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ABSTRACT

Spiking Neural Networks (SNNs) as Machine Learning (ML) models have recently re-
ceived a lot of attention as a potentially more energy-efficient alternative to conventional
Artificial Neural Networks. The non-differentiability and sparsity of the spiking mecha-
nism can make these models very difficult to train with algorithms based on propagating
gradients through the spiking non-linearity. We address this problem by adapting the
paradigm of Random Feature Methods (RFMs) from Artificial Neural Networks (ANNs)
to Spike Response Model (SRM) SNNs. This approach allows training of SNNs without
approximation of the spike function gradient. Concretely, we propose a novel data-driven,
fast, high-performance, and interpretable algorithm for end-to-end training of SNNs in-
spired by the SWIM algorithm for RFM-ANNs, which we coin S-SWIM. We provide a
thorough theoretical discussion and supplementary numerical experiments showing that
S-SWIM can reach high accuracies on time series forecasting as a standalone strategy and
serve as an effective initialisation strategy before gradient-based training. Additional ab-
lation studies show that our proposed method performs better than random sampling of
network weights.

1 INTRODUCTION

Ever since their great potential as ML models has been shown theoretically (Maass, 1996; 1997b; Maass &
Schmitt, 1999), much effort has been devoted to bringing Spiking Neural Networks (Maass, 1997a) to the
same degree of maturity as their artificial counterparts. They are regarded as having the potential of being
more energy-efficient than conventional artificial neural networks (Yan et al., 2025) when implemented and
trained properly. These efficiency gains are mainly enabled by SNNs employing sparse computation and
communication by reducing the required computation to sparsely distributed short-lived events called spikes.
Many works have investigated applying the gradient-based methods, which enabled the massive success of
Deep Learning to SNNs; however, it is widely accepted that the sparse event-driven nature enabling the high
efficiency of SNNs, also makes them difficult to train the same way as ANNs (Bohte et al., 2002; Neftci et al.,
2019; Wu et al., 2018). While recent works have achieved considerable progress in the direction of mitigating
the SNN specific obstacles to gradient-based training (Hu et al., 2024), these methods remain subject to
systematic bias introduced by surrogate-gradient approximations (Gygax & Zenke, 2025) and inadequate
utilisation of temporal dynamics (Li et al., 2023), and they inherit the general shortcomings of gradient-based
training: Sensitivity to optimisation hyperparameters (Goodfellow et al., 2016), slow convergence rate (Boyd
& Vandenberghe, 2004; Bottou et al., 2018), substantial computational and memory costs, as well as a lack of
interpretability and an incomplete theoretical characterisation of optimisation landscapes (Taranto & Addie,
2025; Islamov et al., 2024; Mersha et al., 2024). To address these problems, recently, fast and interpretable
methods for training ANNs based on the RFM paradigm, which can train networks orders of magnitude faster
than iterative gradient-based methods while achieving competitive accuracies and also being understood
much better from a theoretical point of view, have been proposed (Bolager et al., 2023; 2025). SNNs have
thus far benefited only very little from advances in RFMs (Dai & Ma, 2025; Basu et al., 2013). SNNs are
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meant to be fast and efficient at inference time, but currently, the training time with SGD prohibits efficient
testing. We aim to mitigate this limitation by translating the modern high-performance SWIM (Bolager et al.,
2023) algorithm from ANNs to SNNs, coining the resulting algorithm “S-SWIM ”.
In short, current approaches for training SNNs based on surrogate gradient approximations suffer from being
computationally expensive and introducing poorly understood systematic biases. We address this problem
by solving simple surrogate objectives for the trainable parameters which do not require approximating or
backpropagating spike-function gradients.
In summary, our main contributions include:
Data-driven Sampling Algorithm for SNNs. To the best of our knowledge, this study is among the first
to apply the RFM paradigm to SNNs and the first ever to propose a data-driven sampling method for joint
learning of weights and temporal parameters.
Theoretical Discussion and Empirical Evaluation. We provide a thorough theoretical discussion of the
proposed method, validated by numerical experiments.
High Performance Initialisation. Our numerical experiments show that using the proposed method as an
initialisation strategy for gradient-based training leads to higher performance in fewer epochs.

2 RELATED WORK

Regarding SNNs for Time Series Forecasting, it is commonly assumed that SNNs are well-suited to tasks
such as time series forecasting, by processing information inherently spatiotemporally. Previously, SNNs
suffered from low performance on these tasks due to the short memory of the commonly employed Integrate-
and-Fire (IF) (Gerstner & Kistler, 2002, Chapter 1.3) type neuron models (Wang & Yu, 2024). Recent
advancements in adapting the neuron models to alleviate this shortcoming by Feng et al. (2025); Lv et al.
(2025; 2024) have made SNNs efficient and effective on these tasks, providing a solid reference we will com-
pare against in our numerical experiments. Regarding Delay Learning, recent works in SNN training show
a renewed focus on explicit delay-learning: Sun et al. (2023) extend SLAYER (Shrestha & Orchard, 2018) by
integrating adaptive caps into the delay optimisation and show improved performance on benchmarks with
rich temporal dynamics. Hammouamri et al. (2023) introduced an alternative method for parameterising
and learning delays by representing them as dilated convolutions with learnable spacings Khalfaoui-Hassani
et al. (2023), which can easily be integrated with arbitrary neuron models and gradient-based optimisation
pipelines. Deckers et al. (2024) Deckers et al. (2024) demonstrate joint optimisation of weights, delays and
neuron model parameters. While these methods highlight the importance of delay learning, they employ
gradient-based optimisiation, which is why we instead make use of linear correlation analysis for learn-
ing delays to enable fully gradient-free training. Regarding Random Feature Methods, while classical
methods such as Extreme Learning Machines (ELMs) (Huang et al., 2004) can train networks much faster
than gradient-based optimisation, they typically require (much) larger networks while performing worse
than gradient-trained networks on sufficiently difficult tasks (Gallicchio & Scardapane, 2021). A major
shortcoming of ELMs is that the weights are chosen entirely data-agnostically, which has been addressed
by Bolager et al. (2023) through proposing a data-dependent weight construction and sampling distribution.
The main argument is based on explicitly constructing a basis for functions matching the behaviour of the tar-
get function, focused on large gradients, thus requiring much fewer neurons than classical RFMs to achieve
competitive performance, while retaining the speed advantage. Previous work on applying RFMs to SNNs,
such as Basu et al. (2013); Dai & Ma (2025); Wang et al. (2025), used only data-agnostic constructions,
which distinguishes our method based on the data-driven SWIM method.

3 MATHEMATICAL FRAMEWORK

In this section, we introduce our main contribution, the S-SWIM algorithm. We start by defining the network
architecture and spiking neuron model we want to train, before giving an intuitive overview of the training
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algorithm, which we then refine through a technical discussion. See figure 1 for a sketch of the network
architecture and the main ideas behind S-SWIM . Further details alongside mathematical derivations are
provided in section A.

...

...

...

...

...

...

...

...

 | |   ||| ||  | |   |   ||

 |      |   ||
 |  |   ||

 |   ||     | || |          ||

||     ||

||  ||||    

Input
layer

Sampled data with different targets Voltages

Similar inputs    selected to
maximise dissimilarity

 | |

||

  | 

 |  | 

(b) SRM neuron (c) Weights

(a) Network 
Architecture

Incoming
 Spikes

Outgoing
Spikes

Voltage

SRK RfK

Propagation
forward via
Spike Trains Output layer

weights trained
by linear

regression
against

target voltages

Input Spikes
or Currents

Output Spikes
or Voltages

1st hidden
layer

 -th hidden
layer

Output
layer

Random distribution for hidden layer
parameters constructed to separate outputs

Figure 1: Overview of the network architecture and the main idea of the training algorithm. (a) The network
consists of successive fully connected layers of SRM neurons. Information propagates between layers only
as spike trains. Depending on the task, inputs and outputs can be spike trains or real-valued functions. (b)
Computation of a single SRM neuron: Incoming spikes are linearly combined and transformed into a con-
tinuous potential through convolution with the spike response kernel (SRK) k . After shifting by the bias b,
outgoing spikes are generated through thresholding. Refractory contributions are generated by convolving
the outgoing spikes with the refractory kernel (RfK) q and weighting by the spike-cost c. Temporal param-
eters are not shown for simplicity. (cf. definition 3.1). (c) The weights of the hidden layers are chosen to
separate the membrane potentials generated by samples with similar inputs and dissimilar targets (cf. sec-
tions 3.2.2 and 3.2.3). The weights of the final layer are found by solving a linear problem (cf. section 3.2.7).

3.1 SPIKE RESPONSE MODEL

While most works on SNNs favour IF-based neuron models for their easy integrability into existing ANN
architectures (Ribeiro et al., 2025; Guo et al., 2024; Zou et al., 2025), in this study, we employ the more
general SRM- which includes the IF model by a special choice of kernels (Gerstner et al., 2014, pp. 158–
161) - for its mathematical convenience. For a broad discussion of the model, see Gerstner et al. (2014) or
Shrestha & Orchard (2018) and Sun et al. (2023) for use as a ML model. The version of S-SWIM presented
here assumes the specific, albeit very flexible, parameterisation of SRM based feed-forward spiking neural
networks defined in definition 3.1. The overall algorithm is, however, modular, so small adaptations can
easily be incorporated into the framework by only changing the respective substep.

Definition 3.1. (Feed-forward Spiking Neural Network) Let X = L2
(
R+

0 ,RDin
)

be an input space
and Y = L2

(
R+

0 ,RDout
)

be an output space. We refer to operators Ψ : X 7→ Y with Ψ(x, t) =

3
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(
Ψ

(L+1)
1 (x, t) ,Ψ

(L+1)
2 (x, t) , . . . ,Ψ

(L+1)
Dout

(x, t)
)⊤

of the form

Ψ
(l)
i (x, t) =


xi(t), for l = 0

ζ
(∑Nl−1

j=1 W
(l)
ij ψ

(l)
ij (x, ·) + c

(l)
i η

(l)
i (x, ·) + b

(l)
i , t

)
, for 0 < l ≤ L∑NL

j=1W
(L+1)
ij ψ

(L+1)
ij (x, ·) + b

(L+1)
i , for l = L+ 1

(1)

with i ∈ {1, 2, . . . Nl} for each l as Feed-forward Spiking Neural Networks (FF-SNNs) with L hidden layers,
where ψ denotes the contributions to the membrane potential from the previous layer and η the refractory
contributions from outgoing spikes, respectively defined as

ψ
(l)
ij (x, t) =

k(l)( · − τ (l)i

σ
(l)
i

)∣∣∣∣∣
·≥0

∗Ψ(l−1)
j (x, ·)

 (t), (2)

η
(l)
i (x, t) =

[
q(l)

(
·
ς
(l)
i

)∣∣∣∣∣
·>0

∗Ψ(l)
i (x, ·)

]
(t) =

∑
tf∈T(l)

i (t)

q(l)

(
t− tf

ς
(l)
i

)
. (3)

Here, [f ∗ g] denotes convolution and the Spike-Response-Kernel (SRK) k(l) and Refractory-Kernel (RfK)
q(l) are arbitrary L2 (R,R) functions defining the temporal shape of input and refractory contributions to
the membrane potential of neurons in layer l. f(t)|t>0 = f(t) if t > 0 and 0 otherwise (analogously for ≥)
denotes half-wave rectification to avoid dependence on future time points. ζ (v, t) =

∑
tf∈T(t) δ(t − tf )

with the past firing times T(t) = {tf |v(tf ) ≥ 1 ∧ tf ≤ t}, respectively defined for each neuron, is the
thresholding operator mapping voltages onto spike trains. {W (l), b(l), τ (l),σ(l)}L+1

l=1 ∪ {c(l), ς(l)}Ll=1 are
the trainable parameters of Ψ, referred to as Weights, Biases, (SRK-)Delays, SRK-Supports, Spike-Costs,
and RfK-Supports respectively, where W (l) ∈ RNl×Nl−1 , and b(l), τ (l),σ(l), c(l), ς(l) ∈ RNl . Delays and
supports together form the temporal parameters of the network. Nl is the number of neurons in the l-th layer
with N0 = Din and NL+1 = Dout.
Remark 3.2. definition 3.1 defines FF-SNNs as they are used for regression tasks with real-valued inputs
and outputs. For the case of spike-valued inputs, the model stays the same, but the input space X instead
consists of spike-trains. For spike-valued outputs, the last layer (L + 1) is defined in the same way as the
interior (0 < l ≤ L) layers, and the output space Y consists of spike-trains.

3.2 RANDOM FEATURE SPIKING NEURAL NETWORKS

The key idea behind S-SWIM is to replace iterative gradient-based optimisation of the network parameters
with drawing them from a probability distribution. We construct this distribution such that the resulting
neurons maximally separate data points with very dissimilar target values. The sampled weights are rescaled
to keep the membrane potentials in a reasonable range with respect to the spike threshold. The temporal
parameters in the hidden layers are selected heuristically to integrate information from a diverse set of time-
scales. Finally, the last layer’s delays are found through correlation analysis, while the weights are solved
for by constructing an appropriate least-squares problem. In the following, we will make these notions
mathematically precise.
The overall structure closely follows the SWIM algorithm (Bolager et al., 2023, Algorithm 1). The main
differences in the overall outline are that, in addition to weights and biases, temporal parameters have to
be specified, and a more involved weight construction is needed due to the data being spatio-temporal.
S-SWIM does not depend on or assume a specific discretisation in time, so we will use the continuous
version in the following. An outline of the major steps of the algorithm is presented in algorithm 1. The
individual substeps will be discussed in the following paragraphs, focusing on a compact representation
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of the algorithm, such that it could be implemented, with a brief motivation, while deferring the detailed
derivations to the Appendix.

3.2.1 TEMPORAL PARAMETERS

We will start by defining the substep T , which assigns the temporal parameters in the hidden layers. The
output layer requires an interval of length H within I tot = [0, T + H) containing spikes to fit the target
functions Y , which are supported on [T, T +H). To ensure the availability of past and recent information,
we use the following heuristic in S-SWIM . For the neurons in layer l, we assign the delays τ (l) linearly
spaced over

[
0, l

Lτmax

)
, with appropriately chosen τmax ∈ R+

0 , so both past and recent information is
available to the current layer. If O < H , τmax should be at least H − O to guarantee a sufficiently long
interval of spikes. For the SRK-supports σ(l), we want multiple scales to be available across different
delays, so we cycle through a set of small to large values, defined by a (small) minimum and (large w.r.t.
O) maximum value σh

min, σ
h
max ∈ R+, and a cycle length N h

σ ≪ Nl ∈ N. We then assign the supports
linearly spaced between the bounds, repeated every N h

σ neurons. Since the RfKs mainly serve to bound the
spiking rate and the main arguments of section 3.2.3 and section 3.2.4 focus on the behaviour of the SRK
contributions, we set ς(l)i = σh

min for all neurons, leaving more involved considerations to future work. The
temoral parameters are thus given by T (l, L,Nl, O,H) =((

i−1
Nl
· l·τmax

L

)Nl

i=1
,
(

(i−1) mod N h
σ

N h
σ−1

(σh
max − σh

min ) + σh
min

)Nl

i=1
,
(
σh
min

)Nl

i=1

)
. (4)

3.2.2 SAMPLING DISTRIBUTION

Next, we will discuss the distribution from which pairs of input signals x(n)(t) are sampled before giving the
construction for the associated weights. As in SWIM, we sample according to a notion of gradients, however,
the gradients are computed in spaces of multivariate functions in our case. The distribution depends on the
functions dX̃0

(·, ·), dX̃l
(·, ·), dỸ(·, ·), defining a notion of distance on the respective spaces. Notably, the

inputs and outputs to the network could be real- or spike-valued, while the inputs to interior (l > 1) hidden
layers are spike-valued, so distances need to be defined for both cases. The choice of distance functions
is important, as the weights of the hidden layers are constructed so that they separate (cf. section 3.2.3)
samples with similar inputs and dissimilar outputs with respect to the employed notion of distance. In other
words, the distance functions need to reflect what features of the data are important, since the hidden layers
are constructed to “emphasise” differences in those features. While there is some freedom in choosing
suitable functions for the task, they need to fulfill symmetry, definiteness (d(x, x) = 0), non-negativity
and boundedness, so P (l) can be normalised to a meaningful probability. A possible framework a more
formal charactersiation of possible distance functions for both the spiking and real-valued cases is given in
section A.1.

3.2.3 SAMPLED WEIGHTS

Next, we will discuss possible weight constructionsW , i.e. how the weights of a given neuron i in layer l,
W

(l)
i,: , are chosen once the temporal parameters of the given layer have been initialised and input pairs for

each neuron have been sampled. Recalling that the input pairs were sampled as having dissimilar outputs,
it is natural to require the hidden layer to separate those samples in its output. As in SWIM, we split the
problem into first finding meaningful directions for the weights before rescaling them and applying the bias
to achieve a meaningful output. In S-SWIM, this means first finding weights that produce voltage traces
ensuring the separation, which is the content of this section, and then scaling and setting the remaining
parameters in the current layer to generate reasonable spike trains from those voltage traces, which will be
discussed further below. Formally, this separation can be achieved by maximising the distance (“dist”) or

5
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Algorithm 1 The S-SWIM algorithm. L is the loss function, which in our case is always the L2 loss. ϵ
serves to bound the sampling distribution and was always set to ϵ = 10−6 in our case. O, T,H depend on
the specific task; for time series forecasting T = O, and H is the prediction length. Ψ is a FF-SNN with
fixed architecture that is constructed step-wise according to the algorithm by setting its parameters. Γ is
the unknown ground-truth mapping to be approximated. The inputs can be real or spike-valued, the outputs
must be real-valued (either given from the task or generated surrogate voltages). Line comments indicate
where details about the specific substeps can be found.

Constants: ϵ ∈ R>0, L ∈ N>0, {Nl ∈ N>0}L+1
l=1 ▷ Fixed or part of the model architecture

Algorithm Parameters: ▷ Specific to S-SWIM
Temporal Parameters T ,
Distances dX0

(·, ·), dXl
(·, ·), dY(·, ·),

Weight Construction CriterionW ,
Normaliser Z ,
Initialisation batch size: M̃ ∈ N>0

Data: X = {x(n)(t) : x(n) ∈ X , n = 1, 2, . . . ,M ; t ∈ [0, O)},
Y = {y(n)(t) : Γ{x(n)}(t) = y(n)(t) ∈ RDout , n = 1, 2, . . . ,M ; t ∈ [T, T +H)}

1: XI = {x(n)
I }M̃n=1 ∼ Uniform(X), YI = {y(n)

I : Γ{x(n)
I } = y

(n)
I }M̃n=1

▷ Hidden Layers
2: for l = 1, 2, . . . , L do

▷ section 3.2.1 (Temporal Parameters)
3: Set Ψ : τ (l),σ(l), ς(l) ← T (l, L,Nl, O,H)

▷ section 3.2.2 (Sampling Distribution)
4: K ← M̃2−M̃

2 ▷ Lower triangular part of distance matrix (symmetry)
5: P (l) ∈ RK , P

(l)
i ← 0 ∀i

6: for n = 1, 2, . . . , M̃ − 1 do
7: for m = 1, 2, . . . , n− 1 do ▷ Output of previous layer defines new input space
8: x̃

(n)
I , x̃

(m)
I ← Ψ(l−1)

(
x
(n)
I , [0, T +H)

)
, Ψ(l−1)

(
x
(m)
I , [0, T +H)

)
9: P

(l)
flat(n,m) ←

dỸ
(
y(n),y(m)

)
dX̃l−1

(
x̃
(n)
I , x̃

(m)
I

)
+ ϵ

▷ Indexing of P (l) is arbitrary

▷ section 3.2.3 (Sampled weights)
10: for i = 1, 2, . . . , Nl do
11: Sample x(n)

I ,x
(m)
I from XI without replacement, probability ∝ P (l)

12: ψ1,ψ2 ← ψ
(l)
i,:

(
x
(n)
I , [0, T +H)

)
, ψ

(l)
i,:

(
x
(m)
I , [0, T +H)

)
▷ Apply SRK

13: w̃ ←W (ψ1,ψ2) ▷ Candidate weight directions from separation criterion
▷ section 3.2.4 (Normalisation)

14: α, β, γ ← Z
(
w̃, ψ

(l)
i,: (XI , [0, T +H))

)
15: Set Ψ :W

(l)
i,: , b

(l)
i , c

(l)
i ← αw̃, β, γ

q(l)(0)
▷ Rescale to control voltage statistics

▷ Output Layer
▷ section 3.2.5 (Output Delays)

16: Set Ψ : τ (L+1) ← C
(
Ψ(L) (XI , [0, T +H)) , YI

)
▷ section 3.2.6 (Kernel Supports)

17: Set Ψ : σ(L+1) ← Σ
(
Ψ(L) (XI , [T, T +H)) , YI

)
▷ section 3.2.7 (Output Weights)

18: Set Ψ :W (L+1), b(L+1) ← argminW ,b L(Ψ(L) (X, [T, T +H)) , Y )
19: return Ψ

6
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minimising the inner products (“dot”) between the contributions to the voltage associated to the sampled
inputs in function space. Those objectives respectively lead to the constructions

Wdist (ψ1,ψ2) = wmax

{∫ T+H

0

(ψ1(t)−ψ2(t)) (ψ1(t)−ψ2(t))
⊤
dt

}
,

Wdot (ψ1,ψ2) = wmin

{
1

2

∫ T+H

0

ψ1(t)ψ2(t)
⊤ +ψ2(t)ψ1(t)

⊤ dt

}
,

(5)

wherewmax {A} andwmin {A} respectively denote the eigenvectors to the algebraically largest and smallest
eigenvalue of A. A formal derivation and an intuitive explanation of the proposed weights is given in
section A.2.

3.2.4 NORMALISATION

The final stepZ in the initialisation of each hidden layers is normalising the voltages to produce “reasonable”
spike trains by re-scaling the sampled weights and choosing a suitable bias. Informally, to propagate usable
information to the following layers, a spike train should contain some spikes but not too many. For this, we
adapt the idea of Rossbroich et al. (2022) and enforce contraints on the statistics of the input contributions
to the voltage ψ(l)

i,n, specifically, the (empirical) expected temporal mean EX
vi and standard deviation SXvi

approximated over the subbatchXI . One possible constraint is to explicitly prescribe the target mean EXI
vi

!
=

µt and standard deviation SXI
vi

!
= st (“MS”), where µt ∈ (−∞, 1) and st ∈ R+ are tunable hyperparameters.

Alternatively, we can prescribe a degree of fluctuation (“FL”) by leaving the standard deviation as is and
setting the bias to put the mean r standard deviations away from the threshold θ = 1 by EXI

vi

!
= 1 − rSXI

vi

with r ∈ R+ as tunable parameter. Finally, to make spiking multiple times in quick succession only possible
when inputs are especially well aligned with the neurons weights, a sensible choice for the spike cost is
c
(l)
i = −3 SXI

vi /q
(l)(0). These constraints are enforced by relating them to the bias and scale of the weights,

as shown in section A.3. This leas to the normalisers ZMS
µt,st

(
w̃,
{
ψ

(l)
i,n

}M̃

n=1

)
=(

st

EXI
n

[√
Var

XI
t

[〈
w̃,ψ

(l)
i,n(t)

〉
ℓ2

]] , µt − st
EXI
n

[
EXI
t

[〈
w̃,ψ

(l)
i,n(t)

〉
ℓ2

]]
EXI
n

[√
Var

XI
t

[〈
w̃,ψ

(l)
i,n(t)

〉
ℓ2

]] +∆SC, −3 · st
)

(6)

and ZFL
r

(
w̃,
{
ψ

(l)
i,n

}M̃

n=1

)
=(

1, 1− rEXI
n

[√
VarXI

t

[〈
w̃,ψ

(l)
i,n(t)

〉
ℓ2

]]
− EXI

n

[
EXI
t

[〈
w̃,ψ

(l)
i,n(t)

〉
ℓ2

]]
+∆SC, −3 · SXI

vi

)
.

(7)
The “Silence Correction” (“SC”) term ∆SC is chosen just large enough to guarantee that each neuron spikes
at least once. Detailed derivations for the given expressions and how to choose ∆SC can be found in sec-
tion A.3.

3.2.5 OUTPUT DELAYS

After the hidden layers have been initialised, that is all parameters in Ψ(L) have been specified, the remaining
parameters W (L+1), b(L+1), τ (L+1), and σ(L+1) have to be chosen such that the output of the network
best approximates the targets Y , which we assume to be real-valued functions throughout the following
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discussion. See section A.4 for a discussion of the spike-valued case. The delays τ (L+1) can be found

through linear correlation analysis. Concretely, we set C
({

Ψ(L)
(
x
(n)
I

)}M̃

n=1
,
{
y
(n)
I

}M̃

n=1

)
=

argmax
τ∈[0,O)

M̃∑
n=1

NL∑
j=1

∣∣∣[Ψ(L)
j

(
x
(n)
I

)
⋆
(
y
(n)
i − µ

y
(n)
i

(T, T +H)
)]∣∣∣−∆k

NL+1

i=1

, (8)

where [f ⋆ g] denotes the cross-correlation of f and g and ∆k is the location where the SRK peaks. This
criterion is quite intuitive: We select the delay at which the incoming spike trains best predict the targets.
It can also be derived from explicitly prescribing the definition of Ψ(L+1) as ansatz for Y , as is done in
section A.5.

3.2.6 KERNEL SUPPORTS

Next, the kernel supports σ(L+1) need to be specified. S-SWIM reduces this to a one-dimensional optimisa-
tion problem by aggregating the delays, leading to a shared system matrix for all neurons, and a simplifica-
tion of the remaining linear problem enabling a fast search over well-chosen candidate values. Concretely,
for each candidate, we only need to evaluate the remaining residual norm r∗i|σc

over the subbatch XI when
using the optimal weights and bias, but we do not need to compute the actual parameters. Thus, we define a
set of candidates P and for each neuron select

ΣP =

(
argmin
σc∈P

∥∥∥r∗i|σc

∥∥∥2
2

)NL+1

i=1

=

(
argmin
σc∈P

∥Dyi∥22 −
∥∥Q⊤

σcDyi
∥∥2
2

)NL+1

i=1

, (9)

where Qσc comes from the thin QR-factorisation of the augmented design matrix A(σc) ∈
R(HD·M̃)×(NL+1) built from the discretised SRK contributions, computed with the aggregated delay and
the candidate σc, as columns concatenated along the temporal dimension, and Dyi ∈ RHD·M̃ denotes an
arbitrary discretisation of the analogously stacked targets y(n)

i for neuron i. For the detailed derivations and
how the candidates in S-SWIM are selected, we refer to section A.6.

3.2.7 OUTPUT WEIGHTS

The final step of the algorithm is to solve a linear problem for the output weightsW (L+1) and biases b(L+1).
Due to the added temporal dimension, the approach applied in the previous section over the subbatchXI can
not be applied to the whole training set. The memory requirements and computational cost grow prohibitely
large for any matrix factorisation based approach scaling asO

(
(M ·HD)3

)
directly applied to equation 68,

especially since the system has to be solved independently for each neuron due to the temporal parame-
ters. To avoid these problems, we use a generalised form of the Normal Equations derived in section A.7,
which can be assembled in batches and only requires a small linear system scaling only with the number of
parameters per neuron to be solved. Concretely, we reformulate the problem as

RNL+1×NL+1 ∋
M∑
n=1

DF (n)
i

⊤
DF (n)

i +MλIdNL+1 = DF (n)
i

⊤
Dy(n)

i ∈ RNL+1, (10)

where DF (n)
i ∈ RHD×NL+1 is the augmented design matrix for neuron i containing the discretised SRK

contributions ψ(L+1)
i: and a column of 1s for the bias, and Dy(n)

i ∈ RHD are the discretised targets for
neuron i. This formulation additionally allows for a cheap search over the regularisation parameter λ, which,
alongside the conditioning of the resulting system matrix, is discussed in section A.7.
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4 NUMERICAL EXPERIMENTS

Table 1: Experimental results of time-series forecasting on 4 benchmarks with various prediction lengths
6, 24, 48, 96. The reference values are sourced from Lv et al. (2025)Table 1. Results highlighted with
shading are ours. “Kernel” denotes the SRK used in the first layer. Bold font indicates the best SNN re-
sult. Underlined results indicate S-SWIM performing at least as well as gradient-based methods. Italic font
indicates that SGD optimisation did not fully converge, i.e. the best epoch was within 30 epochs of the max-
imum. Results are given in the RSE Metric, where lower is better. All results are averaged across 3 seeds.

Models Comment Metr-la (L = 12) Pems-bay (L = 12) Solar (L = 168) Electricity (L = 168) Avg.Spike Kernel 6 24 48 96 6 24 48 96 6 24 48 96 6 24 48 96

Transformer w/ RoPE ✗ – .548 .696 .802 .878 .499 .563 .600 .617 .225 .373 .492 .539 .251 .274 .341 .420 .507
Transformer w/ Sin-PE ✗ – .551 .704 .808 .895 .502 .558 .610 .618 .223 .377 .504 .545 .260 .277 .347 .425 .513
Spikformer w/ RoPE ✗ – .584 .757 .835 .920 .519 .591 .614 .625 .294 .441 .550 .633 .375 .383 .384 .454 .560
Spikformer w/ CPG-PE ✓ – .553 .720 .806 .890 .508 .580 .602 .622 .257 .420 .506 .555 .299 .310 .314 .355 .519
Spikformer-XNOR w/ Conv-PE ✓ – .559 .721 .813 .910 .518 .599 .613 .628 .273 .421 .527 .595 .365 .371 .376 .384 .542
Spikformer-XNOR w/ Gray-PE ✓ – .546 .706 .806 .885 .506 .578 .597 .618 .257 .409 .507 .546 .276 .304 .320 .342 .513
Spikformer-XNOR w/ Log-PE ✓ – .543 .719 .799 .876 .496 .575 .601 .620 .265 .408 .504 .525 .272 .300 .314 .340 .510
SDT-V1 w/ CPG-PE ✓ – .585 .724 .799 .920 .515 .578 .633 .642 .285 .439 .558 .637 .361 .368 .370 .376 .549
SDT-V1 w/ Log-PE ✓ – .554 .713 .807 .904 .502 .585 .629 .641 .280 .437 .527 .598 .353 .356 .360 .366 .538
QKFormer w/ Conv-PE (Original) ✓ – .561 .735 .832 .917 .521 .586 .609 .635 .289 .515 .716 .784 .306 .319 .355 .367 .565
QKFormer w/ CPG-PE ✓ – .536 .704 .803 .896 .503 .578 .589 .633 .285 .520 .581 .645 .266 .312 .315 .332 .531
QKFormer-XNOR w/ Gray-PE ✓ – .534 .711 .804 .898 .484 .577 .601 .616 .276 .438 .556 .570 .277 .310 .314 .331 .519
QKFormer-XNOR w/ Log-PE ✓ – .535 .715 .805 .903 .482 .581 .585 .629 .274 .437 .515 .564 .264 .285 .296 .328 .512
SGD (Morlet) ✓ Morlet .429 .538 .615 .708 .413 .422 .544 .804 .221 .357 .378 .376 .302 .343 .379 .570 .463
SGD (Hat) ✓ Hat .432 .528 .612 .677 .426 .455 .545 .770 .256 .387 .392 .371 .345 .358 .431 .609 .475
SSWIM (Morlet) ✓ Morlet .507 .651 .729 .806 .416 .514 .589 .651 .428 .371 .367 .370 .378 .363 .364 .370 .492
SSWIM (Hat) ✓ Hat .513 .637 .718 .794 .420 .512 .583 .652 .387 .369 .347 .370 .429 .433 .437 .433 .502
SSWIM+SGD (Morlet) ✓ Morlet .464 .629 .697 .736 .390 .468 .550 .602 .360 .298 .279 .267 .325 .313 .307 .308 .437
SSWIM+SGD (Hat) ✓ Hat .476 .580 .647 .720 .405 .474 .512 .622 .306 .317 .296 .288 .362 .340 .340 .328 .438

Figure 2: Training time of S-SWIM and SGD training across datasets and prediction horizons H for the
conducted forecasting experiments with the Hat kernel. Note that the time is given in log scale.

Details on the experimental setup, the employed hardware and datasets are given in section B.
Time-Series Forecasting: As the main benchmark, we evaluate the performance of the proposed algorithm
for fitting networks on a time series forecasting task. We evaluate the performance of (a) training the net-
works only with S-SWIM, (b) training the networks only with a stochastic gradient descent (SGD) algorithm,
specifically ADAM (Kingma & Ba, 2017), using an established surrogate-gradient strategy, and (c) fine-
tuning the S-SWIM -trained networks with gradient-based training and compare the results to the current
state of the art for SNNs. The results can be found in table 1, the corresponding fitting time in figure 2. With
the exception of the Metr-la dataset, we find that S-SWIM consistently performs at or above the level of
SGD, especially over long prediction horizons. We suspect an interplay between two effects here. Namely,
(a) at longer prediction horizons, the credit assignment problem in gradient-descent training naturally gets
harder (Pascanu et al., 2013), which S-SWIM does not suffer from by being gradient-free and (b) S-SWIM
seemingly underperforms at very short horizons (H = 6 in particular). We suspect that the latter is due to
the aggregation of delays in section 3.2.6 (Kernel Supports) not working short horizons. The effect is also

9
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Figure 3: Classification accuracy across different architectures and configurations (Number of hidden layers,
number of neurons, weight constructions and sampling metrics (cf. section A.1)).

observed for SGD-only training (Hat, Solar, H = 48, 96), so it must be in part attributable to the model be-
ing able to exploit periodic structure in the data (Lai et al. (2018)[Figure 3]) better at long horizons. Finally,
the current results suggest that S-SWIM can also serve as an efficient but effective initialisation strategy for
gradient-based training, however, however, more experiments in this direction are required due to different
parameters and non-convergence in multiple cases. Across different algorithms, we also observe that the
choice of the employed kernel function(s) matters. Most importantly, S-SWIM is extremely fast compared
to SGD training, consistently achieving speedups of one to three orders of magnitude (cf. figure 2). Classifi-
cation Experiments: We conduct additional experiments on static image and speech classification datasets,
including the mutlti-layer case and problems where the targets are not real-valued functions and thus require
surrogate target voltages (cf. sections A.4), . We chose those benchmarks as they contain spikes generated
from non-spiking data with no real temporal information and ”real” spike data with meaningful temporal
patterns. The predicted class is taken as the output layer neuron with the largest voltage integrated over
time or number of spikes. The accuracy for the voltage readout is shown in figure 3. For the spike-based
readout, see section C.1. The findings show that S-SWIM can also be used for classification problems and
that with the notable exception of L = 2 on F-MNIST typically significantly outperforms data-agnostic
weights, especially it never performs significantly worse. Regarding sampling deep networks, we find that
while those networks still achieve acceptable results, they perform worse than their shallow counterparts,
which currently constitutes a major weakness of S-SWIM . Further investigation is needed to relate this to
poorly chosen hyperparameters, especially the temporal parameters or the sampling metrics or more general
problems of the algorithm. It should be noted that this is a common problem of RFM.

5 CONCLUSION

Summary: We introduced S-SWIM, a novel data-driven algorithm for sampling the weights of SNNs. Our
approach addresses key challenges in training SNNs by circumventing the approximation of the spike func-
tion gradient entirely, through the use of the RFM paradigm. Through numerical experiments, we show that
S-SWIM can serve as a solid standalone strategy or initialisation for gradient-based training, especially at
long prediction horizons, while being orders of magnitude faster than full SGD optimisation. Furthermore,
the approach is interpretable and modular, easing future analysis, refinement and adaptation to different
tasks. Limitations: S-SWIM does currently not perform well for deep networks, barring it from practi-
cal applicability. It is currently unclear, why. Several avenues for improvement remain unexplored. See
section D for further discussion.

10
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6 ETHICS STATEMENT

This work contributes to the advancement of spiking neural networks, which are regarded as a potentially
very energy-efficient family of machine learning models. Our main contribution is towards making the
training of spiking neural networks faster, thus saving resources, and making it more interpretable. While
they are broadly applicable and can thus potentially be misused, we see the benefits of reducing the immense
cost of training for proper use as outweighing this risk. Especially since there are growing concerns about the
resource demand of artificial neural networks for training, which is addressed by our method, and inference,
which is addressed by the broader field of spiking neural networks.

7 REPRODUCIBILITY STATEMENT

The authors have worked diligently toward ensuring the reproducibility of the results presented in this work.
Specifically, we give a thorough discussion of the algorithm in section 3.2 and section A, enabling inde-
pendent implementation and evaluation of the proposed method. A comprehensive description of the setup
for the main experiments is given in section B. Furthermore, the code used for this study is provided in the
supplementary materials and will be made publicly available after the review period.

The datasets used for the experiments can be downloaded through an anonymised link provided as part of
the supplementary materials.

8 USAGE OF LLMS & AI TOOLS

Several LLM / AI tools have been used throughout various stages of this work, which we will detail here.

AI-assistance during code development. During the development of the code implementing the proposed
method for the numerical experiments, LLMs were employed to assist the process. Concretely, the models
ChatGPT (OpenAI), Claude (Anthropic), and DeepSeek LLM (DeepSeek-AI) were used. The major devel-
opments of the code happened between March 2025 and August 2025, during which the most recent publicly
available versions of the models were used. All code outputs generated by these models were manually re-
viewed and, where necessary, corrected or adapted by the authors to ensure correctness and reproducibility.

AI-assistance during paper writing. Throughout all sections of the paper, the AI tool Grammarly (Gram-
marly, Inc.) was used for correcting spelling and grammar. Some sentences were rephrased according to
the suggestions of Grammarly. All suggestions made by Grammarly were reviewed and only accepted if
deemed correct.

The authors acknowledge the full responsibility for the submitted text, code and presented results, especially
for any mistakes contained therein.
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A DETAILED DERIVATIONS

Here, we provide more details about the theoretical underpinnings of the S-SWIM algorithm.

A.1 SAMPLING DISTRIBUTION

Pseudometrics. We propose to use pseudometrics for sampling, that is a non-negative functions of the
form d : X ×X 7→ R+

0 , for some set X , fulfilling ∀x, y, z ∈ X
d(x, x) = 0, (11)
d(x, y) = d(y, x), (12)
d(x, z) ≤ d(x, y) + d(y, z). (13)

We intentionally do not require x ̸= y =⇒ d(x, y) > 0, as it can be useful to identify samples differing
only in a way that is not informative for sampling. Below we will define the pseudometrics we evaluated
during our numerical experiments, which for example identify a function with scalar multiples or phase-
shifted copies of itself.

General Construction. We suggest the following general construction for informative sampling pseu-
dometics. Let H = L2

(
[a, b),RJ

)
, E = L2

(
[a, b),CJ

)
be equipped with inner products ⟨x, y⟩H =∫ b

a
x(t)⊤y(t) dt, respectively, ⟨x, y⟩E =

∫ b

a
x(t)Hy(t) dt, where x(t)H is the conjugate transpose of x(t),

and their induced norms ∥·∥H , ∥·∥E . Pseudometrics on H can now be defined by choosing a suitable em-
bedding E : H 7→ E through the construction

dH(x, y) = ∥E(x)− E(y)∥E =

(∫ b

a

∥E(x)(t)− E(y)(t)∥2CJ dt

)1/2

. (14)

Proposition A.1. dH is a pseudo-metric onH.

Proof. 11, and 12 are obvious. 13 follows from the Minkowski inequality, as

∥E(x)− E(z)∥E = ∥E(x)− E(y) + E(y)− E(z)∥E ≤ ∥E(x)− E(y)∥E + ∥E(y)− E(z)∥E . (15)

This construction generalises the notion of the canonical L2 distance by only measuring distance on proper-
ties that are relevant for the purpose of constructing weights, effectively identifying samples differing only
in irrelevant characteristics. This construction can naturally be extended to spike-valued inputs or outputs
by first embedding the target spike-trains into H. For this, we apply the idea of the van Rossum metric on
spike trains (van Rossum, 2001). Concretely, define the set of all D-dimensional spike trains of arbitrary but
finite length over the interval I ,

SDI =
D×

d=1

{
N∑
i=1

δ(· − tfi )

∣∣∣∣∣ tfi ∈ I ∧N <∞

}
, (16)

and the induced pseudometric dS over SDI from a pseudometric df over a space of real-valued functions
through

dS(S1, S2) = df ([S1 ∗ h], [S2 ∗ h]) . (17)
The kernel h is in principle arbitrary as long as a pseudometric df can be defined. A reasonable choice in
the context of S-SWIM when sampling for layer l is the SRK k(l), which by finity of S and integrability of
k(l) yields [S ∗ k(l)] ∈ L2

(
I,RD

)
for S ∈ SDI , where the convolution is performed per dimension.
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To make the sampling invariant to constant shifts, the dimensionwise temporal mean,

µxi
(a, b) =

1

b− a

∫ b

a

xi(t) dt, (18)

is subtracted from all samples before computing the pairwise distances, which can be absorbed into the
embedding in the presented framework. Furthermore, we impose a small dimensionwise minimum L2 norm
to each input function, setting the probability of pairs containing samples which do not fulfil this criterion to
0, as such pairs yield trivial and thus not useful solutions for the discussed weight constructions.

Other definitions of “distance” can of course be used instead. We chose this construction mainly because it
for one is simple yet flexible, making theoretical analysis easier, and because it is informative in the sense
that which embeddings E produce informative gradients yields insights into the structure of the data.

Example Embeddings. Several useful embeddings that together with equation 17 can be used to construct
the pseudometrics dX̃0

, dX̃l
, dỸ by appropriate choices of a, b and J in the above definitions and denoting

the fourier transform of f as F {f} are

• EL2 = Id, which yields the standard L2 metric,

• Ecos (x) =


x

∥x∥L2

, x ̸= 0,

0, x = 0,
which identifies real scalar multiples and thus is only sensitive to

global shape (dis-)similarity,

• Emag (x, ω) =
∣∣F {x} (ω)∣∣, which is insensitive to phase shifts,

• E∠ (x, ω) =


F {x} (ω)
|F {x} (ω)|

, F {x} (ω) ̸= 0,

0, F {x} (ω) = 0,
which only measures relative phase structure, and

• EB (x, ω) = 1K(ω)F {x} (ω), where 1B is the indicator function, if only differences in a
specific band of frequencies (say only high for fast fluctuations or only low for slow trends) are
considered important.

Entropy Criterion. The pseudometrics can either by specified manually using prior knowledge or as-
sumptions about the data, or chosen automatically based on a suitable heuristic. With Din,Dout being sets of
candidate pseudometrics for the inputs and outputs respectively, we propose to choose a small subset Xs of
training samples, and select

din, dout = argmin
din∈Din,dout∈Dout

H(Pdin,dout) (19)

over Xs, where Pdin,dout is the normalised probability distribution used for sampling in algorithm 1 and
computed with respect to the pseudometrics din and dout. H(p) denotes the Shannon entropy (Shannon,
1948) defined as

H(p) = −
∑
a∈A

p(a) log p(a) (20)

for a probability distribution p over the elements of A. The base of the logarithm is arbitrary in our case.
The entropy is maximised by the uniform distribution, so it can be used to measure the non-uniformity of a
distribution. As explained below, the weights of the hidden layer(s) are chosen to maximise some notion of
dissimilarity between the latent embeddings of sample pairs with large gradients. Thus, we want to select
exactly those feature embeddings (among sensibly chosen candidates) which yield large gradients, or in
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other words, a natural way to separate the given dataset1. The entropy criterion has several particularly nice
properties:

1. It has analytically available bounds from below (0) and above (log |A|).
2. It is an intrinsic property of the data, i.e. independent of any chosen network architecture.

3. It is invariant to different ranges of values assigned by different pseudometrics, since it uses nor-
malised probabilities.

4. It is relatively cheap to compute even for a moderate number of candidates. Specifically, only
|Din|+ |Dout| pairwise distance computations are required, as the distance matrices can be reused.

A.2 SAMPLED WEIGHTS

Derivation of the proposed weights. Letting x(l)i,1, x
(l)
i,2 ∈ RNl−1 be the inputs sampled from P (l) for

neuron i and defining the vectors ψ(l)
i,1(t), ψ

(l)
i,2(t) ∈ RNl−1 elementwise as

(
ψ
(l)
i,n(t)

)
j
= ψ

(l)
ij

(
x
(l)
i,n, t

)
,

we can write the contribution to the voltage from the inputs v(l)i,n using the euclidean inner product ⟨·, ·⟩ℓ2 as

v
(l)
i,n(t) =

〈
W

(l)
i,: , ψ

(l)
i,n(t)

〉
ℓ2

for n ∈ {1, 2}. Since v(l)i,n ∈ L2 ([a, b),R), as by the assumptions ψ(l)
ij

(
x
(l)
i,n

)
∈

L2 ([a, b),R), we can use the L2 inner product ⟨·, ·⟩L2 and its induced metric dL2 (·, ·) to formalise the
requirement of separation in function space. The proposed objectives can then be stated as

max
∥w∥=1

dL2

(
v
(l)
i,1, v

(l)
i,2

)
= max

∥w∥=1

∫ b

a

(〈
w,ψ

(l)
i,1(t)

〉
ℓ2
−
〈
w,ψ

(l)
i,2(t)

〉
ℓ2

)2
dt (21)

and

min
∥w∥=1

〈
v
(l)
i,1, v

(l)
i,2

〉
L2

= min
∥w∥=1

∫ b

a

〈
w,ψ

(l)
i,1(t)

〉
ℓ2
·
〈
w,ψ

(l)
i,2(t)

〉
ℓ2
dt. (22)

The bounds are respectively a = 0 and b = T +H in algorithm 1.

Proposition A.2. The solution to the optimisation problem 21 (22) is given by the eigenvector wmax (wmin)
to the algebraically largest (smallest) eigenvalue λmax (λmin) of a symmetric matrix A ∈ RNl−1×Nl−1 .
Further, for 21

Adist =

∫ b

a

(
ψ
(l)
i,1(t)− ψ

(l)
i,2(t)

)(
ψ
(l)
i,1(t)− ψ

(l)
i,2(t)

)⊤
dt ∈ RNl−1 , (23)

and for 22

Adot =
1

2

∫ b

a

ψ
(l)
i,1(t)ψ

(l)
i,2(t)

⊤ + ψ
(l)
i,2(t)ψ

(l)
i,1(t)

⊤ dt. (24)

Proof. We will start by showing that (I.) the solutions to

max
∥w∥=1

w⊤Qw and min
∥w∥=1

w⊤Qw (25)

for Q ∈ Rn×n are respectively wmax and wmin of sym(Q) := 1
2

(
Q+Q⊤) and then (II.) show that 21 and

22 can be written in the form of equation 25, where sym(Q) will yield the proposed matrices.

1Of course, degenerate cases, such as the distribution approaching a dirac mass on a single sample pair, are not
desirable. This can easily be safeguarded against by selecting the minimising pair above a given minimum entropy,
although we found this to not be an issue in our numerical experiments.
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(I.) Extrema of quadratic form.

(a) Let λ be a lagrange multiplier. The Lagrangian for equation 25 is then

L (w, λ) = w⊤Qw + λ
(
w⊤w − 1

)
. (26)

∂

∂w
L (w, λ) =

(
Q+Q⊤)w + 2λw

!
= 0 (27)

⇐⇒ 1

2

(
Q+Q⊤)w = sym(Q)w = λw, (28)

which we recognise as the eigenvalue equation, thus together with the norm constraint making
the candidate solutions the eigenvectors with unit norm {wi}ni=1 of sym(Q).

(b) Next, noting that

w⊤
i Qwi = w⊤

i

(
1

2

(
Q+Q⊤)+ 1

2

(
Q−Q⊤))wi (29)

= w⊤
i sym(Q)wi +

1

2
w⊤

i Qwi −
1

2
w⊤

i Q
⊤wi (30)

= w⊤
i sym(Q)wi = λiw

⊤
i wi = λi, (31)

we get that the solutions to equation 25 are respectively wmax and wmin.

(II.) 21 and 22 as quadratic forms.

(a) For 21, we have

max
∥w∥=1

dL2

(
v
(l)
i,1, v

(l)
i,2

)
= max

∥w∥=1

∫ b

a

(〈
w,ψ

(l)
i,1(t)

〉
ℓ2
−
〈
w,ψ

(l)
i,2(t)

〉
ℓ2

)2
dt (32)

= max
∥w∥=1

∫ b

a

(〈
w,ψ

(l)
i,1(t)− ψ

(l)
i,2(t)

〉
ℓ2

)2
dt (33)

= max
∥w∥=1

∫ b

a

(
w⊤

(
ψ
(l)
i,1(t)− ψ

(l)
i,2(t)

))2
dt (34)

= max
∥w∥=1

∫ b

a

w⊤
(
ψ
(l)
i,1(t)− ψ

(l)
i,2(t)

)
w⊤

(
ψ
(l)
i,1(t)− ψ

(l)
i,2(t)

)
dt (35)

= max
∥w∥=1

w⊤
∫ b

a

(
ψ
(l)
i,1(t)− ψ

(l)
i,2(t)

)(
ψ
(l)
i,1(t)− ψ

(l)
i,2(t)

)⊤
dt︸ ︷︷ ︸

Q=symm(Q)=Adist

w. (36)

(b) Similarly, for 22, we have

min
∥w∥=1

〈
v
(l)
i,1, v

(l)
i,2

〉
L2

= min
∥w∥=1

∫ b

a

〈
w,ψ

(l)
i,1(t)

〉
ℓ2
·
〈
w,ψ

(l)
i,2(t)

〉
ℓ2
dt (37)

= min
∥w∥=1

∫ b

a

w⊤ψ
(l)
i,1(t)w

⊤ψ
(l)
i,2(t) dt (38)

= min
∥w∥=1

w⊤
∫ b

a

ψ
(l)
i,1(t)ψ

(l)
i,2(t)

⊤ dt︸ ︷︷ ︸
Q

w. (39)
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Now taking the symmetric part yields the proposed matrix

symm(Q) = Adot =
1

2

∫ b

a

ψ
(l)
i,1(t)ψ

(l)
i,2(t)

⊤ + ψ
(l)
i,2(t)ψ

(l)
i,1(t)

⊤ dt. (40)

Together with (I.), this completes the proof.

Corollary A.3. As metrics are non-negative and by (I.) the eigenvalues are the evaluation of the metric
at the candidate solutions, all eigenvalues of Adist must be non-negative, making the algebraically largest
eigenvalue also the largest in magnitude.

By corollary A.3, 21 is easy to solve. While finding the algebraically smallest eigenvalue as required
for solving 22 is not as easy, it can also be solved very efficiently by specialised algorithms such as
PRIMME (Stathopoulos & McCombs, 2010). During our numerical experiments, we found that comput-
ing all eigenvectors through the optimised cupy.linalg.eigh CuPy routine directly on the GPU and
discarding was equally as fast as transferring the data to the CPU and running PRIMME, likely since the
individual eigenproblems are rather small for moderate input dimensions and neuron counts.

Intuition for the resulting weight vectors. Finally, we will give an intuitive explanation for how the
weights resulting from the two criteria relate to each other and the input signals. Looking closely at the
general structure ofAdist andAdot, we find that they contain the pairwise L2 inner products of the dimensions
of the functions they are constructed from. Letting f, g be some vector-valued functions, we get

∫ b

a

f(t)g(t)⊤ dt =


∫ b

a
f1(t)g1(t) dt

∫ b

a
f1(t)g2(t) dt · · ·

∫ b

a
f1(t)gn(t) dt∫ b

a
f2(t)g1(t) dt

∫ b

a
f2(t)g2(t) dt · · ·

∫ b

a
f2(t)gn(t) dt

...
...

. . .
...∫ b

a
fn(t)g1(t) dt

∫ b

a
fn(t)g2(t) dt · · ·

∫ b

a
fn(t)gn(t) dt

 (41)

=


⟨f1, g1⟩L2 ⟨f1, g2⟩L2 · · · ⟨f1, gn⟩L2

⟨f2, g1⟩L2 ⟨f2, g2⟩L2 · · · ⟨f2, gn⟩L2

...
...

. . .
...

⟨fn, g1⟩L2 ⟨fn, g2⟩L2 · · · ⟨fn, gn⟩L2

 . (42)

Thus, we see that Wdist gives the vector which is most aligned with the dimensions where the convolved
input signals differ, whereasWdot give the vector least aligned with where the convolved input signals are
similar. Furthermore, restating equation 21 as

max
∥w∥=1

∫ b

a

(〈
w,ψ

(l)
i,1(t)

〉
ℓ2
−
〈
w,ψ

(l)
i,2(t)

〉
ℓ2

)2
dt (43)

= max
∥w∥=1

∫ b

a

〈
w,ψ

(l)
i,1(t)

〉2
ℓ2
dt+

∫ b

a

〈
w,ψ

(l)
i,2(t)

〉2
ℓ2
dt− 2

∫ b

a

〈
w,ψ

(l)
i,1(t)

〉
ℓ2

〈
w,ψ

(l)
i,2(t)

〉
ℓ2
dt (44)

= max
∥w∥=1

w⊤


∫ b

a

ψ
(l)
i,1(t)ψ

(l)
i,1(t)

⊤ dt+

∫ b

a

ψ
(l)
i,2(t)ψ

(l)
i,2(t)

⊤ dt︸ ︷︷ ︸
magnitudes

−2
∫ b

a

ψ
(l)
i,1(t)ψ

(l)
i,2(t)

⊤ dt︸ ︷︷ ︸
dot

w, (45)

we find that Wdist is a compromise between Wdot and aligning with input dimensions having high ampli-
tudes, in other words, aligning with the dimensions where the signals are large and dissimilar.

This clear interpretability is a major advantage of S-SWIM over gradient-based methods.
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A.3 NORMALISATION

Satisfying the constraints. Formally, defining the input contribution to a neuron i in layer l from a sample
x(n) using the scaled candidate weights w̃ from the sampling step scaled by a factor α ∈ R+ and a bias
β ∈ R, which remain to be specified, as

v
(l)
i,n(t) =

〈
αw̃, ψ

(l)
i,n(t)

〉
ℓ2
+ β, (46)

where
(
ψ
(l)
i,n(t)

)
j
= ψ

(l)
ij

(
x(n), t

)
, the statistics of interest are the expected temporal mean and standard

deviation

EX
vi = EX

n

[
EX
t

[
v
(l)
i,n(t)

]]
and SXvi

= EX
n

[√
VarXt

[
v
(l)
i,n(t)

]]
(47)

over the dataset X , which we approximate by EXI
vi ≈ EX

vi , S
XI
vi ≈ SXvi on the subset XI . By applying the

properties of expectation and variance, we get the two equations

EXI
vi

= αEXI
n

[
EXI
t

[〈
w̃, ψ

(l)
i,n(t)

〉
ℓ2

]]
+ β (48)

SXI
vi

= αEXI
n

[√
VarXI

t

[〈
w̃, ψ

(l)
i,n(t)

〉
ℓ2

]]
(49)

in the four unknowns α, β,EXI
vi , and SXI

vi , leaving two degrees of freedom to impose the desired constraints.

For explicitly prescribing the target mean EXI
vi

!
= µt and standard SXI

vi

!
= st (MS), we get

αMS
st =

st

EXI
n

[√
VarXI

t

[〈
w̃, ψ

(l)
i,n(t)

〉
ℓ2

]] and βMS
µt,st = µt − st

EXI
n

[
EXI
t

[〈
w̃, ψ

(l)
i,n(t)

〉
ℓ2

]]
EXI
n

[√
VarXI

t

[〈
w̃, ψ

(l)
i,n(t)

〉
ℓ2

]]
(50)

for the remaning unknowns, where µt ∈ (−∞, 1) and st ∈ R+ are the tunable hyperparameters. For the FL
criterion, we fix the standard deviation

SXI
vi

!
= EXI

n

[√
VarXI

t

[〈
w̃, ψ

(l)
i,n(t)

〉
ℓ2

]]
(51)

and need to guarantee EXI
vi

!
= 1 − rSXI

vi with r ∈ R+ as tunable parameter. This is satisfied by assigning
αFL = 1 and

βFL
z = 1− zEXI

n

[√
VarXI

t

[〈
w̃, ψ

(l)
i,n(t)

〉
ℓ2

]]
− EXI

n

[
EXI
t

[〈
w̃, ψ

(l)
i,n(t)

〉
ℓ2

]]
(52)

to the remaining quantities. The MS criterion gives more explicit control over how much the spiking fre-
quency is determined by input fluctuations and how much by a regular baseline, whereas the FL criterion
is fully driven by fluctuations but only has one parameter that potentially needs tuning. In both cases,
the observed average voltage will of course be lower than the prescribed voltage since the above compu-
tations neglect the spike cost. These deviations will however be systematic and somewhat limited by the
self-regulating nature of the spiking mechanism, making the used statistics nonetheless meaningful approx-
imations to the actually observed voltage.
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Silence Correction. Furthermore, to guarantee that every neuron actually spikes at least once (on XI ), β
can be post-corrected by additionally tracking the per-neuron maximum voltage

MXI
vi = max

t

XI

[
max

n

XI

[〈
w̃, ψ

(l)
i,n(t)

〉
ℓ2

]]
. (53)

The term correcting the bias ∆SC to avoid silent (“SC”) neurons is then given by

∆SC =

{
(1 + ε)−MXI

vi for MXI
vi < 1,

0 otherwise,
(54)

where the small constant ε ≥ 0 is added for numerical robustness. This ensures that, when using the updated
bias β +∆SC, M̃XI

vi ≥ 1, meaning at least one spike will be emitted. A similar construction can be derived
for α.

Computing the statistics. It should be noted that all three required statistics can jointly be computed in a
single pass overXI , even ifXI does not fit into the available memory, by online algorithms such as Welford’s
algorithm (Welford, 1962), and using that the new maximum after normalisation will be M̃XI

vi = αMXI
vi

+β
(since α > 0), as thus computing the pre-normalisation maximum is sufficient.

A.4 SPIKE-VALUED TARGETS

The initialisation of the hidden layers works essentially the same for real- and spike-valued targets. Through-
out the discussion of the parameters in the output layer, we assume that Y is comprised of real-valued func-
tions, which we prescribe as the target voltages for that layer. In the case of spike-valued outputs, surrogate
voltages need to be generated for each neuron i that could produce the target spike trains and lie in the linear
span of {ψ(l)

ij }
NL
j=1 ∪ {1, η

(l)
i } respectively applied to the associated inputs and target trains. The constraints

for exactly producing a given spike-train are given by vsurr(tf ) = 1 for all firing times ff in the target train
and vsurr(t) < 1 otherwise. It is likely that these constraints can’t be jointly fulfilled for all samples and thus
would need to be relaxed suitably.

For example, for classification a natural surrogate is to set the targets to a positive constant above the firing
threshold for the ground-truth class and to a negative constant for the other classes.

While this idea is straightforward, it is far from trivial to apply to more complex cases, which is why we
defer a thorough investigation to future work.

Alternatively, it has been shown that optimising the linear parameters W , b, c of a single SRM-layer for
spike-valued outputs can be solved by Poisson Generalised Linear Model regression (Truccolo et al., 2005;
Weber & Pillow, 2017). This, however, requires costly iterative optimisation and it is unclear how to fit the
temporal parameters τ ,σ, ς , which contribute non-linearly to the output, in this case.

A.5 OUTPUT DELAYS

The purpose of the delays is to select the interval from the output of the hidden layers best suited for con-
structing the target function, more specifically the time-varying part, from the SRKs placed at the spikes in-
side this interval. Let y(n)i denote the target output of sample n for neuron i, ỹ(n)i = y

(n)
i −µ

y
(n)
i

(T, T +H)

its time-varying part, and S(n)
j = Ψ

(L)
j

(
x(n)

)
the output spike train of neuron j in the last hidden layer to

the associated input sample.
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Assuming the ansatz of definition 3.1 for ỹ(n)i and using the shorthand

k
(L+1)
i (t) = k(L+1)

(
t− τ (L+1)

i

σ
(L+1)
i

)∣∣∣∣∣
t≥0

, (55)

we set

y
(n)
i

!
=

NL∑
j=1

W
(L+1)
ij

[
k
(L+1)
i ∗ S(n)

j

]
+ b

(L+1)
i (56)

yielding

ỹ
(n)
i = y

(n)
i − 1

H

∫ T+H

T

NL∑
j=1

W
(L+1)
ij

[
k
(L+1)
i ∗ S(n)

j

]
(t) + b

(L+1)
i dt (57)

=

NL∑
j=1

W
(L+1)
ij

[
k
(L+1)
i ∗ S(n)

j

]
−
∫ T+H

T

[
k
(L+1)
i ∗ S(n)

j

]
(t) dt (58)

=

NL∑
j=1

W
(L+1)
ij

[(
k
(L+1)
i − µ

k
(L+1)
i

(T, T +H)
)
∗ S(n)

j

]
(59)

:=

NL∑
j=1

W
(L+1)
ij

[
k̂
(L+1)
i ∗ S(n)

j

]
. (60)

While the parameters W (L+1)
i and σ(L+1)

i here are unknown, we can get an independent estimate for the
delay using correlation analysis. We find that

C
(n)
ij (τ) =

[
S
(n)
j ⋆ ỹ

(n)
i

]
=

∑
t
(n)
j ∈T

(n)
j

ỹ
(n)
i

(
τ − t(n)j

)
(61)

=

NL∑
m=1

W
(L+1)
im

∑
t
(n)
j ∈T

(n)
j

[
k̂
(L+1)
i ∗ S(n)

m

] (
τ − t(n)j

)
(62)

=

NL∑
m=1

W
(L+1)
im

∑
t
(n)
j ∈T

(n)
j

∑
t
(n)
m ∈T

(n)
m

k̂
(L+1)
i

(
τ − t(n)j − t(n)m

)
, (63)

which after separating the m = j ∧ t(n)j = t
(n)
m and m ̸= j ∨ t(n)j ̸= t

(n)
m terms gives

C
(n)
ij (τ) =

∣∣∣T (n)
j

∣∣∣W (L+1)
ij k̂

(L+1)
i (τ)

+

NL∑
m=1

W
(L+1)
im

∑
t
(n)
j ∈T

(n)
j

∑
t(n)
m ∈T (n)

m

m̸=j∨t
(n)
j ̸=t(n)

m

k̂
(L+1)
i

(
τ − t(n)j − t(n)m

)
︸ ︷︷ ︸

≈Hµ
k̂
(L+1)
i

(T,T+H)=0

(64)

≈
∣∣∣T (n)

j

∣∣∣W (L+1)
ij k̂

(L+1)
i (τ) . (65)
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The final approximation assumes that the differences between spikes across trains are distributed roughly
uniformly over the interval, which is justified if the spike trains of different neurons are only weakly cor-
related, which is likely since each neuron in the hidden layers has different temporal parameters. The
remaining, or at least dominant, term reveals the unknown delay τ (L+1)

i . Specifically, if k(L+1) peaks at ∆k,
k̂
(L+1)
i (τ) will peak at τ (L+1)

i +∆k, contributing a distinct positive or negative extremum to C(n)
ij , depend-

ing on the sign of W (L+1)
ij . Thus, if we aggregate

∣∣∣C(n)
ij

∣∣∣ across many samples and trains, we accumulate
exactly those peaks, meaning

τ
(L+1)
i = argmax

τ∈[0,O)

C
(abs)
i (τ)−∆k = argmax

τ∈[0,O)

∑
n

NL∑
j=1

∣∣∣C(n)
ij (τ)

∣∣∣−∆k, (66)

as long as the above approximation holds for most trains in most samples. The bound is chosen to guaru-
antee a sufficiently large interval of inputs as previously discussed in section 3.2.1. The correlations can be
computed efficiently using equation 61, again utilising spike sparsity, or by employing the Cross-Correlation
Theorem, since the transforms F

{
S
(n)
j

}
can be reused across neurons in the output layer. The aggregation

over samples n in equation 66 could in principle be done over the entire training data, however we found
aggregating only over XI to already yield a robust estimator.

A.6 OUTPUT KERNEL SUPPORTS

Delay Aggregation. Based on observations from numerical experiments, we make the assumptions that,
(a) for moderate values of H , the variation between the delays of most neurons is generally smaller than H ,
which is further discussed in section 4 (Numerical Experiments), (b) the larger σ, the more similar similar
values of σ perform, i.e. small differences only matter for small values, and (c) σ is stationary over time and
samples, meaning that if enough samples over a large enough interval are considered, most subbatches will
yield similar values. Using this, we pick a representative aggregate of the delay, such as

τ̄ = median
i

τ
(L+1)
i or τ̄ = min

i
τ
(L+1)
i (67)

and a set of appropriately spaced candidates {σc
m}

N o
σ

m=1 and simply evaluate how well they perform on
the subsets XI and YI . The crucial insights making the direct search approach feasible, even cheap, are
that aggregating the delays leads to the augmented design matrix in the linear problem being shared by
all neurons in the output layer and that, especially after discretisation, only a small set of values needs to
be searched. Furthermore, each candidate can be evaluated efficiently, since we only need to compute the
residual norm with respect to the best weights for a given σc but not the actual weights, which we will
compute on the full dataset in the final substep.

Optimal residual. Concretely, defining Dψ(n)
j|σc ∈ RHD to be an arbitrary discretisation of the SRK con-

tributions from input j, evaluated using τ̄ and σc, and Dy(n)
i ∈ RHD a respective discretisation of y(n)

i , the
augmented design matrixA(σc) ∈ R(HD·M̃)×(NL+1) is given by

A(σc) =


1HD

Dψ(1)
1|σc Dψ(1)

2|σc · · · Dψ(1)
NL|σc

1HD
Dψ(2)

1|σc Dψ(2)
2|σc · · · Dψ(2)

NL|σc

...
...

...
. . .

...
1HD

Dψ(M̃)
1|σc Dψ(M̃)

2|σc · · · Dψ(M̃)
NL|σc

 , (68)
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where 1HD
∈ RHD is a vector of ones added to incorporate the bias term. Similarly concatenating Dy(n)

i
over samples n yields the associated target vector Dyi giving rise to the overdetermined linear problem

p∗i|σc
= argmin

p

∥∥ri|σc

∥∥2
2
= argmin

p
∥A(σc)p−Dyi∥22 . (69)

We will discuss the theoretical implications of treating time points like samples in section A.7 (Output
Weights) when detailing how the final weights are solved for. Using the normal equations, the least squares
optimal parameters of neuron i are given in closed form by

p∗i|σc
=
(
b∗i|σc

w∗
i|σc

)
=
(
A(σc)⊤A(σc)

)−1
A(σc)⊤Dyi. (70)

This expression can be simplified by substituting A(σc) by its thin QR-factorisation A(σc) = QσcRσc ,
where Qσc ∈ R(HD·M̃)×m, m = rank (A(σc)), Q⊤

σcQσc = Idm, and Rσc ∈ Rm×m is invertible. Using
these properties, equation 70 becomes

p∗i|σc
=
(
R⊤

σcQ⊤
σcQσcRσc

)−1
R⊤

σcQ⊤
σcDyi = R−1

σc R−⊤
σc R⊤

σcQ⊤
σcDyi = R−1

σc Q⊤
σcDyi. (71)

We are not interested in p∗i|σc
because it is computed for the wrong delay and only on a small subset of the

training data. However, by the above assumptions, it is enough to find good (likely not optimal) values for
the supports. Thus we only care about the norm of the residual with respect to the optimal weights r∗i|σc

. A
quick calculation reveals∥∥∥r∗i|σc

∥∥∥2
2
=
∥∥∥A(σc)p∗i|σc

−Dyi
∥∥∥2
2
=
(
A(σc)p∗i|σc

−Dyi
)⊤ (

A(σc)p∗i|σc
−Dyi

)
(72)

= p∗⊤i|σc
A(σc)⊤A(σc)p∗i|σc

− 2Dy⊤
i A(σc)p∗i|σc

+Dy⊤
i Dyi (73)

= Dy⊤
i QσcR−⊤

σc R⊤
σcQ⊤

σcQσcRσcR−1
σc Q⊤

σcDyi − 2Dy⊤
i QσcRσcR−1

σc Q⊤
σcDyi +Dy⊤

i Dyi
(74)

= ∥Dyi∥22 −
∥∥Q⊤

σcDyi
∥∥2
2
. (75)

Cost Analysis. Thus, evaluating NO
σc

candidates requires NL+1 target vector norms, NO
σc matrix assem-

blies and thin QR decompositions, andNL+1N
O
σc Q-y products and norms. This cost is neglegible compared

to the following weight computation since the expensive operations, namely the matrix assemblies and de-
compositions, only scale in the number of candidates.

Choice of Candidates. Using assumption (b), the number of candidates can be kept small by a proper
choice of spacing. Concretely, we propose to use a power-law spacing with exponent α between a small
σO
min and large σO

min with respect to H , given by

Pα (a, b,N) =

{((
1− m− 1

N

)
a1/α +

m− 1

N
b1/α

)α}N

m=1

, (76)

i.e. linearly spaced between a1/α and b1/α for a moderate α ∈ (1,∞) as a compromise between linear
(α = 1) and logarithmic (α→∞) spacing, since linear spacing violates (b) and logarithmic spacing clusters
too aggressively around small values. We suggest using σO

min = 1 and σO
max = 2H timesteps, α = 1.5, and

NO
σc = 30 as reasonable defaults, which should require no further tuning for most datasets.
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Summary. Compactly, the substep ΣσO
min,σ

O
max,α,N

O
σc

is given by

ΣσO
min,σ

O
max,α,N

O
σc

({
Ψ(L)

(
x
(n)
I

)}M̃

n=1
,
{
y
(n)
I

}M̃

n=1

)
= argmin

σc∈Pα(σO
min,σ

O
max,N

O
σc)

∥∥∥∥∥∥∥∥∥∥


Dy(1)I,i

Dy(2)I,i
...

Dy(M̃)
I,i


∥∥∥∥∥∥∥∥∥∥

2

2

−

∥∥∥∥∥∥∥∥∥∥
Q⊤

σc


Dy(1)I,i

Dy(2)I,i
...

Dy(M̃)
I,i


∥∥∥∥∥∥∥∥∥∥

2

2



NL+1

i=1

(77)

withQσcRσc = A(σc) as in equation 68 using the same discretisation operator D as for y.

While this approach is fast and works reasonably well, it is far from elegant and constitutes a major avenue
for improvement in future iterations of the algorithm.

A.7 OUTPUT WEIGHTS

Derivation of the linear system. We will first derive the idea for a general case before applying it to
the problem at hand. For the moment consider the general problem over some Hilbert Space H equipped
with the inner product ⟨·, ·⟩H of best approximating a finite set of target vectors

{
f (n)

}N
n=1

using a real

linear combination of a finite set of sample dependent ansatz vectors
{{

f
(n)
k

}K

k=1

}N

n=1

with respect to the

metric induced by ⟨·, ·⟩H and an ℓ2-regularisation term with weight λ applied on the norm of the coefficents.
Formally, the problem is stated as

min
w∈RK

N∑
n=1

〈
f (n) −

K∑
k=1

wkf
(n)
k , f (n) −

K∑
k=1

wkf
(n)
k

〉
H

+ λw⊤w. (78)

It can easily be verified that this is a strictly convex problem in w for λ > 0 and thus can be approached
using first order optimality. Using bilinearity, we get

∂

∂wk

N∑
n=1

〈
f (n) −

K∑
k1=1

wkf
(n)
k1
, f (n) −

K∑
k1=1

wkf
(n)
k1

〉
H

+ λw⊤w (79)

=
∂

∂wk

N∑
n=1

〈
f (n), f (n)

〉
H
− 2

K∑
k=1

〈
f
(n)
k , f (n)

〉
H
+

K∑
k1=1

K∑
k2=1

〈
f
(n)
k1
, f

(n)
k2

〉
H
+ λw⊤w (80)

=

N∑
n=1

−2
K∑

k=1

〈
f
(n)
k , f (n)

〉
H
+ 2

K∑
k1=1

wk1

〈
f
(n)
k1
, f

(n)
k

〉
H
+ 2λ

K∑
k1

wk = 0 (81)

⇐⇒
N∑

n=1

K∑
k1=1

wk1

〈
f
(n)
k1
, f

(n)
k

〉
H
+ λ

K∑
k1

wk =

N∑
n=1

K∑
k=1

〈
f
(n)
k , f (n)

〉
H
, (82)
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which can be written in matrix form using F (n)
ij =

〈
f
(n)
i , f

(n)
j

〉
H

as

Fw =

N∑
n=1


F

(n)
11 + λ F

(n)
12 . . . F

(n)
1K

F
(n)
21 F

(n)
22 + λ . . . F

(n)
2K

...
...

. . .
...

F
(n)
K1 F

(n)
K2 . . . F

(n)
KK + λ



w1

w2

...
wK

 =

N∑
n=1


⟨f (n)1 , f (n)⟩H
⟨f (n)2 , f (n)⟩H

...
⟨f (n)K , f (n)⟩H

. (83)

After replacing the vectors H ∋ ϕ ≈ Dϕ ∈ RHD and inner product ⟨f1, f2⟩ ≈ Df⊤1 Df2 by discrete
approximations, the system becomes(

DF⊤DF + nλIdK

)
w = DF⊤Df, (84)

which are exactly the regularised normal equations for the matrix

DF =


Df (1)1 Df (1)2 · · · Df (1)K

Df (2)1 Df (2)2 · · · Df (2)K
...

...
. . .

...
Df (N)

1 Df (N)
2 · · · Df (N)

K

 ∈ RN ·HD×K and vector Df =


Df (1)
Df (2)

...
Df (N)

 ∈ RN ·HD (85)

stacked as in equation 68.

Returning to the problem at hand, this digression provides (a) a justification for treating treating the discre-
tised time points as additional samples (under the assumption of equal weighting) and (b) gives a formulation
of the linear problem that can be assembled in batches and requires only a small (NL + 1 × NL + 1) sys-
tem per neuron to be solved. Concretely, for neuron i, we accumulate the sum in equation 83 in batches
by only assembling a moderate amount of rows in DF in equation 85 before performing the multipli-
cations in equation 84 on the submatrix and the respective rows of the vector DF with the ansatz func-

tions
{
{1} ∪

{
ψ
(L+1)
ij

(
x(n)

)}NL

j=1

}M

n=1

and target vectors
{
y
(n)
i

}M

n=1
. In the case of spike-valued outputs,

η
(L+1)
i evaluated on the target spike trains would be added as an additional ansatz function to solve for the

spike cost.

Conditioning of the System Matrix. We provide a brief estimation of the condition number of the result-
ing matrix

F =

M∑
n=1

DF (n)⊤DF (n) +MλIdNL+1 := FS +MλIdNL+1 (86)

summed over the entire training set. Each summand DF (n)⊤DF (n) + λIdNL+1 is symmetric and (strictly)
positive definite for λ > 0. An immediate loose bound

κ(F ) =
λmax(F )

λmin(F )
=
Mλ+ λmax(FS)

Mλ+ λmin(FS)
≤
Mλ+

∑M
n=1 λmax(DF (n)⊤DF (n))

Mλ
(87)

is provided by Weyl’s inequality, where it can be seen that the regularisation immediately guaruantees finity.

Bounding the spectral norm by the Frobenius norm through
∥∥DF (n)

∥∥2
2
≤
∥∥DF (n)

∥∥2
F
=
∑NL+1

j=1

∥∥∥DF (n)
:j

∥∥∥2
2

and plugging in the specific ansatz functions, we get

κ(F ) ≤
Mλ+

∑M
n=1

∑NL+1
j=1

∥∥∥DF (n)
:j

∥∥∥2
2

Mλ
≤ 1 +

HD

λ
+

∥∥∥Dk(L+1)
i

∥∥∥2
2

Mλ

M∑
n=1

NL∑
j=1

∣∣∣T (L)
j

∣∣∣2 , (88)
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relating the condition to the spike counts
∣∣∣T (L)

j

∣∣∣, since the design matrix contains a column of 1s for the bias

and each spike contributes (at most) a full copy of the discretised kernel Dk(L+1)
i , where DF (n)

:j is the j-th

column of DF (n)
:j and

k
(L+1)
i (t) = k(L+1)

(
t− τ (L+1)

i

σ
(L+1)
i

)∣∣∣∣∣
t≥0

. (89)

Since the neurons in the last hidden layer will typically code for different features by having different tempo-
ral parameters and the separation criterion, both the Weyl’s and Frobenius estimations are rather conservative
here. Nonetheless, this bound yields several useful insights. Firstly, considering for example, λ ≥ 10−3,

NL and
∣∣∣T (L)

j

∣∣∣2 ∈ O(102) and
∥∥∥Dk(L+1)

i

∥∥∥2
2
∈ O(10), we find that κ(F ) ∈ O(108) as a loose upper

bound, suggesting that while the system is unlikely to be catastrophically ill-conditioned, the possibility
of ill-conditioning can not be neglected. Secondly, the benefits of a sparse spiking representation can go
beyond mere efficiency, which is intuitive in this case, since more spikes enable more complicated functions
to be represented. Finally, the price for ”compressing” the time dimension in the linear problem is paid in
the condition, both through the direct HD contribution and the number of spikes, since longer evaluation
intervals will typically mean more contributing spikes.

These estimations are in line with the findings of our numerical experiments that the condition rarely caused
immediately obvious issues, which is why no preconditioning was applied during the experiments described
in the following section. Future work should, however, investigate the relevance of bad conditioning to the
algorithm and possible mitigationg strategies.

Regularisation Parameter Search. Finally, since the matrix FS is symmetric and applying the diagonal
regularisation changes only the eigenvalues but not the eigenvectors, it is possible to search over a set of
candidate regularisation terms with little added effort. Using the pre-assembled system matrix FS and the
target vector y = DF⊤Df for the training set and assembling the respective system matrix on a validation
subset, computing its symmetric eigendecomposition FS = ΓΛΓ⊤ allows to cheaply test a candidate regu-
larisation λc without re-solving and re-assembling the full system by using that the optimal parameters are
given as p∗λc = Γ(Λ + λcIdNL+1)

−1Γ⊤y, which can then be evaluated on the validation set by using the
pre-assembled system matrix. In S-SWIM , we use this strategy and test 32 logarithmically spaced candi-
dates in 10−5 ≤ λc ≤ 1

2 . It should be emphasised that this does not mean computing the weights from the
validation set. The specific formulation employed simply allows moving an outer optimisation loop over
the regularisation parameter into the solution of the linear problem. The eigendecomposition in this step did
not converge in some experiments during the ablation study discussed in section C.2 (Ablation Study). It
remains to be answered whether this is related to an ill-conditioned system matrix.
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B EXPERIMENTAL SETTINGS

To ensure reproducibility, the full details of the conducted experiments are given in the following.

B.1 IMPLEMENTATION & SETUP

We implement algorithm 1 in the Python framework CuPy (Okuta et al., 2017). All experiments were
conducted on a system equipped with an AMD EPYC 7402 processor (2.80 GHz, single-socket, 24 cores
per socket with 2-way hyper-threading), 256 GiB of system memory, and four NVIDIA RTX 3080 Turbo
GPUs, each with 10 GiB of video memory. Each Experiment only used a single GPU. All reported results
are averaged across three seeds.

B.2 TIME-SERIES FORECASTING

B.2.1 DATASETS & EVALUATION METRICS

Following Lv et al. (2025), we choose two short- and two long-term observation length datasets to evaluate
the model. The characteristics of each dataset are summarised in Table 2.

Table 2: The statistics of time-series datasets. Reproduced from (Lv et al., 2025, Table 4).

Dataset Samples Variables Observation Length Train-Valid-Test Ratio
Metr-la 34, 272 207 12, (short-term) (0.7, 0.2, 0.1)
Pems-bay 52, 116 325 12, (short-term) (0.7, 0.2, 0.1)
Solar-energy 52, 560 137 168, (long-term) (0.6, 0.2, 0.2)
Electricity 26, 304 321 168, (long-term) (0.6, 0.2, 0.2)

As evaluation metric, we use the Root Relative Squared Error (RSE)

RSE =

√√√√√∑M
m=1

∥∥∥Y (m) − Ŷ (m)
∥∥∥2
F∑M

m=1

∥∥Y (m) − Ȳ
∥∥2
F

. (90)

Here, RC×L ∋ Y(m) =
(
Y

(m)
c,l

)
c=1,...C;l=1,...L

, Y (m)
c,l denotes the l-th target value of the c-th variable in

the m-th sample of the evaluation set and Ŷ (m)
c,l the respective model prediction. {̄·} denotes averaging over

all samples of the evaluation set. All datasets were normalised to lie in the range [0, 1] for all experiments.

B.2.2 SURROGATE-GRADIENT TRAINING

As reference, the same models were trained with SGD using a surrogate-gradient strategy. Specifically, we
used the Lava DL (Intel Neuromorphic Computing Lab & lava-nc contributors, 2024) implementation of
the SLAYER (Shrestha & Orchard, 2018) algorithm. SLAYER was chosen because it was built for the same
delay-parameterisation used in definition 3.1. Optimisation was performed with respect to all parameters in
the proposed model.

To initialise weights for SGD-only training, we use an adaptation of the strategy proposed in Rossbroich
et al. (2022) to SRM neuron with µ = 0.5 and ξ = 1. The biases were either initialised to zero if the weight
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Table 3: Hyperparameters of gradient-based training for SGD-only case and the fine-tuning starting from a
S-SWIM trained network (Time-Series Forecasting).

Parameter Value for SGD-only Value for fine-tuning
Batch Size 64 64

Learning Rate Schedule Cosine schedule Cosine schedule
Initial Learning Rate 5 · 10−4 2.5 · 10−4

Final Learning Rate 1 · 10−5 1 · 10−5

Maximum Nr. of Epochs 750 250
λreg 10−4 From S-SWIM

Early Stopping Patience 30 30
Early Stopping Min. Improvment 10−6 10−6

distribution was well defined, or by b = 2

((
ξ
√
ϵ̂

ϵ
√
nν

+ 1
)−1

− µ
)

in the notation of Rossbroich et al. (2022)

to enforce a strictly positive standard deviation, otherwise. The mean input ν was computed over a subbatch
of 1000 samples. The hidden layer delays were initialised by τ ∼ Uniform(0, 15), the kernel supports by
σ ∼ Uniform(5, 15) timesteps. Spike costs were initialised to c = 1. The output layer delays were initialised
as τ = 0, whereas the SRK supports were set to σ = 15 timesteps. Mean square error (MSE) was used as
loss function with regularisation on the 2-norm of the output layers’ weights weighted by λreg.

B.2.3 MODEL ARCHITECTURE & HYPERPARAMETERS

The model was composed of one spiking hidden layer with 750 neurons and one non-spiking output layer
whose voltage was taken as the model prediction (L = 1 in definition 3.1). For the hidden layer, either a hat
function

Hat(x) = max(1− |x|, 0) (91)
or a rectified (rescaled) Morlet

Morlet(x) =
{
exp

(
−3x2

)
cos (2πx) for |x| ≤ 1,

0 otherwise
(92)

was used as SRK, while the RfK of the hidden layer was always a rectified decaying exponential

q(x) =

{
exp (−x) for |x| ≤ 1,

0 otherwise.
(93)

The rectification was applied to simplify the computation of convolutions.

The hyperparameters used for SGD-only training and fine-tuning are given in Table 3. The hyperparameters
used in the S-SWIM algorithm are given in Table 4.

B.3 CLASSIFICATION

B.3.1 DATASETS & PRE-PROCESSING

To show experiments on both spiking and non-spiking classification datasets, we choose two static image
datasets (MNSIT and F-MNIST) and the well known speech recognition Spiking Heidelberg Digits (SHD).
The datasets are summarised in Table 5.
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Table 4: Hyperparameters for S-SWIM training (Time-Series Forecasting).

Substep Parameter Value

Full Algorithm M̃ 1000

Temporal Parameters T
τmax

{
H if H > O,

O/2 otherwise
σh
min 5
σh
max 50
Nh

σ 10
Sampling Distribution Metrics By Entropy
Sampled WeightsW Criterion Dot

Normaliser Z
Criterion MS

µt 0.5
st 0.5

Table 5: Overview of classification datasets. Non-spiking datasets are transformed to a spiking representa-
tion for the experiments. The original 700 input channels of SHD are reduced to 70 by merging neighbouring
channels.

Dataset Source Input Variables Classes Spiking Train/Valid/Test Samples
MNIST Deng (2012) 784 10 No 50K/10K/10K
Fashion-MNIST (F-MNIST) Xiao et al. (2017) 784 10 No 50K/10K/10K
SHD Cramer et al. (2020) 70 (700) 20 Yes 8156/-/2264

Images: To transform images into spike trains, we follow Dai & Ma (2025) and sample a number of
spikes for each pixel in the flattened images from a Poisson distribution with rate

λ
(n)
i = α ·O · p

(n)
i − pmin

pmax − pmin
, (94)

where pmin ≤ p
(n)
i ≤ pmax is the intensity of pixel i in the flattened image n and pmin, pmax re-

spectively denote the minimum and maximum intensity of the encoding and α ∈ (0, 1). Those spikes
are then spread uniformly over the interval [0, O) and presented as the input to the network. For our
experiments, we set α = 0.2, O = 100 and evaluate the model with a timestep of 1. Thus, black pix-
els correspond to (in expectation) no spikes, whereas white pixels correspond to one spike every 5 time steps.

SHD: The SHD test set - by design - contains speakers that were not present in the training set, so there is
a significant distribution shift (Cramer et al. (2020)). To counteract this, other works apply substantial pre-
processing such as filtering and binning spikes and merging channels (see e.g. Yin et al. (2020)) effectively
undoing the distribution shift by removing high-frequency information. Since the purpose of this study is to
show the applicability of our method rather than achieve state-of-the-art performance, we only perform the
channel merging as in Cramer et al. (2020), as this also reduces the memory footprint of the dataset. The
spike-times are not binned but fed into the model with their exact times. Rather than choosing the timestep
as 0.01, we rescale all spike times by a factor of 100 and evaluate with a timestep of 1, respectively setting
O = 140, as the latest spike in the dataset occurs around 1.35 seconds before rescaling.
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B.3.2 READOUT & SURROGATE VOLTAGE

As usual, we set the number of neurons in the last layer to the number of classes. The predicted class K̂ is
then

K̂ = argmax
i

∫ T+H

0

Ψ
(L+1)
i (x, t) dt, (95)

which is the most positive voltage or the number of spikes depending on how the final layer is set up (cf.
definition 3.1 and Remark 3.2). This motivates the construction of the surrogate voltage used as target for
the regression problem by

ysurri (t) =

{
(1 + ∆)θ for i = K,

−(1 + ∆)θ otherwise,
(96)

where K is the ground-truth class and ∆ > 0. This directly enforces the most positive voltage and is a
reasonable stand-in objective for the most spikes. The exact choice of ∆ matters little as multiplicative
constants are directly absorbed into the least-squares solution (cf. section A.7). In our experiments, we
set ∆ = 1 for simplicity. The prediction horizon H was set to 15 time steps for all experiments. As the
employed criterion is invariant (up to finite-window effects) to temporal shifts, we do not fit the delays of
the last layer, but simply set them to 0.
It should be emphasised that there is no good reason to perform the readout on static classification problems
using spikes. The discussion here solely serves to illustrate the idea of surrogate voltages.

B.3.3 NETWORK ARCHITECTURE & HYPERPARAMETERS

We test models with one or two spiking hidden layers (L ∈ {1, 2} in definition 3.1) and a varying number of
neurons in the hidden layers, followed by a spiking layer from which we compute the predicted class either
by integrating the total voltage or counting the number of spikes (cf. section B.3.2). For the first hidden
layer, a hat function

Hat(x) = max(1− |x|, 0) (97)
was used for the image benchmarks and a rectified Morlet

Morlet(x) =
{
exp

(
−x2

)
cos (2πx) for |x| ≤ 1,

0 otherwise
(98)

was used as SRK for SHD and Hat for all following layers in both cases. The RfK of all layers was always a
rectified decaying exponential

q(x) =

{
exp (−x) for |x| ≤ 1,

0 otherwise.
(99)

The rectification was applied to simplify the computation of convolutions.
For sampling the distance in the output space was defined as 0 within classes and 1 between classes. We
evaluate a small set of architecture configurations and hyperparameters for both benchmarks, which are
found in Table 6. Random weights were sampled from a standard normal distribution; onlyW changes, all
other steps of the algorithm are still executed as stated.
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Table 6: Architecture and Hyperparameters for the Classification Experiments.

Component Parameter Tested Values

Network Architecture Nl (all hidden layers) {256, 512, 1000}
L {1, 2}

Full Algorithm M̃ 900

Temporal Parameters T
τmax 30
σh
min 3
σh
max 25
Nh

σ 10

Sampling Distribution
dY Class Distance

(dX0
, dXl

) {(L2, L2),
(mag,∠)}

Sampled WeightsW Criterion {Dot, Random}

Normaliser Z
Criterion MS

µt 0.5
st 0.5
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C FURTHER EXPERIMENTS

We investigate the robustness of individual components through further numerical experiments.

C.1 CLASSIFICATION WITH SPIKING READOUT

Here, we discuss the results of evaluating the predicted class based on the spikes output by the final layer.
It should be emphasized that the network architecture and training method are unchanged only the readout
is different. This is more of an illustrative example rather than a practical application of this idea. The
results are shown in figure 4. We find that the idea of surrogate voltages does work as the performance
is consistently above chance level and shows the same patterns as for the voltage readout. However, the
performance is significantly lower than for voltages. Thus, perhaps more carefully chosen surrogates are
needed. However, it is also likely that measures such as normalisation similar to the hidden layers will
counteract this performance drop greatly, which we however did not look into here.
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dot: d 0 = dmag, d l = d dot: d 0 = d l = dL2 Random Weights

Figure 4: Classification accuracy using spiking readout.

C.2 ABLATION STUDY

Concretely, we try to answer the questions of whether (a) the proposed weight construction criteria perform
better than random sampling and (b) the neurons in the hidden layer are tuned to different features. To this
end, we evaluate the performance of S-SWIM trained networks usingWdist,Wdot, or drawing weights from
a standard normal distribution across different dimensionality of the hidden layer on one short (Pems-bay)
and one long (Electricity) observation length dataset. For comprehensiveness, we perform the experiments
with different normalisations on the hidden layer weights.

The results are shown in figure 5. Regarding (a), we find that Wdot consistently and significantly outper-
formsWdist and random weights, whereasWdist sometimes performs better, sometimes worse than random
sampling, depending on the dataset and normaliser. Regarding (b), we find that across all combinations,
the performance increases with increasing number of neurons, which shows that neurons do indeed encode
different features. Regarding normalisers, we note thatNMS is seemingly more stable across parametes than
N Fl.
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We assume that, since there is no interpretable pattern in the out-of-bounds values regarding objectives,
normalisers, or number of neurons, it must be caused by numerical issues likely linked to the condition of
the linear system.

(a) Results on the Pems-bay dataset.

(b) Results on the Electricity dataset.

Figure 5: Results of the ablation study. Arrows indicate significantly underperforming models. Missing
results indicate errors during the computation.

C.3 ENTROPY CRITERION

Finally, we test how well the proposed metric selection criterion performs compared to prescribing a given
pair. We evaluate the performance on all datasets for H ∈ {6, 24, 48} when using the same pseudometric
for input and output for each of the proposed feature embeddings, against using the pair that minimises the
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entropy. A visualisation of the results is given in figure 6. Firstly, we note that the influence of the used
embeddings is, in general, not very large. Concretely, the difference is limited to 0.01− 0.02 points of RSE
score, which is not insignifant but also not major. This indicates that none of the proposed pseudometrics
performs significantly better or worse than the others when using them for both in- and output. It remains
to be answered whether a different construction for the sampling metrics would lead to significant improve-
ments. Furthermore, if there is a pair of metrics performing significantly better, the entropy criterion does
not select it. Across the given datasets, using the high-frequency band for short horizons and cosine distance
for long horizons almost always outperforms the entropy criterion.

In summary, future work should evaluate other constructions than the proposed for evaluating the sampling
distribution and derive more robust metric selection criteria.

Figure 6: Prediction performance across datasets for different sampling metrics.
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D LIMITATIONS & FUTURE WORK

Limitations While the performed experiments validate the overall design of the algorithm and show that,
given further refinement, S-SWIM can become a strong alternative to gradient-based methods, several limi-
tations and much room for improvement remain. Several important parameters are currently still chosen by
data-agnostic heuristics. The properties of the sampling distribution and the question of what characteristics
of the data are (most) important for sampling require more thorough analysis. Furthermore, only a very lim-
ited set of network architectures and hyperparameters was evaluated. Additionally, more research into the
numerical stability of the algorithm is needed. Finally, the algorithm was only evaluated on one type of task
and currently requires an explicitly prescribed target voltage for the output layer, limiting its applicability to
spike-valued datasets.

Future Work We propose the following four points as the major focus of future research. Firstly, more
work on sampling the temporal parameters in the hidden layers, especially the kernel parameters, is needed.
Future research should look into relating them to characteristic temporal properties of the data, such as au-
tocorrelations or pronounced frequency bands. Secondly, a comprehensive evaluation of possible sampling
metrics is needed, especially for sampling multi-layered networks. Thirdly, further work should investigate
alternatives to the current search-based approach for the kernel supports in the output layer. We hypothesise
that a similarly elegant ”identification” approach as for the delays can be constructed. Finally, a method
for constructing suitable surrogates in the absence of explicit target voltages is needed. A good start here
will likely be deriving the specific set of conditions that make a voltage trace well-approximable by the final
layer given the initialisation of the hidden layers.
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