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Abstract

In this paper, we study the contextual multinomial logistic (MNL) bandit problem
in which a learning agent sequentially selects an assortment based on contextual
information, and user feedback follows an MNL choice model. There has been
a significant discrepancy between lower and upper regret bounds, particularly
regarding the maximum assortment size /. Additionally, the variation in reward
structures between these bounds complicates the quest for optimality. Under uni-
form rewards, where all items have the same expected reward, we establish a regret
lower bound of Q(dvT/K) and propose a constant-time algorithm, OFU-MNL+,
that achieves a matching upper bound of @(d\/ T/K). We also provide instance-
dependent minimax regret bounds under uniform rewards. Under non-uniform
rewards, we prove a lower bound of €2(d+/T") and an upper bound of O(d+/T), also
achievable by OFU-MNL+. Our empirical studies support these theoretical findings.
To the best of our knowledge, this is the first work in the contextual MNL bandit
literature to prove minimax optimality — for either uniform or non-uniform reward
setting — and to propose a computationally efficient algorithm that achieves this
optimality up to logarithmic factors.

1 Introduction

The multinomial logistic (MNL) bandit framework [47,48. (7,18}, 140L 41144} |5, 53] describes sequential
assortment selection problems in which an agent offer a sequence of assortments of at most K item
from a set of IV possible items and receives feedback only for the chosen decisions. The choice
probability of each outcome is characterized by an MNL model [37]. This framework allows modeling
of various real-world situations such as recommender systems and online retails, where selections of
assortments are evaluated based on the user-choice feedback among offered multiple options.

In this paper, we study the contextual MNL bandit problem [8, [7, 143l [16} |40} 41} 44, 5], where
the features of items and possibly contextual information about a user at each round are available.
Despite many recent advances, [[16} 140, 41}, 44, 5], however, no previous studies have proven the
minimax optimality of contextual MNL bandits. Chen et al. [[L6] proposed a regret lower bound
of Q(d\/T/K ), where d is the number of features, T is the total number of rounds, and K is the
maximum size of assortments, assuming the uniform rewards, i.e., rewards are all same for each of
the total NV items. Furthermore, Chen and Wang [13] established a regret lower bound of Q(v NT)
in the non-contextual setting (hence, dependence on N appears instead of d), which is tighter in terms
of K. It is important to note the difference in the assumptions for the attraction parameter for the
outside option vy. Chen and Wang [[15] assumed for the attraction parameter for the outside option
to be vop = K, whereas Chen et al. [[16] assumed vy = 1. Therefore, it remains an open question
whether and how the value of vy affects both lower and upper bounds of regret.
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Table 1: Comparisons of lower and upper regret bounds in related works on MNL bandits with T'
rounds, NV items, the maximum size of assortments i, d-dimensional feature vectors, and problem-
dependent constants 1/x = O(K?) and k' = O(1/K). O represents big-O notation up to logarithmic
factors. For the computational cost (abbreviated as “Comput.”), we consider only the dependence on
the number of rounds ¢. “Intractable” means a non-polynomial runtime. The notation “—"" denotes
not applicable. The starred (*) papers only consider the non-contextual setting.

Regret Contexts Rewards ) Comput. per Round
Chen et al. [16] Q(dVT/K) - Uniform o(1) -
Lower Agrawaletal. [8]* Q(/NT/K) - Uniform O(K) -
Bound Chen and Wang [15]* Q(NT) — Uniform O(K) —
This work (Theorem Q3 Ilg dv/T) - Uniform Any value -
This work (Theorem Q(dvT) - Non-uniform o(1) -
Chen et al. [16] O(dVT) Stochastic ~ Non-uniform o(1) Intractable
Oh and Iyengar [41] O(dVT k) Stochastic ~ Non-uniform o(1) o(t)
Upper  Oh and Iyengar [40] O(d*?v/T/k)  Adversarial ~Non-uniform o(1) o(t)
Bound  pejyier and Goyal [44] O(dK+/k'T) Adversarial Uniform o(1) Intractable
This work (Theorem 1] (LV#’ RavT ) Adversarial Uniform Any value 0(1)
This work (Theorem E_[ O(dVT) Adversarial  Non-uniform O(1) 0(1)

Regarding regret upper bounds, Chen et al. [[16] proposed an exponential runtime algorithm that
achieves a regret of @(d\/T) in the setting with stochastic contexts and the non-uniform rewards.
Under the same setting, Oh and Iyengar [41]] and Oh and Iyengar [40] introduced polynomial-time
algorithms that attain regrets of O(dv/T /) and O(d*/?>+/T /) respectively, where 1/x = O(K?)
is a problem-dependent constant. Recently, Perivier and Goyal [44] improved the dependency on
k in the adversarial context setting, achieving a regret of O(dKvk'T), where &' = O(1/K).
However, their approach focuses solely on the setting with uniform rewards, which is a special case
of non-uniform rewards, and currently, there is no tractable method to implement the algorithm.

As summarized in Table([T] there has been a gap between the upper and lower bounds in the existing
works of contextual MNL bandits. No previous studies have confirmed whether lower or upper bounds
are tight, obscuring what the optimal regret should be. This ambiguity is further exacerbated because
many studies introduce their methods under varying conditions such as different reward structures
and values of vy, without explicitly explaining how these factors impact regret. Additionally, there is
currently no computationally efficient algorithm whose regret does not scale with 1/x = O(K?) or
directly with K. Intuitively, increasing K provides more information at least in the uniform reward
setting, potentially leading to a more statistically efficient learning process. However, no previous
results have reflected such intuition. Hence, the following research questions arise:

* What is the optimal regret lower bound in contextual MNL bandits?

e Can we design a computationally efficient, nearly minimax optimal algorithm under the
adversarial context setting?

In this paper, we affirmatively answer the questions by first tackling the contextual MNL bandit
problem separately based on the structure of rewards—uniform and non-uniform—and the value of
the outside option vg. In the setting of uniform rewards, we establish the tightest regret lower bound,
explicitly demonstrating the dependence of regret on vy. Specifically, we prove a regret lower bound
of Q(dvT/K) when vy = ©(1), acommon assumption in contextual settings [6 18] 438,40, 41, 9]
44] 5 531 [33]) (see Appendixfor more details), and a lower bound of Q(d\/T) when vy = O(K).
Furthermore, in the adversarial context setting, we introduce a computationally efficient and provably
optimal (up to logarithmic factors) algorithm, OFU-MNL+. We prove that our proposed algorithm
achieves a regret of O(d+/T/K) when vy = ©(1) and O(dv/T) when vy = O(K), each of which
matches the respective lower bounds that we establish up to logarithmic factors. Furthermore, in the
non-uniform reward setting, we provide the optimal lower bound of Q(d+/T’) assuming vy = O(1).
In the same setting, our proposed algorithm also attains a matching upper bound of @(dﬁ) up to
logarithmic factors. Our main contributions are summarized as follows:



+ Under uniform rewards, we establish a regret lower bound of Q(y/voK /(vo + K)dv/T)
(Theorem , which is the tightest known lower bound in contextual MNL bandits. We
propose, for the first time, a computationally efficient and provably optimal algorithm,
OFU-MNL+, achieving a matching upper bound of O(v/vo K /(vg + K)dv/T) (Theorem
up to logarithmic factors, while requiring only a constant computation cost per round.
The results indicate that the regret improves as the assortment size K increases, unless
vo = O(K). To the best of our knowledge, this is the first study to demonstrate the
dependence of regret on the attraction parameter for the outside option vy and to highlight
the advantages of a larger assortment size K which aligns with intuition. That is, this is the
first work to show that a regret upper bound (in either contextual or non-contextual setting)
decreases as K increases. Additionally, we provide instance-dependent minimax regret
bounds (Proposition[I]and[2), up to logarithmic factors.

¢ Under non-uniform rewards, with setting vy = ©(1) following the convention in contextual
MNL bandits [6} (18], 1431 18 140} 411, 9] 44, |5 153} 133]], we establish a regret lower bound of
0 (d\/T) (Theorem. To the best of our knowledge, this is the first and tightest lower bound
established under non-uniform rewards. Moreover, OFU-MNL+ also achieves a matching
upper bound (up to logarithmic factors) of O(d/T) (TheoremE]) in this setting.

* We also conduct numerical experiments and show that our algorithm consistently outper-
forms the existing MNL bandit algorithms while maintaining a constant computation cost
per round. Furthermore, the empirical results corroborate our theoretical findings regarding
the dependence of regret on the reward structure, vg and K.

Overall, our paper addresses the long-standing open problem of closing the gap between upper
and lower bounds for contextual MNL bandits. Our proposed algorithm is the first to achieve both
provably optimality (up to logarithmic factors) and practicality with improved computation.

2 Related Work

Lower bounds of MNL bandits. In contextual MNL bandits, to the best of our knowledge, only Chen
et al. [16] proved a lower bound of Q(d+/T/K') with the attraction parameter for the outside option set
at vp = 1. However, in the non-contextual setting, there exist improved lower bounds in terms of K.
Agrawal et al. [8]] demonstrated a lower bound of Q(4/NT'/K), and Chen and Wang [[15]] established
a lower bound of Q(+/NT). By setting d = N, one can derive equivalent lower bounds for the
contextual setting, specifically Q(+/dT/K) and Q(+/dT), respectively. However, Agrawal et al. [§]
and Chen and Wang [15] assumed vy = K when establishing their lower bounds, which differs
from the setting used by Chen et al. [16], where vy = 1. Moreover, to the best of our knowledge,
all existing works Chen et al. [16], Agrawal et al. [8], Chen and Wang [15] have established the
lower bounds under uniform rewards. Consequently, it remains unclear what the optimal regret is,
depending on the value of vy and the reward structure.

Upper bounds of contextual MNL bandits. Ou et al. [43] formulated a linear utility model and
achieved O(dK VT ) regret; however, they assumed that utilities are fixed over time. Chen et al. [16]
considered contextual MNL bandits with changing and stochastic contexts, establishing a regret of
@(d\/T + d? K?). However, they encountered computational issues due to the need to enumerate all
possible (/V choose K) assortments. To address this, Oh and Iyengar [41] proposed a polynomial-time
assortment optimization algorithm, which maintains the confidence bounds in the parameter space
and then calculates the upper confidence bounds of attraction parameter for each item, achieving a
regret of O(dv/T/k), where 1/k = O(I?) is a problem-dependent constant. Perivier and Goyal [44]
considered the adversarial context and uniform reward setting and improved the dependency on x
to O(dKVK'T + d*K* /), where &/ = O(1/K). However, their algorithm is intractable. Agrawal
et al. [S)] considered a uniform rewards setting (with v9 = 1) and achieved a regret of @(d\/T ).
However, due to significant technical errors in their paper (refer Appendix [L)), we do not include a
comparison with their results in this work.

Recently, Zhang and Sugiyama [S3] utilized an online parameter update to construct a constant time
algorithm. However, they consider a multiple-parameter choice model in which the learner estimates
K parameters and shares the contextual information z; across the items in the assortment. This model



differs from ours; we use a single-parameter choice model with varying the context for each item in
the assortment. Additionally, they make a stronger assumption regarding the reward than we do (see
Assumption . Moreover, while they fix the assortment size at K, we allow it to be smaller than or
equal to K. On the other hand, Zhang and Luo [52] considered a general function approximation,
achieving a regret bound of @(K 25\/dNT). However, this bound scales with K and N, and the
proposed algorithm is not tractable. To the best of our knowledge, all existing methods fail to show
that the regret upper bound can improve as the assortment size K increases.

3 Problem Setting

Notations. For a positive integer, n, we denote [n] := {1,2,...,n}. For a real-valued matrix A,
we denote | A2 := sup,,|,,—1 [Az[2 as the maximum singular value of A. For two symmetric
matrices, V and W of the same dimensions, V' > W means that V' — W is positive semi-definite.
Finally, we define S to be the set of candidate assortment with size constraint at most K, i.e.,
S ={S < [N]:]|S| < K}. While, for simplicity, we consider both S and the set of items [N] to be
stationary in this paper, it is important to note that both S and [ N] can vary over time.

Contextual MNL bandits. We consider a sequential assortment selection problem which is defined
as follows. At each round ¢, the agent observes feature vectors x;; € R? for every item i € [ N]. Based
on this contextual information, the agent presents an assortment S; = {i1,...,4;} € S, where [ < K,
and then observes the user purchase decision ¢; € S; U {0}, where {0} represents the “outside option”
which indicates that the user did not select any of the items in .S;. The distribution of these selections
follows a multinomial logistic (MNL) choice model [37]], where the probability of choosing any item
i € Sy (or the outside option) is defined as:

exp(xtTik w*)

Vo+ s, exp(rlw*)’

Vo

k| Se, W) 1= )
Pe(ik|Se, w") U0+ jes, eXP(,;W*)

pt(O|St,W*) =

ey

where vy is a known attraction parameter for the outside option and w* € R is an unknown parameter.

Remark 1. In the existing literature on MNL bandits, it is commonly assumed that vy = 1 [40, 41|
44, 15, 153|]. On the other hand, Chen and Wang [15|], Agrawal et al. [|8|] assume that vy = KEI[O
induce a tighter lower bound in terms of K. Later, we will explore how these differing assumptions
create fundamentally different problems, leading to different regret lower bounds (Subsection[5.1).

The choice response for each item ¢ € S; U {0} is defined as y; := 1(c; =) € {0, 1}. Hence, the
choice feedback variable y; := (10, Ytiy, - - - Yti,) is sampled from the following multinomial (MNL)
distribution: y; ~ MNL{1, (p+(0|Se, w*), ..., p+(i1]|St, w*))}, where the parameter 1 indicates that
v+ is a single-trial sample, i.e., Y:0 + > ., Y+, = 1. For each i € S; U {0}, we define the noise
€ri = Yu — pt(i]St, w*). Since each e is a bounded random variable in [0, 1], €; is 1/4-sub-
Gaussian. At every round ¢, the reward r; for each item ¢ is also given. Then, we define the expected
revenue of the assortment S as

T xr*
2: - cexp(x, w*)ry
Rt(S, W*) = pt(Z‘S, W*>rti _ Z’LES p( ti T) ti
€S Vot jes €XP(T;W*)

and define S} as the offline optimal assortment at time ¢ when w* is known a prior, i.e., S =
argmaxgeg Rt (S, w*). Our objective is to minimize the cumulative regret over the 7' periods:

Reg(w Ri(S7,w") — Ry(Sp, w).

HM’ﬂ

When K = 1,74 =1, and vg = 1, the MNL bandit recovers the binary logistic bandit with

Ri(S = {z},w*) = (xTw ) =1/(1 + exp(—x"w*)), where o(-) is the sigmoid function.

Consistent with previous works on MNL bandits [4 1144} 5/ 53]], we make the following assumptions:

Assumption 1 (Bounded assumption). We assume that |w*|2 < 1, and for all t > 1, i € [N],
|zsi]e < 1andry; €[0,1].

'Chen and Wang [15] indeed set vo = 1 and v1,...,vny = O(1/K). However, this is equivalent to the
setting with vo = K and v1,...,ony = O(1).



Assumption 2 (Problem-dependent constant). There exist k > 0 such that for every item i € S and
any S € S, and all round t, mingeyy pi(i|S, w)p: (0|S, w) = k, where W = {w e R4 | w2 < 1}.

In Assumption [} we assume that the reward for each item ¢ is bounded by a constant, allowing the
norm of the reward vector to depend on K, e.g., | p:|l2 < v/ K. In contrast, Zhang and Sugiyama [53]
assume that the norm of the reward vector p; = [ry1, . . T st|]T € RI®l is bounded by a constant,
independent of K, e.g., ||p¢||2 < 1. Thus, our assumption regarding rewards is weaker than theirs.

Assumptionis common in contextual MNL bandits [16] 41}, 44} [53]. Note that 1/x depends on the
maximum size of the assortment K, i.e., 1/k = O(K?). One of the primary goals of this paper is to
show that as the assortment size K increases, we can achieve an improved (or at least not worsened)
regret bound. To this end, we design a dynamic assortment policy that enjoys improved dependence
on k. Note that our algorithm does not need to know « a priori, whereas Oh and Iyengar [40} 41] do.

4 Existing Gap between Upper and Lower Bounds in MNL Bandits

The primary objective of this paper is to establish minimax regrets in contextual MNL bandits. To
explore the optimality of regret, we analyze how it depends on the attraction parameter for the outside
option vy, the maximum assortment size K, and the structure of rewards.

Dependence on vy. Currently, the established lower bounds are Q(d+/T/K) by Chen et al. [16],
Q(VdT/K) by the contextual version of Agrawal et al. [8], and Q(+/dT'), which is the tightest in
terms of K, by the contextual version of Chen and Wang [15]. These results can be misleading, as
many subsequent studies [41} |39} |17, I52]] have claimed that a K-independent regret is achievable,
without clearly addressing the influence of the value of vy. In fact, the improved regret bounds (in
terms of K') obtained by Agrawal et al. [8] and Chen and Wang [15] were possible when vy = K.
However, in the contextual setting, it is more common to set vy = ©(1). This is because, given the
context for the outside option x4, it is straightforward to construct an equivalent choice model where
vg = ©(1) (refer Appendix . In this paper, we rigorously show the regret dependency on the
value of vg. In Theorem we establish a regret lower bound of (2 («/ K /(vo + K)dT ) , which
implies that the value of vy, indeed, affects the regret. Then, in Theorem E],~we show that our proposed
computationally efficient algorithm, OFU-MNL+ achieves a regret of O (\/U()K /(vo + K)dv/T ),
which is minimax optimal up to logarithmic factors in terms of all d, 7', K and even vy.

Dependence on K & Uniform/Non-uniform rewards. To the best of our knowledge, the regret
bound in all existing works in contextual MNL bandits does not decrease as the assortment size
K increases [16] 40, 41} 44]. However, intuitively, as the assortment size increases, we can gain
more information because we receive more feedback. Therefore, it makes sense that regret could be
reduced as K increases, at least in the uniform reward setting. Under uniform rewards, the expected
revenue (to be specified later) increases as more items are added in the assortment. Consequently,
both the optimistically chosen assortment and the optimal assortment always have a size of K.
Thus, the agent obtain information about exactly K items in each round. This phenomenon is also
demonstrated empirically in Figure[I] In the uniform reward setting, as K increases, the cumulative
regrets of not only our proposed algorithm but also other baseline algorithms decrease. This indicates
that the existing regret bounds are not tight enough in terms of K. Conversely, in the non-uniform
reward setting, the sizes of both the optimistically chosen assortment and the optimal assortment
can be less than K, so performance improvement is not guaranteed. In this paper, we show that the
regret dependence on K varies by case: uniform and non-uniform rewards. When vy = ©(1), we

obtain a regret lower bound of Q(dvT/K) (Theorem and a regret upper bound of O(dv'T/K)
(Theorem 2)) under uniform rewards. Additionally, we achieve a regret lower bound of (Theorem [3)

and a regret upper bound of @(dﬁ ) (Theorem ) under non-uniform rewards.

S Algorithms and Main Results

In this section, we begin by proving the tightest regret lower bound under uniform rewards (Subsec-
tion[5.1)), explicitly showing the dependence on the attraction parameter for the outside option vy. We
then introduce OFU-MNL+, an algorithm that achieves minimax optimality, up to logarithmic factors,
under uniform rewards (Subsection[5.2). Notably, OFU-MNL+ is designed for efficiency, requiring



only constant computation and storage costs. Finally, we establish the tightest regret lower bound and
a matching minimax optimal regret upper bound under non-uniform rewards (Subsection[5.3).

5.1 Regret Lower Bound under Uniform Rewards

In this subsection, we present a lower bound for the worst-case expected regret in the uniform reward
setting (ry; = 1). This covers all applications where the objective is to maximize the appropriate
“click-through rate” by offering the assortment.

Theorem 1 (Regret lower bound, Uniform rewards). Let d be divisible by 4 and let Assumption!|]]
hold true. Suppose T > C' - d*(vo + K)/K for some constant C' > 0. Then, in the uniform reward
setting, for any policy T, there exists a worst-case problem instance with N = O(K - 29) items such
that the worst-case expected regret of 7 is lower bounded as follows:

sup E5 [Regy(w)] = 2 (20 avT ).

v+ K

Discussion of Theorem If v = ©O(1), Theorem || demonstrates a regret lower bound of
Q(dvT/K). This indicates that, under uniform rewards, increasing the assortment size K leads to an
improvement in regret. Compared to the lower bound Q(d\/f /K) proposed by Chen et al. [16], our

lower bound is improved by a factor of /K. This improvement is mainly due to the establishment of
a tighter upper bound for the KL divergence (Lemma[D.2). Notably, Chen et al. [16] also considered
uniform rewards with vy = ©(1). On the other hand, Chen and Wang [[13] and Agrawal et al.
[8]] established regret lower bounds of 2(v/NT') and 2(1/NT/K), respectively, in non-contextual
MNL bandits with uniform rewards, by setting vg = K to achieve these regrets. Theorem |I|shows
that if v9 = O(K), we can obtain a regret lower bound of Q(d+/T'), which is consistent with the
K-independent regret in Chen and Wang [[15]]. To the best of our knowledge, this result is the first to
explicitly show the dependency of regret on the attraction parameter for the outside option vy. The
proof is deferred to Appendix [D}

5.2 Minimax Optimal Regret Upper Bound under Uniform Rewards

In this subsection, we propose a new algorithm OFU-MNL+, which enjoys minimax optimal regret up
to logarithmic factors in the case of uniform rewards. Note that, since the revenue is an increasing
function when rewards are uniform, maximizing the expected revenue R;(S,w) over all S € S
always yields exactly K items, i.e., | S| = |S;| = K.

Our first step involves constructing the confidence set for the online parameter.

Online parameter estimation. Instead of performing MLE as in previous works [16, 141} 44]], inspired
by Zhang and Sugiyama [53]], we use the online mirror descent algorithm to estimate parameter. We
first define the multinomial logistic loss function at round ¢ as:

l(w) == — Z Yri log pe (1] Sy, w). @)
€St
In Proposition[C.T] we will show that the loss function has the constant parameter self-concordant-like
property. We estimate the true parameter w* as follows:

. 1
w1 = argmind Ve (wy), w) + Q—HW - thfq , Vt=1, 3)
weWw n ‘

where 1 > 0 is the step-size parameter to be specified later, and H, := H, + nGi(wy), where
Gi(w) = Z pe(i[ S, W)z wl; — Z Z pe(ilSt, w)pi (§|Se, W)m i,
i€S, 1€S5¢ JESL

and H; := \I; + Z’;ll Gs(Wyy1). Note that Gy (w) = V2/,(w). This online estimator is efficient
in terms of both computation and storage. By a standard online mirror descent formulation [42], the
optimization problem in (3)) can be solved using a single projected gradient step through the following
equivalent formula:

Wi =w, —nH'Vi(wy), and wip = argr}r/&n Iw —w; 1z, 4)
we



Algorithm 1 OFU-MNL+

1: Inputs: regularization parameter ), probability , confidence radius 3;(6), step size 7.
2: Initialize: H; = A\I; and w; as any point in W.

3: forroundt =1,2,--- ,T do

4: Compute ay; = o/, wy + ﬁt((s)thi”Hrl foralli e [N].

5: Offer S, = argmaxg.g R;(S) and observe y;.

6: Update H, = H, + nGi(wy), and update the estimator w1 by (3).
7: Update Ht+1 = Ht + gt(WH_l).

8: end for

which enjoys a computational cost of only O (K d?), completely independent of ¢ [38}53]]. Regarding
storage costs, the estimator does not need to store all historical data because both H; and H; can be
updated incrementally, requiring only O(d?) storage.

Furthermore, the estimator allows for a x-independent confidence set, leading to an improved regret.

Lemma 1 (Online parameter confidence set). Let § € (0,1]. Under Assumption |l| with n =
% log(K + 1) + 2 and \ = 84+/2dn, we define the following confidence set

Ci(0) :={weW [ |w; — Wi, < B:(9)},
where 3:(6) = O (\/mogtlog K) Then, we have Pr[Vt = 1,w* € C;(0)] = 1 — 6.

Armed with the online estimator, we construct the computationally efficient optimistic revenue.

Computationally efficient optimistic expected revenue. To balance the exploration and exploitation
trade-off, we use the upper confidence bounds (UCB) technique, which have been widely studied in
many bandit problems, including K -arm bandits [11} 32] and linear bandits [, 20].

At each time ¢, given the confidence set in Lemmal[T] we first calculate the optimistic utility cy; as:
i = w4 ﬁt(5)||xtiHH;1, Vi e [N]. %)

The optimistic utility cv; is composed of two parts: the mean utility estimate ) w; and the standard
deviation (3;(8)|x;| ;—1. In the proof of the regret upper bound, we show that v¢; serves as an upper
t

bound for x/;w*, assuming that the true parameter w* falls within the confidence set C;(8). Based
on ay;, we construct the optimistic expected revenue for the assortment S, defined as follows:

R (S) == Dics €XP (i)
BT g+ e explong)

where 7;; = 1. Then, we offer the set Sy that maximizes the optimistic expected revenue, S; =
argmaxgeg R¢(S). Given our assumption that all rewards are of unit value, the optimization problem
is equivalent to selecting the K items with the highest optimistic utility a;;. Consequently, solving
the optimization problem incurs a constant computational cost of O (V).

Remark 2 (Comparison to Zhang and Sugiyama [53]]). In Zhang and Sugiyama [53|], the MNL
choice model is outlined with a shared context x, and distinct parameters W7, ..., Wj for each
choice. Conversely, our model employs a single parameter w* across all choices and has varying
contexts for each item in the assortment S, i1, ... T s/ Due to this discrepancy in the choice model,
directly applying Proposition 1 from Zhang and Sugiyama [53]], which constructs the optimistic
revenue by adding bonus terms to the estimated revenue, incurs an exponential computational cost in
our problem setting. This complexity arises because the optimistic revenue must be calculated for
every possible assortment S € S; therefore, it is necessary to enumerate all potential assortments
(N choose K) to identify the one that maximizes the optimistic revenue As a result, extending the
approach in Zhang and Sugiyama [53|] to our setting is non-trivial, requiring a different analysis.

(6)

We now present the regret upper bound of OFU-MNL+ in the uniform reward setting.

Theorem 2 (Regret upper bound of OFU-MNL+, Uniform rewards). Let § € (0, 1] and Assumptions
andhold. In the uniform reward setting, by setting n = % log(K + 1) + 2 and \ = 84+/2dn, with



probability at least 1 — 0, the cumulative regret of O0FU-MNL+ is upper-bounded by

Reg,(w*) = O ( Vool dV'T + id2> .

Uo-‘y—K.

Discussion of Theorem 2| If T > O(d?(vo + K)?/(k*v9K)), Theorem [2] shows that our al-
gorithm OFU-MNL+ achieves minimax optimal regret (up to logarithmic factor) in terms of all d,
T, K, and even vg. To the best of our knowledge, ignoring logarithmic factors, our proposed
algorithm is the first computationally efficient, minimax optimal algorithm in (adversarial) con-
textual MNL bandits. When vy = ©(1), which is the convention in existing MNL bandit litera-
ture [40} 41}, 44 5] [53]), OFU-MNL+ obtains O(d+/T/K) regret. This represents an improvement over

the previous upper bound of Perivier and Goyal [44]] Pl which is O(dK+/x'T + d*K*/k), where
k' = O(1/K), by a factor of K. This improvement can be attributed to two key factors: an improved,
constant, self-concordant-like property of the loss function (Proposition[C.I)) and a K -free elliptical
potential lemma (Lemma [E.Z). Furthermore, by employing an improved bound for the second
derivative of the revenue (Lemma @, we achieve an enhancement in the regret for the second term,
d?/k, by a factor of K4, in comparison to Perivier and Goyal [44]]. Unless vy = O(K), Theorem
indicates that the regret decreases as the assortment size K increases. To the best of our knowledge,
this is the first algorithm in MNL bandits to show that increasing K results in a reduction in regret.
Moreover, when reduced to the logistic bandit, i.e., K = 1, 7,1 = 1, and vg = 1, our algorithm can
also achieve a regret of O(d+/sT) by Corollary 1 in Zhang and Sugiyama [53], which is consistent
with the results in Abeille et al. [4], Faury et al. [23]]. The proof is deferred to Appendix@

Remark 3 (Efficiency of OFU-MNL+). The proposed algorithm is computationally efficient in both
parameter updates and assortment selections. Since we employ online parameter estimation, akin
to Zhang and Sugiyama [53|], our algorithm demonstrates computational efficiency in parameter
estimation, incurring only incurring O(Kd®) computation cost and O(d?) storage cost, which are
completely independent of t. Furthermore, a naive approach to selecting the optimistic assortment
requires enumerating all possible (N choose K ) assortments, resulting in exponential computational
cost [[I6]]. However, by constructing the optimistic expected revenue according to (6) (inspired by Oh
and Iyengar [41)]), our algorithm needs only O(N) computational cost.

5.3 Regret Upper & Lower Bounds under Non-Uniform Rewards

In this subsection, we propose regret upper and lower bounds in the non-uniform reward setting. In
this scenario, the sizes of both the chosen assortment .Sy, and the optimal assortment, .S; are not fixed
at K. Therefore, we cannot guarantee an improvement in regret even as K increases.

We first prove the regret lower bound in the non-uniform reward setting.

Theorem 3 (Regret lower bound, Non-uniform rewards). Under the same conditions as Theorem E}
let the rewards be non-uniform and vy = ©(1). Then, for any policy w, there exists a worst-case
problem instance such that the worst-case expected regret of 7 is lower bounded as follows:

sup 7, [Regy (w)] = © (avT).

Discussion of Theorem@ In contrast to Theoremm, which considers uniform rewards, the regret
lower bound is independent of the assortment size K. Note that Theorem [3| does not claim that
non-uniform rewards inherently make the problem more difficult. Rather, it implies that there exists
an instance with adversarial non-uniform rewards, where regret does not improve even with an
increase in K. Moreover, the assumption that vg = (1) is common in the existing literature on
contextual MNL bandits [40} 41} 44, 15,153]] (refer Appendix . To the best of our knowledge, this is
the first established lower bound for non-uniform rewards in MNL bandits, even in the non-contextual
setting. The proof is deferred to Appendix [G|

We also prove a matching upper bound up to logarithmic factors. The algorithm OFU-MNL+ is also
applicable in the case of non-uniform rewards. However, because the optimistic expected revenue
R (S) is no longer an increasing function of ay;, optimizing for Sy = argmaxg.g R+(S) no longer
equates to simply selecting the top K items with the highest optimistic utility. Instead, we employ

2 Perivier and Goyal [44] also consider the uniform rewards (r;; = 1) with vg = 1.



assortment optimization methods introduced in Rusmevichientong et al. [47]], Davis et al. [21], which
are efficient polynomial-time (independent of ¢) E] algorithms available for solving this optimization
problem. Therefore, our algorithm is also computationally efficient under non-uniform rewards.

Theorem 4 (Regret upper bound of 0FU-MNL+, Non-uniform rewards). Under the same assumptions
and parameter settings as Theorem if the rewards are non-uniform and vy = ©(1), then with a
probability at least 1 — 0, the cumulative regret of OFU-MNL+ is upper-bounded by

Reg, (w*) = O <d\/f+ id2> .

Discussion of Theorem@ If T > O(d?/k?), our algorithm achieves a regret of O(dv/T) when
the reward for each item is non-uniform, demonstrating that 0FU-MNL+ is minimax optimal up to a
logarithmic factor. Recall that we relax the bounded assumption on the reward compared to Zhang and
Sugiyama [53]] (refer Assumption|[T); thus, we allow the sum of the squared rewards in the assortment
to scale with K. Consequently, we need a novel approach to achieve the regret that does not scale
with K. To this end, we centralize the features, i.e., Tv; = xt; — Ejp, (|5, wey1)[Tt5], and propose
a novel elliptical potential lemma for them, as detailed in Lemma Note that our algorithm
is capable of achieving 1/k-free regret (in the leading term) under both uniform and non-uniform
rewards. In contrast, the algorithm in Perivier and Goyal [44] is limited to achieving this only in
the uniform reward setting. Furthermore, compared to the regret bound in Chen et al. [16]], which
is @(d\/?), our regret bounds has the same order of regret with theirs. However, their algorithm is
computationally intractable as it requires enumerating all possible assortments, whereas our algorithm
incurs only a constant computational cost per round. The proof is deferred to Appendix [H]

6 Instance-Dependent Bounds

In this section, we show that instance-dependent upper and lower bounds are also achievable under
uniform rewards. We define the degree of non-linearity for the optimal assortment S; at round
t under the true parameter w* as xy := Zz‘es; P (1]SF, w*)p: (0|Sy, w*). We first establish the
instance-dependent lower bound under uniform rewards.

Proposition 1 (Instance-dependent regret lower bound, Uniform rewards). Under the same conditions
as Theorem for any policy 7 and for T > d?/k, there exists a worst-case problem instance such
that the worst-case expected regret of 7 is lower bounded as follows:

T

supE7, [Regp(w)]=Q [ d Z K}
w t=1

The proof is deferred to Appendix [ We also provide the matching upper bound.

Proposition 2 (Instance-dependent regret upper bound of OFU-MNL+, Uniform rewards). Under the
same assumptions, parameter settings, and reward structure as Theorem |2} with a probability at least
1 — 6, the cumulative regret of OFU-MNL+ is upper-bounded by

The proof is deferred to Appendix[J} For sufficiently large 7', the regret upper bound (Proposition [2))
matches the regret lower bound (Proposition [I]), up to logarithmic factor. To the best of our knowledge,
these are the first minimax instance-dependent regret bounds under uniform rewards. Note that,
in the worst case, k; = O(y/voK /(vg + K)), which indicates that these results provide a strict
improvement over the worst-case bounds given in Theorems [T]and 2]

Some readers may expect instance-dependent regret bounds for non-uniform rewards as well. Unfor-
tunately, we were unable to establish these. Recall that x} represents the degree of non-linearity for

3 An interior point method would generally solve the problem with a computational complexity of O (N®?).
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Figure 1: Cumulative regret (left three, X = 5,10,15) and runtime per round (rightmost one,
K = 15) under uniform rewards (first row) and non-uniform rewards (second row) with vy = 1.

the optimal assortment S}. However, in the proofs for regret bounds, we encounter terms associated
with the chosen assortment Sy, such as Y, _ . p¢ (%S, w*)p:(0|.S¢, w*). To address this, we use the
mean value theorem-based analysis (Lemma to replace this quantity with ;. Under non-uniform
rewards, however, the mean value theorem does not apply because the sizes and rewards of .S} and
S; may differ. Addressing this problem would be an interesting direction for future research.

7 Numerical Experiments

In this section, we empirically evaluate the performance of our algorithm OFU-MNL+. We measure
cumulative regret over 7' = 3000 rounds. For each experimental setup, we run the algorithms across
20 independent instances and report the average performance. In each instance, the underlying
parameter w* is randomly sampled from a d-dimensional uniform distribution, where each element of
w* lies within the range [—1/+/d, 1/+/d] and is not known to the algorithms. Additionally, the context
features x; are drawn from a d-dimensional multivariate Gaussian distribution, with each element
of ; clipped to the range [—1/+/d, 1/+/d]. This setup ensures compliance with Assumption In
the uniform reward setting (first row of Figure [I)), the combinatorial optimization step to choose
the assortment reduces to sorting items by their utility estimate. In the non-uniform reward setting
(second row of Figure |I|), the rewards are sampled from a uniform distribution in each round, i.e.,
r4; ~ Unif(0, 1). Refer Appendix @for more details.

We compare the performance of OFU-MNL+ with those of the practical and state-of-the-art algorithms:
the Upper Confidence Bound-based algorithm, UCB-MNL [40], and the Thompson Sampling-based
algorithm, TS-MNL [40]. Figure[I]demonstrates that our algorithm significantly outperforms other
baseline algorithms. In the uniform reward setting, as K increases, the cumulative regrets of all
algorithms tend to decrease. In contrast, this trend is not observed in the non-uniform reward setting.
Furthermore, the results also show that our algorithm maintains a constant computation cost per
round, while the other algorithms exhibit a linear dependence on ¢. In Appendix K| we present the
additional runtime curves (Figure [KT)) as well as the regret curves of the other configuration where
vg = O(K) (Figure . All of these empirical results align with our theoretical results.

8 Conclusion

In this paper, we propose minimax optimal lower and upper bounds for both uniform and non-uniform
reward settings. We propose a computationally efficient algorithm, OFU-MNL+, that achieves a regret
of O(dvT/K) under uniform rewards and O(d+/T) under non-uniform rewards. We also prove
matching lower bounds of Q(dv/T/K) and Q(d+/T) for each setting, respectively. Moreover, our

empirical results support our theoretical findings, demonstrating that 0FU-MNL+ is not only provably
but also experimentally efficient.
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A Further Related Work

In this section, we discuss additional related works that complement Section[2] For simplicity, we
consider only the dependence on the number of rounds ¢ for a computation cost in big-O notation.

Logistic Bandits. The logistic bandit model [24} 22| 4, 23] focuses on environments with bi-
nary rewards and explores the impact of non-linearity on the exploration-exploitation trade-off
for parametrized bandits. The main research interest has been the algorithms’ dependence on the
degree of non-linearity , which can grow exponentially in terms of the diameter of the decision
domain W. Zhang et al. [51] introduced the first efficient algorithm for binary logistic bandits with a
O(1) computation cost, achieving a regret of O(d+/T /). Faury et al. [22]] enhanced the regret to
O(dVT/k) with a O(t) computation cost. However, their regret bounds still suffered from a harmful
dependence on 1/x. Abeille et al. [4] addressed this by achieving the tightest regret upper bound of
O(dv/kT) with a O(t) computation cost, while Faury et al. [23] achieved the same regret with an
improved computation cost of O(logt). More recently, Zhang and Sugiyama [53]] proposed a jointly
efficient algorithm that achieves the optimal regret with a constant (1) computation cost. Note that
the logistic bandit is a special case of the multinomial logistic (MNL) bandit. When the maximum
assortment size is one (K = 1), rewards are uniform (r;; = 1), and the attraction parameter for the
outside option is one vy = 1, the MNL bandit reduces to the logistic bandit. In this logistic bandit
setting, our proposed algorithm, OFU-MNL+, can achieve a regret upper bound of O(dv/xT) with a
constant O(1) computation cost, consistent with the result in Zhang and Sugiyama [33].

Multinomial Logistic (MNL) Bandits. There are two main approaches to multinomial logistic
(MNL) bandits: the multiple-parameter choice model and the single-parameter choice model. In the
multiple-parameter choice model, the learner estimates parameters for each choice in the assortment
(W7,...,WJ) with a shared context x;. In this setting, Amani and Thrampoulidis [9] proposed
a feasible algorithm that achieves a regret upper bound of O(dK+/xT) with a O(t) computation
cost. They also proposed an intractable algorithm that achieves an improved regret of (7)(dK 3/2 VT).
Zhang and Sugiyama [53] introduced a computationally and statistically efficient algorithm that
obtains a regret of O(dK+/T). Recently, Lee et al. [33] further improved the regret by a factor of
VK, achieving @(d\/ KT) regret. In the multiple-parameter case, the regret’s dependence on K is
unavoidable since the number of unknown parameters depends on K.

On the other hand, the single-parameter choice model, closely related to ours, shares the parameter
w?* cross the choices, with varying contexts for each choice. The learner offers a set of items S,
with |S;| < K at each round. This setting involves a combinatorial optimization to choose the
assortment Sy, making it more challenging to devise a tractable algorithm. As extensively discussed
in Section [2 no previous studies have definitively confirmed whether the existing lower or upper
bounds are tight. As shown in Table[I] many studies have presented their results in inconsistent
settings with varying reward structures and values of v, adding to the ambiguity about the bounds’
optimality. In this paper, we address these issues by bridging the gap between the lower and upper
bounds of regret through a careful categorization of the settings. We propose an algorithm that is both
provably optimal, up to logarithmic factors, and computationally efficient, significantly enhancing
the theoretical and practical understanding of MNL bandits.

Generalized Linear Bandits. In generalized linear bandits [24} 27, [35] 3 31} 128 129} [34], the
expected rewards are modeled using a generalized linear model. These problems generalize logistic
bandits by incorporating a general exponential family link function instead of the logistic link function.
The algorithms proposed for generalized linear bandits also exhibit a dependence on the nonlinear
term k. However, our problem setting (single-parameter MNL bandits) considers a more complex
state space where multiple arms are pulled simultaneously.

Combinatorial Bandits. Another related stream of literature is combinatorial bandits [14! 45] |30, 154/,
46! [36], particularly top-k combinatorial bandits [46]. In top-k combinatorial bandits, the decision set
includes all subsets of size k out of n arms, and the reward for each action is the sum of the rewards
of the k selected arms. In this framework, the rewards are assumed to be independent of the entire set
of arms played in round ¢. In contrast, in our setting, the reward for each individual arm depends on
the whole set of arms played.

Recently, Choi et al. [19], Cao and Sun [13]] have considered the cascading assortment bandit
problem, which encompasses the MNL bandit problem as a special case where the cascading length
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is 1. However, these works do not strictly encompass our results. Choi et al. [19] only consider
uniform rewards, and achieve a regret upper bound of @(d\/T ), which avoids dependence on both the
cascading length and «. When the cascading length is 1, our result (Theorem 2) improves upon theirs
by a factor of v/ K. Moreover, their computation cost per round is (t) since they employ MLE to
estimate the parameter. Cao and Sun [13]] consider non-uniform rewards, and achieve a regret upper

bound of O(h2d+/MT), where M is the cascading length and h > : ((ii“g ’ww,)) for all w,w’ € W,

S e S,andie€ S U {0}. However, their regret bound still suffers from a harmful dependence on h?,
which can be exponentially large.

B Notation

We denote T as the total number of rounds and ¢ € [T'] as the current round. We denote N as the total
number of items, K as the maximum size of assortments, and d as the dimension of feature vectors.

For notational simplicity, we define the loss function in two different forms throughout the proof:

T
ly(w) = — Z yei log pi(i| Sy, w) = — Z ys;i log ( exp(zy,;w) > 7

i€S i€Sy UO+2j€St eXp(x;;-W)

é(ztaYt) = - Z Yt log ( exp(zn-) ) s

€S, U0+2jest exp(zt;)

where zy; = 2w, 2; = (24)ics, € RIS, and y; = (y1:)ies, € RIS Thus, £,(w) = l(z¢, y:).

We offer a Table [B. 1] for convenient reference.

Table B.1: Symbols

Ti feature vector for item ¢ given at round ¢

Tt reward for item ¢ given at round ¢

St assortment chosen by an algorithm at round ¢

0 outside option

Yi choice response for each item i € S; U {0} at round ¢

R(S,w*) =g p:(i]S, w*)rs;, expected revenue of the assortment .S at round ¢
 _ ) exp(x/;w) -

l(w) = = Dlics, Ytilog (U0+Zjest e;p(wzw) ), loss function at round ¢
A Xp(2ti : [

Uz, y¢) = = Dies, Ytilog (%), loss function at round ¢, z;; = x,,;w

A regularization parameter

Gi(w) 1= Dies, Pe(ilSe, W)znw g — Yics, Dies, Pe(ilSe, W)pt (4] Se, w)zriz;

t—1

H, = AMg+ D1 Gs(Wet1)

Ht = Ht +ngt(wt)

o =zl w + B+(8) |t -1, optimistic utility for item ¢ at round ¢

B1(0) =0 (\/ﬁlog tlog K), confidence radius at round ¢

R, (S) 1= ieg OXPlOr)rui optimistic expected revenue for the assortment S at round ¢

o+ e expla;)

C Properties of MNL function

In this section, we present key properties of the MNL function and its associated loss, which are used
throughout the paper.
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C.1 Attraction parameter for Outside Option: vy = O(1) is Common in Contextual MNL
Bandits

In this subsection, we explain why the assumption that vy = ©(1) is made without loss of generality.
Let the original feature vectors be '}, € R? for every item i € [N]. Suppose that a context for the
outside option z}, is given and the probability of choosing any item ¢ € S; U {0} is defined as
exp((wf;) "w*)
Zjestu{o} exp((m;j)Tw*)

Then, by dividing the denominator and numerator by exp ((z},) "w*), and defining z; := z}; — @},
we obtain the MNL probability in the form presented in (I)) with vy = exp(0) = 1. Note that this
division does not change the probability. Therefore, vg = (1) is natural and common in contextual
MNL bandit literature.

pe(ilSe, w") =

C.2 Self-concordant-like Function

Definition C.1 (Self-concordant-like function, Tran-Dinh et al.[49). A convex function f € C3(R™)
is M -self-concordant-like function with constant M if:

6" (s)] < M|b||26"(s).
for s € Rand M > 0, where ¢(s) := f(a + sb) forany a,b € R™.

Then, the MNL loss defined in (2) is 3+1/2-self-concordant-like function.

Proposition C.1. For any t € [T, the multinomial logistic loss {;(w), defined in @), is 3+/2-self-
concordant-like.

Proof. Consider the function ¢(s) := log (3i", e**™"), where a = [ag,...,a,]" € R and
b = [bo,...,b,]" € R**1. Then, by simple calculus, we have

Zi<j (ai _ aj)Qeais+bieajs+b]

)= (g ennthi)?

=0,

and
Zi<j(ai — aj) e@is+tbiga;s+b; [Zzzo(ai +a; — 2ak)eak5+bk]

(Z?:O eqi s+b; )3

" (s) = (C.D)

Note that for all ¢, j,k = 0,...,n,

la; + a; — 2a;| < Vg\/mé?n/ﬁ max la;|. (C2)

Therefore, we have

n
Z (a; + a; — 2a)e 5 Tox
k=0

n n
< 2 \ai +a; — 2ak| R < 3\/5 ) r%lax \a2| 2 ek S+bk
k=0 R Sy
(C.3)

Plugging in (C.3) into (C.I)), we obtain
#"(s) < 3vV2 _max lai| " (s). (C.4)

Now, we are ready to prove the proposition. For any ¢ € [T], let n = |S;| and ¢; = 2y4;,,c0 =

Ttiyy--->Cn = T4;, . Define a function f € C? : RY — Ras f(0) := log (vo + X eCiTe) Let

6 € R? and let (0 + s8) = log (vo +>0, eCiTO*'SCiT‘s) = log (X, e%"th) = ¢(s), where

a;=c;8,b;=c]Ofori=1,... n,and a; = 0 and b; = log v for i = 0. Then, by (C.4), we get
()] < 32 max |af"(s) = 32 max_ [ 816" (s

yeus
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where the last inequality holds due to Assumption [I|that [¢;2 = ||z, ]2 < 1. Then, by Defini-
tion fis 34/2-self-concordant-like. Since ¢; is the sum of f and a linear operator, which has
third derivatives equal to zero, it follows that ¢, is also 3+/2-self-concordant-like function. O

Remark C.1. Contrary to the findings of Perivier and Goyal [44|], which suggest that the MNL loss
function /6 K -self-concordant-like, our loss function is 3v/2-self-concordant-like. This yields an
improved regret bound on the order of O(\/F ). The improvement arises due to a K-independent
self-concordant-like property of ¢y, as shown in Proposition|C.1| In Perivier and Goyal [44)], Lemma
4 from Tran-Dinh et al. [49] is used, which describes a +/6||al|y self-concordant-like property.
However, in the analysis of [C.2] we show that their analysis is not tight because they bound the
term Va? + a? +ai by |als = v/D_, aZ, thus making its upper bound dependent on K, i.e.,
n = |S;| < K. In contrast, we bound the same term by a constant, max;_1,__n, |a;|2, which allows
our loss function to exhibit a constant 3+/2-self-concordant-like property. This key difference accounts
for the /K -improved regret.

Lemma C.1 (Theorem 3 of Tran-Dinh et al. 49). A convex function { € C3 : R¢ — R is M-self-
concordant-like if and only if for any v,ui, uy, us € R% we have

KD*0(v)[u1]ug, us)| < Muy|2fusllv2ew) [us]vze(y)-

D Proof of Theorem (1]

In this section, we provide the proof of Theorem|[I} The proof structure is similar to the one presented
in Chen et al. [16]. However, unlike their approach, we explicitly derive a bound that includes vy.
Furthermore, by establishing a tighter upper bound for the KL divergence (Lemma|[D.2)), we derive a
bound that is tighter than the one provided by Chen et al. [16].

D.1 Adversarial Construction and Bayes Risk

Let € € (0, 1/d+/d) be a small positive parameter to be specified later. For every subset V < [d], we
define the corresponding parameter wy € R? as [wy/]; = e forall j € V, and [wy]; = 0 for all
7 ¢ V. Then, we consider the following parameter set

weW:={wy:VeVyu}:={wy:Vcl[d],|V|=d/4},

where V;; denotes the class of all subsets of [d] whose size is k. Moreover, note that d/4 is a positive
integer, as d is divisible by 4 by construction.

The context vectors {x;} are constructed to be invariant across rounds ¢. For each ¢ and U € Vg4, K
identical context vectors[*|xy are constructed as follows:

[zy]; = 1/Vd forjeU; [xy]; =0 forj¢U.

For all V.U € V;, it can be verified that wy and xy satisfy the requirements of a bounded
assumption|[I] as follows:

[wy 2 < de? <1, lzvle <A/d-1/d = 1.

Therefore, the worst-case expected regret of any policy 7 can be lower bounded by the worst-case
expected regret of parameters belonging to VW, which can be further lower bounded by the “average”

“Recall that K is the maximum allowed assortment capacity.
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regret over a uniform prior over W as follows:
T
sup EZ, [Reg,(w)] = supEZ, Z R(S*,w) — R(S:,w)
w w =1

T
= Irvbz?/XEfvv 2 R(S*,wy) — R(S:, wy)
t=1
T

1
Z Ec"v Z R(S* WV) - R(St,WV)
| d/4| VeVays t=1
1 T
~ Vaul 2, E Z D pilS* wy) = D plilSi,wy) | (D)
d/4 VeV t=1 | ies* =

This reduces the task of lower bounding the worst-case regret of any policy to the task of lower
bounding the Bayes risk of the constructed parameter set.

D.2 Main Proof of Theorem

Proof of Theoreml] For any sequence of assortments {S;}L_, produced by policy 7, we denote an
alternative sequence {S;}7__, that provably enjoys less regret under parameterization wy.
Letzy,,...,2y, be the distinct feature vectors contained in assortments S; (if Sy = ¢J, then one may
choose an arbitrary feature zy) with Uy, . .., UL € Vg4. Let U* be the subset among Uy, . . ., U, that
maximizes 2wy, i.e., U* € argmax; . (U, UL} z{;wy, where wy is the underlying parameter.
Then, we define S; as the assortment consisting of all K items corresponding to feature zy«, i.e.,
= {IL’U*, NN ,Z’U*}.
K
Since the expected revenue is an increasing function, we have the following observation:

Proposition D.1 (Proposition 1 in Chen et al. [16).

2 pilSe, wy) < Y plilSi, w).

1€St i€S,

Proposition implies that >, q. p(i[S*, wv) — Xicg, P(i]St, Wy) = Xicq. p(i[S™, Wy ) —
Dics, p(i|S¢, wy ). Hence, it is sufficient to bound 3, . p(i|S*, wy) — Yics, p(i|S;, ) instead
of X icse P(IS™, W) — e, P(i]St, wy).

To simplify notation, we denote U, as the unique U* € V), /4 in S,. We also use By and Py to denote
the expected value and probability, respectively, as governed by the law parameterized by wy, and

under policy 7. Then, we can establish a lower bound for ;. p(i|S*, wv) — X5, p(iS;, wy)
as follows:

Lemma D.1. Suppose ¢ € (0,1/dv/d) and define § := d/4 — |U; n V|. Then, we have

Z p(i|S*,wy) — Z p(i|Sp, wy) =

iES* ieSs

vo KK de

(vo + Ke)? . 2/d

For any j € V, define random variables M; := Zthl 1{j € U,}. Then, by Lemma for all
V' € V44, we have

A vo KK €
Ev ), p(ilS*,wy) = Y. p(il S, wy) = (vofm 2[( — Y Ey[M ) (D.2)

€S* i€S, jev
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Furthermore, we define Vc(ljé)l ={VeVys:jeViand Vyy 1 :={V < [d]: |V|=d/4—1}. By
taking the average of both sides of Equation (D.2)) with respect to all V € V4, we obtain

S Ev Y pilst, wy) = 3 p(ilSe wy)

} d/4} VeV i€S* €S,
vo K € 1 \/
S . . Ey [M;]
(vo + Ke)?2 24/d ’Vd/4’ V‘;M ( ];/ vl )
vo KK € dT 1 : \/
_ _ ar 1 Ey [,
(vo+Ke)2 2v/d | 4 |Vl ;1 vezv“') VLl
d/4

vo K € dT 1 ~
- (T L By 1]
(vo+ Ke)? 2/d \ 4 |Vd/4| Ve\;d/zll NZV Vol

UOK € dT |Vd/4 1| -
= : — - max Evon|M;
(vo + Ke)?2 24/d ( 4 |Vd/4| VeVas ZV voig M)

_ v K € <dT_ ’Vd/4 1|

E E Ey[M;]].
VeVd/4 12 V + VU{J}[ ] V[ ]]>

o+ KeP 2vd Vil
For any fixed V, we get >} ./ Ev[M;] < Z \Ey[M;] < dT/4. Also, we have ‘T;/4—‘1| —
d/4
(d/f_l)/ (d(/z) = 3;;&1 < g Consequently, we derive that
|V | >, Ev ) p(ilst wy) = D) p(ilS, wy)
A4l vev,,  ieS* i3,
’UQK € dT ‘ ~ ~

> : @ Eyon[M;] - E M-‘. D.3
(vo + Ke)2  2vd ( 6 Vemvjilj%/ voii M) = Ev[M;] (D.3)

Now we bound the term ‘]EVU{]}[ i — ]EV[ ‘ in (D.3) for any V' € V,/4_+. For simplicity, let
P =Py and Q = Py (;, denote the laws under wy and wy 5, respectively. Then, we have

‘EP[Mj] - ]EQ[Mj] | < i t ‘P[Mj =t] - Q[M; = t]‘
=0

T
T3 | PG = 6 - QUil; = 1]
t=0
1
<T-|P=Qlrv < T\/5 KL(P|Q), (D.4)

where |P — Qv = supy |P(A) — Q(A)] | is the total variation distance between P and @,
KL(P|Q) = §(logdP/dQ)dP is s the Kullback-Leibler (KL) divergence between P and (), and
the last inequality holds by Pinsker’s inequality. Now, we bound the KL divergence term using the
following Lemma.

Lemma D.2. ForanyV € Vy4_1 and j € [d], there exists a positive constant Cy, > 0 such that

’U()K Ev[Mj]EQ
(U() + K)2 d ’

KL(Py Qv o) < Ok -
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Therefore, combining (D.3), (D.4), and Lemma|D.2] we have

2 Ey Z (i]S*, wy) Z p(i| Sy, wv)

|Vd/4| VeVaa i€eS* ieS,
J =
UQK € dT UQK Ev[Mj]EQ
(vo + Ke)? 24/d \ 6 ]le\/ KU (0 + K)? d
voK e [dr ¢ vK  Ey[M,]e?
(vo+ Ke)2 2d | 6 ; KL (00 + K)2 d

'UUK € dT CKL ’UOK
= -T -7~T2 ,
(vo + Ke)? 2\f< f\/ (vo + K)? E)

where the second inequality is due to the Cauchy-Schwartz inequality and the last inequality holds
because Z 1 Ev[M;] < dT/4. Let Ciy, = Ckr./4.

By setting € = \/1445’ i (Ui)j;({)Z , we have
KL
'U()K € dT ’U()K
ET [R > L. — 9 aTe2
Slv}/p w [ egT(w)] (UO + Ke) 2\/‘ ( \/ KL (UO + K)2 €
K K)? 1
- S (vo + K)* dVT
(vo + Ke) vo K 288+/CL1,
VoK
-0 ( iy dﬁ) :
v+ K
This concludes the proof of Theorem|[T] O

D.3 Proofs of Lemmas for Theorem 1]
D.3.1 Proof of Lemma[D.1|

Proof of Lemma[D.1} Letx = xy and & = x5, be the corresponding context vectors. Then, we have

Z p(i|S*, wy ) — 2 p(i| Sy, wy) =

1€ES* iegt

Kexp (mva) Kexp (J%va)
vo+ Kexp(xzTwy) v+ Kexp(2Twy)

_ vo K (exp (xTwV) — exp (JETWV))
~ (vo + Kexp (zTwy)) (vo + K exp (2 Twy))
. vo KK (exp ({ETWV) — exp (:%va))
(vo + Ke)? ’
where the inequality holds since max {exp (xTwV) , exXp (i:TwV)} < e. To further bound the

right-hand side of (D.3), we use the fact that 1 +a < €® < 1 + a + a?/2 for all a € [0, 1], which
can be easily shown by Taylor expansion. Thus, we get

. e vo KK ((x —2)Twy — (:%TWV)2/2)
Z; p(i|S*, wy ) — iezg“tp(dSt,wv) > (o + Ko
vo K ((56/\/& - (\/&6)2/2)
(vo + Ke)?
vo K e
- 2\/&(’00 + K€)2’

where the last inequality holds because (v/de)? < de/v/d when € € (0, 1/d+/d). This concludes the
proof. O

D.5)

=
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D.3.2 Proof of Lemma

Proof of Lemma|D.2} Fix a round ¢, an assortment S;, and U;. Let U = U,. Define mj(S’t) =
2iupes, Wi € UY/K. Let {pi},cs,,(0; and {gi},c5,, (0 be the probabilities of choosing item i
under parameterizations wy and wy 3, respectively. Then, we have

. N . o )2
KL(PV('|St)”PVu{j}('|St)>: > pilog&g > p 24 D M,

i€, u{0} b ieSiu{o} 9 €S, u{0} %
where the first inequality holds because log(1 + z) < z forall z > —1.

Let # = 2. Now, we separately upper bound (p; — ¢;)?/q;, by analyzing the following three cases:

Case 1. The outside option, ¢ = 0.

Vo

Fori =0, q¢; > Thus, we have

vo+Ke"*
pi = il = 2 - -
' ' v + Zieé’t exp (x;er) vo + Ziegt exp (x;rwvu{j}>
B Vo Vo
vo + Kexp(2Twy) v+ Kexp (2Twy o))

vo KX AT AT

S (o + KJe)? lexp (&' wy) — exp (&' Wy
vo K e (4T AT

= o Kjop [ )
voKe voKe m;(St)e

< AT _ . < . ,

(o + K/e)2 ¥ (wy = wyog)] (vo+K/e)>  d

where the third equality holds by applying the mean value theorem for the exponential function, with
& = (1 —u)(@"wy) + u(2"wy ;) for some u € (0,1). Then, there exist an absolute constant
Cy such that

(D.6)

where the last inequality holds since m;(S;) < 1.
Case2.ic Syandj ¢ U.
Then, for any i € S, corresponding to x; = & and j ¢ U, we have

exp (2Twy)  exp(Twyogy)
vo + Kexp (2Twy)  wvo + Kexp (2Twy )

lpi —qi| = =0,

where the last equality holds because exp (2" wy ) = exp (& wy ;). given that j ¢ U. Thus, we
get

C—aq.)?
3 (i —a)” _ (D.7)

sy O
Case3.ic S and j e U.
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Recall that for any i € S, ¢; > Then, for any i € S, corresponding to z:; = & and j € U, we

_e
vo+Ke-*

have
e ooy
L vo + Kexp(2Twy)  vg+ Kexp (2Twy o))
exp (¢2) T K exp (2¢2) T
=|l— 3 (Wy — Wy ) — B (Wy — Wyl
v + K exp (¢2) (wy Vo) (vo + K exp (&2))? (v votn)
exp (C2) vo T
- xz Wy — Wy
(vo + K exp (22))° ( w)
voe T vpe m;(St)e
S 0773 —Wyougy)| S : )
wr K P T wen) | S G R TG
the second equality holds by applying the mean value theorem, with ¢y := (1 — u)(2 wy) +
u(#"wyg;y) for some u € (0,1). Then, there exist an absolute constant Cy such that
N2
)2 2.2 m-(St)> €
Pi — Qi ~ vge ( J vy + Ke
Z ugij(St). 0 T . 0_1
q (vo + K /e) d e

i€Sy,jeU

(D.8)
where the last inequality holds since m;(S;) < 1
Combining (D.6), (D.7), and (D8], we derive that

. a.)2 2 2 Q.2
Z (i .(Iz) < <CO' : U(;KK);; Lo g K > . m;(Sy)e
edioy L o

< maX{Co,Cl} . (’UO n K)2 : d

vk m;(S;)e?
d

— Oy -
KL (U0+K)2

)

where Ciy, = max{Cy, C;}. Since M; = Zthl m;(S;) by definition, and subsequently summing
overallt = 1to 7T, we have

S

L (PvlQ@vui) = 2By [KL (Bv (130 1Py (150)

U(]K EV [M]] 62
< Ckr - : ;
(vo + K)? d
where the equality holds by the chain rule of relative entropy (cf. Exercise 14.11 of Lattimore and
Szepesvari [32]). This concludes the proof. O

E Proof of Theorem

In this section, we present the proof of Theorem @ Note that when the rewards are uniform, the
revenue increases as a function of the assortment size. Therefore, maximizing the expected revenue
R (S, w) across all possible assortments .S € S always contains exactly K items. In other words, the
size of the chosen assortment S; and the size of the optimal assortment .S; both equal to K.

E.1 Main Proof of Theorem 2]

Before presenting the proof, we introduce useful lemmas, whose proof can be found in Appendix [E.2]
Lemma [E.T]| shows the optimistic utility for the context vectors.
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Lemma E.1. Let oy; = z/wy + 5t(§)||xti\\H;1. Ifw* € Ci(9), then we have

0 < Qg — LC;EW* < 2ﬁt(5) thiHHt_l

Lemma [E3| is a K-free elliptical potential lemma that improves upon the one presented in
Lemma 10 of Perivier and Goyal [44] in terms of K. Lemma 10 of Perivier and Goyal

[44] states: Zzzl Ziess Ps(i‘ssvW*)ps(0|Ss,W")”%z‘H?{S(w*)fl < 2dKlog ()\t+1 + %) and
Zi:l max;es, xsiHés(w*),l < 2d(K + %) log (Aes1 + %), where Hy(w) = 2;11 Gs(w) +
Iy

Lemma E.2. Let H, = M + Zi;ll Gs(Wsi1), where Go(w) = ZieSS ps(i|Ss, W)z gz ), —

Yies, 2ijes, Ps(iSs, W)ps(4Ss, W)zgix);. Suppose X = 1. Then the following statements hold
true:

(1) Zizl Ziess pS(i|SSvW5+1)p5(0|557WS+1)”xsiH§{;1 < 2dlog (1 + ﬁ)’

(2) Y._ ) maxies,

2|2 o1 S 2dlog (1 + ).

Moreover, we provide a tighter bound for the second derivative of the expected revenue than that
presented in Lemma 12 of Perivier and Goyal [44]. Lemma 12 of Perivier and Goyal [44] states:

52@' <5.

9105

Lemma E.3. Define Q : RX — R, such that for any u = (uy,...,ug) € RX, Qu) =

K exp(ui) ) _ exp(ui) i
D o TSE  onp(an)” Let p;(u) = TS o) Then, for all i € [K], we have

*Q - {32%‘(11) if i=7j,
0ioj| ~ | 2pi(u)pj(u) if i # j.

Now, we are ready to prove Theorem 2]

Proof of Theorem[2] First, we bound the regret as follows:

T T
DIRU(ST W) = Ru(Si,wh) = D1 | X pilil S, w*) = Y pu(ilSp, w*)
t=1 t=1 | ieS; €S,
- i [ ZieS: exp(m;w*) . ZieSt exp(x;w*)
vt Zjes,f exp(a;;';-w*) Vo + Djes, exp(m;';-w*)
< i Ziest* exp(ai;) B Ziest eXp(x;W*)
v+ Zg‘esg exp(ag;) w0 + D, exp(xz—jw*)
T * T
<3| Dies o) s, ) |5 p g s, wh
vt Yjes, explagg) o + Yjes, exp(thjw*) =

where the first inequality holds by Lemma [E-I] and the last inequality holds by the assortment
selection of Algorithm|[T]

Now, we define Q : RX — R, such that for all u = (uy,...,ux)’ € RE, Q(u) =

K ; . . )
S o) Noting that S; always contains K elements since the expected revenue
i=1 ”0+Zj=1 exp(u;)
is an increasing function in the uniform reward setting, we can write S; = {i1,...,ix}. More-
over, forall t = 1, let uy = (ugiy, - Usir) ' = (Qtiy, ..o oui, ) and uf = (uf; ,...uf;, )" =
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T * T *\T :
(wg, w*,...,x;, w*)' . Then, by a second order Taylor expansion, we have

[l
1=

2 — Ry(S;, w") Q(uy) — Q(uy)

t=1
T | T
= Z vQu}) (u; —u}) + 3 Z(ut —u})'V2Q(ay) (u; — u})
t=1 t=1
(A) (B)
(E.1)
where @iy = (Ui, - - -, Uiy )| € RE is the convex combination of u; and uj.

First, we bound the term (A).

D' (u —u)

1=

<
o
=

S
Il
—

Z exp(z;w") e 2 exp(zf;w*) exp(z;w*) (s — )
t7, 2 ti

ies, Y0 + Zkesf exp(mt ) i€St ]581 Yo + ZkESt exp(:vt "))?

M= M’ﬂ

pe(i]Se, w*) (ue; — uy;) 2 Zpt i S, W)pi (315, W) (e — uy;)

t=14€S5; €St jESt
T

=37 > pulilSe, w) (1 - pt(ﬂstaW*)) (i —ug;)
t=1ieS; Jj€St

Il
D=
1=

S il WP (010 w*) s — )

€St

-+
Il
—
-+
Il
—
~

N
D=

Pe(2]Se, w*)pe(0[Se, w*) 2 (6) |zei | -1

o+
Il
-
.
m
n
-

< 2B7(6 ZZpt i1, W )pe (015, w*) [@si] 1, (E.2)

t=11eSs
where the first inequality holds by Lemma and the last inequality holds because (:(4) is
increasing for ¢ € [T].

Now we bound the term (B). Let p;(0;) = #Z“‘;(w. Then, we have
k=1 &XPlUt

Il
N | =
]
10d
ag
§
5?
S)
Q)
15
.
§
S*
S—

1 L 0?2 1 T 02
= 5 Z Z (utl utl)ala (ut] ufj) + 5 Z Z (u” ufz) a a (utl U;)
t=14eS; jeS¢,J#1 t=14ieS;
T T
< 2 Z ues — ug; pi(Ue)pj (Ue) [uey — Ut;| +5 2 Z (wi — utz) pi(a), (E3)
t=14€S; jESt,j#1 t 1ieS;
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where the inequality is by Lemma[E3] To bound the first term in (E:3), by applying the AM-GM
inequality, we get

T
Z Z Z uei — ugslpi(Ue)p; (Ue) fue; — ugjl

t=14eS; jeSt,j#1

T
< Z Z 2 luei — ug|pi(Ue)pj (Ue) [ue; — uy;l

t=14eS; jeSt

T
%Z D17 (wsi = ufy)pi(ae)p; (ny) Z D (ug — upy)?pi(y)p; ()

t=11ieS; jeSt zeSt JES:

<

MH

t

Z (uei — uf;)*pi(ay). (E.4)
14eS;
By plugging (E-4) into (E3), we have

(ur —uf) ' VZQ(Ty) (uy — uj) <

1 t

N | Ot

1
D= L=

Z (uei — uy;)*pi(Te)
1€St

t

<10

>, pi(80)Be(8)* |31
1 iESt t

t

Sl

2 2
<10 ; Izré%i( Bi(9) thiHH;l

< 1087(8 Z max HanH_l, (E.5)

where the second inequality holds by Lemmal[E.1] Combining the upper bound for the terms (A) and
(B), with probability at least 1 — 4, we have

T T
Z — Ry(Se, w*) < 267(8 Z ¢ (i St, w*)pe (0]S, W)@t |
T
+ 1087 (8 Z max Hxnl\H_l (E.6)

Now, we bound each term of (E.6)) respectively. For the first term, we decompose it as follows:

Z Zpt |Sta pt(0|st7 HJJ‘I‘/’LHH;1

t=14ieS;
T
= Z Pe(ilSe, Wi 1)pe (01Se, Wep1) | @ei| g1
t=11€S,
T
+ 30> (pelilSi, W) = pe(il St Weg1)) pe(01Se, Wip1)[ @i 1
t=11€S;
T
+ 20 > pelil St w*) (pe(01S, W) = pr(0]Se, Wis1)) leill - (E.7)
t=11€S;
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To bound the first term on the right-hand side of (E.7)), we apply the Cauchy-Schwarz inequality.

T
20 2 pelilSe, Wi )P (01, W)t | 5

t=14eS;

T T
< Z Z pt(i\St,Wt+1)pt(O|St,wt+1) Z Z pt(i|StaWt+l)pt(O|St7wt+1)”$ti‘|§{t—1

t=14eS; t=11€S;

v ’UQK

T
< mﬁ Z Z pt(i‘StvWt+1)pt(0|5t,Wt+1)H$tinqt—1

t=14eS;

Vo )\/T -2dlog (1 n T)7 (E.8)

= (vo + Ke! d\

where the last inequality holds by Lemma|E2]

Now, we bound the second term on the right-hand side of (E.7). Let the virtual context for the outside
option be x49 = 0. Then, by the mean value theorem, there exists & = (1 — ¢)w* + c¢wy41 for some
c € (0,1) such that

Z (pt(i|staW*) - pt(i|5t7Wt+1))Pt(0‘St7Wt+1)H$ti||H;1

€St

= Z th(i|5ta€t)T(W* - Wt+1)pt(0|5t,Wt+1)thi”H;1

€St

.
=, (Pt(ilst,it)cvti —pu(ilSi, &) D pt(j|5t7£t)mtj> (W" = Wi 1)pe(0]Se, W) |2t gy

i€Sy JESt
< Z pe(ilSe, &) ol (wr — Wt+1)|pt(0\5t7Wt+1)|\$ti\|H;1
1€St

+ Z pt(i|5ta€t)H$tiHH;1 Z P[5, &) |JUtTj(W* - Wt+1)|pt(O|StaWt+1)
€S} JES

2
<) Pi(ilSe, &) il 7y 1 [W* = Wi |, + (Z pt(i|Sta€t)|xti|Ht1> Iw* = wiialla, -

1€St €S}t

Then, since x;9 = 0, we can further bound the right-hand side as:

2
> pelilSe E)lwnil - [W* = Wi |, + (Z pt(ilSt,ét)xting) Iw* = wisi|m,

€S} €St
2
= > pelil e, &) il W = Wi, + Y pelilSe &) |zl o | 1wt = Wasa |,
€S €Sy u{0}
<), pe(ilSe, &) weil3y o+ IW™ — weia |, + > pi(ilSe, &)l 7y [W* = Wi |,
i€S, i€St

<2 Z pt(i|St7€t)“xtiH§{;1 Iw" = wiii]m,

1€S}

< 25:(9) Z pt(i|5t7£t)thi”iIt—l < 254(6) max thinij,:h

1€St
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where the first inequality holds due to Jensen’s inequality and the second-to-last inequality holds by
Lemmal[T] Hence, we get

T T
Z Z (pe (@] St W) _pt(i|stawt+l))pt(0|st7Wt+1)th7iHHt_1 < 2ﬁT(5)t=21rl¥é%f HmtiH?{t—l

t=11eS:

4d T
< ;BT((S) log (1 + d)\)

(E.9)
where the last inequality holds by Lemma|E.2]

Finally, we bound the third term on the right-hand side of (E.7). By the mean value theorem, there
exists & = (1 — c’)w* + w1 for some ¢ € (0, 1) such that

Zpt |5t7 pt(0|St» ) pt(O‘St>Wt+1))thi”H;1

€St
= Z Pt |St> th(0|5t,§t) ( WtH)thiHH;l
'LESf )
= = > pu(lSe, w)pe(015:,€1) Y pe(ilSe, €Dy (w* — W)@
€St JESt l
pr ilSe, W) @il gy -1 pe (015¢, &) Z Pe(i1Se: E) @i g W™ = Wi |m,
€Sy JES:
< D0 2l W)zl v D pe(ilSe €)|wes | gy [ W™ = W,
€St JESt
Z pe(i]Se, w thZHH 1 Z Dt ]|St7£t)”xtJHH 1
€Sy JES:

2
< Bi(6) (rirégf IIwn'H;1> = 5:(9) Nesy Jeilly

where the third inequality holds by Lemma [I| and the last inequality holds since (max; a;)? =
maxi 2 for any a; > 0. Therefore, we have

T
Z > pi(il S, w*) (pr(0]Si, w*) — pi(0]Si, Wis1)) |t gy < Br(0) > max |26,
t=1 " '

t=11eS;

2d T
?BT(d) log <1 + d)\>
(E.10)

where the last inequality holds by Lemma[E.2] By plugging (E-8), (E-9), and (E-I0) into (E-7) and
mu]tiplying 267(6), we get

287(6 Z Z D¢ (]S, w*)pe (0], w H$tiHH;1

<

t=11eS;
\/’UO T 12d 2 T
<2 6)VdTy 1 14+ — — 0)~1 1+—]. (E.11
\f(v0+K Br(6)V og |1+ )+ ——=Fr(d) log (1+ -+ ). (EID
Moreover, by applying Lemma@ we can directly bound the second term of (E-6).
2 T
1087 (6 Z max mellH L < 1087(6)% - Edlog (1 + dA) (E.12)

Finally, plugging (E:TT)) and @[) into (E.6)), we obtain

VoK T 32d T
Reg (w") < Zﬁ%ﬁji%e_wﬂﬂé)\/ﬁ log (1 + d)\) + 75 (6)*log <1 + d)\>

—@(V%KdVT+1f),
+ K K

Vo
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where 7 (§) = O <\/3 log T'log K ) . This concludes the proof of Theorem O

Remark E.1. If the boundedness assumption on the parameter is relaxed to |w|s < B, since
Bi(6) = O (B\/ElogtlogK + B3/2/dlog K) (refer Corollary , we have Regp(w*) =
o (33/26B W—V;’ﬁflgdﬁ + %dQ) . It’s important to note that one of our main goals is to explicitly

demonstrate the regret depends on K and vg. In deriving such a result, the dependence on e is

unavoidable to our best knowledge. Note that for non-uniform rewards, the regret bound does not
depend on e® (refer Remark .

E.2 Proofs of Lemmas for Theorem
E.2.1 Proof of LemmalE.1l
Proof of Lemma([EZ]] Under the condition w* € C;(8), we have
efiwe — wiw*| <zl g lwe = W, < Be(6) el g1

where the first inequality is by the Holder’s inequality, and the last inequality holds by Lemma [I]

Hence, it follows that
i — oW =z wy — 2w+ Be(0)] e -1 < 286 (8) a1 -
t t
Moreover, from z;w; — x[;w* = —B,(0)||z4;| ;;-1, we also have
t

i — .r;riw* = x;';wt — xtTiw* + Bt(é)thiHHt—l > 0.

This concludes the proof. O

E.2.2 Proof of LemmalE.2

Proof of LemmalE.2} Since zz" + yy' > xy" + ya' for any z,y € R, it follows that
gs(ws+1)
= Z ps(i|ssyws+1)xsix;‘ - Z Z ps(i|SsvWs-‘rl)ps(j'SS)Ws-&-l)xsixzj

€S, €S jESS
. 1 . .
= Z ps(l|SSaWs+1)xsiIIi 5 Z Z ps(l|ssaWs+1)ps(j|SSaWs+l)(xsiIIj + zsjz;ri)
€S, €S JES
. 1 , )
= 3 palilSe War)zaizf = 5 3, D PalilSa War1)pa(i|Se, War)(@aizd; + waj ;)
€S, i€Ss JESs

= Z ps(i|537ws+1)xsi$; - Z Z ps(i|SsvWs-‘rl)ps(j'Ss,Ws-&-l)xsi-r;‘-
€S i€Ss jJES

Hence, we have

gé‘(ws+1) = Z ps(ﬂssaws-&-l) <1 - Z ps(sz,Ws+1)> xsix;—i

i€S, JESs
= 2 Ps(i]Ss; Wer1)ps(0]Ss, Wer1) sz ), (E.13)
1€Ss

which implies that

Hyp > Hy + Z pe(i]St, Wi i1)pe (0|Sp, Wig1)wriz ;.

€St

Then, we get

det (Ht+1) > det (Ht) (1 + Z pt(ﬂStvWt+1)p0(i|5tth+1)|xti|§_It1) .

1€St
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Since A > 1, forall t > 1, we have 3}, ¢ pt(’|St,wt+1)p0(i|St,th)thiHiI_l < 1. Then, using
the fact that z < 2log(1 + z) for any z € [0, 1], we get

t

Z Z ps(i|Ss; Ws+1)ps (O|Ssa Ws+1)H-T5iH§_I;1

s=11€S,

t
<2108 (14 Py, Wos1)ps (0180, Wos1)2sil %+ )

s=1
det s+1)
221 ( det(Hy) )
tr(HtJrl) t
<2d10g< Y < 2dlog 1+d)\ .

This proves the first inequality.
To establish the proof for the second inequality, we return to (E-I3):
gs(ws+1) = Z ps(i|557Ws+1)ps(0|ssaws+1)xsix; =K Z msix;—p
i€Ss i€Ss
which implies that
Hipn = Hi+ Gi(Wip) > Hi+ K Z Ty,
€St

Since A = 1, for all t > 1, we have k max;cs, |z¢]|%,_1 < x. We then conclude on the same way:

H—l

t

¢ 2
;rzrel%i( HxSiHi{S_l < 2 (1 + #max ||xs'LHS—1>

L2 : det(Hqy1) 2 t
= 1)) < Zhlog (14 —
p ; ( dot(dy) ) ST @

which proves the second inequality. O

I

E.2.3 Proof of Lemmal[EJ|
Proof of Lemma[E3| Let i, j € [K]. We first have

@Q eti et (Zszl euk)

G wg+ Shor e (vo+ Ty e)?

Then, we get

220

0i0j

__ Ligje™ etieli I;—je" (Zszl e“k) + eUigti
o+ N e ) (o + Doy €)? - (v0 + Xy €%+)>

evi (Zszl euk) 2e%i (vo + Zszl e“k>

+ K
(vo + Xy €™)*
. . . 1,_.e% K Uk Ui pU Uj K Uk | 2eUj
]]_i:je“I eWielj i=5€ Zk‘:l (& +ete e Zk:l e e
- K u N K ug )2 B K up )2 K ur)3
vo + Dpor €™ (vo + Xp_q €"F) (vo + Yy €%*) (vo + Y, eux)
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Let p;(u) = — and pp(u) = —=&— . Fori = j, we have

vo+Yi_g etk
K,
D1 €

K
Vo + Zk:l elk

U0+Zk 1e”

0%Q

%iaj| = pi(u) — pi(u)p;(u) — p;(u)
ZII::l etk

vg + Zszl euk

= |pi(0)po(u) — 2p;(u)p;(u) + 2p;(u)p;(u)

—pi(a)p;(u)

+2pi(w)p;(u)

Zle el ‘

K
Vo + Zk:l elk

= |pi(u)po(u) — 2p;(u)p;(u)po(u)

< 3pi(u)
For ¢ # j, we have
0 e
ﬁQj = ‘ — pi(u)p;(u) — pi(w)p;(w) + 2pz-(u)pj(u)%2+’“2‘£1w'
= ‘ — 2pi(u)p;()po(u)

< 2pi(u)p;(u).
This concludes the proof. O

F Proof of Lemmalll

In this section, we provide the proof of Lemmal(l] First, we present the main proof of Lemma [T}
followed by the proof of the technical lemma utilized within the main proof.

F.1 Main Proof of Lemma

Proof of Lemmall] The proof is similar to the analysis presented in Zhang and Sugiyama [53].
However, their MNL choice model is constructed using a shared context x; and varying parameters
across the choices w7, ..., W}, whereas our approach considers an MNL choice model that shares
the parameter w* across the choices and has varying contexts for each item in the assortment S,
Ti1, .- Ttipg- Moreover, Zhang and Sugiyama [53] only consider a fixed assortment size, whereas
we consider a more general setting where the assortment size can vary in each round ¢. We denote
K = |S¢| in the proof of Lemma Note that K; < K forall ¢t > 1.

Lemma F.1. Let the update rule be

- 1
Wi y1 = argmin £y (w) + 2*““’ - WtH%{p
wew n

where (;(w) = {;(w )+<W_WtﬂVét(wt)>+%HW-WtHQV%(wt) and Hy = NIg+ Y"1 Go(Wein).
1log(K + 1) + 2 and X > 0. Then, we have

t ¢ ¢
* 2
[Wip1 —w H%{Hl < 27 ( E Ls(w™ E s(Wst1 > + 41+ 1227 E [Wet1 — Wil
s=1

s=1 s=1

Letn =

t
~ 3 warr — wilF, - (F.1)
s=1

We first bound the first term in (). For simplicity, we define the softmax function at round ¢
o(z) : RE: — RE¢ ag follows:

()]s = —— o)

vo + Sty exp([z])

. Vie [Ky, (F2)
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where [-]; denotes i’th element of the input vector. We denote the probability of choosing the

outside option as [04(z)]o = W Although [o(2)]o is not the output of the softmax
1 €Xp

function o+(z), we represent it in a form similar to that in (F.2)) for simplicity. Then, the user choice
model in (T)) can be equivalently expressed as p;(i|Sy, w) = [0y ((%;W)jest)]i for all ¢ € [K{]

and p;(0|S;, w) = [0y ((x;z )jeSt)] Furthermore, the loss function (2) can also be written as
Uz, ye) = Dito L {yw = 1) - log (m)

Define a pseudo-inverse function of o4(:) as o : RE: — RE: where [0/ (q)]; =
log (¢;/(1 —|q|1)) for any q € {p € [0,1]¥: | Hp||1 < 1}. Then, inspired by the previous
studies on binary logistic bandit [23], we decompose the regret into two terms by introducing an
intermediate term.

t

t t t t
Z ES(W*) - Z ES(WSJrl) = Z ES(W*) - Z 6(2573’5) + Z ZsyYs Z Ws+1 (F.3)
s=1 s=1 s=1

s=1 s= s=1

(a) (b)
where Z, := o (Ew~p, [0 ((2,;w)jes.)]). and P := N'(w,, cH; ') is the Gaussian distribution
with mean w and covariance matrix cH !, where ¢ > 0 is a positive constant to be specified later.
We first show that the term (a) is bounded by O (log K (log t)?) with high probability.

Lemma F.2. Let § € (0,1]. Under Assumptions|l| for all t € [T'), with probability at least 1 — 6, we
have

Z lLo(w™) — Z Uzs,ys) <11-(3log(l + (K + 1)t) + 3)log <215+2t> + 2

Furthermore, we can bound the term (b) by the following lemma.

Lemma F.3. For any ¢ > 0, let A > max{2, 72cd}. Then, under Assumptionfor allt = 1, we

have
t

_ 1 ¢ t+1
2 (U(Zs,ys) — Ls(Wsg1)) ? g [ws — WsHH%{S + V6edlog (1 + 2)\)

Now, we are ready to prove the Lemma([l] By combining Lemma [F.1] Lemma[F2] and Lemma[F3]
we derive that

[weer =Wz,

< 277[11 - (3log(1+ (K + 1)t) + 3) log (@) + 2+ +6edlog <1 + ;;)]

t t
+4A+ 12\/577 Z ”Ws-&-l - WSH; + (ﬂf1> Z ”Ws-&-l - Ws“ils
s=1 =1

< 277[11-(310g(1+(K+1)t) + 3)log <2m) + 2+ +6edlog (1+ t;;)]

4X=: B;,1(6)* = O (d(logtlog K)?), (F.4)

where the second inequality holds because by setting ¢ = 717/6 and A > max{84+/2n, 84dn}, we
obtain:

t t
12320 Y weir = Wil + (2=1) 3 wara = wil3,
s=1 ¢ i=1
t 1 t
2 2
= 12v2y Z IWei1 — w3 — 7 Z [Wos1 = wsly,
s=1 i=1

A
< (12\/57) — 7) Z [Wsir1 — ws \|§ <0
s=1
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where the first inequality holds since H, > A1,.

By setting 7 = £ log(K + 1) + 2 and A = 84+/2dn, we derive that

Hwt - W*HHt < Hwt - WtJrlHHt + Hwt+1 —-w HHt
< HWt - Wt+1HHt + HWt+1 -w’ HHt+1
< lwi = W], + B ()
2
< 777 + B141(8) == Bi(6) = O (\/ﬁlogtlogK) .

where the third inequality follows from the definition off3;, ,(d) in Equation (F4), and the last
inequality holds by Lemma[F.9]

This concludes the proof of Lemmal[T] O

Corollary F.1. [f the boundedness assumption on the parameter is relaxed to |w|s < B, then

B(8) = O (B\/ElogtlogK + B32/dlog K K).

Proof of Corollary[F]] When |w|2 < B, following the same analysis as in Lemma([l] we can set
n=3log(K+1)+ B+1,c=1Tn/6and A = O(dBlog K). Under these settings, we have

[weer — w3,

<2 lﬂ - (3log(1 + (K + 1)t) + 3) log <215+2t) +2 + V6edlog <1 n t;;)] +AB2A
~0 (B\/ﬁlogtlogl( + B¥2,/dlog K) .

which concludes the proof. O

F.2 Proofs of Lemmas for Lemmal/l]
F.2.1 Proof of LemmalE1l

Proof of Lemma[F1} Let £s(w) = £s(Wy) +{(Vis(Ws), W —W)+ 1 |w—w, I%2,. (w,) be a second-
order approximation of the original function £, (w) at the point w. The update rule (3) can also be
expressed as

L~ 1
W1 = argmin 4 (w) + ;HW — w3,
wew Ui

Then, by Lemma[F4] we have

* 1 * *
(Vls(Wst1), We1 — W) < % (”Ws -w ”%IS — W1 —w Hi]s — [wst1 — WSH%IS) - (E5)

To utilize Lemma we can rewrite the loss function as £ ((z/;w)ies,,ys) = £s(w). Consequently,
according to Lemma[F.6] it follows that

* * ]‘ *
C(Wop1) — Lo(W*) S (VE(Wai1), W1 — W) — guwsH ~W e werryy  (F6)

where ¢ = log(K + 1) + 4. Then, by combining (F3) and (F.6), we have

Es(ws+1) - ES(W*) < <V€s(ws+1) - Vgs(Werl)awerl - W*>

1
+ = <||Ws — w*|§{s — HW3+1 — W*‘ %{s# — ||w8+1 — WS‘

¢

2
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In above, we can further bound the first term of the right-hand side as:

(Vs (Wiy1)=Vis(Wys1), Wos1 — W*)
= (Vls(Wey1) = Vls(Ws) = V2Uo(We) (W1 — W), Wey1 — W)
= (D (€ss1)[Weg1 — Wl (Wey1 — W), Wey1 — W)
<3V2 [ Woi1 = W[ Wasr = WilBag, e
< 6\/§HW5+1 - W5H2v2gs(§s+1)

< 6\/§st+1 - Ws”g

where in the second equality, we apply the Taylor expansion by introducing £, 1, a convex combina-
tion of w1 and w. The first inequality follows from Lemma [C.T]and Proposition [C.1] the second
inequality holds by Assumption[I] and the last inequality holds because

V2€5(€5+1) = gs(€s+1)
= Z ps(i|Ss7£s+1)$six;‘ - Z 2 ps(i|ss7£s+l)ps(j‘557£5+1)x5ix;—j

i€Ss i€Ss jESs
= Z s (i |S§7£s+1)xs7 Lgi — Z Z Ps(i]Ss, &s+1)ps(J ‘597£9+1)x92x33
€S;u{0} €Ssu{0} jeS,u{0}

T T
= Einp.(15.6000) [si%ai] = Binp, (150 ) [Tsi] (Binp, (15,.8000) [25i])
=< ]Ei“‘ps('lssvﬁerl) I:xszx;rl] < Id7

where the third equality holds by setting x50 = 0 forall s > 1

Now, by taking the summation over s and rearranging the terms, we obtain

[weer — w3,

t i t
¢ (2 () = X b ) T lwi = W, + 62 Y [wast — il
s=1

s=1

: 2
- Z w1 — WSHHQ
s=1
t
<¢ (Z ls(w
s=1

where the last inequality holds since | w1 — w* |7, < A|wy — w*[3 < 4. Plugging in ¢ = 21, we
conclude the proof. O

)

|
»
||MH~
—

t t
és(wsﬂ)) AN+ 6V20 D Wasr — Wil — D [Wapr — w7,
s=1 s=1

F.2.2 Proof of Lemmal[E2]

Proof of Lemma[F2] Since the norm of z, = o (Ew~p, [0s ((¢];W)jes,)]) is unbounded
in general, as suggested by Foster et al. [25], we use the smoothed version zf =
o (smootht Ew.p, [0 ( (x;rjw) jes.)]) as an intermediate-term, where the smooth function is

defined by smooth” (q) = (1 — pu)q + pu1/(Ks + 1), where 1 € RX+ is an all one vector.

Note that z# = o} (smooth” (o5(Zs))) by the definition of the pseudo inverse function o} such that
ol (o5(q)) = qforany q € {p € [0,1]% | |p|: < 1}. Then, by Lemma|E.7} we have

t

t
Z Uys) = D Uz ys) <2ut, and (7] <log(l+ (K +1)/u).  (E7)

s=1
Hence, to prove the lemma, we need only to bound the gap between the loss of w* and z#. To

. . . _ _ T KS
enhance clarity in our presentation, let £(z,y) = {s(w*), where z} = (] jw*)je s, € R*s. Then,
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t

Mw

Z<V Z( s7y8) Z _ZM> Z 7HZ _Zl HV2£ (z%,ys)

sl“

‘Z - ZMHVUg (zx)° (FS)

sl’“‘

EKS(W*>_ = 57Y$ Z vas
s=1 s=1 s=1 s=1
t
s=1
t
= Z<03< ) Vs, 2 S ZH> Z
where ¢, =

last equality holds by a direct calculation of the first order and

V. l(zs,ys) = 05(2s) — Vs, vzg(zsa}’s) = diag

We first bound the first term of the right-hand side. Define dy =
[d],
appended to increase the dimension of d, to K. Similarly, we also extend o (

extended with zero padding. Specifically, we define d, =

padding and define e, = [(o5(z%) —ys)',0,...,0]T € RE.

Then, one can easily verify that |d/, |, < 1 since |2}]l < max;es, meHgHw 2 <

log(K + 1) + 2log(1 + (K +1)/p) + 2, the inequality holds by Lemma|F.6] and the

Hessian of the logistic loss as follows:
(05(25)) — 05(25)T5(25) "

(z5 —2")/(c, + 1). Let d), be d;
0,...,0]" € R, where the zeros are
z%) — ys with zero

1and ||z/]s <

log(1 + (K + 1)/p). On the other hand, d/, is F,-measurable since z} and z" are 1ndependent

of ys. Moreover, we have ||d’, HE

los(23) = vslh

D (os(22) — vzl — 2 = (e +1) ) (o2

= (1) Yend)

[e:eT 7]

; _
- N4
< (ep+1) + Z [ds ”Vo' (2%) T+ \/ilog
Va4
<(cu+1) +2Hd |W(Z,-< \f/\lg<

where in the second inequality, we set A > 1, and the last inequality holds because ||d, 13 (
2. Then, combining (E8) and (F9), we obtain

d] Vo (z)d, <

St
s=1

t

-1

s=1

s)y.s

= 1. By, a1 0a)-5) 7172
< 2. Thus, by Lemma | with probability at least 1 — 4, for any ¢ >

HVO'S(Z;) and
1, we have

;) —Ys ds>

L\t :
2\/1+X25=1 14150, 22
0

)

24/1 42t

5 F.9)

S ﬁ 4 2«/ t G )
< (cu+ 1)\ A+ Z |dsvag <4 VA 5 Z |z5 — zg”%crs(z;)
B Vioo4 2\/1 ¥ 2t :
<(eu+ 1) [ A+ Z ”dsHva =) |\ "1 + \/X log s (cu+1) Z ”dQHVab (2%
a a
2
! \5 4 2y/1 + 2
<(cu+1) Z |dslZg > +(cu+ 1) <4 + —log <5>

M“A

e+ ) Y 1l )

1

17+
—A
6 +

S

=(cp+1) 2log

- ~ |l
—_
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where the third inequality holds due to the AM-GM inequality. Finally, combining (F.7) and (F10),
by setting z = 1/t and A = & log (27”6“%), we have

V17
;tl —U(7s,y5)) < (¢, + 1)(2V1IT+2) 10 (21(;_%) + 2ut

1 (3log(1 + (K + 1)t) + 3) log (2”15+2t> L2

where the last inequality holds by the definition of ¢, = log(K + 1) 4+ 2log(1 + (K +1)/u) + 2
This concludes the proof.

F.2.3 Proof of Lemmal[E3]

Proof of Lemma(F:3] The proof with an observation from Proposition 2 in Foster et al. [25], which
notes that z, is an aggregation forecaster for the logistic function. Hence, it satisfies

Uzs,ys) < —log (EWNPS [e_ES(W)]) = —log (Zl f , e_LS(W)dW> , (E.11)
s Jr

where Ly(w) := £s(w) + o= |w — w3} and Z := (2m)dc|Hs Y.
Then, by the quadratic approximation, we get
- 1
Ls(w) = Ls(Ws41) +(VLs(Ws41), W — Ws11) + %”W — Wi+l H%Ib (F.12)

Applying Lemma and considering the fact that ¢, is 31/2-self-concordant-like function by
Proposition[C.I] we have

Lo(w) < Ly(w) + e8I =weril3 |y — Wot1Z20, (was0)- (F.13)
We define the function fs+1 : W — Ras
Forn) = exp

Then, we can establish a lower bound for the expectation in (FIT) as follows:

%[b _ elSHw—Ws-HH%HW — WS+1|2V2Z5(W5+1)) .

1
—Lls(w) _ _
Ew-~p, [e ] Z: ) exp(—Ls(w))dw

1 T wW—w 2
> 7 |, oxpLa(w) = P B W — W [ ) AW
exp(—Lg(wg ~
= p( Z( +1)) f 4 fs+1(w) : exp(_<VLs(Ws+1)a W — Ws+1>)dw
s R4
(F.14)
where the first 1nequahty holds by (FI3) and the last equality holds by (FI2). We define
Zsi1 SRd fs+1 < +00. Moreover, we denote the distribution whose density function

is for1(W)/Zgi1 as Ps+1. Then, we can rewrite Equation (F.14) as follows:

Ew-p, [e—és(w)] > exp(*LS(WS-H))Zs-J—lE

Z wePop [PV L (Wi1), W = Wai1))]

S exp(—Ls(Wsy1))Zs11 exp (_Ew~15 [(VLy(Weir),w — s+1>])
Z, e KV s (W) w =
eXp(—LS(WS+1))ZS+1
_ Fl
7. ; (F.15)

where the second inequality follows from Jensen’s inequality, and the equality holds because Py is
symmetric around w1, thus ]EWNPS+1 [((VLs(Ws11), W —Wsy1)] =0
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By plugging (FI3)) into (FITT), we have

UZs,¥s) < Ls(Wai1) +log Zs — log Zay1. (F.16)

In the above, we can bound the last term, — log Zs+1, by

—log Zs11 = —log (J exp ( T~ etslwwaiala gy — Ws+1|2v2£5(w5+1)> dw)
Rd

. 2
log( 1 ]EW~P B [exp( 18w W5+1H2”W_W8+1H2V2€s(ws+1))])

R 18| w—wai1 3 2
<—logZe1 + By 5 |e W = Wit [Zar, o)

logZ + B, g, [ B = g By ] (E17)

+1
where ]35+1 = N(wgyy1,cH; 1) and 25+1 = fgaexp (f%ﬂﬂw — WS+1H§13) dw. In (EI7), the
inequality holds due to Jensen’s inequality, and the last inequality is by the fact that Zs-f-l =
Spa oxp (= 5z W — Wor|,) dw = 4/ @2m)de|H Y = Z

By applying the Cauchy-Schwarz inequality, we can further bound the second term on the right-hand

side of (E.17) by

R [elSHW—Werng ||W — Wst1 HQVZKS(Ws-Fl)]

w~Pg1
. 36||w—wsi1]32 . _ 4
< \/EWNPerl [e |w—w +1H2:| \/EW~P3+1 [||W WS+1HV2€S(W5+1)] . (Flg)
(a)-1 (;;_2
Note that, since Psy1 = N(wgy1,cHS 1), there exist orthogonal bases e, ...,eq4 € R< such that

w — w1 follows the same distribution as

d
24/ Y Xje;, where X; "X A(0,1), V5 € [d], (F.19)

and \; (H; 1) denotes the j-th largest eigenvalue of H;'. Then, we can bound the term (a)-1

in (F18) as follows:

~ 36|w—ws 13
\/EW~P5+1 [6 ° 2]

ll:[ 36ch; )Xf] < HEX [e% ,2]

d
36¢ 2 18cd
(]EX~X2 [6 A X]) < EX~X2 [6 A X] s

where the first inequality holds since \; (H o 1) < % In the second equality, x? denotes the chi-
square distribution, and the last inequality is due to Jensen’s inequality. By setting A > 72cd, we
get

\/Ewuzﬂ [e36lw—weril3] < By o [eé] <2, (F.20)

where the last inequality holds due to the fact that the moment-generating function for y2-distribution
is bounded by Ex ., 2[e!*] < 1/y/1 — 2t forall t < 1/2.

Now, we bound the term (a) -2 in (EI8).

\/]Ew~135+1 [”W - W5+1H4vzes(ws+1)] = \/EW~N(0,CH51) [||WH4V255(WS+1)]
= \/Ew~/\/((),cH;1) [Iwl3],
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where Hy, = (V2,(Wy11)) V2 H(V2s(Wei1)) V2 Let Aj = Aj (cH; ') be the j-th largest
eigenvalue of the matrix cH . Then, conducting an analysis 51m11ar to that in equation (F.I9) yields
that

d 4
\/EW~N(0,CH;1)[HW”§]= EXJ-~N(O,1) Z AjXje;
Jj=1 2
. -
= EXjNN(O,l) <Z )\]XJ2>
j=1

d d
= 33 NN Ex X~ [XJ?X]%]
—1j/=1

.

d d
< 3225\;\ \/gcTr(I_{s_l),
j=1j'=1

where the inequality holds due to Ex; v, r(0,1) [XJ2 2] < 3forall j, j' € [d], and the last equality

holds because Z;l:l Aj =Tr (cH;'). Here, Tr(A) denotes the trace of the matrix A.

We define the matrix M1 := Ag/2 + >0, V20, (w,,1). Under the condition A > 2, for any
s € [T] and w € W, we have V2/,(w) < Iy < %Id. Thus, we have H; > M, 1. Then, we can
bound the trace as follows:
Tr (H;') = Tr (H;'V2(Wey1)) < Tr (M V2s(Wes1))
det( s+1)
det(My) ’

where the last inequality holds by Lemma 4.5 of Hazan et al. [26]. Therefore we can bound the term
(a)-2as

=Tr (Ms+1(Ms+l - Ms)) < IOg

det(M;+1)
\/EWNﬁs+1 |:HW - Ws+1H4V2€5(W5+1 :| \fClO T]\}) (F21)
By plugging (F20) and (F21)) into (F-18), we have
W—wW det( 1)
Ew~13s+1 [618” s+1H2HW Wé+1”V26 (Wor1) ] < V6e log W]\}:) (F.22)
Combining (F16), (]FT7[) and (F22), and taking summation over s, we derive that
t t
- det Ms+1)
;e(zsayS) < Z Lo(weyr1) + V6e Z log m
1 ¢ L det(Mayq)
- ;es(wsﬂ 5 ; |ws — Wit +xfc2 log (M+)
t t
1 det( s+1)
= (W — W — wWeit|? + V6elog | ———2F2
2, aWosa) + 50 2, Iws = woal, 8\ det (A1)
! t+1
gZé Wsi1) +—ZHWS W13, + Ve dlog(1+2)\>
By rearranging the terms, we conclude the proof. O

F.3 Technical Lemmas for Lemma I

Lemma F.4 (Proposition 4.1 of Campolongo and Orabona|(12). Let the w1 be the solution of the
update rule
Wit = argminn,ly(w) + Dy(w, wy),
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where V € W < R? is a non-empty convex set and Dy(w1,w2) = (wi) — (wa) —
(Vip(wsy), w1 — wo) is the Bregman Divergence w.r.t. a strictly convex and continuously dif-
ferentiable function 1) : W — R. Further supposing 1 (w) is 1-strongly convex w.r.t. a certain norm
| - | in W, then there exists a g, € 00, (W41) such that

(g, Wip1 — u) < (VP(wy) — Vi (Wig1), Wi — 1)

foranyue W.

Lemma F.5 (Lemma 15 of Zhang and Sugiyamal533). Let {F;}° be a filtration. Let {z:} | be a
stochastic process in Ba(K) = {z € R¥ | |z||o, < 1} such that z, is F; measurable. Let {€;} | be
a martingale difference sequence such that e, € R"™ is F; 1 measurable. Furthermore, assume that,
conditional on F, we have |e|1 < 2 almost surely. Let ¥; = E[e,e] | F;]. and X\ > 0. Then, for
any t > 1 define
t—1 t—1
U = Z<ES’ZS> and Hy =X+ Z |zs]

s=1 s=1

Then, for any 6 € (0, 1], we have

Prlﬂt?l,Ut>\/E(f+jxlog (ﬁ) +\jxlog<§>>] <.

Lemma F.6 (Lemma 1 of Zhang and Sugiyamal53). Let C > 0, a € [-C,C]%, y e RE*! be a
one-hot vector and b € R¥. Then, we have

2
Yo

1
* log(K + 1)+ 2(C + 1)

E(av y) = é(ba y) + Vé(b, Y)T(a - b) (a - b)TvQ[(b7 y) (a - b)
Lemma F.7 (Lemma 17 of Zhang and Sugiyama [53). Let z € RY be a K-dimensional vector.

Let {(z,y) = Zf:o 1{y; = 1} - log (m) where y = [yo,...,yx]" € RETL and the

softmax function o(z) : REX — RE is defined as [o(z)]; = %ﬁ” all i € [K],
k=1
and [o(z)]g = —<r2———. Define z' := o (smooth,(o(z))), where smooth,(q) =
vo+2p_1 exp([2]k)

(1 —p)q+ pl/(K + 1). Then, for i € [0,1/2], we have
E(Zp’, y) - g(zv y) < 2“
We also have |z* | < log(1l + (K + 1)/u).

Lemma F.8 (Lemma 18 of Zhang and Sugiyama[53). Let Li(w) = {;(w) + 5 |w — w, [} . Assume
that Uy is a M -self-concordant-like function. Then, for any w,w € W, the quadratic approximation
Li(w) = Ly(Weg1) + (V2Le(Wip1), W — Wip1) + o2 |[W — wep |3, satisfies

Lo(w) < Lu(w) + M B w = Wi [, -
Lemma F9. Ler w1 = argming (V¥ (W), w) + %Hw - th%f. Then, we have

2
[Wer = wil, < Vel 0 < FI1V0(wW 2 < S

Proof of Lemma[F9 We make a slight improvement to Lemma 20 of Zhang and Sugiyama [53].

Lemma F.10 (Lemma 20 of Zhang and Sugiyamal53). Under the same conditions as LemmalF.9] the
following holds:

VK
[Wesr = willi, <0l Vawe) |0 < FIV0(wo)]l2 < D=
In the proof of Lemma 20 by Zhang and Sugiyama [53l], the bound for |V ¢;(w;)|2 was given as

[Ve:(w)|2 < 24/ K. However, a tighter bound can be established: |V (w;)|2 < 2. Using this
tighter bound, we can refine and derive the improved result. O
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G Proofs of Theorem

In this section, we provide the proof of Theorem [3] In addition to the adversarial construction
presented in Section[D.T] we construct the adversarial non-uniform rewards.

G.1 Adversarial Rewards Construction

Under the adversarial construction in Section we observe that there are K identical context
vectors, invariant across rounds ¢. Therefore, in total there are N = K - ( d 4) items. Let the rewards

be also time-invariant. Given wy, we define a unique item * € [N] as an item that maximizes

xiTwV, i.e., r;» = xy, and has a reward of 1, i.e., r;« = 1. Then, we construct the non-uniform
rewards as follows:

py— b fori=i (G.1)
v, fori # %,

where we define v as

min,es exp(z; wy) 1
~ = min = )
SeS vy + mines exp(x] wy) v + 1

Note that v < 1.

G.2 Main Proof of Theorem[3|

Proof of Theorem[3] Given the rewards construction as (G.I)), any reward in the optimal assortment
S} is larger than the expected revenues.

T .
Lemma G.1. Let R(S*, wy) = vozjiezxpc(fp(:{,)fv) Then, we have

T = R(S*,Wv), Vie S*.

Lemma implies that S* contains only one item ¢*. This is because if S* = {x;+}, adding any
item ¢ # ¢* to the assortment results in lower expected revenue, since r; = v < R(S* = {z;}, wy).

Furthermore, we can bound the expected revenue for any assortment as follows:

Lemma G.2. Under the same parameters and context vectors as those in Section|D} if the rewards
are constructed according to Equation (G.1), for any S € S, we have

max;eg exp(x; wy)

R(S,wy) < .

(S wy) vo + max;es exp(z; wy)
Let z,, ..., 2y, be the distinct feature vectors contained in assortments S; with Uy, ..., U €
\Z7® Let U* be the subset among Uj,...,Ur that maximizes a:[T]wV, ie., U* €

argmaxye(y, ... v} x;wy, where wy is the underlying parameter. For simplicity, we denote
U, as the unique U* € Vg4 in Sy. Then, we have

T T
exp(z{w
DL RIS )~ RS w) = 3 YY) RS, wy)
=1 1 v + exp(x TLwy)
i exp(r{,wy) | MaXes, exp(z] wy)

4 vo + exp (z{wy) v + maxjeg, exp(z] wy)

exp(r{,wy) exp(wgth)

vg + exp wiv) vy + GXp(ﬂﬁgtwv)’

Mw

where the first equality holds becauset S* contains only one item ¢* by Lemma|[G.T] (and recall that
x;» = xv), and the inequality holds by Lemma|G.2] Hence, the problem is not easier than solving
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the MNL bandit problems with the assortment size 1, i.e., K = 1. By putting K’ = 1 and vy = (1)
in Theorem[T] we derive that

1 -
sup E7, [Reg(w)] = Z Ey., Z R(S*,wy) — R(St, wy)
w t=1

1 Z ” i exp(zywy) eXP(xgth)
> Vayal = wy v + exp(zywy) vy + exp(xgtwv)
— 0 (avT).
This concludes the proof of Theorem 3] O

G.3 Proofs of Lemmas for Theorem
G.3.1 Proof of LemmalG.1l

Proof of Lemma|G.1} We prove by contradiction. Assume that there exists ¢ € S* such that ; <
R(S*, wy ). Then, removing the item ¢ from the assortment S* yields higher expected revenue. This
contradicts the optimality of S*. Thus, we have

r; = R(S*,wy), VieS*.
This concludes the proof. O

G.3.2 Proof of LemmalG.2]
Proof of Lemma We provide a proof by considering the following cases:
Casel. i€ S.

Recall that, by the construction of rewards, we have

. min;e s exp(z; wy) min;e s exp(z; wy) exp(zLwy)
v = min - = < - = < T . (G2
SeS vy + mines exp(x; Wy) v + minzes exp(z; wy)  vo + exp(z;. wy)

This implies that

3 expla] wy) (o +esp(ehwy)) <4 D) expla] wy) fesp(elwy)
ieS\{i*} ieS\{i*}

< [explziwy)+ Y expz] wy)y | (vo + exp(z)iwy))

ieS\{i*}

<exp(zfiwy) | vo + exp(zfiwy) + Z exp(z] wy)

ieS\{i*}
T T
- exp(Ta Wy ) + Dieg i) €XP(T; Wy )y < exp(zLwy) . G3)
v + Deg exp(z] wy) vo + exp(zLwy)
Therefore, for all S € S, we have
Yies explz] wy)r; exp(zlwy) + Zies\{i*} exp(z{ wv)y
R(S, Wv) = T = T
Vo + Deg €xp(x; W) Vo + Deg €xp(x; Wy )

exp(zLwy) . MaXes exp(z,] wy)

S+ exp(z.wy) = v 4 maxjes exp(z]wy)’

where the first inequality holds by (G.3), and the last inequality holds since f(z) = % is an
increasing function.
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Case2. i* ¢ S.

. UO""Zi Sexp(z;rwv)
Let us return to (G.2)). Since S e e 1 forany S € S, we have

min;es exp(z; wy) - min;es exp(z; wy) V0 + Dics exp(z] wy)
= s T = . T ’ T
Vo + minzes exp(z, wy) v + minses exp(z; wy) Dies €xp(z] wy)

)

which is equivalent to

Dies exp(z] wy )y min,e g exp(x; wy)
T S : T :
Vo + Degexp(x] wy) v + mingeg exp(z] wy)

Hence, for all S € S, we get

Dies exp(z] wy )y - min;eg exp(:c;rwv) L MaXies exp(x;rwv)
S5 B S .
Vo + Dlies exp(z]wy) v + mines exp(xz wy) vy + max;es exp(z] wy)

R(S, Wv) =

This concludes the proof. O

H Proofs of Theorem 4

In this section, we provide the proof of Theorem[d] Since we now consider the case of non-uniform
rewards, the sizes of both the chosen assortment S;, and the optimal assortment, .S; are no longer
fixed at K.

We begin the proof by introducing additional useful lemmas. Lemma shows that Rt(St), defined
in (6), is an upper bound of the true expected revenue of the optimal assortment, R (S}, w*).
Lemma H.1 (Lemma 4 in Oh and Iyengar 41). Let R,(S) = % And suppose
S; = argmaxgeg lflt(S). If for every item i € S}, oy = x[w*, then for all t > 1, the following
inequalities hold:

Ry(S;,w*) < R(SF) < Re(Sy).

Note that Lemma [H.T|does not claim that the expected revenue is a monotone function in general.
Instead, it specifically states that the value of the expected revenue, when associated with the optimal
assortment, increases with an increase in the MNL parameters [8l 41].

Lemma shows that Rt(St) increases as the utilities of items in S; increase.

Lemma H.2. Ler R(S) = % and S; = argmaxg.g Ri(S). Assume o/); > a; =0
jes tj

foralli € [N]. Then, we have

R (S ) < ZiESt eXp(agi)rti
t\Ft) =X
vo + ZjeSt eXp(“Qj)

Furthermore, we provide a novel elliptical potential Lemma [H.3]for the centralized context vectors
Tt
Lemma H.3. Let H, = M, + 22_11 Gs(Wsi1), where Go(w) = ZiESS ps(i|Ss, W)z gz, —

ZieSS Zjess ps(z’|SS,W)ps(j|Ss,w)acsiij. Define Tg; = T5i — Ejp (|8, woi1)[Tsj]- Suppose
A = 2. Then the following statements hold true:

(1) Zi=1 Zz‘ess pS(i|587W8+1)|‘jsiHiI;1 < 2dlog (1 + d%)r

(2) Yo, maxes,

Fil2, 1 < 2dlog (1 + ).

Now, we prove the Theorem [4]
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H.1 Proof of Theorem 4|

Proof of Theoremd} Let o), = x[;w* + 2B4(0)|@till gy - If w* € C;(0), then, by Lemma|E.1} we
have

i < ThWE 4 2B¢(6)|wei] 1 = o

i

We denote Et(St) = % Then, we can bound the regret as follows:

L

T T
Ry(Sf,w") — Ry(Se, w Z — Ri(S,w Z Ry(S)) — Ri(Sy, w"),

where the first inequality holds by Lemma[H:T]and the last inequality holds by Lemma[H.2]

Now, we define Q : RI®*| — R, such that for all u = (ul,...,umt‘)—r e RIS Q(u)
|Se| exp(ug)Teiy,
F=1 wp+ 3 exp(ug)”

T _ / / T * * * T _ T * T T

(Utiys Uty ) = (s os 0y ) andug = (uf ooy )0 = (T, W wy W)

Then, by applying a second order Taylor expansion, we obtain

Let S; = {i1,...,45,}. Moreover, for all t > 1, let u; =

[
D1~
o)
£

T
ZR (St) — Re(S, w") ) — Q(uf)
=1 =1
T | T )
= > VQuy) (u —uf) + 3 D —uf)'VQ(ay) (uy — up),
=1 i=1
©) (D)
where @; = (Ui, , - -, Uri g, )T € RI¥!l is the convex combination of u; and u;.
We first bound the term (C).
T ~
> VQuy) (u; — up)
i=1
- Z xpoyw)r (e —ufy) = ), Bl Wy Sies, OXPLEi) (ues — uf;)
7 * T
v+ Dkes, exp(z ], w*) ¢ = (Vo + Dpes, exp(z ], w*))? !

Zpt i St W)rei (ues — ug;) Z Zpt i Se, W)reip (] Se, W) (wey — ug)

Il
= HMH ”M“

1ieS; €St jES
. * *
=203 pelilSe, W)y ( ugi —ug) = > pe(ilSe, W) (ug — utj)>
t=1ieS; JESL

[
N

Pe(i]Se, W) <23t(5)9€ti”1{;1 -, pt(j|5tgw*)2ﬂt(5)|-th|Ht—1>

JESt

~+
Il
—
.
m
n
&

H
I M’ﬂ

Z pt |Sta th <$t1|H 11— Z Dt ]|St7 )|mtj|Htl> .

€St JES:
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Let z49 = 0. Then, we can further bound the right-hand side as follows:

T
22 ﬂt Z pt |St7 rtz (”-'L‘tth—l - Z pt(j|5t7w*)$th;1>
t=1

€Sy JESt

T
=2 Z ﬁt Z pt |St7 rtz thiHHt_l - Z pt(j‘Sh W*)thjHHt_l
t=1

i€S jeSyu{0}

) 3 pe@1Se Wi (el s = Bjepuisows) [I71 51 |)
€St
|xthHt‘1])

T
Z Z pe (]S, w") <||33tiHH;1 —Ejp, (15w [
T
< 267(6 Z 2 (] Se, w”) (thiHH;l —Ejpi(1s,wh) [thj”H;l])

M‘ﬂ

z€S+

t= 11€St+
T
<267(0) 5 X, pililSe, w) <Hzti”H[1 — B jmp 150w [Itj]HH;I)
t=1es;F '
T
< 2Br(9) Pe(il St W) [wei = B, (150,w) [215] [ 12
t=1ies+

T
QBT Z pt |St7W*) thz - IEj~p,,(-\s,,,w*) [CL'tj]”Ht—l ,

where, in the first inequality, we define S;“ C S; as the subset of items in S; such that the term
|zeill g1 — Ejp,(1Se,we) [Hztj ||H71] > 0 and ry; € [0,1], the second inequality holds because
B1(6) < -+ < Br(9), the third inequality holds due to Jensen’s inequality, and the second-to-last
inequality holds due to the fact that |a| = [a — b + b| < |a — b|| + ||b| for any vectors a, b € R<.

For simplicity, we denote Ev [2:5] = Ejp, (|5, .w)[Te;]. Let Ty = x4 — Ews[245] and 24y =

zt; — Ew,,,[x+;]. Then, we have

T
PeilSe, W) [t = Bjp, (150w [263] g = D D pe(ilSe, W Zeill o

t=11€S5;

1=

~
Il
—
.
m
0
&

pt(i‘st, )Hmtz xtzHHfl + Z 2 Pt |St, thzHH*

t=114eS;

N
Nl

~
Il
—_
-
m
N
o

T
pe(ilSe, w") |2 — jtiHH;l + Z Z (pe (il Se, w™) — pe (il Se, wit1)) Hi"tiHH;l

t=114eS;

Il
M=

~
Il
—_
.
m
195
&

+
D=

Pe(elSt, wii1) |2 -1 (H.1)

o+
Il
—
.
m
W
-
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where the inequality holds by the triangle inequality. Now, we bound the terms on the right-hand side
of (A1) individually. For the first term, we have

Z Z pt |St7 Hxn —xtzHH 1

t=14eS;

Z pt(i‘ShW*) HEWtJrl [mtj] — Ew- [xtj]HHfl

¢

Z ‘Stv

1€S}

Z (P (419t Wes1) — pe(G[Se, W)

JESt

b

H?

where the last equality holds due to the setting of z;y = 0. By the mean value theorem, there exists
& = (1 — ¢)w* + cwyq for some ¢ € (0,1) such that

Z (pe(31Se, Wei1) — pe(d|Se, W) @4, 2 Vpi(§1Se, &) T (Wig1 — W)y,

JESE H;l JESE H;l
< Z Ve (]St &) T (Wepr — w)| thjHH;I
JESt

T
= Z <pt(j|Sta€t)$tj —pe(3156, &) Z Pt(k|5t>§t)xtk> (Wi —w") ||xthH;1

JES: keSy

< ) 2ol &) [l (Ween — W) s
JES

+ 37 pe(ilSe &) |25 g 7 pe(k|Se &) gy (Wipr — W)
JES keS,

. 2
< Z pe(J1Se, &) [Wewr — W' g, ¢ HH;l
Je€S, ’

+ 37 pe(ilSe &) |25 gy > (kIS &) |wenl g [wern — W,
jeS, keS, )

2
< Bi+1(9) Z JAVIES DN E H?q;l + Br41(9) (Z pe(j] S, &) wtht1>

JES: JESt

< 26141(8) ) pe(jISe &) Jwesl 7
JES:

2/Bt+1( )maX thjHH 1,

where the fourth inequality holds by Lemma|I]and the second-to-last inequality holds due to Jensen’s
inequality. Hence, we have

T
Z D (il S, W) |2 — Toil g1 < 2 D7 Biv1(8) D pelilSe, w ma‘XH'rthH 1

t=11eS; t=1 €St

2
< 2B741(6) t; max [ [y

4 T

where the last inequality holds by Lemmal[E.2] Using similar reasoning, we can bound the second
term of (FL.T)). By the mean value theorem, there exists &, = (1 — ¢’ )w* + ¢'wy1 for some ¢’ € (0,1)
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such that

2 (pe (il Se, w") — pe (il St, Wit1)) HitiHHgl = 2 Ve(il Sy, &) (w* — Wt+1)”fti”H;1

€S} €St

T
= Z (Pt(ﬂ&»ﬁfs)%i = pe(ilSt, &) 2 Pt(k|5t»5:/s)xtk> (w” _Wt+1)H‘%tiHH;1

€St keS¢

< Be1(6) )] Pe(il S, € weil gy |2 eill gy -

€St

801 () Y pulilS €|l g1 Y oISt €l o

€S} keS¢

< Berr(O) max ool g |Zeil g2 + Ben () max |Zeil s max |wew | gy
Then, by applying the AM-GM inequality to each term, we obtain

Ber1(0) max [weill g2 |Zesl pr2 + Ben () max |Zoil 2 max |ew | gy

2 2
il o+ 1l (maxies, il 1)+ (maxees, [zl )
< Biy1(0) max ‘ 3 — + Bit1 - 5 -
t
i1 + el -1 maxies, [F2-1 + maxies, |o]?
=ﬂt+1(6)1}é%x - D) — + Bi4+1(0) : B :
t

< 2f;41(6) max {H;gx I\wti\lﬁ;ulirégf |itii1t—1}

where the equality holds since (max; ai)2 = max; af for any a; > 0. Thus, by Lemma (or
Lemma [E2)), we get

T
3 3 uliliw) = puif S wis) 7y

t=11eS;

4 T
2 =2
< 2f;+1(6) max {rzré%iq |‘xti‘|H;l’I;2%i( |xtth_1} < EBTH((F)dlog <1 + d)\> ,, (H.3)

Finally, we bound the third term of (H.I). By the Cauchy-Schwarz inequality, we have

T T T

20 20 pelil S wes )| Euil o < | D5 X peElSe wern)y | D) X pel St Wer1) el

t=11€S; t=14eS; t=11€eS;
<VTy|2dlog (1 + 2 (H.4)
& A '
where the last inequality holds by Lemma[H.3] Plugging (H:2), (H.3), and (H4) into (H:I), we get

Z Zpt |St, thz - ~pt(-ISt,W*) [xtj] HH;1

t=11€S;
8 T
\F\/leog 1+ ) + EﬁTﬂ(é)dlog (1 + d)\)

Thus, we can bound the term (c) as follows:

iVQ(u*)T(u —u}) < 2B7(8)VTy [2d1o 1+T) + 358 (5)8r 1 (6)d1o (HT)
= t t t) = T g ax - T T+1 g Y

(H.5)
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Now, we bound the term (D). Define @ : Rl — R, such that for all u = (u, ... ,Uls,|) € RIS:,

Qu) = ZISt\ % Then, we have Sug < Sja(j since r; € [0, 1]. By following the
j=1 J

similar reasoning from Equation (E:3) to (E-3) in Section[E.T| we have

T
1 - \ *Q
5 Z (u —up) 'V2Q(a) (w — uf) = 5 Z Z 2 (uei — uf;) 507 o (g — ug)
t=1 t 14eS; jeSt
| T
SEPIPIDINELE — ujj|
t=1 ESf ]ESf
< 1087(8 Z maX meHH 1. (H.6)
where the first inequality holds because g:g, ‘ < |5 aj ) Combining (H.3) and (H.6), we derive that

Regy (w") < 260 (VT \/2dlog dTA)+fﬂT<6>ﬁT+1<a>dlog<1+£)

+ 1087 (6 Z max Ha:mHH 1

=0 <d\/T+ Hd2> ,

where Sr(6) = O (\/E log T log K ) This concludes the proof of Theorem O

Remark H.1. If the boundedness assumption on the parameter is relaxed to |w|s < B, since
Bi(6) = O (B\/ElogtlogK + B3/2,/dlog K) (refer Corollary , we have Regp(w*) =
O (B¥2dVT + L1a?).

H.2 Proofs of Lemmas for Theorem [

H.2.1 Proof of Lemma[H.2]

Proof of Lemma[H.2] We prove the result by first showing that for any i € S;, we have r4; > R;(S;).

This can be proven similarly to Lemmam Suppose that there exists ¢ € Sy for which r;; < Rt(St).
Removing item ¢ from the assortment S; results in a higher expected revenue. Consequently,

S # argmaxgeg Rt(S ), which contradicts the optimality of S;. Thus, we have
re = Ry(Sy), VieS,.

If we increase a; to o, for all i € S, the probability of selecting the outside option decreases. In

other words, the sum of probabilities of choosing any i € S; increases. Since ry; = R:(.S;) for all
i € Sy, this results in an increase in revenue. Hence, we get

ZiESt exp(av;)re; < ZieSt exp(ay; )Tt

Rt(St) = x .
Vo + Xjes, exp(atj)  vo + Xics, exp(ay;)

This concludes the proof. O
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H.2.2 Proof of Lemma[H.3|

Proof of Lemma[H.3] For notational simplicity, let Ew[x¢;] = Ej<p, (|5, w)[Z¢;]- Let z,0 = 0. We
can rewrite G (w) in the following way:

Gs(Wsr1)

= 2 ps<i|Ssaws+l)$six;ri - Z 2 ps(i|Ssvws+1)ps(j|SsaW5+1)xsix;rj (H7)
i€Ss i€Ss JESs

= O ps(ilSewer)zazl = > DT pe(ilSe, Wai1)ps(41Ss, Was1)wsin
€Ssu{0} 1€Ssu{0} jeSsu{0}

T
= Ews+1 [I%stz] - Ews+1 [x%] (Ews+1 [$%])

=Ew, [(l’sz —Ew, s [wsm])(l’si —Ew.,, [wsm])T]

= Bw. . [F@i] = Y polilSe, Wer1)Eadl; = Y pa(ilSs, Woy1)Esi -
1€Ssu{0} €S,

This means that

Hywy = Hy +Gi(Wigr) = Hi+ Y polil S, Wig1)Fad);, (H.8)

€St
Hence, we can derive that
. ~ 2
det (Ht+1) > det (Ht) (1 + Z pt(l|Stawt+l)|xtthl> .
€St

Since A > 1, forall ¢ > 1 we have 3, g, Pe (1|, Wiy 1)|Zi])? 0 < + maxies, |[#4)l2 < 1. Then,
) t

)
using the fact that z < 2log(1 + z) for any z € [0, 1], we get

t t
Z 2 pS(/L'lSSstJrl)Hi'siHils—l <2 2 log (1 + Ps(i‘557ws+1)||fisi\\§{;1>

s=11eS; s=1
t
det(Hs_;,_l)
<2 I —_—
52:1 Og( det(H,)
— 2log (det(Ht+l)>

det(Hl)
< 2dlog (tr(‘g;“)) < 2dlog (1 + th> .

This proves the first inequality.
To show the second inequality, we come back to equation (H.8). By the definition of , we get

Hyp1 = Hy + Ge(We1) = Hy + Z pe(i] St Wig1)Zud);

€St
~ AT
> H; +k E Ty

€St

Thus, we obtain that

det (Hyy1) = det (Hy) (1 + K Z |j}ti2Ht1> > det (Hy) (1 + ko max ”i‘tiQHtl) :

1€S}
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Since A > 1, for all ¢ > 1 we have kK maxeg, meHH_l < %[Z4if2 < k. We then reach the

conclusion in the same manner:
t

Smaxlealy <

:Mw

t
= 2
Z log (1 + K max xsi|H31)

% s (i)

os (S

H
dlog (tr(d;\ﬂ)> < %dlog <1 + dt)\>

This proves the second inequality. O

<

N
T TN ;ﬂw

I Proof of Proposition

I.1 Main Proof of Proposition|[i]

Proof of Proposition[l} We construct the parameters and features in the same way as in Section [D.1]
Recall that, by Proposition |D.1} it is sufficient to bound >};_g. p(i[S*, wv') — > 5, P(i[St, Wv).
We denote U, as the unique U* € Va4 in S;. We define a function i : R — [0,1] such that for

w(z) = Ji?iggzz)' Since all items in S* (and in S;) are identical, we can express

Dicss P(AS*, wy) (and X, 5, p(z’|5’t, wy )) as follows:

any z € R,

A K exp(x{,wy)
2 p(7’|S 7WV) = ( B T = M($€WV)7
= vy + K exp(z,wy)
Kexp(zl wy)
>, pilS* wy) = U — (] wy).
= vo + K exp(af wv) Ui

Given wy, we define k7 (W) := D> _q. D (1]S*, Wy )pe (0]S*, wy). Since the context vectors {xy; }
are constructed to be invariant across rounds ¢, x; (wy) is also independent of ¢, i.e., K] (wy ) =

- = Kk} (wy ). Therefore, we omit the index ¢ for simplicity. Note that, in our instance construction,
K (wy) = plagywy) (1= plagywy)) = a(zywy).

We hypothesize that for all V' € V4, the regret is dominated by d/x*(wy )T If this assump-
tion does not hold, then by definition, there exists some V' € Vy/, such that Ey [Regy(wy )] =

Q (d«/ m*(wV)T>, thereby completing the proof.
Hypothesis. There exists a constant C' > 0 such that:
Ey [RegT WV < C-dy/k WV T YV e Vd/4. (L.1)

Additionally, we set w* = argmax,,  £*(Wy ), thus, we have k* = k*(W*) = maxy, £*(Wy).

To establish an instance-dependent lower bound for pu(z{,wy ) — u(ngwv), we use the following

lemma in place of Lemma[D.I}

Lemma L1. Suppose ¢ € (0,1/d/d) and define § := d/4 — |U; n V|. Then, we have

T . T < K*(Wy) E
plefwy) = plegw) = T

For any j € V, define random variables ]\;[j = Zthl 1{j € Ut} Then, by Lemma for all
V€ Vg4, we get

Eyv Y plilS*, wy) Zp(ﬂét,vvv)%*(;v” 6( ~ M Ey[M ) 12)

eS* i€S, jev
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Additionally, we define V(j) ={VeVys:jeViand Vg :={V < [d] : |V| = d/4 - 1}.

By averaging both sides of Equatlon (C2) with respect to all V € V, /4> and by following reasoning
similar to that in the proof of Theorem I} we get

Z Ey Z (i[S™, wy) Zp(ﬂgt,Wv)

|Vd/4| VeVys i€S* ieS,
k*(wy) e (dT Z ’ i ‘
> . — 1 . .
3 \/8 ( Verg:jf 1 " EVU{]} EV[ j] (I 3)

For simplicity, let P = Py and Q = Py (;;. Then, we can bound the term ’EVU{ ) [M ] —Ey []\Z/j]‘
in (L3) forany V € V1.

‘EP[MJ] - EQ[MJ] | < it' ’P[Mj = 1] - Q[M, = t]’

1
ST |P=Qlrv <T -4 /5 KL(P|Q), (1.4)

where |P — Q| v = supy |P(A) — Q(A)]| | is the total variation distance between P and @,
KL(P|Q) = §(logdP/dQ)dP is s the Kullback-Leibler (KL) divergence between P and (), and the
last inequality holds by Pinsker’s inequality. We can derive the instance-dependent bound for the KL
divergence term in ([4) by the following lemma:

Lemma L2. ForanyV € Vy4_1and j € [d], there exists a positive constant Cy, > 0 such that

d
Z KL(Py Qv o) < Ck - €K% (wy)T.
j=1

Plugging ([4) into (L3), we get

> Ev ) plilS*, wy) Zp(i\gt,wv)

S i€eS* i€S,

() - <d6T _T; ;mu@)

’Vd/4’ v

\%

> —
3 Vd\ 6
TR £ B R
= 3 \/&(6 T\/E QCKL GKJ(W\/)T s

where the second inequality is due to the Cauchy-Schwartz inequality, and the last inequality is by
Lemma

By setting € = 4 /m, we have
D1 Ev Y p(ilSt wy) = D p(il S, wy)

|Vd/4| VeV ieS* i€5,

K (wy) 1 dT
> — 7. . R
3 \/& 72CKL . K*(Wv)T 12

=0 (dv/w (W )T).

Recall that by construction, £* = maxy,, £*(Wy ). Thus, by taking the maximum over wy,, we
complete the proof of Proposition|[T} O
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L2 Proofs of Lemmas for Proposition
1.2.1 Proof of Lemmal[L1l

Proof of Lemmalll} For simplicity, let z = v and & = z, . Then, by the mean value theorem, we
have '
1
A . N AN T
iz wy) — p(@ Twy) = J f(zTwy +o(@ —2) wy) (2 —2) wy
v=1
fi(zwv)

T4 (z—2)Twy|

fu(z"wy)
5 (@

(z—2) wy

A\

— L%)T Wy

_ ”*(;VV) (@ —2) wy
K*(wy)  de

3
where in the first equality, Z is the convex combination of x and Z, the first inequality holds by
Lemma[[.3] the second inequality holds by the bounded assumption (Assumption [I), and the last
inequality holds by the definition of 6 = d/4 — |U; n V. O

=

1.2.2 Proof of Lemma|[[.2]

Proof of Lenzmaﬂ Consider a fixed round ¢, an assortment 5}, and the set Ut Let U = ﬁt.
Define m;(St) 1= 3., 3, 1{j € U}/K, which captures the average presence of j € U across the

K exp(zj,wy)

Kexp(IUWVU{J})
vo+K exp(zwy) - Then,

assortment S;. For simplicit , we denote p =
t p y p vo+K exp(z,wy ogj1)

we get

and g =

KL (Py (150IPvoy (150) < X (Pv (190 Py (150))
= x*(Bernoulli (p) | Bernoulli (¢))
_(-9® (-9
q i I—q

_(p—9a?

q(1—q)
_ (ulzfwy) - wlahwy o)’

iz wyogy)

_ (ilafwyy)” 2T (wor —wor )2
- /l(x—(ngu{j}) ( U( Vv VU{J})) )

where in the first inequality, we used KL < x? (Tsybakov [50], Chapter 2), where x? is a chi-square
divergence, the second equality holds by the expression of the chi-square divergence for Bernoulli
random variables, and the last equality holds by the mean value theorem, where Wy ; is a convex
combination of wy and wy ;3. Then, by Lemma@ we can further bound the last term as follows:

KL (Py (1S0)IPvoy (150) < lwgwy)ell=e (v mveol (of (wy = wyoggy)

2

< ilafw) e (o] (wy —wy o))’
< lalw)e (o] (wy = wy o))

1/4 mj(gt)e2

d )
where the second-to-the last inequality holds based on the assumption that d > 4, and the last
inequality holds since m;(S;) < 1

< filzfwy e
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Now, let us consider ¢ varying over the round ¢ € [T']. Then, we obtain

d T

> KLV Qo) = 2 PR v [KL (Py C1S0IPvogy (15) |

d T
<SS S Ry [ief, w) - my(50)]

d
-t S| 3 (stafom) Smi0)|

<

Il
—
o~

Il
—

€
<61/4' EV

(5" (wy)T + Ey [Regp(wy)])

< Cky, - 0} (H*(WV)T + d\/m) ,

the equality follows from the chain rule of relative entropy (cf. Exercise 14.11 of Lattimore and
Szepesviri [32]]), the second inequality holds because Z?=1 m;(S;) < 4, second-to-the last in-
equality holds by Lemma|[[.5] and the last inequality holds by the hypothesis (Equation (L.I)) with
CKL > 0.

Furthermore, by the definition of x (Assumptlon' we know that x* (wy ) > k. Hence, given the
assumption that T’ > d?/k > d?/k*(wy ), we derive that

d
D IKL(Py |Qvogy) < Ckw - 6% (wy)T,

which concludes the proof. O

L3 Technical Lemmas for Proposition

Lemma I.3 (Lemma 7 of Abeille et al. [4]). Let f be a strictly increasing function such that | f | < f
and let Z be any bounded interval of R. Then, for all z1,25 € Z:

/(2)

— € :
T+ |21 — 2]’ Jor z € {z1, 22}

1
J_Of.(zl +v(ze —21))dv =

Lemma L4 (Lemma 9 of Abeille et al. [4]]). Let f be a strictly increasing function such that | f | < f
and let Z be any bounded interval of R. Then, for all z1,25 € Z:

fz2) exp(—|z2 — 21]) < f(21) < f(22) exp(|22 — 21).

Lemma L5 (Lemma 11 of Perivier and Goyal [44])). Let k} := Zies; p(i|Sf, w*)p (0].SF, w*).
Then, we have /

T
Z Z pe(i]Se, w¥)pe (0] S, w Z ki + Regp(w”).

t=11€S; t=1

J Proof of Proposition 2|

In this section, we provide the proof of Proposition[2] We introduce useful lemmas to support the
proof.
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Lemma J.1 (Theorem 4 of Tran-Dinh et al. [49]). Let f : RK — Rbea M ¢-self-concordant-like
Sfunction and let x,y € dom(f), then:

e Milv==l272 f(2) < V2 f(y).

Proof of Proposition[2] We begin the proof with Equation (E.2)) from the proof of Theorem 2}

T
Z Quf)" (u; —uf) < 287(6 Z D7 (il St w*)pe 015y, w el gr-1- J.1

t=11€S;

We then divide the total rounds into two disjoint sets, J; and Jo, such that J; | ) Jo = [T']. Specifically,
let J1 = {t € [T]| Xics, Pe(ilSt, w*)pe (01Se, w*) = >lics, pe(i]St; Wey1)pe (0]Se, wii1)} and
Jo = [T\ J:. For a better presentation, we also define that:

ge(S;w) := > pe(ilS, w)p: 0[S, W)@t g1
€S

Then, we can rewrite the right-hand side of (J.I) as follows:

2Br(6 ZZPt il.Se, W )pe (015, W) [ w4i|

t=11€S;
T
=2B1(8) X 9:(S; w
t=1
= 261"(5) Z gt(St;W*) =+ 2ﬁT(5) Z gt(St;W*).

teJq teJa

To bound ;. ; g¢(S¢; w*), by the mean value theorem, we get

D9 (Sw) = D (St wia) + ) Vawge(Sewe) T(w* — wipa), (J.2)

i€J1 i€J1 iEJl

where Wy is the convex combination of w* and wy, 1. The first term of (J.2)) can be bound by

Z 9¢(St; W)

teJqy

D0 2 pelilSe, Wi )pe(01Se, Wiga) [ D] D pali 115t W1 )pe (01Se, Wesr) |23,

teJy €S, teJy 1€S}

> 3wt wpi(0]Sy, W) - O (Vi) < imHRegT(w*)-@(\/&), 13)

teJy i€St

where the second-to-the last inequality holds by the definition of .J; and the elliptical potential lemma
(Lemmal|E.2)), and the last inequality holds by the following Lemma:
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Moreover, the second term of (I:2) can be bounded as follows:

Z VGt (St; Wt)T(W* —Wii1)

i€y

> pe(01Se, W) D pe(lSe, o)y (W = W) | gy

teJy €Sy

= 2p:(01Se, we) D pelil Sty W) weill g1 Y, pe(d]Se, We)a (W = Wiga)

€Sy JES:
2
) > >, pe(il St Wi)leil 1 + 267 (6) > (Z pt(i|St7wt)xti|Htl>
teJy i€S; ) teJ1 \i€S:

2
<p Z max HxﬁHH 1+ 287(6) Z <Igé%i(9€n||Ht1)

teJy teJy

< 387(5) 2 max w2 = O (4%/x) (1.4)
f=1 "7 ¢

where the first inequality holds by Lemmal(T] and the last inequality holds by Lemma[E.2] Combin-
ing (I.3) and (I.4), we can bound the term ;. ; g:(S¢; w*) as follows:

T
Z gi(Sy;w*) <O | Vd- Z K+ Regp(w*) +d*?/k |. J3.5)
teJy t=1

Now, we bound ;. ;. g+(S:; w*). We define H; := M4 + 22;11 Gs(W*). Recall that V2/,(w) =

G (w) and £, is 31/2-self-concordant-like function (Proposition|C.1). Then, by LemmalJ.1} we get

Hy > Ht*e_3‘/§. With this fact, we can now bound the term ;. ; g:(S¢; w*):

Z 9:(Sp; w Z Z pe(i]Se, w*)pe (0] Sy, w Z Z pe(i|Se, w*)pe (0] S, w )Hfﬁtzﬂfqt—l

teJo teJo 1€S} teJo 1€S}

T T
< \ Dlkf+Regpy | Y Pt(i|5taW*)Pt(0|5tvw*)||$ti\\?{;1
€St

t=1 t=1

T
S \ Z ki + Regp Z Z e (i S, w*)pe (0[Se, w )th’iH%Ht*)fl

t=1 t=114ieS,

(1.6)

where the second inequality follows from Lemma|[[.5] second-to-the last inequality holds because
H, > Hf e~3V2_ and the last inequality is obtained by a slight modification of Lemma with

*

Wi,..., Wpr =W .

Now, by plugging (I3) and (I-6) into (IT), and using the fact that 37 (5) = O(v/d), we obtain that

T
267(8 Z Z p1(i]St, w*)pe(0]St, w )thiHH;l =0|d Z K} + Regp(w*) + d*?/k

t=114€S; t=1

Furthermore, by applying the same analysis as in the proof of Theorem [2]in order to bound the
second-order term in the Taylor expansion (term (B) in (E-I)), we get

T
Reg, (w*) =0 | d Z Ky + Regp(w*) + d*/k

t=1
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By solving the above equation, we conclude the proof of Proposition 2}

K Experiment Details and Additional Results
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Figure K.1: Runtime per round under uniform rewards (first row) and non-uniform rewards (second
row).
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Figure K.2: Cumulative regret under uniform rewards with vy = ©(K).

For each instance, we sample the true parameter w* from a uniform distribution in [—1/+/d, 1/v/d]%.
For the context features x;;, we sample each x;; independently and identically distributed (i.i.d.) from
a multivariate Gaussian distribution A/(04, I) and clip it to range [—1/+/d, 1/+/d]%. Therefore, we
ensure that [w*[» < 1 and |2[> < 1, satisfying Assumption[T] For each experimental configuration,
we conducted 20 independent runs for each instance and reported the average cumulative regret
(Figure[T) and runtime per round (Figure [K.T) for each algorithm. The error bars in Figure/[T] and%
represent the standard deviations (1-sigma error). We have omitted the error bars in Figure
because they are minimal.

In the uniform reward setting where r,; = 1, the combinatorial optimization step to select the
assortment simply involves sorting items by their utility estimate. In contrast, in the non-uniform
reward setting, rewards are sampled from a uniform distribution in each round, i.e., r; ~ Unif (0, 1).
For combinatorial optimization in this setting, we solve an equivalent linear programming (LP)

problem that is solvable in polynomial-time [47, 21]. The experiments are run on Xeon(R) Gold
6226R CPU @ 2.90GHz (16 cores).

Figure [KI] presents additional empirical results on the runtime per round. Our algorithm OFU-MNL+
demonstrates a constant computation cost for each round, while the other algorithms exhibit a
linear dependence on ¢. It is also noteworthy that the runtime for uniform rewards is approximately
10 times faster than that for non-uniform rewards. This difference arises because we use linear
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programming (LP) optimization for assortment selection in the non-uniform reward setting, which is
more computationally intensive.

Furthermore, Figure [K.2]illustrates the cumulative regrets of the proposed algorithm compared to
other baseline algorithms under uniform rewards with vy = K /5. Since vy is proportional to K, an
increase in K does not improve the regret. This observation is also consistent with our theoretical
results.

L. Technical Errors in Agrawal et al. [S]

In this section, we discuss the technical errors in Agrawal et al. [5]. There are two main significant
errors: There are mainly two significant errors:

1. Equation (16).
i (X, 00,07 )ys 1= p1i(X5,0%) — (X5, 64), (L.1)

where X g, is a design matrix whose columns are the attribute vectors z; of the items in the assortment
St and [LY(X:S«rtG) = Pf(Z|Sf, 9)

It appears that the authors may have intended to derive this equation using a first-order exact
Taylor expansion. However, in MNL bandits, this equation generally does not hold. Consider a
counterexample where zy; = 0, x4; # 0 for j # 4, and 6* # 6,. Then, the left-hand side of (L.I)
is equals to O (since xy; = 0), but the right-hand side of @]) is not 0, because the denominators
of each 4;(X ¢ 6*) and y;(X{, 6;) differ. This equation only holds in special cases, such as when
K =1, which corresponds to the logistic bandit case. Equation (16) in Agrawal et al. [5] serves as
the foundation for the entire proof in their paper. Consequently, all subsequent results derived from it
are also incorrect.

2. Cauchy-Schwarz inequality in the regret analysis (Page 46)
When using the Cauchy-Schwarz inequality on the regret before applying the elliptical potential
lemma, they indeed incur an additional v/ K factor:

T
Z min (Z lzeill 51, 1> < VKT, | min (Z lzeill3 s 1).
=1 ’ !

€St €St

Hence, their regret should actually be @(d\/ KT + d?/k), which is worse than the result in our
Theorem [2] (upper bound under uniform rewards) by a factor of K.

M Limitations

To determine the optimistic assortment in line 5 of Algorithm [T} we must calculate the optimistic
utility «; for each item ¢ € [N]. Consequently, the computational cost for each round scales
polynomially with IV, the number of items. If IV is very large, or infinite, our proposed algorithm
becomes intractable. It is important to note that much of the existing literature on contextual
bandits [12} 10, 124} [1, 20, |648} 16}, 40, 141 14} 144] also requires enumerating all items to select the item
for each round.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Abstract and Section/[]]
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section[M]in Appendix
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Assumption[I]and[Z]

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Secion[/]and Section[K]

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:

Justification: We have included the code in the supplementary material. After our paper is
accepted, we will provide open access to the code.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Section[7]and Section[K]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Figure[T]and[K.2] We omitted the error bars in Figure [K.T|because they are too
minimal to be significant.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

60


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Section[Kl
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification:
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: This paper focuses on theoretical results and therefore does not discuss societal
1mpacts.
Guidelines:
* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: This paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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