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Abstract

Which components in transformer language
models are responsible for discourse under-
standing? We hypothesize that sparse compu-
tational graphs, termed as discursive circuits
control how models process discourse relations.
Unlike simpler tasks, discourse relations in-
volve longer spans and complex reasoning. To
make circuit discovery feasible, we introduce
a task called Completion under Discourse Re-
lation (CUDR), where a model completes a
discourse given a specified relation. To sup-
port this task, we construct a corpus of minimal
contrastive pairs tailored for activation patch-
ing in circuit discovery. Experiments show that
sparse circuits (=~ 0.2% of a full GPT-2 model)
recover discourse understanding in the English
PDTB-based CUDR task.

These circuits generalize well to unseen dis-
course frameworks such as RST and SDRT.
Further analysis shows lower layers capture
linguistic features such as lexical semantics
and coreference, while upper layers encode
discourse-level abstractions. Feature utility is
consistent across frameworks (e.g., coreference
supports Expansion-like relations).

1 Introduction

Discourse structure is essential for ensuring lan-
guage models (LMs) to behave safely and ethically
(Kim et al., 2025; Nakshatri et al., 2025). Yet, little
is known about how discourse is internally pro-
cessed by LMs, limiting our ability to guarantee
that they are reliable and free from harmful out-
puts. Transformer circuit discovery (Zhang and
Nanda, 2024) is a promising method that identifies
sparse computational subgraphs causally responsi-
ble for specific behaviors. Unlike attention visual-
ization (Jain and Wallace, 2019) or rationale gen-
eration (Wiegreffe and Marasovic, 2021), circuits
provide mechanistic, intervention-based explana-
tions that reveal which components causally drive
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Figure 1: Task Overview: The CUDR task enables dis-
covery of discursive circuits by contrasting model pre-
dictions under minimal changes to the discourse connec-
tives. Activation patching reveals components causally
responsible for shifting the model’s prediction.

the model’s output. Existing circuit discovery meth-
ods focus on simple tasks, like numeric comparison
(Hanna et al., 2023) which is well-suited for next-
word prediction (e.g. “The year after 1731 is —).
In contrast, discourse relation involves longer con-
texts and more complex reasoning, making direct
adaptation of existing methods infeasible.

We contribute a key insight that bridging the lin-
guistic structure of discourse and the requirements
of circuit discovery, which offers a new path for
mechanistic understanding of complex language
tasks. On the discourse side, we hold the initial
argument Arg; (e.g. “Bob is hungry”, Figure 1)
unchanged and introduce a counterfactual connec-
tive Conn’ (e.g., ) that prompts the model
to select an alternative continuation (“the
canteen is closed”), which is only coherent under
the counterfactual discourse relation. On the cir-
cuit discovery side, the method relies on minimal
contrastive pairs, where inputs differ slightly but
yield significantly different outputs. To identify
influential model components, we patch activations
(Nanda, 2023) from the original run into the coun-
terfactual run and observe changes in prediction.
The resulting discursive circuits are composed of



connections with significant causal influence.

To support this task, we construct a dataset
spanning major discourse frameworks, includ-
ing Penn Discourse Treebank (PDTB; Webber
et al.,2019), Rhetorical Structure Theory (RST;
Mann and Thompson,1987), and Segmented Dis-
course Representation Theory (SDRT; Asher and
Lascarides,2003). Each instance contains an origi-
nal annotation from the source corpus, along with
a set of counterfactual connectives and their alter-
native completions. The three frameworks have 10
to 17 distinct discourse relations each, and together
contribute a total of 27,754 instances.

Using our datasets, we discover discursive cir-
cuits in the GPT-2 medium model. For most dis-
course relations, the identified circuits achieve over
around 90% faithfulness while involving only 0.2%
of model connections. We show that circuits de-
rived from PDTB generalize well to unseen dis-
course frameworks such as RST and SDRT, sug-
gesting that language models may encode a shared
representation of discourse relations. We also
construct a novel circuit hierarchy adapted from
PDTB’s three-level taxonomy. To our knowledge,
this is the first discourse hierarchy grounded in neu-
ral circuit components. Together, our circuits and
hierarchy provide a new form of discourse repre-
sentation, enabling direct cross-framework compar-
ison and fine-grained decomposition into linguistic
features. We discover similar utilities across differ-
ent frameworks (e.g., coreference is prominent in
all Expansion-like relations).

2 Circuit Discovery with CuDR

We propose a generic workflow to dissect a lan-
guage model’s discourse understanding via circuit
discovery, which is compatible with any discourse
framework. We introduce the Completion under
Discourse Relation task (CUDR, pronounced “koo-
der”), where Arg; remains fixed, while the connec-
tive is swapped (Conn — Conn’), requiring the
model to shift its prediction from Args to

2.1 Completion under Discourse Relation

CUDR creates a controlled environment to test
a model’s discursive behavior. By simply alter-
ing the discourse connective (from original (ori)
to ; Table 1), the model’s con-
tinuation shifts sharply in response. For example,
in the original discourse, a Contingency relation is
expressed with the connective “so”, leading to a

Input:

dori = (Arg1, Arga, R, Conn)

dcf = (Arglv s ) )

CUDR Task (Original):

Please finish the discourse by choosing one of
the two options: Args,

To complete: Argi, Conn

Correct answer: Args, Incorrect answer:

Example: Please finish the discourse by
choosing one of the two options: “he goes to the
canteen” or

To complete: [Bobishungry]argi [SOlconn = [he goes
to the canteen] arg2

CUDR Task (Counterfactual):

Please finish the discourse by choosing one of
the two options: Args or

To complete: Arg,

Correct answer: , Incorrect answer: Arg
Example: Please finish the discourse by
choosing one of the two options: “he goes to the
canteen” or

To complete: [Bob is hungry]a,rq1

Table 1: Formalization of the CUDR task: the model
must complete the discourse by either Args or the coun-
terfactual , based on which best fits as a continua-
tion of Arg; following Conn or (best in color).

completion that “he goes to the canteen”. However,
when the discourse relation is shifted to a coun-
terfactual Comparison relation (signaled by ),
the model should sharply change its prediction to
an argument that negates the expectation of eating
(ie., ). Note that circuit
discovery has been applied under various settings
(Zhang and Nanda, 2024), we adopt such a setup
to steer the model, because it captures the dynamic
nature of discourse understanding.

Concretely, the original discourse consists of two
arguments, Arg; and Argo, linked by a discourse
relation R and connective C'onn, formally denoted
as dori = (Argy, Conn, Args, R). The counter-
factual instance, dof = (Argyr, Conn’, Argh, R'),
preserves Arg; but substitutes the continuation and
relation (R’ # R), forming a minimal contrastive
pair required by activation patching.

2.2 Circuit Discovery

Activation Patching. Transformer circuits are
computational graphs that model the information
flow from an input token, through residual flow
among intermediate nodes (i.e., MLP layers and
attention heads) to the output probability of the next
token. To identify influential connections inside
the circuits, we intervene in the model by replacing
the activation of a counterfactual (corrupted) run



by the activation of a original (clean) run.

g(e) = L(xcsldo(E = eori)) — L(xep) (1)

Concretely, we define the impact of introduc-
ing an intervening edge e (denoted by g(e)) as
the difference in a metric . when patching the
activation of edge e from the original run. For-
mally, g(e) is computed as the difference between
L(zcf|do(E = eori)) Where e is restored to its
clean value, and L(x.¢), the metric value under the
corrupted run.

Accelerate by Attribution Patching. To over-
come the low speed for activation patching (Conmy
et al., 2023), we adopt a first order Taylor approxi-
mation to Equation 1 and use the Edge Attribution
Patching (EAP) method Nanda (2023); Syed et al.
(2024). For an edge e = (u,v), the change of
metric g(e) is:

gle) ~ (2" — ng)Tva(%f)» 2

u

where 2" and 257 denote the activation at node

w in the original or counterfactual runs, and
VuL(x.f) is the gradient of metric L at node v.
With the approximation, we can now calculate g(e)
for all edges by two forward passes and one back-
ward pass, greatly enhancing efficiency (10% times
faster in our practice).

Attribution Patching Using CUDR. We first in-
put the model with the input,
and the model produces a CF output. Using the
same CF input, we then perform activation patch-
ing from the original (Ori) to restore the model’s
prediction to the Ori output. In the CF run, the
model receives , constructed from Arg; and a
counterfactual discourse connective ( ). The
correct prediction is the counterfactual completion
( ). In the ori run, the model receives z,,-; as in-
put, which consists of (Argy, Conn). The correct
output is the original Args. Attribution patching
(Figure 2) works by replacing activations from the
run with those from the Ori run. For example,
to evaluate the edge between MLP 20 and Attention
Head 21.9 (Attn. 21.9), we replace the activation
flowing from MLP 20 into Attn. 21.9 with the cor-
responding activation from the Ori run and observe
g(e), which is the change in the model’s output.

Construct Discursive Circuits. The discursive
circuit for a given discourse relation is constructed
by applying attribution patching to the CUDR task
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Figure 2: Illustration of attribution patching with

CUDR: We steer the model’s prediction from the
toward the original outcome. Activations from

the original run are patched into the

to influence the model’s prediction.

over a set of samples for that relation. We compute
the average g(e) for each edge and select those
with the highest absolute g(e) values as the most
important. In practice, the top 1000 such edges are
sufficient to steer the model faithfully, similar to
prior work (Hanna et al., 2024).

2.3 The CUDR Dataset

We construct an augmented dataset by prompting
a large language model (LLM) with the original
Arg; and a counterfactual , along with de-
tailed instructions and discourse relation definitions
(Appendix A.3). We employ GPT-40-mini for its
good instruction-following ability and lower cost.
Building on the taxonomy of counterfactual dis-
course relations proposed by Miao et al. (2024),
our CUDR dataset adopts a PDTB3-based design
(Table 2). For each discourse relation alongside
its original connective, we construct five
discourse connectives. For example,
the Comparison.Concession.Arg2-as-denier rela-
tion (e.g., “however”, Row 1 in Table 2) is consid-
ered counterfactual to both a Contingency relation
(signaled by ) and an Instantiation rela-
tion ( ). We provide a complete list of
connectives and their mappings in Appendix A.1.
We extend our dataset construction beyond



CF Connective
because

for example
specifically

in other words
)

however
because

Discourse Relation Ori Connective

Comparison.Concession.Arg2-as-denier however

Comparison.Contrast by comparison

Contingency.Reason because

Contingency.Result Ny .
by comparison
. . . however
Expansion.Conjunction and o
. . . however
Expansion.Equivalence in other words
for example
. o . because
Expansion.Instantiation.Arg2-as-instance  for example h
owever
Expansion.Level-of-detail Argl-as-detail  in short however
S0
i 1-of-detail 2-as-detail specific instead
Exy L Arg. specifically .
by comparison
E ion.Substitution.Arg2-as-subst instead because
P in other words
however
Temporal.Asynchronous.Precedence then S
previously
. R S0
Temporal.Asynchronous.Succession previously then
. )
Temporal.Synchronous while

then

Table 2: CUDR Dataset: PDTB’s discourse relations
with corresponding original (Ori) connectives and coun-
terfactual (CF) connectives (subset displayed for CF).

Discourse framework # of DR # of CuDR data
PDTB 13 11,843
GDTB 12 5,253
GUM-RST 17 6,805
SDRT 10 3,853
Total 27,754

Table 3: CuDR Dataset Statistics: Number of unique
discourse relations and CuDR data across frameworks.

PDTB to include additional corpora: the GUM Dis-
course Treebank (GDTB; Liu et al. 2024b), a more
up-to-date PDTB-style corpus, as well as GUM-
RST (Zeldes, 2017) and SDRT (Asher and Las-
carides, 2003). To enable the generation of counter-
factual instances from non-PDTB corpora, we con-
struct relation mappings from RST to PDTB (Table
7) and from SDRT to PDTB (Table 8 in Appendix
A). For example, SDRT’s Explanation relation
is mapped to PDTB’s Contingency.Cause.Reason,
then its corresponding counterfactual relations

and , are found in
the PDTB-based taxonomy.

Table 3 summarizes the metadata per discourse
framework. Each original and counterfactual dis-
course pair, (doi, dcf), is treated as a single data
instance in the CUDR dataset. For each discourse
relation in each corpus, we sample up to 50 origi-
nal instances. With five counterfactual connectives
per relation, this yields up to 300 CUDR instances
per relation. We discard minority relations with
fewer than 20 instances, as well as low-quality in-
stances where Args and Arg), are overly similar.
We consider 300 instances per relation sufficient,

as Yao et al. (2024) use a median of only 52. To
validate the automated constructions, one author
manually verified 40 CUDR samples and found
them all valid as an indicative evaluation, with

coherent with Arg; and The lan-
guage in tends to be straightforward, but it
is desired because we want salient relations (Ap-
pendix A.3). Preliminary trials with open-source
Llama-3.1-8B-Instruct (Grattafiori et al., 2024) to
generate CUDR data was unsuccessful as it did not
follow our task instruction.

3 Evaluate Discursive Circuits

We conduct our evaluation to answer following
research questions (RQs):

RQ1: Do discursive circuits faithfully recover the
full model’s performance?

RQ2: Do discursive circuits generalize across dif-
ferent discourse frameworks and relation types?
RQ3: Are discursive circuits composed of compo-
nents associated with specific linguistic features?

Implementation Detail. Following Hanna et al.
(2024); Mondorf et al. (2025), we focus on a single
model for in-depth analysis and adopt their choice
of GPT-2 medium (Radford et al., 2019) for its man-
ageable memory requirements. To identify circuits
for specific discourse relations, we use a sample
size of 32 for both circuit discovery and validation,
and apply the standard practice of using the batch
mean for node value patching (Miller et al., 2024).
We repeat each experiment five times with different
data samples and average the outcomes for stability.
Before circuit discovery, we fine-tune the model on
held-out CUDR data (half of the PDTB subset) to
align it with our task setting and ensure it follows
the intended instructions (Appendix B.1).
Baseline Circuits: We replicate the Indirect Ob-
ject Identification (IOI) circuit (Wang et al., 2023)
in our own model as a baseline circuit. In the
101 task, the model is given a prompt like “John
and Mary went to a bar. Mary gave a beer to”,
and should predict “John”. This circuit represents
the model’s general next-word prediction ability,
without discourse-specific reasoning. Comparing
against 10l allows us to test whether discursive
circuits capture discourse-specific computation be-
yond standard language modeling.

Evaluation Metric. Our metric follows Miller
et al. (2024) to calculate the logit difference be-
tween the correct and incorrect answers. Specif-



ically, we treat the original discourse’s Args as
correct and the counterfactual as incorrect,
and compute AL = L(Arge) — L(Argh), where
L(-) denotes the logit of the corresponding answer.
Normalized faithfulness: Since different dis-
course relations yield different raw scores, we re-
port normalized faithfulness scores (Miller et al.,
2024), which quantify the percentage of the full
model’s performance that a sparse circuit restores.
Concretely, we compute Ai%::f, where ALpatch
is the logit difference obtained by patching clean
activations into a corrupted input, and ALy is
the logit-difference of the full model on clean in-
put. In our CUDR task, faithfulness begins at a
large negative value (since the unpatched model
selects ), increases as clean edges are patched,
and reaches 100% when the full model is restored
(which predicts Argo).

L1 L3
Comparison (566) Concession X Arg2-as-denier
/ Contrast
Contingency (564) / Reason
/ Result
/ Conjunction
/ Equivalence
Expansion (200) Instantiation X ArgZ—as—instafnce
v Argl-as-detail
Arg2-as-detail
Substitution X Arg2-as-subst
v Precedence
Temporal (405) Succession
/ Synchronous

Table 4: Discursive Circuits Hierarchy (L1-L3): All
“leaf node” relations are classified as L3. Only two
circuits appear at the | level, each merging more than
one L3 circuit. (Numbers) indicate edge counts. L3
circuit has 1,000 edges, and LO circuit has 137 edges.

Hierarchical Discursive Circuits. With the
learned circuits, we construct a new PDTB-style
circuit hierarchy. To the best of our knowledge, this
is the first discourse hierarchy derived from neu-
ral components. We first learn circuits for all 13
Level-3 (L.3) relations and use the top 1,000 edges
to merge them to form higher-level circuits. That is,
L3> 5 L1 5 L0 (Table 4). Note that our circuit
hierarchy differs from the PDTB taxonomy in two
ways: (1) All “leaf node” relations are treated as
L3 since they have no children to merge (e.g., Tem-
poral.Synchronous) and circuit discovery operates
on the finest-grain level; (2) Some | ” relations are
removed (e.g., Concession X) as they contain only
one valid L3 relation due to data scarcity, so merg-
ing would be meaningless. In the end, | .7 circuits

Overall performance

—— 10l
-100%
—— L0
-150% —=— L1

—— L3

-200%

10° 10* 102 10° 10* 10°

Figure 3: RQ1: Overall Faithfulness of Discursive
Circuits: We report average faithfulness across 13
PDTB relations for circuits L3, L1, L0, and the 101 base-
line. The Y-axis shows faithfulness (%), and the X-axis
shows the number of patched edges (log scale). Shaded
areas indicate standard deviation. L3 and L1 reach
strong faithfulness at ~ 200 edges (vertical dashed line).

contain over 500 edges, L1 circuits have 200-500+
edges, and the meta L0 circuit contains 137 edges.

3.1 Discursive Circuits are Faithful (RQ1)

We first validate the faithfulness of discursive cir-
cuits on the PDTB dataset. The average perfor-
mance across 13 discourse relations (Figure 6)
shows strong overall effectiveness. We omit
as it covers only a subset of relations. For both
L3 and L1 circuits, strong faithfulness (= 90%)
is achieved with only ~ 200 edges. L3 outper-
forms L1 in the 10-200 edge range, likely due to
its ability to capture more fine-grained informa-
tion. Both L.3 and L1 surpass LO and 1Ol after 100
edges. This gap is likely due to LO’s small size
(137 edges). Even though 101 reasons over next ob-
jects, it still lacks of discourse skills, as it plateaus
quickly around =~ 50% faithfulness, showing the
unique skills needed for discourse competence.
We then analyze the performance breakdown by
relation types (Figure 4) and make the following
observations: (1) Finer-grained circuits are more
effective than coarser ones. There is a consistent
trend across relation types: L3 > ~L1>L0
> [OI. However, fine-grained circuits also show
greater variance (large red shades). L1 is more sta-
ble and has a lower variance. In practice, we recom-
mend L1 as a balanced choice: while slightly less
effective in only stages, it matches L3 after ~ 300
edges and works for all lower-level relations. (2)
does not necessarily outperform L1. This is
evident in the four relations that have | .7 circuits, in-
cluding Expansion.Details (8th and 9th subfigures
in Figure 4, compared with Expansion L1’s cir-
cuit) and Temporal. Asynchronous (12th and 13th,
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Figure 4: RQ1 Faithfulness of Discursive Circuits by
Discourse Relation (see indices 1-13).

compared with Temporal L1 circuit). This sug-
gests that |.” and L1 operate at a similar level of
abstraction, with comparable degrees of informa-
tion loss. (3) Discursive circuits reflect task dif-
ficulty. Two Contingency relations (3rd and 4th)
are exceptions where L1 matches or outperforms
L3. Further inspection shows that these relations
have lower absolute faithfulness scores, suggest-
ing the model struggles with them. In such case,
L3 may overfit, while L1 retains core patterns and
generalizes better. 101 generally underperforms
due to its lack of discourse specificity. However,
in Conjunction (5th) and Equivalence (6th), it per-
forms comparably or better than discursive circuits,
suggesting these relations are easier to model. In
contrast, larger gaps in Comparison (1st—2nd) and

S
3
B

Faithfulness Score (%)

Faithfulness Score (%)

Faithfulness Score (%)

200% —— |3
-300% PDTB '>SDRT —— 10l
-400% —— Own

10° 10* 10? 10° 104
Number of edges patched (log scale)

Figure 5: RQ2 Cross-dataset generalization: Perfor-
mance by applying PDTB’s circuits to other datasets.

Contingency (3rd—4th) indicate greater complexity.

3.2 Discursive Circuits Generalize to New
Datasets and New Relations (RQ2)

Do discursive circuits generalize across different
discourse frameworks? We extend the CUDR task
to other frameworks by applying circuits obtained
from PDTB to GDTB (same framework, differ-
ent genre), as well as to RST and SDRT (differ-
ent frameworks). We follow the same mapping
(Appendix A.2) for cross-framework transfer; for
example, Explanation (SDRT) is mapped to Contin-
gency.Cause.Reason (PDTB). Figure 5 shows the
generalization performance, with each line repre-
senting the average performance across all relations
in the dataset. PDTB circuits generalize well to
other datasets. We set an “upper bound” using the
Own circuits (learned via CUDR task in-dataset,
e.g. SDRT’s Explanation). PDTB’s L3 circuits
close the gap with Own using only ~ 200 edges,
despite initially lagging due to dataset-specific fea-
tures. Across the three generalization targets, the
trend is consistent: Own > L3 > L1 ~ L0 > IOL.
L1 and LO are weaker in the first 100 edges, likely
because both abstractions lose fine-grained infor-
mation (/.2 is skipped due to limited coverage).
SDRT is the hardest to generalize to, with only 50%
faithfulness after 100 patched edges, highlighting
the gap between the datasets.

Do circuits learned for one discourse relation
generalize to others? We study all 13 PDTB L3 re-
lations by applying each circuit to the other 12, us-
ing the top 200 edges per circuit (enough for strong
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Figure 6: RQ3 Overlap of discursive circuits with circuits for linguistic features: antonymy, synonymy, coreference,
and negation. Similar pattern is shared across frameworks, (e.g. coreference signal in Expansion relations).
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Figure 7: RQ2 Cross-relation Generalization: (a)
The overlap among PDTB’s relation circuits; (b) Intra-
framework generalization in PDTB; (c) Inter-framework
generalization from PDTB.

faithfulness): (1) Figure 7a shows the edge over-
lap among these circuits. While the diagonals are
darker, indicating greater overlap between similar
relations, the overall overlap remains consistently
high (80-120 out of 200 edges). (2) Figure 7b
shows no correlation between overlap and faithful-
ness (r = —0.007). This is counterintuitive, as one
might expect more overlap to imply better general-
ization. The narrow overlap range (80-120) likely
limits the variation. Recently, Hanna et al. (2024)
also reports faithfulness does not necessarily re-
quire high overlap. (3) Cross-framework results
(Figure 7¢) reveal a positive correlation between
overlap and performance, e.g., PDTB — GDTB
yields » = 0.44. In summary, higher circuit overlap
does not imply better intra-framework faithfulness,
but does support inter-framework transfer.

DC Only DC N Linguistic Features

Empty!

Figure 8: RQ3 Layer-wise Edge Analysis: Source (X-
axis) and target (Y-axis) layers of edges in discursive and
linguistic circuits. DC-only edges emerge independently
in higher layers and are absent in lower layers.

3.3 Discursive Circuits Overlap with
Linguistic Features’ Circuits (RQ3)

Are discursive circuits composed of sub-circuits
linked to linguistic features? Inspired by the eRST
and RST Signaling Corpus (Zeldes et al., 2025; Das
and Taboada, 2018), we discover circuits for four
key features, (1) antonymy, (2) coreference, (3) nega-
tion, and (4) synonymy, as a preliminary and non-
exhaustive study, using similar activation prompts
(Appendix B.3). Figure 6a shows that the utility
of linguistic features per L1 relation is consis-
tent across datasets. Lexical features (1) antonymy
and (4) synonymy are broadly used in all relations,
which is consistent across frameworks. (2) corefer-
ence is most active in Expansion relations (the (2) is
darkest in Expansion-like rows, highlighted by the
green boxes), where continuity relies on entity ref-
erence. SDRT shows less reliance on coreference,
likely due to shorter texts. This suggests that LMs
encode discourse relations with similar linguistic
cues across frameworks.

Figure 8 shows the layer-wise distribution of
discursive circuits (DC) and linguistic circuits by
source and target node layers (Top 200 edges). DC-
only edges are absent in lower layers (noted as



“empty”). A distinct region (source: 8-16, tar-
get: 10-20) contains DC-only edges, with very
limited overlap with linguistic features. This sug-
gests lower layers in discursive circuits capture
shared linguistic features, while discursive abstrac-
tion emerges in higher layers.

wins now] arg,

Error case 2: [I'll give clay in return]a,g,, (because)
[think clay is in abundance this game] ar.g,

PDTB’s missing edges: Resid  Start—MLPO,
A19.9—A21.1, MLP3—MLP7, MLP7—MLP11

Table 5: Case Study: PDTB circuit X; SDRT circuit v

We further examine the cases where SDRT’s
Own circuits succeed but PDTB’s L3 circuits (both
using the first 30 edges). Table 5 shows a subset
of representative errors. Case 1 involves an inter-
jection (“yay!”), and Case 2 features an ellipsis of
the subject “I”” in Args, both are rare phenomena
in PDTB. Our method pinpoints missing elements
in PDTB that SDRT captures, such as early edges
(Resid Start—MLP 0, aiding connective reasoning)
and late edges (e.g., 19.9—21.1, shared only with
the coreference feature among the four features).

4 Related Works

Discourse Modeling and Evaluation. Discourse
modeling has been studied under three major frame-
works: PDTB (Webber et al., 2019; Prasad et al.,
2008), RST (Mann and Thompson, 1987; Zeldes,
2017; Zeldes et al., 2025), and SDRT (Asher and
Lascarides, 2003). Recent studies seek to unify
these frameworks, with advances in discourse rela-
tion prediction (Zhao et al., 2023; Wu et al., 2023a;
Anuranjana, 2023; Chan et al., 2023; Rong and Mo,
2024; Liu and Strube, 2023; Long et al., 2024),
discourse parsing (Li et al., 2024a,b; Thompson
et al., 2024; Pastor et al., 2025; Liu et al., 2025),
and annotation (Yung et al., 2024; Pyatkin et al.,
2023; Ruby et al., 2025; Saeed et al., 2025). Fu
(2022) outline early plans for unification, and the
DISRPT benchmark (Braud et al., 2024) enables
cross-framework evaluation with data annotated
under all three schemes. Liu et al. (2024b) pro-
pose automatic RST-to-PDTB transformation via
sense mapping. Liu and Zeldes (2023); Eichin et al.
(2025) examine generalization across domains and
languages. While linguistically insightful, these
approaches overlook mechanistic interpretability.
Question answering has also been explored
as a bridge across frameworks. Fu (2025) link

Questions Under Discussion (QUD) (Wu et al.,
2023b; Ko et al., 2023) to PDTB, RST, and SDRT.
Miao et al. (2024) propose a QA-based evalua-
tion, though their prompts offer limited insight into
model internals. LLMs have been used to synthe-
size discourse data (Yung et al., 2025; Cai, 2025),
mainly to augment low-resource relations (Omura
et al., 2024). In contrast, our CUDR dataset targets
interpretability rather than data expansion.

Mechanistic Interpretability. Unlike visualiza-
tions (Jain and Wallace, 2019; Wiegreffe and Pinter,
2019) or textual explanations (Lyu et al., 2024; Zhu
et al., 2024), mechanistic interpretability identifies
components in a model that drive predictions. Cir-
cuits, as global computation graphs, can be iden-
tified through activation patching (Conmy et al.,
2023; Miller et al., 2024; Syed et al., 2024). We
do not adopt sparse autoencoders (SAEs) (Huben
et al., 2024; Makelov et al., 2024), as our goal
is to understand discourse processing at a global
model rather than isolate local activity. Circuit dis-
covery has mostly been applied to simplistic tasks,
such as indirect object identification (I0I) (Wang
et al., 2023), numerical comparison (Hanna et al.,
2023), subject-verb agreement (SVA) (Ferrando
and Costa-jussa, 2024), MCQ (Lieberum et al.,
2023), knowledge acquisition (Yao et al., 2024; Ou
et al., 2025; Hanna et al., 2024), colored objects
(Merullo et al., 2024), and context-free grammars
(Mondorf et al., 2025). No existing work addresses
complex discourse phenomena.

5 Conclusion and Future Work

In this work, we introduce discursive circuits, the
first mechanistic interpretation of how discourse un-
derstanding is realized within language models. To
make circuit discovery feasible, we propose a novel
CUDR task that enables activation patching, along
with a collection of CUDR datasets for PDTB, RST,
and SDRT discourse frameworks. Our identified
discursive circuits are shown to be faithful in restor-
ing the full model’s performance and exhibit strong
cross-framework generalization. Discursive cir-
cuits provide a new lens for mechanistically repre-
senting discourse, enabling the construction of a
circuit hierarchy that supports direct comparison of
discourse relations both within and across frame-
works. We already observe promising evidence of
shared linguistic features utility across them. In
future work, we aim to extend CUDR to multiple
languages and adapt it for a broader range of tasks.



Limitations

Our work also has the following limitations: (1)
We only study English-based corpora. It would be
promising to extend circuit discovery to multiple
languages and explore whether a unified circuit
space exists across different languages, similar to
the universal discourse label set explored by Eichin
et al. (2025). This is feasible, as we can construct
the CUDR dataset for other languages as well. (2)
We follow Hanna et al. (2023, 2024); Mondorf et al.
(2025) in focusing on one single transformer-based
language model to enable more in-depth analysis.
While it would be interesting to extend our method
to other model architectures such as multi-layer
perceptrons (MLPs) (Fusco et al., 2023) or LSTMs
(Sundermeyer et al., 2012), we limit our scope to
transformers due to their predominant use today
and because activation patching is not directly com-
patible with MLPs or LSTMs. (3) We do not com-
pare discourse processing in language models with
that in the human brain (Case and Oetama-Paul,
2015; Perfetti and Frishkoff, 2008). For example,
Eviatar and Just (2006) report that discourse pro-
cessing triggers specific brain activations observ-
able via fMRI. While intriguing, this is beyond the
scope of our study.

Ethical Statement and Potential Risks

Our research on discourse relations does not pose
direct ethical risks. However, as with all mech-
anistic interpretability studies, the identified cir-
cuits could be used to influence model behavior in
specific capacities, such as modifying numerical
reasoning (Hanna et al., 2023) or, in our case, dis-
course processing and generation. By making the
model’s reasoning about discourse relations more
transparent, our work has the potential to aid in
detecting and mitigating biases in scenarios where
discourse structure plays a role.

Declaration of AI Tool Usage

We used Al tools at the following stages of this re-
search: (1) GPT-4o0-mini (via API) was used to gen-
erate the counterfactual instances for our CUDR
dataset; prompt details are provided in Appendix A;
(2) Cursor Al was used during coding, primarily for
debugging assistance; (3) ChatGPT-4o (via web in-
terface) was employed only for grammatical check-
ing of the manuscript. All research ideas, analyses,
and findings were developed and written indepen-
dently by the authors.
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A CUDR Dataset Details

A.1 Counterfactual Connectives

To create counterfactual instances in the CUDR
dataset, we rely on the taxonomy by Miao et al.
(2024), which defines each discourse relation along
with five irrelevant counterfactual relations. Due
to space constraints, Table 2 in Section 2 lists only
a subset of the counterfactual connectives. The
complete set of five counterfactual connectives is
provided in Table 6.

CF Connectives
because

for example
specifically

SO

in other words
specifically

in other words
because

for example

SO

SO

however

by comparison
for example

in other words
because

by comparison
for example
however

in other words
however

SO

because

by comparison
instead
however

for example
because

SO

by comparison
because
however

by comparison
SO

in other words
however

SO

by comparison
in other words
instead
instead

by comparison
however

so

in other words
because

in other words
SO

for example
specifically
however
previously

by comparison
for example
because

SO

then

by comparison
however

for example

SO

then

by comparison
however

for example

Discourse Relation Ori Connective

Comparison.Concession.Arg2-as-denier however

Comparison.Contrast by comparison

Contingency.Reason because

Contingency.Result

Expansion.Conjunction and

Expansion.Equivalence in other words

Instantiation.Arg2-as-inst for example

L in short

I-of-detail. Argl detail

Expansion.Level-of-detail Arg2-as-detail  specifically

Expansion.Substitution.Arg2-as-subst instead

Temporal.Asynchronous.Precedence then

Temporal.Asynchronous.Succession previously

Temporal.Synchronous while

Table 6: CUDR Dataset Details (Full Counterfactual
Connectives): PDTB discourse relations with their orig-
inal (Ori) connective and the corresponding set of five
counterfactual (CF) connectives.

13

A.2 Aligning Discourse Frameworks

We refer to cross-framework relation mapping both
to prepare counterfactual CUDR data for frame-
works beyond PDTB (Section 2.3) and to perform
cross-framework transfer (Section 3.2). The map-
ping between PDTB and the GUM Discourse Tree-
bank (GDTB) (Liu et al., 2024b) is straightforward,
as GDTB adopts the PDTB relation taxonomy. For
the GUM Rhetorical Structure Theory (GUM-RST)
dataset (Zeldes, 2017), we closely examine the an-
notation guidelines and the mapping approach used
by Liu et al. (2024b). Based on this, we define
a mapping shown in Table 7, which includes 17
RST relations, excluding those with insufficient
data. This mapping offers broad coverage, aligning
the 17 RST relations with 9 distinct PDTB rela-
tions. For the Segmented Discourse Representa-
tion Theory (SDRT) dataset (Asher and Lascarides,
2003), we also examine the relation definitions and
construct the mapping presented in Table 8. This
results in 10 distinct SDRT relations mapped to 8
PDTB relations.

RST Label

joint-list_m
joint-sequence_m
elaboration-additional_r
context-circumstance_r
adversative-concession_r
causal-cause_r
causal-result_r
adversative-contrast_m
explanation-justify_r
context-background_r
joint-other_m
adversative-antithesis_r
explanation-evidence_r
evaluation-comment_r
explanation-motivation_r
restatement-repetition_m
joint-sequence_r

Mapped PDTB Label
Expansion.Conjunction
Temporal.Asynchronous.Precedence
Expansion.Level-of-detail. Arg2-as-detail
Temporal.Synchronous
Comparison.Concession.Arg2-as-denier
Contingency.Cause.Reason
Contingency.Cause.Result
Comparison.Contrast
Contingency.Cause.Reason
Expansion.Conjunction
Expansion.Conjunction
Comparison.Contrast
Contingency.Cause.Reason
Contingency.Cause.Reason
Contingency.Cause.Reason
Expansion.Equivalence

Temporal. Asynchronous.Precedence

Table 7: RST to PDTB Mapping: Mapping of RST
discourse labels to PDTB labels for the CUDR dataset.

SDRT Label Mapped PDTB Label
Acknowledgement Expansion.Equivalence

Comment Expansion.Conjunction

Continuation Expansion.Conjunction

Contrast Comparison.Contrast

Correction Comparison.Concession.Arg2-as-denier
Elaboration Expansion.Level-of-detail. Arg2-as-detail
Explanation Contingency.Cause.Reason

Narration Temporal.Asynchronous.Precedence
Parallel Expansion.Conjunction

Result Contingency.Cause.Result

Table 8: SDRT to PDTB Mapping: Mapping of SDRT
discourse labels to PDTB labels for the CUDR dataset.



A.3 Details for CUDR Dataset Construction

To construct the counterfactual argument , we
ensure it is coherent with both the original argu-
ment Arg; and the counterfactual discourse rela-
tion, along with its connective . Input: We
generate the dataset by prompting the GPT-4o0-mini
model via API, chosen for its balance of instruction-
following ability and efficiency. Each prompt in-
cludes Arg, , and a CF_dr_description
field defining the discourse relation. For exam-
ple, Contingency.Cause.Reason is described as
“Args is the reason for Arg;: when Arg; gives the
effect, and Args provides the reason, explanation,
or justification”, adapted from the PDTB annota-
tion guidelines (Webber et al., 2019). Require-
ments: We ask the model to complete a structured
JSON template. To maintain quality and discour-
age shallow completions, we explicitly instruct the
model not to repeat verbatim, and instead
to use relation-specific language patterns. We also
request that match the length of Arg;, im-
proving stylistic and structural consistency. Out-
put and Postprocessing: The model is prompted
independently for each CUDR data instance, and
its output is saved as a plain text file. These files
are subsequently parsed into usable JSON format
using a custom loader. The final prompt template,
with inserted variables such as Arg; and , 18
shown below:

You are an expert in discourse semantics. In discourse

theory, argl and arg2 are two arguments connected by a
relation (a connective word).

I am going to give you an original discourse argument (*
original_argl*) and a counterfactual relation (xCF_dr
*). Your task is to generate a new counterfactual
argument (*counterfactual_arg2x) that aligns with *
original_argl* while reflecting the given
counterfactual relation.

**Requirements: xx

1. *counterfactual_arg2* must be **coherentx* with *
original_argl* and appropriately reflect the given
counterfactual relation (by writing after
counterfactual_connective)

. The length of *counterfactual_arg2* should be around {
original_arg2_length} words.

3. Make the relation between *counterfactual_arg2x and *
original_argl* easy to understand and as salient as
possible.

. Do not repeat the connective word in your *
counterfactual_arg2*. Instead, try to use negation or
contrastive signal (for comparison counterfactuals),
specific causal events of result or reason (for
contingency counterfactual), specific examples like
entities and concrete details (for expansion
counterfactuals).

Complete the following dictionary and only return the
dictionary as your output:

{

"original_argl”: "{original_argl}",

"counterfactual_relation”: "{CF_dr}", which means {
CF_dr_description},

"counterfactual_connective”: "{conn_CF}",

"counterfactual_arg2"”: TO BE COMPLETED
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Manual Verification One author manually veri-
fied the quality of our CUDR data samples. We ran-
domly sampled 10 instances from each discourse
framework and present subsets of CUDR exam-
ples from the PDTB (Table 9), GDTB (Table 11),
RST (Table 10), and SDRT (Table 12) datasets.
Although each framework uses different terminol-
ogy, we adopt a unified notation of Arg; and Args
throughout. Across the 40 samples, we find all
to be valid: the generated is coherent with
the original Arg; and aligns well with the intended
counterfactual connective For example,
in the first PDTB sample, the original Arg; is
“Robert S. Ehrlich resigned as chairman, president
and chief executive”, which is linked by a denying
relation (signaled by “however”) to “Mr. Ehrlich
will continue as a director and a consultant”. Un-
der the counterfactual connective “s0”, our
generated becomes “the company faced sig-
nificant leadership challenges afterward”, directly
expressing the consequence of Mr. Ehrlich’s res-
ignation and appropriately realizing the intended
relation. Beyond PDTB, our CUDR construction
performs well across other frameworks. For in-
stance, although SDRT often contains shorter text
spans, the generated still effectively reflects
the intended . In Sample 2 from Table 12,
“others settle for less” clearly presents a contrasting
scenario, demonstrating that the model can express
discourse relations concisely.

However, we do find our generated data to
be straightforward in their expression. In all
samples we examined, rare words are seldom used,
and the model tends to prefer simple sentence struc-
tures. For example, Sample 3 in SDRT (Table 12)
has an original Arg; as “yep saturday’s looking
promising”, and continues with an expres-
sion “the weather forecast predicts sunshine”, us-
ing the counterfactual connective “because”. This
is a valid instance, but discussing the weather is
relatively expected and less surprising. Sample
3 in PDTB (Table 9) has an Arg; as “Much is
being done in Colombia to fight the drug cartel
mafia”, and it assigns as “the government rec-
ognizes that drug trafficking severely undermines
national security and social stability”. While this is
a valid continuation aligning with the counterfac-
tual connective “because”, it lacks specific knowl-
edge about the drug situation in Colombia. In con-
trast, the original Argo is “luxurious homes and
ranches have been raided by the military authori-
ties, and sophisticated and powerful communica-



tions equipment have been seized”, which offers
more phrase variation and concrete detail.

This straightforward style is expected, as we
explicitly prompt the model to “Make the relation
between counterfactual Arg) and original Arg
easy to understand and as salient as possible.” We
adopt this approach to make the CUDR task as
sharply steering as possible. In future work, we
can explore the CUDR task under more complex
texts and ambiguous scenarios.

CUDR data samples for PDTB framework:

Sample 1:
Argi: Robert S. Ehrlich resigned as chairman, president
and chief executive
Args: Mr. Ehrlich will continue as a director and a con-
sultant
Original relation: Comparison.Concession.Arg2-as-denier
(however)
1 S0
: the company faced significant leadership chal-
lenges afterward.
Sample 2:
Argy: Shortly after Texas Air took control of Eastern,
some Machinists union supervisors received a 20% pay
raise
Args: the pilots argued that this triggered a pay raise for
them
Original relation: Contingency.Cause.Result (so)
: but
: most other employees were not granted any wage
increase.
Sample 3:
Argi: Much is being done in Colombia to fight the drug
cartel mafia
Arga: luxurious homes and ranches have been raided by
the military authorities, and sophisticated and powerful
communications equipment have been seized
Original relation:  Expansion.Instantiation.Arg2-as-
instance (for example)
: because
: the government recognizes that drug trafficking
severely undermines national security and social stability.

Table 9: CUDR data samples for PDTB framework:
counterfactual being coherent with original Arg;
and counterfactual

B Implementation Details

B.1 Model fine-tuning

The CUDR task imposes two key requirements:
(1) Instruction following: the model must adhere
to the task format by choosing between Argo and
Argh; and (2) Discourse comprehension: it must
interpret the discourse relation to select the contin-
uation that matches the given connective. These
requirements prove challenging for the widely used
GPT-2 model (Conmy et al., 2023; Yao et al., 2024).
To address (1), we pretrain GPT-2 on a next sen-
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CUDR data samples for RST framework:

Sample 1:
Arga: that cultural behaviors are not genetically inherited
from generation to generation
Args: must be passed down from older members of a
society to younger members
Original relation: adversative-antithesis (however)
: specifically
: they are learned through social interactions and
environmental influences
Sample 2:
Argi: I came up with an individual story called Thad ’s
World Destruction and , she wanted to illustrate it
Args: that ’s the way we ended up doing it
Original relation: causal-result (so)
: but
: she thought it was too dark for children
Sample 3:
Arga: fisherman first noticed the people
Args: a warship was deployed to retrieve them
Original relation: joint-sequence (then)
: because
: he heard their laughter nearby

Table 10: CUDR data samples for RST framework:
counterfactual being coherent with original Arg;
and counterfactual

CUDR data samples for GDTB framework:

Sample 1:
Argi: Due to its remarkable biodiversity, with over a third
of the local plant species found nowhere else, Socotra has
been designated a UNESCO World Heritage Site
Argz: With over 40,000 inhabitants, though, it’s not just
a nature reserve
Original relation: Comparison.Concession.Arg2-as-denier
(however)
1 S0
: many conservation efforts are now focused on pre-
serving its unique ecosystems.
Sample 2:
Argi: So this place was so cool we could have spent
hours in here
Argz: The best thing that T thought about this bookstore
was that they mixed in new copies of books with used
copies
Original relation: Contingency.Cause.Result (so)
: but
: the uncomfortable seating made it difficult to stay
for long, despite the incredible atmosphere surrounding
us.
Sample 3:
Argi: There are flights from Sana’a via Al Mukalla
Args: Yemenia Airlines offers one flight per week on
Thursday morning
Original relation:
instance (for example)
: because
: the airport reopened after extensive renovations

Expansion.Instantiation. Arg2-as-

Table 11: CUDR data samples for GDTB framework:
counterfactual being coherent with original Arg;
and counterfactual

tence prediction (NSP) task using randomly mis-
matched Arg/, from PDTB. Without this step, the



CUDR data samples for SDRT framework:
Sample 1:
Arga: the deal mechanism ’s a bit clunky
Args: the key is to make sure you’ve checked the right
colour box :D
Original relation: Contrast (by comparison)
: specifically
: it often requires multiple steps and lengthy ap-
provals to finalize transactions
Sample 2:
Argy: you drive a hard bargain
Args: that price is too good
Original relation: Explanation (because)
: by comparison
: others settle for less
Sample 3:
Arg: yep saturday ’s looking promising
Argo: saturday evening good for me too
Original relation: Parallel (and)
: because
: the weather forecast predicts sunshine

Table 12: CUDR data samples for SDRT framework:

counterfactual being coherent with original Arg,
and counterfactual , while the arguments are
shorter than PDTB.
Accuracy Logit Diff
Ori CF Ori CF
Random Model 0.50  0.50 0.00 0.00
Ideal Model 1.00 1.00 + +
GPTnsp 0.46 0.63 -1.26 2.51
GPTcupr 0.80 0.79 11.89 11.15

Table 13: Performance on the CUDR task: Accuracy
and logit difference are reported for each model under
both original (Ori) and counterfactual (CF) scenarios.

model often generates irrelevant outputs. However,
GPTnsp performs poorly on the actual CUDR task,
with near random accuracy (0.46 and 0.63; see
Table 13). To address (2), we further pretrain it
on strictly held-out set of PDTB data, resulting
in GPTcypr, which achieves 0.8 accuracy and a
significantly larger logit margin. This ensures the
model is sensitive to discourse relation, making it
suitable for activation patching with CUDR.

These results also reflects the quality of our
dataset. GPTnsp performs better on counterfactual
instances than original ones (0.63 vs. 0.46 accu-
racy), suggesting that the counterfactual data is not
only valid but also easier to interpret. The final
GPTcyupr achieves balanced performance across
both Ori and CF directions.

B.2 Computation Resource

All experiments are conducted on a server with
four NVIDIA L40 GPUs (48GB RAM each). To
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accelerate circuit discovery, we use the implemen-
tation by Miller et al. (2024) ! for the Edge Attri-
bution Patching (EAP) method (Syed et al., 2024;
Nanda, 2023), which completes discovery for a
single discourse relation in about one minute us-
ing a sample size of 32 on a single GPU. This is
substantially faster than the Automatic Circuit Dis-
Covery (ACDC) method (Conmy et al., 2023)2,
which takes over 24 hours for the same task.

B.3 Details for Circuits Analysis Experiments

Antonymy

Input: The sky was bright, far from, Output: dark
Input: His explanation was clear, unlike, Output: con-
fusing

Coreference

Input: John went to the store because, Output: He
Input: Lisa loves painting, and Output: She

Negation

Input: The answer was expected, though arrival was
QOutput: delayed

Input: He expected an easy task, but it was OQutput: not
Synonymy

Input: The road was narrow, and the alley even, Output:
slim

Input: The musician composed a fune, a catchy, Output:
melody

Table 14: Data samples for discovering circuits for
linguistic features, including antonymy, coreference,
negation, and synonymy. If an anchor word exists (e.g.
“John”), it was in italic form.

To identify circuits responsible for linguistic fea-
tures (Zeldes et al., 2025; Das and Taboada, 2018),
we adopt a simplified next-word prediction setting,
where the model predicts a word tied to a spe-
cific linguistic feature. This setup follows tasks
like subject—verb agreement (SVA) (Ferrando and
Costa-jussa, 2024) and world knowledge (Yao et al.,
2024). Following standard practice, we apply acti-
vation patching. The clean input is a context—target
pair, while the corrupted input has the same context
but a different (incorrect) target word. Activation
patching identifies key edges that steer the model
from the incorrect to the correct prediction. For
example, for coreference, a clean input like “Lisa
loves painting” should yield “she”; similarly, “John
went to the store because” should produce he” (Ta-
ble 14). We patch activations from the clean input
into the corrupted one to restore the correct out-
put and identify important edges to compose the
corresponding circuits.

"https://github.com/UFO-101/auto-circuit
2https://github.com/ArthurConmy/
Automatic-Circuit-Discovery
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B.4 Discursive Circuits Help Uncover

Underspecified Bias
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Figure 9: Impact of discursive circuits on biased com-
pletions. A sharper decrease in answer logit gap (Y-
axis) w.r.t. patched edges (X-axis) indicates stronger
circuit influence. The upper plot shows average effects.

The main body of the paper focuses on the
CUDR task itself. To illustrate the utility of the
identified discursive circuits, we present one possi-
ble use case where these circuits help reveal poten-
tial ethical biases in LLMs. We consider scenarios
where the model predicts a next sentence given an
underspecified discourse relation (i.e., without an
explicit connective). For instance, “Girls like math”
is followed by “Boys like sports”. It is unclear
whether the model interprets the two as equivalent
or contrasting. Discursive circuits can uncover if
the models generates the prediction for the cor-
rect reason. To test whether the model relies on
a given discursive circuit (e.g., Contrast), we de-
stroy the activation in that circuit by patching in
values from an unrelated sentence, and observe
whether the output shifts toward completing that
unrelated context. Thus, a stronger reliance results
in a sharper shift. We select four representative
social biases (Liu et al., 2024a) and create 100 dis-
course instances with underspecified discourse re-
lations. Using GPT-40-mini, we prompt the model
to generate short and simple cases that are coherent
but intentionally underspecified in their discourse
relation. For example, “[A young artist painted
bold lines across the canvas] 4,4, [A senior man
updated the date in his weather journal] 4,4,” is a
case for age bias. Figure 10 shows output shifts
under four possible biases. We find that compari-
son circuits produce the steepest drops (50 edges to
reach bottom), indicating stronger influence. Equiv-
alence circuits follow but require more edges (100
edges to reach bottom), while Conjunction circuits
show minimal impact. This provides mechanistic
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evidence that the model may exhibit a bias toward
contrastive interpretations.

B.5 Samples of Discursive Circuits
Visualization

(1) PDTB: Contingency.Cause.Result

(2) GDTB: Contingency.Cause.Result

=

(3) RST: Cause-Result

(4) SDRT: Result

(5) PDTB: Expansion.Conjunction

,.&_I.;,;:

(6) PDTB: Expansion.Equivalence

Figure 10: Examples of discursive circuits. Residual
flows progress from left (residual start) to right (residual
end).

We present representative samples of discursive
circuits across different frameworks and thank the
visualization tool by Miller et al. (2024). The left
side marks the start of the residual flow from the
embedding layer, continuing through 24 layers to
the residual end. Each edge represents a connec-
tion between modular blocks (either MLPs or atten-
tion heads) in the transformer. The 1st to 4th sam-
ples (highlighted by the blue dot lines) correspond
to contingency-like relations across the PDTB,
GDTB, RST, and SDRT datasets. These circuits
show a consistent pattern: a narrow, focused flow
at the start that begins to build specialized represen-
tations from Layer 14 onward, dispersing toward
the residual end. This aligns with our findings in
Section 3.3, where discourse-specific information
emerges in higher layers. In contrast, PDTB’s Ex-
pansion.Conjunction and Expansion.Equivalence
(5th and 6th) are more straightforward relations
(Section 3.1). Their circuits resemble an “H” shape,
with dense processing at both the beginning and
end. Overall, these visualizations highlight both
the consistency and divergence of circuit structure
across different discourse relations.
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