects 1079

the quality of the nodes in the video-specific graph. 1080

For instance, there are no specific action classes 1081

that are related to ‘Science & Technology’ in the Ki- 1082

netics600 dataset in which the TimeSformer model 1083

was trained on, while there are only 4 action classes 1084

that are related to ‘auto maintenance’ (‘changing 1085

oil’, ‘changing wheel’, ‘checking tires’, ‘pumping 1086

gas’). Furthermore, we observe that adding audio 1087

features to the model does not necessarily provide 1088

useful context cues for all categories. This is per- 1089

haps due to a misalignment between the audio track 1090

and video’s topic. For example, people will often 1091

put a sound track with music even when the video 1092

itself is not about ‘Music’. However, we do find 1093

that audio helps in improving performance for cat- 1094

egories related to ‘Education’, ‘Travel & Events’, 1095

‘Howto & Style’, and ‘Comedy’. 1096

In summary, visual + nodes performs the best in 1097

general, outperforming the other 2 model variants 1098

for 7 out of the 14 categories. This aligns with the 1099

findings from Section 5.2. Visual + nodes + audio 1100

is the second-best with superior performance in 5 1101

categories. This is finally followed by the visual 1102

only setting, whereby visual features alone clearly 1103

does not provide enough contextual information 1104

to generate high quality captions and thus, only 1105

benefits 2 out of the 14 categories. 1106
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Relation Description Example (<head><relation><tail>)

ObjectUse describes everyday affordances or uses of objects put into pan ObjectUse frying
MadeUpOf describes a part, portion or makeup of an entity making cake MadeUpOf eggs
HasProperty describes entities’ general characteristics boiling water HasProperty heat
CapableOf describe abilities and capabilities of everyday living entities cut cake CapableOf celebrate birthday
isAfter events that can follow an event mop the floor isAfter sweep the floor
HasSubEvent provides the internal structure of an event boil the dumplings HasSubEvent boils water
isBefore events that can precede an event opens a gift isBefore rips wrapping paper
xNeed describes a precondition for an agent to achieve the event give a gift xNeed buys the presents
xAttr describes personas or attributes perceived by others given an event decorates Christmas tree xAttr festive
xEffect/oEffect actions that happen to an agent that may occur after the event gives a present xEffect gets thanked
xReact/oReact emotional reactions of participants in an event gives a present xReact feels happy
xWant/oWant postcondition desires after an event gives a present xWant wants to hug
xIntent defines the likely intent of an agent pour sauce on food xIntent add flavour

Table 8: Relations in Comet-ATOMIC2020 used to generate the commonsense nodes for the video-specific graph
and their corresponding descriptions. The ‘head’ indicates the input phrase that is fed into Comet-ATOMIC2020
and the ‘tail’ is the possible generated commonsense.

Figure 3: Sum of BLEU-4, METEOR, CIDEr and
ROUGE-L scores for the ActivityNet predicted captions
across the different video categories using 3 different
input modalities (visual only, visual + nodes, visual +
nodes + audio). The scores are obtained from the com-
bined validation (ae-val) and testing set (ae-test).

E Relation Description1107

The relation tokens used to extract knowledge1108

from the Comet-ATOMIC2020 neural knowledge1109

model for the commonsense nodes in the video-1110

specific graphs and their corresponding descrip-1111

tions are detailed in Table 8. The descriptions1112

are taken from the official Comet-ATOMIC20201113

paper (Hwang et al., 2021). For the ActivityNet 1114

graphs, all relations below were used except for 1115

isAfter, isBefore, MadeUpOf, ObjectUse and 1116

HasProperty. Although isAfter and isBefore 1117

relations may be useful, we find that the common- 1118

sense generated using these relations for the Activi- 1119

tyNet data tends to produce similar results to xNeed 1120

and xEffect/oEffect and so we disregard these 1121

relations to help reduce the number of common- 1122

sense nodes in the graphs. MadeUpOf, ObjectUse 1123

and HasProperty are further ignored as informa- 1124

tion about properties, compositions or characteris- 1125

tics of entities are not closely aligned with the con- 1126

tent in the ActivityNet captions. For the YouCook2 1127

graphs, all relations below were used except for 1128

xReact/oReact, xAttr and xWant/oWant as we 1129

believe information about an event’s attributes and 1130

individual’s subjective reactions/desires may not be 1131

useful for captioning instructional cooking videos. 1132

F Theme Graph Example 1133

The image below shows an example of what a snip- 1134

pet from the theme graph corresponding to the 1135

action class carving pumpkins’ would look like. 1136

Nodes represent tagged nouns, verbs, and adverbs 1137

from the ground-truth training annotations. All 1138

edges in the graph are undirected and weighted by 1139

normalised point mutual information scores. 1140
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Figure 4: Visual example of a sub-graph for the theme
graph corresponding to the ActivityNet action class
carving pumpkins.

G Implementation Details1141

Graph Construction: The TimeSformer (Berta-1142

sius et al., 2021) pretrained on the Kinetics6001143

dataset (Zisserman et al., 2017) was used as the1144

action classification model for constructing the1145

action nodes for the VF-method. The model is1146

capable of predicting 600 unique action classes.1147

We leveraged the Audio Spectrogram Transformer1148

(Gong et al., 2021) pretrained on AudioSet (Gem-1149

meke et al., 2017) (capable of predicting 632 au-1150

dio event classes) as the audio classification model1151

to create the audio nodes for the VF and ASR-1152

method. Commonsense nodes are generated by1153

Comet-ATOMIC2020 (Hwang et al., 2021) using1154

the ‘comet_atomic2020_bart’ implementation. Ob-1155

ject and location nodes for the VF-method are gen-1156

erated by the BLIP-VQA base model as proposed1157

in (Li et al., 2022), with the object nodes further1158

expanded using Detic’s (Zhou et al., 2022) object1159

detection model. ASR from the YouCook2 videos1160

was extracted using OpenAI’s Whisper (Radford1161

et al., 2023) while we used AllenNLP’s OpenIE1162

model (Stanovsky et al., 2018) for creating the ac-1163

tion nodes in the ASR-method. All part-of-speech1164

tagging is done with the NLTK toolkit.1165

For each set of commonsense knowledge gen-1166

erated by its corresponding action node, we filter1167

out any similar generated commonsense to avoid1168

adding duplicate commonsense into the video-1169

specific graph at the same timestep. Specifically,1170

we removed any similar commonsense if its Leven-1171

shtein Distance ratio with another commonsense is1172

greater than 0.70. As mentioned in Section 3.1, we1173

also did not add the commonsense into the graph if 1174

the action class used to generate that commonsense 1175

had a confidence score of less than 0.5 so as to 1176

avoid incorporating irrelevant external knowledge. 1177

The threshold for filtering out any noisy object and 1178

audio labels was 0.25 and 0.3 respectively while 1179

the threshold to determine whether an action node 1180

contained ‘no action’ was 0.35. For creating the 1181

theme graphs in the case when the ASR-method is 1182

used, k-means clustering with k = 300 and 10 rep- 1183

etitions was used to create the action classes. The 1184

theme graphs contain the top-100 most occurring 1185

words within that action class/theme. 1186

Model Training: The 2048D visual features for 1187

the ActivityNet were extracted using a 3D-CNN 1188

backbone (Ji et al., 2012). For YouCook2, we used 1189

2048D ResNet-200 (He et al., 2016) visual fea- 1190

tures concatenated with 1024D optical flow fea- 1191

tures from BNInception (Ioffe and Szegedy, 2015). 1192

The node/edge linguistic features for the video- 1193

specific and theme graphs are represented using 1194

CLIP textual embeddings (Radford et al., 2021). 1195

We train the modules in an end-to-end fash- 1196

ion with teacher forcing to optimise the Kull- 1197

back–Leibler divergence loss with the best model 1198

using a label smoothing of 0.3. The word embed- 1199

ding matrix of the models is initialised with GloVe 1200

embeddings of dimension 300 (Pennington et al., 1201

2014). Inputs into each transformer stream are 1202

added with fixed positional embeddings (only for 1203

the visual stream) and learnt token type embed- 1204

dings. The token type embedding matrix was size 1205

10 to incorporate for different modality types such 1206

as visual, audio or type of node e.g. location, com- 1207

monsense etc. We use 2 hidden transformer layers 1208

with 12 attention heads where the hidden and inter- 1209

mediate size was 768. For the theme graph encoder, 1210

2 GATv2Conv layers (Brody et al., 2021) were 1211

used while the video-specific graph encoder used 1 1212

GATv2Conv layer with all layers using 4 attention 1213

heads. Adam optimizer was used to train our model 1214

with an initial learning rate of 1e-4, β1 = 0.9 and 1215

β2 = 0.999, L2 weight decay of 0.01, learning rate 1216

warmup over the first 5 epochs and batch size of 1217

2. Early stopping was applied after no improve- 1218

ment was seen in the validation CIDEr score in 3 1219

consecutive epochs. For decoding the caption at 1220

inference, nucleus sampling with 0.6 top-p and 0.5 1221

temperature was used. 1222
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ae-val
Model Conference Year Modalities Integration Method B4 ↑ M ↑ C ↑ R ↑ R4

VTrans (Zhou et al., 2018) CVPR 2018 V+F Concatenation 9.75 15.64 22.16 28.9 7.79
HSE (Zhang et al., 2018) ECCV 2018 V - 9.84 13.78 18.78 -
AdvInf (Park et al., 2019) CVPR 2019 V+F+O Concatenation 10.04 15.93 27.27 - 5.76
GVD (Zhou et al., 2019a) CVPR 2019 V+F+O CM Attention 11.04 15.71 22.95 - 8.76
GVDsup (Zhou et al., 2019a) CVPR 2019 V+F+O CM Attention 11.30 16.41 22.94 - 7.04
Trans-XL (Dai et al., 2019) ACL 2019 V+F Concatenation 10.39 15.09 21.67 30.18 8.79
Trans-XLRG (Lei et al., 2020) ACL 2020 V+F Concatenation 10.17 14.77 20.40 -
MDVC (Iashin and Rahtu, 2020b) † CVPR 2020 V+S+A Concatenation 9.12 14.69 17.57 25.85 -
BMT (Iashin and Rahtu, 2020a) † BMVC 2020 V+A CM Attention 9.00 14.49 16.46 26.11 -
MART (Lei et al., 2020) ACL 2020 V+F Concatenation 10.33 15.68 23.42 - 5.18
PDVC (Wang et al., 2021) ICCV 2021 V+F Concatenation 11.8 15.93 27.27 - -
Motion-Aware (Hu et al., 2023) ICASSP 2023 V+O CM Attention 12.07 16.81 29.32 - 4.28
Text-KG (Gu et al., 2023) CVPR 2023 V+O+S+G(S+C) CM Attention 11.30 16.50 26.60 - 6.30
VLTinT w/ CL (Yamazaki et al., 2023) AAAI 2023 V+L+O CM Attention 14.93 18.16 33.07 36.86 4.87
VLTinT w/ CL∗ (Yamazaki et al., 2023) AAAI 2023 V+L+O CM Attention 14.89 18.09 33.07 36.76 5.11
GEM-VPC w/ No Recurrence - 2024 V+G(V+A+C) CM Attention 13.16 17.56 27.50 33.85 7.86
GEM-VPC w/ MART decoder - 2024 V+G(V+A+C) CM Attention 13.91 17.47 30.68 35.97 6.18
GEM-VPC w/ TinT decoder - 2024 V+G(V+A+C) CM Attention 14.73 18.02 32.93 36.71 5.41

Table 9: n-gram metrics and repetition scores of baselines and our model (GEM-VPC) for the ActivityNet ae-val
split. In the ‘Modalities’ column, the abbreviations are defined as follows: V=visual, F=optical flow, O=bounding
box object visual features, A=audio, S=speech, L=language, G(V+A+C)=graph built with visual, audio modality
and commonsense, G(S+C)=graph build with speech modality and commonsense. † indicates results computed by
ourselves using VPC evaluation mode.∗ indicates results computed from the model that was reran with our own
environment. The ‘Integration Method’ column indicates the model’s main approach for integrating the distinct
modalities. ‘Concatenation’ refers to a simple concatenation of different modality vectors which are then fed into
a single stream, ‘CM Attention’ refers to cross-modal attention employed between modules processing different
modality inputs, and ‘Joint CM Space’ indicates that the model attempts to learn a common space for different
modalities.

H ActivityNet Validation Set Quantitative1223

Results1224

Table 9 shows the n-gram metrics and repetition1225

scores of baselines and GEM-VPC for the Ac-1226

tivityNet ae-val split. In the ‘Modalities’ col-1227

umn, the abbreviations are defined as follows:1228

V=visual, F=optical flow, O=bounding box object1229

visual features, A=audio, S=speech, L=language,1230

G(V+A+C)=graph built with visual, audio modal-1231

ity and commonsense, G(S+C)=graph build with1232

speech modality and commonsense. † indicates re-1233

sults computed by ourselves using VPC evaluation1234

mode.∗ indicates results computed from the model1235

that was reran with the same environment as this re-1236

search. The ‘Integration Method’ column indicates1237

the model’s main approach for integrating the dis-1238

tinct modalities. ‘Concatenation’ refers to a simple1239

concatenation of different modality vectors which1240

are then fed into a single stream, ‘CM Attention’1241

refers to cross-modal attention employed between1242

modules processing different modality inputs, and1243

‘Joint CM Space’ indicates that the model attempts1244

to learn a common space for different modalities.1245

Our best model (GEM-VPC w/ TinT decoder)1246

achieves comparable performance with the1247

strongest baselines (VLTinT w/ CL and VLTinT w/ 1248

CL∗). Note that while we underperform slightly 1249

on the validation set, we outperform VLTinT in 1250

a majority of the metrics when evaluating on the 1251

testing set (see Table 1 of the main paper). 1252

1253

Please note that the appendix continues 1254

on the next page. 1255
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I Video-Specific Graph Visual Examples1256

Visual depiction of what the video-specific graphs would look like using the VF and ASR-method for1257

an example ActivityNet and YouCook2 video. Blue nodes represent the action nodes, red nodes are1258

the location/contextual phrase nodes, green nodes are object nodes, purple nodes are audio nodes and1259

orange nodes are the commonsense nodes. Note that due to size of the graphs, not all nodes are presented1260

and graphs would be larger in reality. Sentences under the video frames are the matching ground-truth1261

captions.1262

Figure 5: Video-specific graph for an example video in the ActivityNet dataset using the VF-method for the first 3
timesteps.
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Figure 6: Video-specific graph for an example video in the YouCook2 dataset using the ASR-method for the first 3
timesteps.

J Qualitative Examples (Ours vs SOTA) 1263

Qualitative Examples for the start-of-the art methods versus ours (GEM-VPC) are shown on the next 1264

page. The first example is from YouCook2 while the last 2 are from ActivityNet. Blue words in the 1265

machine-generated captions are visually grounding to the video, while red words represent irrelevant 1266

words that are ‘hallucinated’ by the model. 1267

We collect the top-10 selected nodes by confidence score at each timestep during inference and display 1268

the selected nodes and their types in the table after each example. Highlighted blue words in the table 1269

indicate information related to the theme of the video. Evidently, the commonsense-enhanced video 1270

graph and theme graph assists our model in producing concepts and phrases relevant to the video segment. 1271

For instance in the second example, our model mentions relevant phrases like ‘smiling to the camera’ 1272

and ‘putting ornaments on the tree’ which were perhaps derived from selected nodes such as ‘happy’, 1273

‘decoration’ and ‘jingle’. Conversely, other baseline models will sometimes mention concepts irrelevant 1274

to the video such as in the last instance where Text-KG mistakens a motorcycle for a ‘car’. Likewise, 1275

BMT incorrectly outputs ‘brushing his face’in contrast to our model which is capable of recognising the 1276

action of a person shaving his beard. 1277
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Figure 7: Qualitative Examples for the state-of-the-art methods versus ours.
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K More Qualitative Examples 1278

Figure 8: Qualitative examples of generated captions using our model. Top 2 examples are from ActivityNet and
bottom 2 examples are from YouCook2. Blue words in the machine-generated captions are visually grounding to
the video, while red words represent irrelevant words that are ‘hallucinated’ by the model.
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