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Abstract001

Which components in transformer language002
models are responsible for discourse under-003
standing? We hypothesize that sparse compu-004
tational graphs, termed as discursive circuits005
control how models process discourse relations.006
Unlike simpler tasks, discourse relations in-007
volve longer spans and complex reasoning. To008
make circuit discovery feasible, we introduce009
a task called Completion under Discourse Re-010
lation (CUDR), where a model completes a011
discourse given a specified relation. To sup-012
port this task, we construct a corpus of minimal013
contrastive pairs tailored for activation patch-014
ing in circuit discovery. Experiments show that015
sparse circuits (≈ 0.2% of a full GPT-2 model)016
recover discourse understanding in the English017
PDTB-based CUDR task.018

These circuits generalize well to unseen dis-019
course frameworks such as RST and SDRT.020
Further analysis shows lower layers capture021
linguistic features such as lexical semantics022
and coreference, while upper layers encode023
discourse-level abstractions. Feature utility is024
consistent across frameworks (e.g., coreference025
supports Expansion-like relations).026

1 Introduction027

Discourse structure is essential for ensuring lan-028

guage models (LMs) to behave safely and ethically029

(Kim et al., 2025; Nakshatri et al., 2025). Yet, little030

is known about how discourse is internally pro-031

cessed by LMs, limiting our ability to guarantee032

that they are reliable and free from harmful out-033

puts. Transformer circuit discovery (Zhang and034

Nanda, 2024) is a promising method that identifies035

sparse computational subgraphs causally responsi-036

ble for specific behaviors. Unlike attention visual-037

ization (Jain and Wallace, 2019) or rationale gen-038

eration (Wiegreffe and Marasovic, 2021), circuits039

provide mechanistic, intervention-based explana-040

tions that reveal which components causally drive041

Please finish the discourse by choosing one of the two options:

he goes to the canteen the canteen is closed

Bob is hungry, so
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Figure 1: Task Overview: The CUDR task enables dis-
covery of discursive circuits by contrasting model pre-
dictions under minimal changes to the discourse connec-
tives. Activation patching reveals components causally
responsible for shifting the model’s prediction.

the model’s output. Existing circuit discovery meth- 042

ods focus on simple tasks, like numeric comparison 043

(Hanna et al., 2023) which is well-suited for next- 044

word prediction (e.g. “The year after 1731 is →”). 045

In contrast, discourse relation involves longer con- 046

texts and more complex reasoning, making direct 047

adaptation of existing methods infeasible. 048

We contribute a key insight that bridging the lin- 049

guistic structure of discourse and the requirements 050

of circuit discovery, which offers a new path for 051

mechanistic understanding of complex language 052

tasks. On the discourse side, we hold the initial 053

argument Arg1 (e.g. “Bob is hungry”, Figure 1) 054

unchanged and introduce a counterfactual connec- 055

tive Conn′ (e.g., “but”) that prompts the model 056

to select an alternative continuation Arg′2 (“the 057

canteen is closed”), which is only coherent under 058

the counterfactual discourse relation. On the cir- 059

cuit discovery side, the method relies on minimal 060

contrastive pairs, where inputs differ slightly but 061

yield significantly different outputs. To identify 062

influential model components, we patch activations 063

(Nanda, 2023) from the original run into the coun- 064

terfactual run and observe changes in prediction. 065

The resulting discursive circuits are composed of 066
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connections with significant causal influence.067

To support this task, we construct a dataset068

spanning major discourse frameworks, includ-069

ing Penn Discourse Treebank (PDTB; Webber070

et al.,2019), Rhetorical Structure Theory (RST;071

Mann and Thompson,1987), and Segmented Dis-072

course Representation Theory (SDRT; Asher and073

Lascarides,2003). Each instance contains an origi-074

nal annotation from the source corpus, along with075

a set of counterfactual connectives and their alter-076

native completions. The three frameworks have 10077

to 17 distinct discourse relations each, and together078

contribute a total of 27,754 instances.079

Using our datasets, we discover discursive cir-080

cuits in the GPT-2 medium model. For most dis-081

course relations, the identified circuits achieve over082

around 90% faithfulness while involving only 0.2%083

of model connections. We show that circuits de-084

rived from PDTB generalize well to unseen dis-085

course frameworks such as RST and SDRT, sug-086

gesting that language models may encode a shared087

representation of discourse relations. We also088

construct a novel circuit hierarchy adapted from089

PDTB’s three-level taxonomy. To our knowledge,090

this is the first discourse hierarchy grounded in neu-091

ral circuit components. Together, our circuits and092

hierarchy provide a new form of discourse repre-093

sentation, enabling direct cross-framework compar-094

ison and fine-grained decomposition into linguistic095

features. We discover similar utilities across differ-096

ent frameworks (e.g., coreference is prominent in097

all Expansion-like relations).098

2 Circuit Discovery with CuDR099

We propose a generic workflow to dissect a lan-100

guage model’s discourse understanding via circuit101

discovery, which is compatible with any discourse102

framework. We introduce the Completion under103

Discourse Relation task (CUDR, pronounced “koo-104

der”), where Arg1 remains fixed, while the connec-105

tive is swapped (Conn → Conn′), requiring the106

model to shift its prediction from Arg2 to Arg′2.107

2.1 Completion under Discourse Relation108

CUDR creates a controlled environment to test109

a model’s discursive behavior. By simply alter-110

ing the discourse connective (from original (ori)111

to counterfactual (CF); Table 1), the model’s con-112

tinuation shifts sharply in response. For example,113

in the original discourse, a Contingency relation is114

expressed with the connective “so”, leading to a115

Input:
dori = (Arg1, Arg2, R, Conn)
dcf = (Arg1, Arg′2, R

′, Conn′)

CUDR Task (Original):
Please finish the discourse by choosing one of
the two options: Arg2, Arg′2
To complete: Arg1, Conn
Correct answer: Arg2, Incorrect answer: Arg′2
Example: Please finish the discourse by
choosing one of the two options: “he goes to the
canteen” or “the canteen is closed”
To complete: [Bob is hungry]Arg1 [so]Conn ⇒ [he goes
to the canteen]Arg2

CUDR Task (Counterfactual):
Please finish the discourse by choosing one of
the two options: Arg2 or Arg′2
To complete: Arg1, Conn′

Correct answer: Arg′2, Incorrect answer: Arg2
Example: Please finish the discourse by
choosing one of the two options: “he goes to the
canteen” or “the canteen is closed”
To complete: [Bob is hungry]Arg1 [but]Conn′ ⇒ [the
canteen is closed]Arg2′

Table 1: Formalization of the CUDR task: the model
must complete the discourse by either Arg2 or the coun-
terfactual Arg′2, based on which best fits as a continua-
tion of Arg1 following Conn or Conn’ (best in color).

completion that “he goes to the canteen”. However, 116

when the discourse relation is shifted to a coun- 117

terfactual Comparison relation (signaled by “but”), 118

the model should sharply change its prediction to 119

an argument that negates the expectation of eating 120

(i.e., “the canteen was closed”). Note that circuit 121

discovery has been applied under various settings 122

(Zhang and Nanda, 2024), we adopt such a setup 123

to steer the model, because it captures the dynamic 124

nature of discourse understanding. 125

Concretely, the original discourse consists of two 126

arguments, Arg1 and Arg2, linked by a discourse 127

relation R and connective Conn, formally denoted 128

as dori = (Arg1, Conn,Arg2, R). The counter- 129

factual instance, dcf = (Arg1, Conn′, Arg′2, R
′), 130

preserves Arg1 but substitutes the continuation and 131

relation (R′ ̸= R), forming a minimal contrastive 132

pair required by activation patching. 133

2.2 Circuit Discovery 134

Activation Patching. Transformer circuits are 135

computational graphs that model the information 136

flow from an input token, through residual flow 137

among intermediate nodes (i.e., MLP layers and 138

attention heads) to the output probability of the next 139

token. To identify influential connections inside 140

the circuits, we intervene in the model by replacing 141

the activation of a counterfactual (corrupted) run 142
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by the activation of a original (clean) run.143

g(e) = L(xcf |do(E = eori))− L(xcf ) (1)144

Concretely, we define the impact of introduc-145

ing an intervening edge e (denoted by g(e)) as146

the difference in a metric L when patching the147

activation of edge e from the original run. For-148

mally, g(e) is computed as the difference between149

L(xcf |do(E = eori)) where e is restored to its150

clean value, and L(xcf ), the metric value under the151

corrupted run.152

Accelerate by Attribution Patching. To over-153

come the low speed for activation patching (Conmy154

et al., 2023), we adopt a first order Taylor approxi-155

mation to Equation 1 and use the Edge Attribution156

Patching (EAP) method Nanda (2023); Syed et al.157

(2024). For an edge e = (u, v), the change of158

metric g(e) is:159

g(e) ≈ (zoriu − zcfu )⊤∇vL(xcf ), (2)160

where zoriu and zcfu denote the activation at node161

u in the original or counterfactual runs, and162

∇vL(xcf ) is the gradient of metric L at node v.163

With the approximation, we can now calculate g(e)164

for all edges by two forward passes and one back-165

ward pass, greatly enhancing efficiency (103 times166

faster in our practice).167

Attribution Patching Using CUDR. We first in-168

put the model with the counterfactual (CF) input,169

and the model produces a CF output. Using the170

same CF input, we then perform activation patch-171

ing from the original (Ori) to restore the model’s172

prediction to the Ori output. In the CF run, the173

model receives xcf , constructed from Arg1 and a174

counterfactual discourse connective (Conn′). The175

correct prediction is the counterfactual completion176

(Arg′2). In the ori run, the model receives xori as in-177

put, which consists of (Arg1, Conn). The correct178

output is the original Arg2. Attribution patching179

(Figure 2) works by replacing activations from the180

CF run with those from the Ori run. For example,181

to evaluate the edge between MLP 20 and Attention182

Head 21.9 (Attn. 21.9), we replace the activation183

flowing from MLP 20 into Attn. 21.9 with the cor-184

responding activation from the Ori run and observe185

g(e), which is the change in the model’s output.186

Construct Discursive Circuits. The discursive187

circuit for a given discourse relation is constructed188

by applying attribution patching to the CUDR task189

MLP 
20

Attn. 
21.1

xori

Bob is hungry, but

yori

Attn. 
21.9

Counterfactual run

MLP 
20

Attn. 
21.1

xcf

Bob is hungry, so

ycf

Attn. 
21.9

Original run

MLP 
20

Attn. 
21.1

xcf y

Attn. 
21.9

Patching original to counterfactual

Bob is hungry, but

the canteen is 
closed 

he goes to the 
canteen 

P(“he”) 📈 📈

Figure 2: Illustration of attribution patching with
CUDR: We steer the model’s prediction from the coun-
terfactual toward the original outcome. Activations from
the original run are patched into the counterfactual run
to influence the model’s prediction.

over a set of samples for that relation. We compute 190

the average g(e) for each edge and select those 191

with the highest absolute g(e) values as the most 192

important. In practice, the top 1000 such edges are 193

sufficient to steer the model faithfully, similar to 194

prior work (Hanna et al., 2024). 195

2.3 The CUDR Dataset 196

We construct an augmented dataset by prompting 197

a large language model (LLM) with the original 198

Arg1 and a counterfactual Conn′, along with de- 199

tailed instructions and discourse relation definitions 200

(Appendix A.3). We employ GPT-4o-mini for its 201

good instruction-following ability and lower cost. 202

Building on the taxonomy of counterfactual dis- 203

course relations proposed by Miao et al. (2024), 204

our CUDR dataset adopts a PDTB3-based design 205

(Table 2). For each discourse relation alongside 206

its original connective, we construct five coun- 207

terfactual discourse connectives. For example, 208

the Comparison.Concession.Arg2-as-denier rela- 209

tion (e.g., “however”, Row 1 in Table 2) is consid- 210

ered counterfactual to both a Contingency relation 211

(signaled by “because”) and an Instantiation rela- 212

tion (“for example”). We provide a complete list of 213

connectives and their mappings in Appendix A.1. 214

We extend our dataset construction beyond 215
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Discourse Relation Ori Connective CF Connective

Comparison.Concession.Arg2-as-denier however because
for example

Comparison.Contrast by comparison specifically
in other words

Contingency.Reason because so
however

Contingency.Result so because
by comparison

Expansion.Conjunction and however
so

Expansion.Equivalence in other words however
for example

Expansion.Instantiation.Arg2-as-instance for example because
however

Expansion.Level-of-detail.Arg1-as-detail in short however
so

Expansion.Level-of-detail.Arg2-as-detail specifically instead
by comparison

Expansion.Substitution.Arg2-as-subst instead because
in other words

Temporal.Asynchronous.Precedence then however
previously

Temporal.Asynchronous.Succession previously so
then

Temporal.Synchronous while so
then

Table 2: CUDR Dataset: PDTB’s discourse relations
with corresponding original (Ori) connectives and coun-
terfactual (CF) connectives (subset displayed for CF).

Discourse framework # of DR # of CuDR data
PDTB 13 11,843
GDTB 12 5,253
GUM-RST 17 6,805
SDRT 10 3,853
Total 27,754

Table 3: CuDR Dataset Statistics: Number of unique
discourse relations and CuDR data across frameworks.

PDTB to include additional corpora: the GUM Dis-216

course Treebank (GDTB; Liu et al. 2024b), a more217

up-to-date PDTB-style corpus, as well as GUM-218

RST (Zeldes, 2017) and SDRT (Asher and Las-219

carides, 2003). To enable the generation of counter-220

factual instances from non-PDTB corpora, we con-221

struct relation mappings from RST to PDTB (Table222

7) and from SDRT to PDTB (Table 8 in Appendix223

A). For example, SDRT’s Explanation relation224

is mapped to PDTB’s Contingency.Cause.Reason,225

then its corresponding counterfactual relations Re-226

sult (“so”) and Contrast (“however”), are found in227

the PDTB-based taxonomy.228

Table 3 summarizes the metadata per discourse229

framework. Each original and counterfactual dis-230

course pair, (dori, dcf), is treated as a single data231

instance in the CUDR dataset. For each discourse232

relation in each corpus, we sample up to 50 origi-233

nal instances. With five counterfactual connectives234

per relation, this yields up to 300 CUDR instances235

per relation. We discard minority relations with236

fewer than 20 instances, as well as low-quality in-237

stances where Arg2 and Arg′2 are overly similar.238

We consider 300 instances per relation sufficient,239

as Yao et al. (2024) use a median of only 52. To 240

validate the automated constructions, one author 241

manually verified 40 CUDR samples and found 242

them all valid as an indicative evaluation, with 243

Arg′2 coherent with Arg1 and Conn′. The lan- 244

guage in Arg′2 tends to be straightforward, but it 245

is desired because we want salient relations (Ap- 246

pendix A.3). Preliminary trials with open-source 247

Llama-3.1-8B-Instruct (Grattafiori et al., 2024) to 248

generate CUDR data was unsuccessful as it did not 249

follow our task instruction. 250

3 Evaluate Discursive Circuits 251

We conduct our evaluation to answer following 252

research questions (RQs): 253

RQ1: Do discursive circuits faithfully recover the 254

full model’s performance? 255

RQ2: Do discursive circuits generalize across dif- 256

ferent discourse frameworks and relation types? 257

RQ3: Are discursive circuits composed of compo- 258

nents associated with specific linguistic features? 259

Implementation Detail. Following Hanna et al. 260

(2024); Mondorf et al. (2025), we focus on a single 261

model for in-depth analysis and adopt their choice 262

of GPT-2 medium (Radford et al., 2019) for its man- 263

ageable memory requirements. To identify circuits 264

for specific discourse relations, we use a sample 265

size of 32 for both circuit discovery and validation, 266

and apply the standard practice of using the batch 267

mean for node value patching (Miller et al., 2024). 268

We repeat each experiment five times with different 269

data samples and average the outcomes for stability. 270

Before circuit discovery, we fine-tune the model on 271

held-out CUDR data (half of the PDTB subset) to 272

align it with our task setting and ensure it follows 273

the intended instructions (Appendix B.1). 274

Baseline Circuits: We replicate the Indirect Ob- 275

ject Identification (IOI) circuit (Wang et al., 2023) 276

in our own model as a baseline circuit. In the 277

IOI task, the model is given a prompt like “John 278

and Mary went to a bar. Mary gave a beer to”, 279

and should predict “John”. This circuit represents 280

the model’s general next-word prediction ability, 281

without discourse-specific reasoning. Comparing 282

against IOI allows us to test whether discursive 283

circuits capture discourse-specific computation be- 284

yond standard language modeling. 285

Evaluation Metric. Our metric follows Miller 286

et al. (2024) to calculate the logit difference be- 287

tween the correct and incorrect answers. Specif- 288
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ically, we treat the original discourse’s Arg2 as289

correct and the counterfactual Arg′2 as incorrect,290

and compute ∆L = L(Arg2) − L(Arg′2), where291

L(·) denotes the logit of the corresponding answer.292

Normalized faithfulness: Since different dis-293

course relations yield different raw scores, we re-294

port normalized faithfulness scores (Miller et al.,295

2024), which quantify the percentage of the full296

model’s performance that a sparse circuit restores.297

Concretely, we compute ∆Lpatch

∆Lfull
, where ∆Lpatch298

is the logit difference obtained by patching clean299

activations into a corrupted input, and ∆Lfull is300

the logit-difference of the full model on clean in-301

put. In our CUDR task, faithfulness begins at a302

large negative value (since the unpatched model303

selects Arg′2), increases as clean edges are patched,304

and reaches 100% when the full model is restored305

(which predicts Arg2).306

L1 L2 L3

Comparison (566) Concession ✗ Arg2-as-denier
/ Contrast

Contingency (564) / Reason
/ Result

Expansion (200)

/ Conjunction
/ Equivalence

Instantiation ✗ Arg2-as-instance

Level-of-detail (565) ✓
Arg1-as-detail
Arg2-as-detail

Substitution ✗ Arg2-as-subst

Temporal (405)
Asynchronous (575) ✓

Precedence
Succession

/ Synchronous

Table 4: Discursive Circuits Hierarchy (L1–L3): All
“leaf node” relations are classified as L3. Only two
circuits appear at the L2 level, each merging more than
one L3 circuit. (Numbers) indicate edge counts. L3
circuit has 1,000 edges, and L0 circuit has 137 edges.

Hierarchical Discursive Circuits. With the307

learned circuits, we construct a new PDTB-style308

circuit hierarchy. To the best of our knowledge, this309

is the first discourse hierarchy derived from neu-310

ral components. We first learn circuits for all 13311

Level-3 (L3) relations and use the top 1,000 edges312

to merge them to form higher-level circuits. That is,313

L3 ∋ L2 ∋ L1 ∋ L0 (Table 4). Note that our circuit314

hierarchy differs from the PDTB taxonomy in two315

ways: (1) All “leaf node” relations are treated as316

L3 since they have no children to merge (e.g., Tem-317

poral.Synchronous) and circuit discovery operates318

on the finest-grain level; (2) Some L2 relations are319

removed (e.g., Concession ✗) as they contain only320

one valid L3 relation due to data scarcity, so merg-321

ing would be meaningless. In the end, L2 circuits322

Overall performance

Figure 3: RQ1: Overall Faithfulness of Discursive
Circuits: We report average faithfulness across 13
PDTB relations for circuits L3, L1, L0, and the IOI base-
line. The Y-axis shows faithfulness (%), and the X-axis
shows the number of patched edges (log scale). Shaded
areas indicate standard deviation. L3 and L1 reach
strong faithfulness at ≈ 200 edges (vertical dashed line).

contain over 500 edges, L1 circuits have 200–500+ 323

edges, and the meta L0 circuit contains 137 edges. 324

3.1 Discursive Circuits are Faithful (RQ1) 325

We first validate the faithfulness of discursive cir- 326

cuits on the PDTB dataset. The average perfor- 327

mance across 13 discourse relations (Figure 6) 328

shows strong overall effectiveness. We omit L2 329

as it covers only a subset of relations. For both 330

L3 and L1 circuits, strong faithfulness (≈ 90%) 331

is achieved with only ≈ 200 edges. L3 outper- 332

forms L1 in the 10–200 edge range, likely due to 333

its ability to capture more fine-grained informa- 334

tion. Both L3 and L1 surpass L0 and IOI after 100 335

edges. This gap is likely due to L0’s small size 336

(137 edges). Even though IOI reasons over next ob- 337

jects, it still lacks of discourse skills, as it plateaus 338

quickly around ≈ 50% faithfulness, showing the 339

unique skills needed for discourse competence. 340

We then analyze the performance breakdown by 341

relation types (Figure 4) and make the following 342

observations: (1) Finer-grained circuits are more 343

effective than coarser ones. There is a consistent 344

trend across relation types: L3 > L2 ≈ L1 > L0 345

> IOI. However, fine-grained circuits also show 346

greater variance (large red shades). L1 is more sta- 347

ble and has a lower variance. In practice, we recom- 348

mend L1 as a balanced choice: while slightly less 349

effective in only stages, it matches L3 after ≈ 300 350

edges and works for all lower-level relations. (2) 351

L2 does not necessarily outperform L1. This is 352

evident in the four relations that have L2 circuits, in- 353

cluding Expansion.Details (8th and 9th subfigures 354

in Figure 4, compared with Expansion L1’s cir- 355

cuit) and Temporal.Asynchronous (12th and 13th, 356
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(1) Comparison.Conc.Arg2-as-denier (2) Comparison.Contrast

(3) Contingency.Reason (4) Contingency.Result

(5) Expansion.Conjunction (6) Expansion.Equivalence

(7) Expansion.Arg2-as-instance (8) Expansion.Arg1-as-detail

(9) Expansion.Arg2-as-detail (10) Expansion.Arg2-as-subst

(11) Temporal.Precedence (12) Temporal.Succession

(13) Temporal.Synchronous

Figure 4: RQ1 Faithfulness of Discursive Circuits by
Discourse Relation (see indices 1–13).

compared with Temporal L1 circuit). This sug-357

gests that L2 and L1 operate at a similar level of358

abstraction, with comparable degrees of informa-359

tion loss. (3) Discursive circuits reflect task dif-360

ficulty. Two Contingency relations (3rd and 4th)361

are exceptions where L1 matches or outperforms362

L3. Further inspection shows that these relations363

have lower absolute faithfulness scores, suggest-364

ing the model struggles with them. In such case,365

L3 may overfit, while L1 retains core patterns and366

generalizes better. IOI generally underperforms367

due to its lack of discourse specificity. However,368

in Conjunction (5th) and Equivalence (6th), it per-369

forms comparably or better than discursive circuits,370

suggesting these relations are easier to model. In371

contrast, larger gaps in Comparison (1st–2nd) and372

PDTB ->GDTB

PDTB ->RST

PDTB ->SDRT

Figure 5: RQ2 Cross-dataset generalization: Perfor-
mance by applying PDTB’s circuits to other datasets.

Contingency (3rd–4th) indicate greater complexity. 373

3.2 Discursive Circuits Generalize to New 374

Datasets and New Relations (RQ2) 375

Do discursive circuits generalize across different 376

discourse frameworks? We extend the CUDR task 377

to other frameworks by applying circuits obtained 378

from PDTB to GDTB (same framework, differ- 379

ent genre), as well as to RST and SDRT (differ- 380

ent frameworks). We follow the same mapping 381

(Appendix A.2) for cross-framework transfer; for 382

example, Explanation (SDRT) is mapped to Contin- 383

gency.Cause.Reason (PDTB). Figure 5 shows the 384

generalization performance, with each line repre- 385

senting the average performance across all relations 386

in the dataset. PDTB circuits generalize well to 387

other datasets. We set an “upper bound” using the 388

Own circuits (learned via CUDR task in-dataset, 389

e.g. SDRT’s Explanation). PDTB’s L3 circuits 390

close the gap with Own using only ≈ 200 edges, 391

despite initially lagging due to dataset-specific fea- 392

tures. Across the three generalization targets, the 393

trend is consistent: Own > L3 > L1 ≈ L0 > IOI. 394

L1 and L0 are weaker in the first 100 edges, likely 395

because both abstractions lose fine-grained infor- 396

mation (L2 is skipped due to limited coverage). 397

SDRT is the hardest to generalize to, with only 50% 398

faithfulness after 100 patched edges, highlighting 399

the gap between the datasets. 400

Do circuits learned for one discourse relation 401

generalize to others? We study all 13 PDTB L3 re- 402

lations by applying each circuit to the other 12, us- 403

ing the top 200 edges per circuit (enough for strong 404
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PDTB GDTB RST SDRT

Comp.
Cont.

Exp.

Temp.

Empty!

DC 
specialized area.

DC ∩ Linguistic FeaturesDC Only

(b) Circuit Distributions

(a) Circuit Overlaps

   ① ② ③ ④ ① ② ④③ ① ② ④③ ① ③ ④②

Figure 6: RQ3 Overlap of discursive circuits with circuits for linguistic features: antonymy, synonymy, coreference,
and negation. Similar pattern is shared across frameworks, (e.g. coreference signal in Expansion relations).

(a) Circuits Overlap (b) Faithfulness VS Circuit Overlap 
 (Cross relation, Intra-Framework)

(c) Faithfulness VS Circuit Overlap  (Inter-framework)

Positive 
correlation

No 
correlation

Figure 7: RQ2 Cross-relation Generalization: (a)
The overlap among PDTB’s relation circuits; (b) Intra-
framework generalization in PDTB; (c) Inter-framework
generalization from PDTB.

faithfulness): (1) Figure 7a shows the edge over-405

lap among these circuits. While the diagonals are406

darker, indicating greater overlap between similar407

relations, the overall overlap remains consistently408

high (80–120 out of 200 edges). (2) Figure 7b409

shows no correlation between overlap and faithful-410

ness (r = −0.007). This is counterintuitive, as one411

might expect more overlap to imply better general-412

ization. The narrow overlap range (80–120) likely413

limits the variation. Recently, Hanna et al. (2024)414

also reports faithfulness does not necessarily re-415

quire high overlap. (3) Cross-framework results416

(Figure 7c) reveal a positive correlation between417

overlap and performance, e.g., PDTB → GDTB418

yields r = 0.44. In summary, higher circuit overlap419

does not imply better intra-framework faithfulness,420

but does support inter-framework transfer.421

DC Only DC ∩ Linguistic Features Non-DC 

DC 
specialized area.

Empty!

Figure 8: RQ3 Layer-wise Edge Analysis: Source (X-
axis) and target (Y-axis) layers of edges in discursive and
linguistic circuits. DC-only edges emerge independently
in higher layers and are absent in lower layers.

3.3 Discursive Circuits Overlap with 422

Linguistic Features’ Circuits (RQ3) 423

Are discursive circuits composed of sub-circuits 424

linked to linguistic features? Inspired by the eRST 425

and RST Signaling Corpus (Zeldes et al., 2025; Das 426

and Taboada, 2018), we discover circuits for four 427

key features, 1 antonymy, 2 coreference, 3 nega- 428

tion, and 4 synonymy, as a preliminary and non- 429

exhaustive study, using similar activation prompts 430

(Appendix B.3). Figure 6a shows that the utility 431

of linguistic features per L1 relation is consis- 432

tent across datasets. Lexical features 1 antonymy 433

and 4 synonymy are broadly used in all relations, 434

which is consistent across frameworks. 2 corefer- 435

ence is most active in Expansion relations (the 2 is 436

darkest in Expansion-like rows, highlighted by the 437

green boxes), where continuity relies on entity ref- 438

erence. SDRT shows less reliance on coreference, 439

likely due to shorter texts. This suggests that LMs 440

encode discourse relations with similar linguistic 441

cues across frameworks. 442

Figure 8 shows the layer-wise distribution of 443

discursive circuits (DC) and linguistic circuits by 444

source and target node layers (Top 200 edges). DC- 445

only edges are absent in lower layers (noted as 446
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“empty”). A distinct region (source: 8–16, tar-447

get: 10–20) contains DC-only edges, with very448

limited overlap with linguistic features. This sug-449

gests lower layers in discursive circuits capture450

shared linguistic features, while discursive abstrac-451

tion emerges in higher layers.452

Error case 1: [yay!!!!!]Arg1 , (because) [I don’t care who
wins now]Arg2

Error case 2: [I’ll give clay in return]Arg1 , (because)
[think clay is in abundance this game]Arg2

PDTB’s missing edges: Resid Start→MLP0,
A19.9→A21.1, MLP3→MLP7, MLP7→MLP11

Table 5: Case Study: PDTB circuit ✗; SDRT circuit ✓

We further examine the cases where SDRT’s453

Own circuits succeed but PDTB’s L3 circuits (both454

using the first 30 edges). Table 5 shows a subset455

of representative errors. Case 1 involves an inter-456

jection (“yay!”), and Case 2 features an ellipsis of457

the subject “I” in Arg2, both are rare phenomena458

in PDTB. Our method pinpoints missing elements459

in PDTB that SDRT captures, such as early edges460

(Resid Start→MLP 0, aiding connective reasoning)461

and late edges (e.g., 19.9→21.1, shared only with462

the coreference feature among the four features).463

4 Related Works464

Discourse Modeling and Evaluation. Discourse465

modeling has been studied under three major frame-466

works: PDTB (Webber et al., 2019; Prasad et al.,467

2008), RST (Mann and Thompson, 1987; Zeldes,468

2017; Zeldes et al., 2025), and SDRT (Asher and469

Lascarides, 2003). Recent studies seek to unify470

these frameworks, with advances in discourse rela-471

tion prediction (Zhao et al., 2023; Wu et al., 2023a;472

Anuranjana, 2023; Chan et al., 2023; Rong and Mo,473

2024; Liu and Strube, 2023; Long et al., 2024),474

discourse parsing (Li et al., 2024a,b; Thompson475

et al., 2024; Pastor et al., 2025; Liu et al., 2025),476

and annotation (Yung et al., 2024; Pyatkin et al.,477

2023; Ruby et al., 2025; Saeed et al., 2025). Fu478

(2022) outline early plans for unification, and the479

DISRPT benchmark (Braud et al., 2024) enables480

cross-framework evaluation with data annotated481

under all three schemes. Liu et al. (2024b) pro-482

pose automatic RST-to-PDTB transformation via483

sense mapping. Liu and Zeldes (2023); Eichin et al.484

(2025) examine generalization across domains and485

languages. While linguistically insightful, these486

approaches overlook mechanistic interpretability.487

Question answering has also been explored488

as a bridge across frameworks. Fu (2025) link489

Questions Under Discussion (QUD) (Wu et al., 490

2023b; Ko et al., 2023) to PDTB, RST, and SDRT. 491

Miao et al. (2024) propose a QA-based evalua- 492

tion, though their prompts offer limited insight into 493

model internals. LLMs have been used to synthe- 494

size discourse data (Yung et al., 2025; Cai, 2025), 495

mainly to augment low-resource relations (Omura 496

et al., 2024). In contrast, our CUDR dataset targets 497

interpretability rather than data expansion. 498

Mechanistic Interpretability. Unlike visualiza- 499

tions (Jain and Wallace, 2019; Wiegreffe and Pinter, 500

2019) or textual explanations (Lyu et al., 2024; Zhu 501

et al., 2024), mechanistic interpretability identifies 502

components in a model that drive predictions. Cir- 503

cuits, as global computation graphs, can be iden- 504

tified through activation patching (Conmy et al., 505

2023; Miller et al., 2024; Syed et al., 2024). We 506

do not adopt sparse autoencoders (SAEs) (Huben 507

et al., 2024; Makelov et al., 2024), as our goal 508

is to understand discourse processing at a global 509

model rather than isolate local activity. Circuit dis- 510

covery has mostly been applied to simplistic tasks, 511

such as indirect object identification (IOI) (Wang 512

et al., 2023), numerical comparison (Hanna et al., 513

2023), subject-verb agreement (SVA) (Ferrando 514

and Costa-jussà, 2024), MCQ (Lieberum et al., 515

2023), knowledge acquisition (Yao et al., 2024; Ou 516

et al., 2025; Hanna et al., 2024), colored objects 517

(Merullo et al., 2024), and context-free grammars 518

(Mondorf et al., 2025). No existing work addresses 519

complex discourse phenomena. 520

5 Conclusion and Future Work 521

In this work, we introduce discursive circuits, the 522

first mechanistic interpretation of how discourse un- 523

derstanding is realized within language models. To 524

make circuit discovery feasible, we propose a novel 525

CUDR task that enables activation patching, along 526

with a collection of CUDR datasets for PDTB, RST, 527

and SDRT discourse frameworks. Our identified 528

discursive circuits are shown to be faithful in restor- 529

ing the full model’s performance and exhibit strong 530

cross-framework generalization. Discursive cir- 531

cuits provide a new lens for mechanistically repre- 532

senting discourse, enabling the construction of a 533

circuit hierarchy that supports direct comparison of 534

discourse relations both within and across frame- 535

works. We already observe promising evidence of 536

shared linguistic features utility across them. In 537

future work, we aim to extend CUDR to multiple 538

languages and adapt it for a broader range of tasks. 539
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Limitations540

Our work also has the following limitations: (1)541

We only study English-based corpora. It would be542

promising to extend circuit discovery to multiple543

languages and explore whether a unified circuit544

space exists across different languages, similar to545

the universal discourse label set explored by Eichin546

et al. (2025). This is feasible, as we can construct547

the CUDR dataset for other languages as well. (2)548

We follow Hanna et al. (2023, 2024); Mondorf et al.549

(2025) in focusing on one single transformer-based550

language model to enable more in-depth analysis.551

While it would be interesting to extend our method552

to other model architectures such as multi-layer553

perceptrons (MLPs) (Fusco et al., 2023) or LSTMs554

(Sundermeyer et al., 2012), we limit our scope to555

transformers due to their predominant use today556

and because activation patching is not directly com-557

patible with MLPs or LSTMs. (3) We do not com-558

pare discourse processing in language models with559

that in the human brain (Case and Oetama-Paul,560

2015; Perfetti and Frishkoff, 2008). For example,561

Eviatar and Just (2006) report that discourse pro-562

cessing triggers specific brain activations observ-563

able via fMRI. While intriguing, this is beyond the564

scope of our study.565

Ethical Statement and Potential Risks566

Our research on discourse relations does not pose567

direct ethical risks. However, as with all mech-568

anistic interpretability studies, the identified cir-569

cuits could be used to influence model behavior in570

specific capacities, such as modifying numerical571

reasoning (Hanna et al., 2023) or, in our case, dis-572

course processing and generation. By making the573

model’s reasoning about discourse relations more574

transparent, our work has the potential to aid in575

detecting and mitigating biases in scenarios where576

discourse structure plays a role.577

Declaration of AI Tool Usage578

We used AI tools at the following stages of this re-579

search: (1) GPT-4o-mini (via API) was used to gen-580

erate the counterfactual instances for our CUDR581

dataset; prompt details are provided in Appendix A;582

(2) Cursor AI was used during coding, primarily for583

debugging assistance; (3) ChatGPT-4o (via web in-584

terface) was employed only for grammatical check-585

ing of the manuscript. All research ideas, analyses,586

and findings were developed and written indepen-587

dently by the authors.588
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A CUDR Dataset Details949

A.1 Counterfactual Connectives950

To create counterfactual instances in the CUDR951

dataset, we rely on the taxonomy by Miao et al.952

(2024), which defines each discourse relation along953

with five irrelevant counterfactual relations. Due954

to space constraints, Table 2 in Section 2 lists only955

a subset of the counterfactual connectives. The956

complete set of five counterfactual connectives is957

provided in Table 6.958

Discourse Relation Ori Connective CF Connectives

Comparison.Concession.Arg2-as-denier however

because
for example
specifically
so
in other words

Comparison.Contrast by comparison

specifically
in other words
because
for example
so

Contingency.Reason because

so
however
by comparison
for example
in other words

Contingency.Result so

because
by comparison
for example
however
in other words

Expansion.Conjunction and

however
so
because
by comparison
instead

Expansion.Equivalence in other words

however
for example
because
so
by comparison

Expansion.Instantiation.Arg2-as-instance for example

because
however
by comparison
so
in other words

Expansion.Level-of-detail.Arg1-as-detail in short

however
so
by comparison
in other words
instead

Expansion.Level-of-detail.Arg2-as-detail specifically

instead
by comparison
however
so
in other words

Expansion.Substitution.Arg2-as-subst instead

because
in other words
so
for example
specifically

Temporal.Asynchronous.Precedence then

however
previously
by comparison
for example
because

Temporal.Asynchronous.Succession previously

so
then
by comparison
however
for example

Temporal.Synchronous while

so
then
by comparison
however
for example

Table 6: CUDR Dataset Details (Full Counterfactual
Connectives): PDTB discourse relations with their orig-
inal (Ori) connective and the corresponding set of five
counterfactual (CF) connectives.

A.2 Aligning Discourse Frameworks 959

We refer to cross-framework relation mapping both 960

to prepare counterfactual CUDR data for frame- 961

works beyond PDTB (Section 2.3) and to perform 962

cross-framework transfer (Section 3.2). The map- 963

ping between PDTB and the GUM Discourse Tree- 964

bank (GDTB) (Liu et al., 2024b) is straightforward, 965

as GDTB adopts the PDTB relation taxonomy. For 966

the GUM Rhetorical Structure Theory (GUM-RST) 967

dataset (Zeldes, 2017), we closely examine the an- 968

notation guidelines and the mapping approach used 969

by Liu et al. (2024b). Based on this, we define 970

a mapping shown in Table 7, which includes 17 971

RST relations, excluding those with insufficient 972

data. This mapping offers broad coverage, aligning 973

the 17 RST relations with 9 distinct PDTB rela- 974

tions. For the Segmented Discourse Representa- 975

tion Theory (SDRT) dataset (Asher and Lascarides, 976

2003), we also examine the relation definitions and 977

construct the mapping presented in Table 8. This 978

results in 10 distinct SDRT relations mapped to 8 979

PDTB relations. 980

RST Label Mapped PDTB Label
joint-list_m Expansion.Conjunction
joint-sequence_m Temporal.Asynchronous.Precedence
elaboration-additional_r Expansion.Level-of-detail.Arg2-as-detail
context-circumstance_r Temporal.Synchronous
adversative-concession_r Comparison.Concession.Arg2-as-denier
causal-cause_r Contingency.Cause.Reason
causal-result_r Contingency.Cause.Result
adversative-contrast_m Comparison.Contrast
explanation-justify_r Contingency.Cause.Reason
context-background_r Expansion.Conjunction
joint-other_m Expansion.Conjunction
adversative-antithesis_r Comparison.Contrast
explanation-evidence_r Contingency.Cause.Reason
evaluation-comment_r Contingency.Cause.Reason
explanation-motivation_r Contingency.Cause.Reason
restatement-repetition_m Expansion.Equivalence
joint-sequence_r Temporal.Asynchronous.Precedence

Table 7: RST to PDTB Mapping: Mapping of RST
discourse labels to PDTB labels for the CUDR dataset.

SDRT Label Mapped PDTB Label
Acknowledgement Expansion.Equivalence
Comment Expansion.Conjunction
Continuation Expansion.Conjunction
Contrast Comparison.Contrast
Correction Comparison.Concession.Arg2-as-denier
Elaboration Expansion.Level-of-detail.Arg2-as-detail
Explanation Contingency.Cause.Reason
Narration Temporal.Asynchronous.Precedence
Parallel Expansion.Conjunction
Result Contingency.Cause.Result

Table 8: SDRT to PDTB Mapping: Mapping of SDRT
discourse labels to PDTB labels for the CUDR dataset.
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A.3 Details for CUDR Dataset Construction981

To construct the counterfactual argument Arg′2, we982

ensure it is coherent with both the original argu-983

ment Arg1 and the counterfactual discourse rela-984

tion, along with its connective Conn′. Input: We985

generate the dataset by prompting the GPT-4o-mini986

model via API, chosen for its balance of instruction-987

following ability and efficiency. Each prompt in-988

cludes Arg1, Conn′, and a CF_dr_description989

field defining the discourse relation. For exam-990

ple, Contingency.Cause.Reason is described as991

“Arg2 is the reason for Arg1: when Arg1 gives the992

effect, and Arg2 provides the reason, explanation,993

or justification”, adapted from the PDTB annota-994

tion guidelines (Webber et al., 2019). Require-995

ments: We ask the model to complete a structured996

JSON template. To maintain quality and discour-997

age shallow completions, we explicitly instruct the998

model not to repeat Conn′ verbatim, and instead999

to use relation-specific language patterns. We also1000

request that Arg′2 match the length of Arg1, im-1001

proving stylistic and structural consistency. Out-1002

put and Postprocessing: The model is prompted1003

independently for each CUDR data instance, and1004

its output is saved as a plain text file. These files1005

are subsequently parsed into usable JSON format1006

using a custom loader. The final prompt template,1007

with inserted variables such as Arg1 and Conn′, is1008

shown below:1009

You are an expert in discourse semantics. In discourse
theory, arg1 and arg2 are two arguments connected by a
relation (a connective word).

I am going to give you an original discourse argument (*
original_arg1*) and a counterfactual relation (*CF_dr
*). Your task is to generate a new counterfactual
argument (*counterfactual_arg2*) that aligns with *
original_arg1* while reflecting the given
counterfactual relation.

**Requirements:**
1. *counterfactual_arg2* must be **coherent** with *

original_arg1* and appropriately reflect the given
counterfactual relation (by writing after
counterfactual_connective).

2. The length of *counterfactual_arg2* should be around {
original_arg2_length} words.

3. Make the relation between *counterfactual_arg2* and *
original_arg1* easy to understand and as salient as
possible.

4. Do not repeat the connective word in your *
counterfactual_arg2*. Instead, try to use negation or
contrastive signal (for comparison counterfactuals),
specific causal events of result or reason (for
contingency counterfactual), specific examples like
entities and concrete details (for expansion
counterfactuals).

Complete the following dictionary and only return the
dictionary as your output:

{
"original_arg1": "{original_arg1}",
"counterfactual_relation": "{CF_dr}", which means {

CF_dr_description},
"counterfactual_connective": "{conn_CF}",
"counterfactual_arg2": TO BE COMPLETED

}

1010

Manual Verification One author manually veri- 1011

fied the quality of our CUDR data samples. We ran- 1012

domly sampled 10 instances from each discourse 1013

framework and present subsets of CUDR exam- 1014

ples from the PDTB (Table 9), GDTB (Table 11), 1015

RST (Table 10), and SDRT (Table 12) datasets. 1016

Although each framework uses different terminol- 1017

ogy, we adopt a unified notation of Arg1 and Arg2 1018

throughout. Across the 40 samples, we find all 1019

to be valid: the generated Arg′2 is coherent with 1020

the original Arg1 and aligns well with the intended 1021

counterfactual connective Conn′. For example, 1022

in the first PDTB sample, the original Arg1 is 1023

“Robert S. Ehrlich resigned as chairman, president 1024

and chief executive”, which is linked by a denying 1025

relation (signaled by “however”) to “Mr. Ehrlich 1026

will continue as a director and a consultant”. Un- 1027

der the counterfactual connective Conn′ “so”, our 1028

generated Arg′2 becomes “the company faced sig- 1029

nificant leadership challenges afterward”, directly 1030

expressing the consequence of Mr. Ehrlich’s res- 1031

ignation and appropriately realizing the intended 1032

relation. Beyond PDTB, our CUDR construction 1033

performs well across other frameworks. For in- 1034

stance, although SDRT often contains shorter text 1035

spans, the generated Arg′2 still effectively reflects 1036

the intended Conn′. In Sample 2 from Table 12, 1037

“others settle for less” clearly presents a contrasting 1038

scenario, demonstrating that the model can express 1039

discourse relations concisely. 1040

However, we do find our generated data to 1041

be straightforward in their expression. In all 1042

samples we examined, rare words are seldom used, 1043

and the model tends to prefer simple sentence struc- 1044

tures. For example, Sample 3 in SDRT (Table 12) 1045

has an original Arg1 as “yep saturday’s looking 1046

promising”, and continues with an Arg′2 expres- 1047

sion “the weather forecast predicts sunshine”, us- 1048

ing the counterfactual connective “because”. This 1049

is a valid instance, but discussing the weather is 1050

relatively expected and less surprising. Sample 1051

3 in PDTB (Table 9) has an Arg1 as “Much is 1052

being done in Colombia to fight the drug cartel 1053

mafia”, and it assigns Arg′2 as “the government rec- 1054

ognizes that drug trafficking severely undermines 1055

national security and social stability”. While this is 1056

a valid continuation aligning with the counterfac- 1057

tual connective “because”, it lacks specific knowl- 1058

edge about the drug situation in Colombia. In con- 1059

trast, the original Arg2 is “luxurious homes and 1060

ranches have been raided by the military authori- 1061

ties, and sophisticated and powerful communica- 1062
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tions equipment have been seized”, which offers1063

more phrase variation and concrete detail.1064

This straightforward style is expected, as we1065

explicitly prompt the model to “Make the relation1066

between counterfactual Arg′2 and original Arg11067

easy to understand and as salient as possible.” We1068

adopt this approach to make the CUDR task as1069

sharply steering as possible. In future work, we1070

can explore the CUDR task under more complex1071

texts and ambiguous scenarios.1072

CUDR data samples for PDTB framework:
Sample 1:
Arg1: Robert S. Ehrlich resigned as chairman, president
and chief executive
Arg2: Mr. Ehrlich will continue as a director and a con-
sultant
Original relation: Comparison.Concession.Arg2-as-denier
(however)
Conn′: so
Arg′2: the company faced significant leadership chal-
lenges afterward.
Sample 2:
Arg1: Shortly after Texas Air took control of Eastern,
some Machinists union supervisors received a 20% pay
raise
Arg2: the pilots argued that this triggered a pay raise for
them
Original relation: Contingency.Cause.Result (so)
Conn′: but
Arg′2: most other employees were not granted any wage
increase.
Sample 3:
Arg1: Much is being done in Colombia to fight the drug
cartel mafia
Arg2: luxurious homes and ranches have been raided by
the military authorities, and sophisticated and powerful
communications equipment have been seized
Original relation: Expansion.Instantiation.Arg2-as-
instance (for example)
Conn′: because
Arg′2: the government recognizes that drug trafficking
severely undermines national security and social stability.

Table 9: CUDR data samples for PDTB framework:
counterfactual Arg′2 being coherent with original Arg1
and counterfactual Conn′.

B Implementation Details1073

B.1 Model fine-tuning1074

The CUDR task imposes two key requirements:1075

(1) Instruction following: the model must adhere1076

to the task format by choosing between Arg2 and1077

Arg′2; and (2) Discourse comprehension: it must1078

interpret the discourse relation to select the contin-1079

uation that matches the given connective. These1080

requirements prove challenging for the widely used1081

GPT-2 model (Conmy et al., 2023; Yao et al., 2024).1082

To address (1), we pretrain GPT-2 on a next sen-1083

CUDR data samples for RST framework:
Sample 1:
Arg1: that cultural behaviors are not genetically inherited
from generation to generation
Arg2: must be passed down from older members of a
society to younger members
Original relation: adversative-antithesis (however)
Conn′: specifically
Arg′2: they are learned through social interactions and
environmental influences
Sample 2:
Arg1: I came up with an individual story called Thad ’s
World Destruction and , she wanted to illustrate it
Arg2: that ’s the way we ended up doing it
Original relation: causal-result (so)
Conn′: but
Arg′2: she thought it was too dark for children
Sample 3:
Arg1: fisherman first noticed the people
Arg2: a warship was deployed to retrieve them
Original relation: joint-sequence (then)
Conn′: because
Arg′2: he heard their laughter nearby

Table 10: CUDR data samples for RST framework:
counterfactual Arg′2 being coherent with original Arg1
and counterfactual Conn′.

CUDR data samples for GDTB framework:
Sample 1:
Arg1: Due to its remarkable biodiversity, with over a third
of the local plant species found nowhere else, Socotra has
been designated a UNESCO World Heritage Site
Arg2: With over 40,000 inhabitants, though, it’s not just
a nature reserve
Original relation: Comparison.Concession.Arg2-as-denier
(however)
Conn′: so
Arg′2: many conservation efforts are now focused on pre-
serving its unique ecosystems.
Sample 2:
Arg1: So this place was so cool we could have spent
hours in here
Arg2: The best thing that I thought about this bookstore
was that they mixed in new copies of books with used
copies
Original relation: Contingency.Cause.Result (so)
Conn′: but
Arg′2: the uncomfortable seating made it difficult to stay
for long, despite the incredible atmosphere surrounding
us.
Sample 3:
Arg1: There are flights from Sana’a via Al Mukalla
Arg2: Yemenia Airlines offers one flight per week on
Thursday morning
Original relation: Expansion.Instantiation.Arg2-as-
instance (for example)
Conn′: because
Arg′2: the airport reopened after extensive renovations

Table 11: CUDR data samples for GDTB framework:
counterfactual Arg′2 being coherent with original Arg1
and counterfactual Conn′.

tence prediction (NSP) task using randomly mis- 1084

matched Arg′2 from PDTB. Without this step, the 1085
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CUDR data samples for SDRT framework:
Sample 1:
Arg1: the deal mechanism ’s a bit clunky
Arg2: the key is to make sure you’ve checked the right
colour box :D
Original relation: Contrast (by comparison)
Conn′: specifically
Arg′2: it often requires multiple steps and lengthy ap-
provals to finalize transactions
Sample 2:
Arg1: you drive a hard bargain
Arg2: that price is too good
Original relation: Explanation (because)
Conn′: by comparison
Arg′2: others settle for less
Sample 3:
Arg1: yep saturday ’s looking promising
Arg2: saturday evening good for me too
Original relation: Parallel (and)
Conn′: because
Arg′2: the weather forecast predicts sunshine

Table 12: CUDR data samples for SDRT framework:
counterfactual Arg′2 being coherent with original Arg1
and counterfactual Conn′, while the arguments are
shorter than PDTB.

Accuracy Logit Diff
Ori CF Ori CF

Random Model 0.50 0.50 0.00 0.00
Ideal Model 1.00 1.00 + +

GPTNSP 0.46 0.63 -1.26 2.51
GPTCUDR 0.80 0.79 11.89 11.15

Table 13: Performance on the CUDR task: Accuracy
and logit difference are reported for each model under
both original (Ori) and counterfactual (CF) scenarios.

model often generates irrelevant outputs. However,1086

GPTNSP performs poorly on the actual CUDR task,1087

with near random accuracy (0.46 and 0.63; see1088

Table 13). To address (2), we further pretrain it1089

on strictly held-out set of PDTB data, resulting1090

in GPTCUDR, which achieves 0.8 accuracy and a1091

significantly larger logit margin. This ensures the1092

model is sensitive to discourse relation, making it1093

suitable for activation patching with CUDR.1094

These results also reflects the quality of our1095

dataset. GPTNSP performs better on counterfactual1096

instances than original ones (0.63 vs. 0.46 accu-1097

racy), suggesting that the counterfactual data is not1098

only valid but also easier to interpret. The final1099

GPTCUDR achieves balanced performance across1100

both Ori and CF directions.1101

B.2 Computation Resource1102

All experiments are conducted on a server with1103

four NVIDIA L40 GPUs (48GB RAM each). To1104

accelerate circuit discovery, we use the implemen- 1105

tation by Miller et al. (2024) 1 for the Edge Attri- 1106

bution Patching (EAP) method (Syed et al., 2024; 1107

Nanda, 2023), which completes discovery for a 1108

single discourse relation in about one minute us- 1109

ing a sample size of 32 on a single GPU. This is 1110

substantially faster than the Automatic Circuit Dis- 1111

Covery (ACDC) method (Conmy et al., 2023)2, 1112

which takes over 24 hours for the same task. 1113

B.3 Details for Circuits Analysis Experiments 1114

Antonymy
Input: The sky was bright, far from, Output: dark
Input: His explanation was clear, unlike, Output: con-
fusing
Coreference
Input: John went to the store because, Output: He
Input: Lisa loves painting, and Output: She
Negation
Input: The answer was expected, though arrival was
Output: delayed
Input: He expected an easy task, but it was Output: not
Synonymy
Input: The road was narrow, and the alley even, Output:
slim
Input: The musician composed a tune, a catchy, Output:
melody

Table 14: Data samples for discovering circuits for
linguistic features, including antonymy, coreference,
negation, and synonymy. If an anchor word exists (e.g.
“John”), it was in italic form.

To identify circuits responsible for linguistic fea- 1115

tures (Zeldes et al., 2025; Das and Taboada, 2018), 1116

we adopt a simplified next-word prediction setting, 1117

where the model predicts a word tied to a spe- 1118

cific linguistic feature. This setup follows tasks 1119

like subject–verb agreement (SVA) (Ferrando and 1120

Costa-jussà, 2024) and world knowledge (Yao et al., 1121

2024). Following standard practice, we apply acti- 1122

vation patching. The clean input is a context–target 1123

pair, while the corrupted input has the same context 1124

but a different (incorrect) target word. Activation 1125

patching identifies key edges that steer the model 1126

from the incorrect to the correct prediction. For 1127

example, for coreference, a clean input like “Lisa 1128

loves painting” should yield “she”; similarly, “John 1129

went to the store because” should produce he” (Ta- 1130

ble 14). We patch activations from the clean input 1131

into the corrupted one to restore the correct out- 1132

put and identify important edges to compose the 1133

corresponding circuits. 1134

1https://github.com/UFO-101/auto-circuit
2https://github.com/ArthurConmy/

Automatic-Circuit-Discovery
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B.4 Discursive Circuits Help Uncover1135

Underspecified Bias1136

Age Economic Gender Geographical

Average

Figure 9: Impact of discursive circuits on biased com-
pletions. A sharper decrease in answer logit gap (Y-
axis) w.r.t. patched edges (X-axis) indicates stronger
circuit influence. The upper plot shows average effects.

The main body of the paper focuses on the1137

CUDR task itself. To illustrate the utility of the1138

identified discursive circuits, we present one possi-1139

ble use case where these circuits help reveal poten-1140

tial ethical biases in LLMs. We consider scenarios1141

where the model predicts a next sentence given an1142

underspecified discourse relation (i.e., without an1143

explicit connective). For instance, “Girls like math”1144

is followed by “Boys like sports”. It is unclear1145

whether the model interprets the two as equivalent1146

or contrasting. Discursive circuits can uncover if1147

the models generates the prediction for the cor-1148

rect reason. To test whether the model relies on1149

a given discursive circuit (e.g., Contrast), we de-1150

stroy the activation in that circuit by patching in1151

values from an unrelated sentence, and observe1152

whether the output shifts toward completing that1153

unrelated context. Thus, a stronger reliance results1154

in a sharper shift. We select four representative1155

social biases (Liu et al., 2024a) and create 100 dis-1156

course instances with underspecified discourse re-1157

lations. Using GPT-4o-mini, we prompt the model1158

to generate short and simple cases that are coherent1159

but intentionally underspecified in their discourse1160

relation. For example, “[A young artist painted1161

bold lines across the canvas]Arg1 , [A senior man1162

updated the date in his weather journal]Arg2” is a1163

case for age bias. Figure 10 shows output shifts1164

under four possible biases. We find that compari-1165

son circuits produce the steepest drops (50 edges to1166

reach bottom), indicating stronger influence. Equiv-1167

alence circuits follow but require more edges (1001168

edges to reach bottom), while Conjunction circuits1169

show minimal impact. This provides mechanistic1170

evidence that the model may exhibit a bias toward 1171

contrastive interpretations. 1172

B.5 Samples of Discursive Circuits 1173

Visualization 1174

(1) Comparison.Conc.Arg2-as-denier (2) Comparison.Contrast

(3) Contingency.Reason (4) Contingency.Result

(5) Expansion.Conjunction (6) Expansion.Equivalence

(7) Expansion.Arg2-as-instance (8) Expansion.Arg1-as-detail

(9) Expansion.Arg2-as-detail (10) Expansion.Arg2-as-subst

(11) Temporal.Precedence (12) Temporal.Succession

(13) Temporal.Synchronous
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Figure 10: Examples of discursive circuits. Residual
flows progress from left (residual start) to right (residual
end).

We present representative samples of discursive 1175

circuits across different frameworks and thank the 1176

visualization tool by Miller et al. (2024). The left 1177

side marks the start of the residual flow from the 1178

embedding layer, continuing through 24 layers to 1179

the residual end. Each edge represents a connec- 1180

tion between modular blocks (either MLPs or atten- 1181

tion heads) in the transformer. The 1st to 4th sam- 1182

ples (highlighted by the blue dot lines) correspond 1183

to contingency-like relations across the PDTB, 1184

GDTB, RST, and SDRT datasets. These circuits 1185

show a consistent pattern: a narrow, focused flow 1186

at the start that begins to build specialized represen- 1187

tations from Layer 14 onward, dispersing toward 1188

the residual end. This aligns with our findings in 1189

Section 3.3, where discourse-specific information 1190

emerges in higher layers. In contrast, PDTB’s Ex- 1191

pansion.Conjunction and Expansion.Equivalence 1192

(5th and 6th) are more straightforward relations 1193

(Section 3.1). Their circuits resemble an “H” shape, 1194

with dense processing at both the beginning and 1195

end. Overall, these visualizations highlight both 1196

the consistency and divergence of circuit structure 1197

across different discourse relations. 1198
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