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Abstract
This paper studies emergent phenomena in neural
networks by focusing on grokking where models
suddenly generalize after delayed memorization.
To understand this phase transition, we utilize
higher-order mutual information to analyze the
collective behavior (synergy) and shared proper-
ties (redundancy) between neurons during train-
ing. We identify distinct phases before grokking
allowing us to anticipate when it occurs. We at-
tribute grokking to an emergent phase transition
caused by the synergistic interactions between
neurons as a whole. We show that weight decay
and weight initialization can enhance the emer-
gent phase.

1. Introduction
Grokking is a phenomenon where neural networks during
training suddenly generalize after prolonged memorization
with limited progress in the loss. Understanding this phase
transition is vital for AI safety and alignment. While (Wei
et al., 2022) claim these models exhibit emergent properties,
others attribute it to the choice of evaluation metric (Schaef-
fer et al.). This lack of consensus poses a key question: Are
neural networks internally learning emergent behavior?

To understand and predict emergent phase transitions, one
approach is to identify hidden progress measures – metrics
causally related to the loss (Barak et al., 2023) - to predict
and understand grokking. Recent work found progress mea-
sures based on mechanistic interpretability by reverse engi-
neering models into interpretable components (i.e. circuits
of subnetworks) (Nanda et al., 2023). However, this ap-
proach has several limitations. First, the reliance on human
effort to identify circuits prevents scaling to larger mod-
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els and it is susceptible to subjective bias. Second, these
measures are task-specific. Lastly, it ignores the emergent
interactions between components.

This work proposes information theory as a task-
independent tool to identify emergent sub-networks in neu-
ral networks for mechanistic interpretability. Pairwise mu-
tual information has been shown to identify important fea-
tures (Liu et al., 2018). However, it can only measure the
dependency between two variables. Multivariate mutual in-
formation provides a fine-grained analysis of the statistical
interactions between multiple variables by decomposing the
dependencies into synergy and redundancy. Synergy refers
to the cooperative behavior between variables as a whole,
where their combined statistical interactions exceed the sum
of their contributions in isolation. Redundancy is the shared
information between variables. Motivated by recent work
identifying synergistic sub-networks for feature importance
(Clauw et al., 2022), we study higher-order interactions
between neurons to understand grokking.

In this paper, we hypothesize that grokking is a phase
transition caused by the emergence of a generalizing sub-
network due to the collective interactions between neurons
as a whole, which cannot be quantified using pairwise met-
rics. To illustrate this, we study the simplest setting where
grokking is observed - fully connected neural networks on
modular arithmetic - as a case study for emergence. To
understand grokking, we utilize the O-Information - a mul-
tivariate information theory measure that scales to multiple
variables - to quantify the synergy and redundancy in a
network (Rosas et al., 2019). We study two strategies that
impact grokking: weight decay and high initialization of the
weights (Liu et al., 2022). Our contributions are as follows :

• Using the synergy and redundancy as progress mea-
sures, we identify three key phases during training:
Feature Learning of low-level patterns, Emergence
of a generalizing sub-network, and Decoupling for
compression.

• We observe that a low weight decay value results in an
additional divergent and delayed emergence phase.
We find that weight initialization and increasing weight
decay directly leads to an emergent phase and reduces
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the delayed generalization gap

• We present preliminary findings indicating that the sub-
networks at the emergent phase may be causally related
to delayed generalization.

• We show that early peaks of synergy can predict if
grokking occurs

2. Related Work
Cause of Grokking Several studies attribute the cause of
grokking to properties related to the difficulty of represen-
tation learning the generalizing sub-network, including de-
layed feature learning (Kumar et al., 2023), sparsity (Merrill
et al., 2023), and compression (Liu et al.). While these
properties are observed in emergent complex systems, these
interpretations do not consider the relationships between
components as a whole.

Progress Measures Several progress measures have been
proposed based on L2 norm (Liu et al., 2022) or Fourier gap
(Barak et al., 2023). However, these are mostly heuristics.
One study uses pairwise mutual information for measur-
ing progress (Tan & Huang, 2023). None of these metrics
quantify higher-order interactions between neurons.

3. Methodology
Setup We study the modular addition operation Zp by gen-
erating equations of the form (a+ b)%p = c where p = 97.
To reduce confounding factors, we study a simple 2-layer
fully connected network with ReLU activation functions.
The input (a, b) ∈ Zp × Zp is a vector x ∈ R2p represented
by the concatenation of the one-hot representations of a and
b. Our model processes the input as f(θ;x) = W2Z

1 where
Z1 = ReLU(W1x + b1) ∈ Rs×n is a matrix of feature
vectors z11 , .., z

1
n in the first hidden layer where n = 250 is

the number of neurons in the layer, and each feature vector
z1n has a dimension equal to the number of samples s in the
input data. For each experiment, we train 5 models with dif-
ferent random seeds using full-batch AdamW optimization
with a 0.03 learning rate and 40 % of the data (Loshchilov
& Hutter, 2018).

O-Information Given a collection of n random variables
Z = {X1, .., Xn}, the O-Information (Rosas et al., 2019) is
defined as :

Ωn(Z) = (n− 2)H(Z) +

n∑
j=1

[H(Zj)−H(Z\Zj)] (1)

where H is the entropy, and Z\Zj is the complement of Zj

with respect to Z. If Ωn(Z) > 0 the system is redundancy-
dominated, while if Ωn(Z) < 0 it is synergy-dominated.

We estimate the entropy terms in 1 using Gaussian Cop-
ula transformation (Ince et al., 2017) allowing an efficient
closed-form solution (see papers for details).

Quantify synergy and redundancy We first reduce the di-
mensions of the features Z1 ∈ Rs×250 by grouping similar
feature vectors into 10 bins using agglomerative clustering
based on the standard configuration in sklearn resulting in a
feature matrix Z̃1 ∈ Rs×10 where each bin in Z̃1 consist of
a set of similar feature vectors z̃k1 . To quantify the synergy
and redundancy in a network, we perform an exhaustive
search of each combination of multiplets (i.e. subsets of
2 to k bins where the largest combination k = 10) using
the O-Information Ωk(z̃

1
1 , .., z̃

k
1 ) to find the optimal synergy

(lowest) and redundancy (highest) value. In our plots, we
normalize both synergy and and redundancy between 0 and
1 while inverting the synergy for comparison.

4. Evaluating grokking
In this experiment, we evaluate the impact of design choices
to simulate grokking by training models according to two
strategies:

Role of weight decay Figure 1 illustrates models trained
with low (0.01) and high (2.0) weight decay. We observe
that a low weight decay results in delayed generalization.
However, increasing weight decay reduces the generaliza-
tion gap and increases its sharpness.

Role of initialization To increase the validity of our find-
ings, we investigate grokking beyond weight decay. (Liu
et al., 2022) observed that scaling the initialization weights
of the model with a factor α > 0 while constraining the
L2 weight norm to be constant during training can induce
grokking. Here, we train a model with a high initializa-
tion factor (α = 8) with zero weight decay. Similar to (Lyu
et al., 2023), we set the initialization weights in the last
layer to zero to avoid learning instabilities when using a
large α. Figure 1 (right) verifies that this strategy reduces
the generalization gap while increasing its sharpness.
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Figure 1. Left: accuracy for weight decay 0.1 and 2.0, Right: accu-
racy for alpha initialization 8.
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5. Grokking is an emergent phase transition
To understand grokking, we plot the normalized synergy
and redundancy with the loss, as this reflects the training
dynamics, to measure the model’s progress during training.
Each measure is on a log scale for visualization purposes.
We include Pareto plots to illustrate the trade-off between
synergy and redundancy as this provides a more fine-grained
analysis of the progress measures.

5.1. Low weight decay delays the emergence phase

We first study the most common setting of grokking for a
model trained with low weight decay of 0.1. From figure 1
(left) we observe that training can be classified into 5 distinct
phases:

Feature Learning We initially observed low synergy and
high redundancy. The lack of coupling between features
suggests the network is independently learning features,
while the high redundancy indicates it is extracting basic
patterns with similar properties.

Emergence During this phase, the Pareto front in figure 2
(right) reveals that the model rapidly trades off redundancy
for synergy. At the same time, the size of the synergistic sub-
network increases, and a peak is observed in the test loss.
This suggests a critical phase transition from memorization
where the model attempts to combine features to emerge a
generalizing synergistic sub-network that is growing as it
explores.

Divergence For low weight decay, the emergent phase does
not directly lead to a generalizing solution. During a diver-
gent phase, both the synergy and redundancy of the model
drop, while the synergistic sub-network decreases in size
with a small peak in the test loss. This indicates the model
is overfitting due to a lack of sufficient features to combine.
We hypothesize this is due to a low weight decay result-
ing in a difficult loss landscape making it difficult to learn
generalizing.

Delayed Emergence During this phase, we observe a
rapid increase in synergy, redundancy, and the size of the
synergistic sub-network. This suggests the model escaped
the sub-optimal solution and is now able to combine
features to form a generalizing solution.

Decoupling In this phase, synergy decreases, redun-
dancy increases, and test accuracy increases. This suggests
the model has found a generalizing sub-network but not all
features are relevant so it removes coupled interactions for
compression.
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Figure 2. Baseline model with weight decay 0.1

5.2. Increasing weight decay enhances emergence

From Figure 3 (left), we observe that increasing weight
decay directly results in an emergent phase with a larger
peak in synergy and size of the synergistic sub-network.
Moreover, the decoupling phase occurs immediately after
this phase, with no divergent and delayed emergence phase.

This suggests that weight decay acts as regularization either
by reducing the capacity of the network, which promotes
learning shared features that are more robust by reducing the
number of active features and thereby decreasing overfitting,
or by smoothing the loss landscape, making it easier for
optimization to find regions where more features can be
combined.

We additionally observe a finalizing phase with minimal
synergy and redundancy changes after test loss convergence.
We attribute this to compression of the representation which
is interesting for transfer learning but is not explored in this
work.
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Figure 3. Baseline model with weight decay 2.0

5.3. The role of weight initialization

To isolate the contribution of weight decay regularization,
we evaluate a model trained without weight decay using
high weight initialization and a constrained norm. Figure 4
(left) illustrates that a model trained with high weight initial-
ization without weight decay directly results in an emergent
phase. However, from Figure 4 (right) we initially observe
a rapid drop in redundancy followed by a delayed rapid
increase in synergy. We hypothesize that this observation
is due to the high convexity of the loss landscape making it
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easier for optimization to find a solution (Fort & Scherlis,
2019; Vysogorets et al., 2024).
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Figure 4. Baseline model with alpha = 8 and weight decay = 0

6. Early synergy peaks predict grokking
In this experiment, we plot the synergy for a variety of
models trained with weight decay and weight initialization.
We empirically provide evidence that the synergy can pre-
dict grokking if there is a small peak early in training. For
comparison, we additionally train the models with the same
parameters from section 4 but with higher values for both
weight decay and high weight initialization.

Weight Decay We additionally train models with weight
decay values of 10 and 50, which do not achieve grokking
(see figure 9 in the appendix). From figure (left) we observe
that both low (0.1) and higher (2) weight decay have a peak
prior to grokking occurring. However, if weight decay is
too high (i.e. 10 and 50) then the model is not able to grok
indicated by lower synergy.

Initialization We additionally train models with weight de-
cay values of 10 and 50, which do not achieve grokking (see
figure 10 in the appendix). From figure (right) we observe
that high weight initialization (8) results in a synergistic
peak. However, if alpha is too low (1) or too high (5) then
the synergy rapidly drops and the model never recovers.

These results indicate that early synergy peaks might be
indicative of grokking. However, further experimentation
with a variety of models and statistical tests is necessary to
verify this hypothesis.

0 1000 2000 3000 4000 5000
Epochs

0.3

0.4

0.5

0.6

0.7

0.8

synergy weight decay 0.1
synergy weight decay 2.0
synergy weight decay 10.0
synergy weight decay 50.0

0 250 500 750 1000 1250 1500 1750
Epochs

0.2

0.3

0.4

0.5

0.6

synergy alpha 50
synergy alpha 1
synergy alpha 8

Figure 5. Left: synergy for weight decay (0.1, 2, 10, 50) Right:
synergy for alpha (1, 8, 50)

7. Are the emergent synergistic sub-networks
causally related to generalization?

This experiment investigates whether sub-networks with
high synergy during the emergence phase contribute to de-
layed generalization. We focus on models trained with high
weight decay (2.0) and weight initialization (8).

First, we identify and extract sub-networks with high syn-
ergy during the emergence phase. We then train these sub-
networks in isolation, setting all other neurons to zero. We
compare the test accuracy of these isolated sub-networks
with both the original test accuracy and the accuracy of their
inverse sub-networks. For comparison, we also evaluate sub-
networks identified during the delayed emergence phase of
a model trained with low weight decay (0.1).

Role of weight decay From figure 6 left, we find that the
synergistic network for low weight decay 0.1 achieves sim-
ilar performance to the original model but the peak in test
accuracy is less sudden indicating the model relies less on
emergent interactions. On the other hand, the inverse model

In contrast, figure 6 right shows that synergistic sub-network
for weight decay 2.0 groks in fewer epochs. We hypothesize
this is due to an emergent phase as indicated by a sharper
test accuracy peak and higher synergy.
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Figure 6. Left: test accuracy for synergistic sub-network with
weight decay 0.1, Right: test accuracy for synergistic sub-network
with weight decay 2.0

Role of initialization Figure 7 shows that weight initializa-
tion 8 results in a similar grokking period than the original
model. It should be noted that we observe similar results
for the models with an emergent phase. These findings
strengthen our belief in synergistic interactions and suggest
that grokking may result from improper hyperparameter
tuning.

These preliminary findings indicate that the synergistic sub-
networks are causally related to generalization. However,
for the models with an emergent phase, the contrast between
the synergistic sub-networks and its inverse is not that large.
We argue that alternative methods are needed to provide a
more accurate estimate of the clusters to identify the sub-
networks.
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Figure 7. test accuracy for synergistic sub-network with alpha 8

8. Limitations
A key limitation of our work is the simplicity of the model
and benchmark. To validate the generality of the emergent
phase transitions, we aim to extend this work to 1) realistic
architectures based on transformers (Nanda et al., 2023), or
toy encoder-decoder models (Doshi et al., 2023) if scalabil-
ity of our method is an issue. This allows us to disentangle
the memorizing from the generalizing solution to better
understand if these models learn isolated sub-networks, 2)
evaluate alternative toy benchmarks, including sparse par-
ity (Barak et al., 2023), XOR (Xu et al., 2023), regression
(Kumar et al., 2023), realistic benchmarks like MNIST to
study the impact of representation learning (Liu et al., 2022)
and settings that can control grokking to increase the variety
of models (Miller et al., 2024), 3) scaling the width and
depth of our models. We hypothesize this might provide us
insights if the relationship between grokking and double de-
scent can be explained via synergy and redundancy (Huang
et al., 2024; Nakkiran et al., 2021), and 4) explore the role
of optimization using gradient descent as our results might
be influenced due to the internal regularization of AdamW
(Loshchilov & Hutter, 2018).

Another limitation is the difficulty of scaling the O-
Information to larger networks. Our method relies on ag-
glomerative clustering to group similar features into bins
which may not fully capture the structure between features.
We aim to explore alternative similarity measures such as
spectral clustering (Hod et al., 2022) and the Hessian of the
loss (Lange et al., 2022).

9. Conclusion and Discussion
In this work, we present - to our knowledge - the first method
to quantify emergent properties in neural networks for ex-
plaining grokking without relying on supervision, heuristics,
or task-specific quantities. Our findings reveal an emergent
phase transition where the model collectively combines fea-
tures to solve arithmetic tasks. We illustrate that synergy
peaks early during training could predict grokking.

Through this preliminary work, we advocate for a paradigm
shift in interpretability research from decomposing networks

into the sum of isolated components (reductionism) to rec-
ognizing the emergent properties that arise from interactions
between these components (emergentism). We emphasize
the importance of developing methods that can quantify
these higher-order interactions, as they are crucial for un-
derstanding training dynamics, generalization, and inter-
pretability. As this is ongoing work, we conclude with
future research directions.

Loss Geometry Our experiments illustrated that grokking
might be caused by the difficulty of optimization to navigate
the loss landscapes. We plan on further exploring this by
visualizing these landscapes for each phase (Li et al., 2018)
and exploring the connectivity between optima (Garipov
et al., 2018). This might give insights on geometric proper-
ties like sharp minima giving rise to generalization (Hochre-
iter & Schmidhuber, 1997; Keskar et al., 2017).

Synergistic Dropout Is the synergy between neurons a nec-
essary and/or sufficient condition for grokking? To study if
synergy causes grokking we aim to regularize for the syn-
ergy via dropout of the synergistic subnetworks (Srivastava
et al., 2014).

Phase Transitions Recent work observed distinct phases
during optimization when training neural networks (Kalra
& Barkeshli, 2023) related to the edge of stability (Cohen
et al., 2020). We aim to investigate if these phases can be
related via the training dynamics to the emergent phases
in this work. This might explain why previous work on
grokking discovered oscillation in the loss (Notsawo et al.,
2023).
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A. Training results for baseline model with weight decay
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Figure 8. Left: train accuracy for weight decay (0.1, 2, 10, 50) Right: test accuracy for weight decay (0.1, 2, 10, 50)

B. Training results for baseline model with weight initialization alpha
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Figure 9. Left: train accuracy for alpha (1, 8, 50) Right: test accuracy for alpha (1, 8, 50)
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