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Abstract

Pretraining on a large-scale corpus has become a
standard method to build general language mod-
els (LMs). Adapting a model to new data dis-
tributions targeting different downstream tasks
poses significant challenges. Naive fine-tuning
may incur catastrophic forgetting when the over-
parameterized LMs overfit the new data but fail to
preserve the pretrained features. Lifelong learn-
ing (LLL) aims to enable information systems to
learn from a continuous data stream across time.
However, most prior work modifies the training
recipe assuming a static fixed network architec-
ture. We find that additional model capacity and
proper regularization are key elements to achiev-
ing strong LLL performance. Thus, we propose
Lifelong-MoE, an extensible MoE (Mixture-of-
Experts) architecture that dynamically adds model
capacity via adding experts with regularized pre-
training. Our results show that by only introduc-
ing a limited number of extra experts while keep-
ing the computation cost constant, our model can
steadily adapt to data distribution shifts while pre-
serving the previous knowledge. Compared to
existing lifelong learning approaches, Lifelong-
MOoE achieves better few-shot performance on 19
downstream NLP tasks.

1. Introduction

Language models (LMs), from word embed-
dings/vectors (Mikolov et al., 2013), to recurrent
neural networks (Sutskever et al., 2014), and to the latest
self-attention-based Transformer networks (Vaswani et al.),
play increasingly important roles in natural language
processing (NLP) tasks, including both language generation
and language understanding. Recent works on scaling
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Figure 1: Overview of our Lifelong-MoE method: 1) During
pretraining, the expanded experts (and gatings) are specialized
for each data distribution; 2) We freeze the pretrained old experts
and gatings; 3) We further introduce regularizations to the MoE to
avoid the catastrophic forgetting.

up both pretraining data and large models (Shazeer et al.,
2017; Huang et al., 2019; Kaplan et al., 2020) enable the
inference on complicated NLP tasks with much less data,
and fewer or even no additional label for downstream tasks.
For example, BERT (Xu et al., 2019) and GPT-3 (Brown
et al.) demonstrate that for few-shot or even zero-shot gen-
eralization on downstream corpus, current LMs only require
very few labeled examples to achieve good generalization
on unseen tasks. More recently, GLaM (Du et al., 2022)
proposes using a sparsely activated mixture-of-experts
architecture to scale the model capacity while incurring
substantially less training cost compared to dense variants.

Pretraining large language models (LMs) has become the de
facto standard before adapting NLP models to downstream
tasks. This is extremely successful when the pretraining
and downstream task are drawn from the same corpus dis-
tribution. Most of time, benchmarking large LMs blindly
assumes the existence of a static and well-balanced pre-
training dataset. While being accurate, the performance
of large LMs on downstream tasks heavily relies on the
high quality of large-scale pretraining, which is not always
guaranteed in the wild for several reasons. First, at the data
level, new language corpus (online forum conversations,
new wikipedia pages, websites, book chapters, etc.) mostly
emerges in a streaming online fashion. That means to keep
our pretraining dataset up-to-date, new data distributions
will be collected continuously, instead of being statically
stored offline in batches. However, in real-world scenarios,
sequentially pretraining LMs on new corpus samples with
changing distributions will cause catastrophic forgetting on
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previously learned knowledge. In addition, the collection
and maintenance of such high-quality corpora is intensive in
manual labor. Second, at the optimization level, pretraining
a large LM is time and resource consuming, especially on
an increasingly large pretraining corpus. For example, pre-
training a GPT-3 model with 280B language tokens requires
over 500 TPU hours (Du et al., 2022). As the number of
tokens in the pretraining set increases, the pretraining cost
will keep rising.

In practice, it is highly preferred to continually pretrain LMs
whenever a new corpus is collected, in order to reduce train-
ing codecodingst and enhance performance on previously
out-of-domain data. Despite its importance, the challenge of
continually pretraining a large LM over online data streams
is largely under-explored. Lifelong learning (LLL) is a re-
search topic on solving this data/task shifting issue. As
opposed to computer vision or robotics, LLL is particularly
challenging and nascent in the NLP domain (Greco et al.,
2019; Sun et al., 2020c), as natural language is composi-
tional and context-dependent. Prior works in LLL primarily
focus on task-incremental settings with boundary-aware
data streams. Starting from the same pretrained checkpoint,
these LLL methods are usually evaluated on a sequence
of downstream tasks instead of pretraining data distribu-
tions (Aljundi et al., 2019). However, this task-level lifelong
learning is not the most practically common setting in NLP,
because: 1) pretaining is usually agnostic to downstream
tasks; 2) as LMs are shown to be few-shot learners, a steam
of downstream tasks will incur marginal or zero impact on
the pretrained weights. Instead, any shift in pretraining data
will pose real forgetting issues.

In this work, we target solving the data-level lifelong pre-
training with shifting distributions in NLP tasks, especially
for large language models. We aim at task-agnostic preser-
vation of domain-specific knowledge from a sequence of
online pretraining corpus distributions. We start our method
on top of the mixture-of-experts (MoE) (Shazeer et al., 2017;
Lepikhin et al., 2021; Du et al., 2022), with an intuition that
MOoE can increase its model capacity for fitting changing
corpus distributions along the online data streams without in-
curring extra computation cost. Our finding is that, by only
introducing extra expert layers plus proper expert regular-

izations, we can continuously pretrain a mixture-of-experts
model on a sequence of data distributions without forget-
ting old knowledge, and achieve competitive or even better
one-shot performance in downstream tasks. The expanded
experts will not increase the computation overhead, since
they are always sparsely activated and only a fixed number
of experts will be selected for each token. Specifically, we
show the benefits from three key lifelong learning strategies
for MoE: 1) partially expanded experts and gating dimen-
sions; 2) frozen old experts and gatings with only newly
expanded ones to be optimized; 3) output-level regulariza-

tion from previously pretrained knowledge. With these
three methods, we aim at creating a well-balanced trade-off
between maintaining old knowledge and fitting new distri-
butions. Compared with the dense counterpart, our method
can achieve competitive or even better decoding scores on
one-shot downstream tasks, including the QA (question an-
swering) task and the translation task. Our contributions are
summarized below:

* We propose the first lifelong pretraining framework for
large-scale mixture-of-experts (MoE) language models
that is agnostic to downstream tasks.

* We progressively expand the number of experts to increase
model capacity and fit new pretraining data distributions,
and preserve old knowledge by freezing previously trained
old experts and gatings.

* We carefully study the output-level regularization to allow
dense layers in MoE to fit new data distribution without
forgetting old distributions.

* We achieve state-of-the-art decoding scores on down-
stream one/zero-shot tasks, including the QA task, the
translation task, and other language understanding tasks.

2. Related Work

Pretraining and Fine-tuning in Language Models Deep
networks are shown to be powerful in many NLP tasks.
Works using recurrent networks such as RNNs and
LSTMs (Mikolov et al., 2010; Sutskever et al., 2011) for
word/sentence representations (Dai & Le; Kiros et al.)
show that language models can improve diverse NLP un-
derstanding tasks. More recently, self-attention and trans-
formers (Vaswani et al.) demonstrate that larger models
with unsupervised pretraining on unlabeled data can yield
significant generalization on NLP problems (Devlin et al.,
2019; Yang et al., 2019; Liu et al., 2019; Clark et al., 2020).
Abundant computation resources and corpus data makes the
pretraining of increasingly large language models possible.
These large language models leverage the scaling power of
model size and the network’s remarkable fitting capacity.
Transfer learning based on pretraining and finetuning (Raffel
et al., 2020; Houlsby et al., 2019) has been extensively stud-
ied and shows good performance on few-shot downstream
tasks. The problem of current pretraining and fine-tuning
paradigm is that, updating the pretraining dataset will incur
repeated heavy re-training cost.

Sparsely Gated Networks Despite the success of large
and dense language models, training these networks requires
significant amounts of computing resources. To keep scal-
ing up NLP models without incurring heavy computational
cost, mixture-of-experts (MoE) is recently developed to en-
able sparse activations in dense layers, and demonstrates
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significant advantages. For language modeling and machine
translation, Shazeer et al. (2017) shows that they can use a
large number of parameters while only activating a small
subset for each inference. The choice of dense layers to
activate is controlled by a learnable gating function. There
is an increasing number of works on scaling sparsely ac-
tivated MoE architectures (Hestness et al., 2017; Shazeer
et al., 2018; Lepikhin et al., 2021; Kudugunta et al., 2021),
including Switch-C (Fedus et al., 2021) and GLaM (Du
et al., 2022). All these MoE efforts show greatly reduced
training energy and computation cost, while still achieving
better overall zero, one, and few-shot performance across di-
verse NLP tasks and domains (Gururangan et al., 2021). In
this work, we will show a further advantage of MoE: the ex-
panded experts and gatings can enlarge the model capacity
of multiple data distributions without introducing computa-
tion overhead. Besides, we only implicitly “assign” experts
to different domains instead of any explicit conditions.

Continual Learning for NLP. In general, solutions pro-
posed for lifelong learning can be classified into the fol-
lowing categories: i) replay based approaches (Robins,
1995; Rebuffi et al., 2017; Shin et al.; Lopez-Paz & Ran-
zato; Chaudhry et al., 2018); ii) regularization based ap-
proaches (Kirkpatrick et al., 2017; Li & Hoiem, 2018); iii)
architecture based approaches (Rusu et al., 2016; Yoon et al.,
2018; Mallya & Lazebnik, 2018; Wen et al., 2020). Re-
cently, lifelong learning is drawing attention for NLP prob-
lems (Wang et al., 2019b; Biesialska et al., 2020; Sun et al.,
2020a; Huang et al., 2021; Hussain et al., 2021; Ahrens et al.,
2021; Jin et al., 2021; Lin et al., 2022). A number of lifelong
learning methods have also been proposed, including embed-
ding aligned episodic memory replay (Wang et al., 2019a);
memory-based parameter adaptation with sparse experience
replay (MbPA++) (d’ Autume et al., 2019); language model-
ing for lifelong language learning (Sun et al., 2020b); and
meta-learning with sparse experience replay (Holla et al.,
2020). The primary challenge to address in LLL literature
is to overcome the catastrophic forgetting. However, most
works still focus on the traditional settings on sequential
downstream tasks, ignoring the fact that pretrained large
language models have the capability to quickly adapt to
downstream tasks with only a few samples. This task-level
lifelong learning is not directly beneficial to most of the real-
world scenarios of deployed NLP models, as downstream
tasks marginally update model parameters. In contrast, we
focus on continually pretraining language models on a steam
of changing data distributions (i.e. the data-level lifelong
pretraining). This setting is more close to practical scenarios
to continually deploying and updating language models.

3. Pretraining MoE without Forgetting

Experts and gatings play a vital role in determining MoE’s
capability of adapting to new data distributions. This mo-
tivates us to develop a lifelong pretraining method by only
focusing on the customization of experts and gatings. Our
strategy is designed as follows: 1) to ensure enough capac-
ity of the MoE whenever it fits a new data distribution, we
will expand (and only expand) the number of experts and
gating dimensions, keeping the network’s depth and width
unchanged; 2) to avoid the expanded MoE from overfitting
the training data, we will introduce proper regularization
on experts and gatings and encourage the preservation of
previously learned knowledge.

3.1. Model Architecture

We leverage GLaM (Du et al., 2022) as our base
model, a family of sparsely activated Mixture-of-Experts
(MoE) (Shazeer et al., 2017; Fedus et al., 2021). We are mo-
tivated in solving the lifelong pretraining problem in NLP by
only introducing more parameters without introducing extra
computation overhead (as we will always only use token-
wise top-2 experts during both training and inference).

Based on the GShard Transformer (Lepikhin et al., 2021),
GLaM replaces the feed-forward component of every other
transformer layer with an MoE layer. Each MoE layer
consists of a collection of independent feed-forward dense
layers as the “experts”. A gating function uses softmax to
calculate a probability distribution to indicate the preference
of the input token to each expert. The dimension of gating’s
weight equals to the number of experts by the feature size M.
The experts are sparsely activated: for a given input token,
each MoE layer’s learnable gating function is trained to
activate the token-wise best two experts. During inference,
the learned gating network dynamically picks the two best
experts for each token. This will results in a model with
more capacity while limiting the computation cost.

3.2. Progressive Expert Expansion

In the case where only a predefined data distribution exists
in the training set, always maintaining a fixed model capac-
ity could be sufficient to fit the pretraining task. However,
when the previously learned language representations can-
not account for new data distributions, additional parameters
need to be introduced to the network. Increasing the model
capacity via naively expanding the depth/width of networks
will also largely increase the computation cost (Zhou et al.,
2012; Rusu et al., 2016; Yoon et al., 2018). To facilitate
the memorization of new corpus without incurring extra
computations, we choose to leverage the advantage of MoE:
we only increase the number of experts while still sparsely
activating two experts for each token.
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Figure 2: Overview of our lifelong pretraining method for the MoE model (M): 1) When pretraining on each data distribution (),
we expand the number of experts and gatings (from E D 10 E®) for larger model capacity; 2) We freeze the pretrained old experts
and gatings; 3) We further regularize the MoE on the output level to avoid the catastrophic forgetting. Embedding, dense, and attention
layers (omitted in this figure) are shared across all data distributions. See details of our method in Section 3 and pretraining settings in
Section 5.1. We omit the interleaving dense layers to make this figure simple and clear.

We need to decide how to expand and initialize new ex-
perts and gatings. We empirically observed that randomly
initializing expanded experts and gatings leads to poor per-
formance, potentially due to mismatched gradient direc-
tions and magnitudes from new experts/gatings and pre-
trained dense/attention layers. Therefore, inspired by the
“Net2WiderNet” approach (Chen et al., 2015), a better way
is to initialize each new expert and gating dimension from
pretrained ones, helping both the preservation of old knowl-
edge and the warming-up for the subsequent pretraining.

A vanilla expansion strategy would be to duplicate the num-
ber of experts in order to fully leverage and inherit all the
pretrained knowledge. However, this will lead to an expo-
nentially increasing model size, which is not scalable. In our
work, we choose to partially expand the number of experts
and gating dimensions. We study differ expansion choices,
and will show that by expanding a limited number of ex-
perts for each data distribution we can achieve competitive
performance without further introducing extra model size.
That means, we selectively expand (and only expand) the
experts when necessary to accommodate incoming new data
distribution that is not covered by the older corpora. We do
not increase the number of dense layers.

3.3. Expert/Gating Regularization

The purpose of our expert/gating expansion is to enlarge the
model capacity for incoming new data distributions. At this
moment, pretrained experts and gatings store the knowledge
about previous distributions. Continuous training will still
erase these pretrained knowledge and overfit on the new
data, which is not desired. In this section, we propose two
approaches to effectively preserve old knowledge.

Implicit Regularization via Distillation from Old Ex-
perts/Gatings We try to find possible ways to implicitly
regularize parameters, including the newly expanded ex-
perts, gating dimensions, embeddings, and dense/attention
layers. Inspired by (Li & Hoiem, 2017), we choose to distill
the knowledge from old experts and gatings. Specifically,
denoting the model as M, we minimize the combination of
perplexity loss Lpe,p (for the next-token prediction) and the
KL divergence Lk, of outputs from two models:

»C = »CPerp + )\ACKL (1)
Lperp = — Z log P (xi41|M (20:4, 00:t—1, 0%, 04)) 2
xz;€X
Lk =— Z M (x4,00:t—1,04) log (M (25, 00:t—1,0¢,04)) .
xz;€X
(3

04 indicates parameters for dense layers that are shared
across distributions, 6y.;—; indicates parameters for old ex-
perts and gatings, and 6, for parameters of newly expanded
experts and gating dimensions. « is the embedding of the
current token and X represents the whole corpus of current
data distribution. This auxiliary loss Lxp, will implicitly
avoid the model parameters from being updated too far from
pretrained ones. It is multiplied with a scaling factor \ to
control its impact to the original pretraining loss value, and
we will study different As.

Explicit Regularization via Partial Experts and Gatings
Freezing To explicitly preserve pretrained knowledge, an
intuitive way is to completely freeze neurons specifically
responsible for previous data distributions, and only allow
parameters for the current distribution to be updated. In
our method, the dense/attention layers are always being op-
timized, since they are trained to fit all data distributions.
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Newly expanded experts and gating dimensions are also
optimized on the new distribution. Therefore, we only opti-
mize L regarding 6, 04:

07,0} + argmin(L) 4)
0,04

We will study different freezing strategies: freeze old ex-
perts, old gating dimensions, or both. Old experts and gat-
ings can be regularized (frozen) since we explicitly associate
them with each data distribution. However, since all dense
and attention layers are shared across all distributions, we
cannot simply freeze their parameters.

4. Experiment Setup

Here, we elaborate our datasets, architecture setting, hyper-
parameters, pretraining procedure, and evaluation protocol.

4.1. Training Datasets

To simulate the distribution-level lifelong pretraining setting,
we build a sequence of billions of tokens that are representa-
tive of a wide range of natural language distributions (both
English and non-English), based on the GLaM dataset (Du
et al., 2022). We collect webpages and Wikipedia pages
(with a combination ratio of 81% : 19% following (Du
et al., 2022)) as our first distribution, denoted as “.A”. i18n
(“internationalization”), the non-English corpus, will be our
second distribution “3”. Finally, the conversations from
public domain social media (Adiwardana et al., 2020) con-
stitutes our third distribution “C”. Table 1 shows the details
of our data component sizes and mixture weights.

Table 1: Data distributions in our lifelong pretraining set.

Distribution Corpus Tokens (B)
A . Wikipedia (19%) 3
Filtered Webpages (81%) 143
B i18n 366
C Conversations 174

Why these three distributions? We design large gaps
between these distributions such that catastrophic forgetting
issues can be easily observed. The intuition behind this is
that these selections span their contributions to different
downstream tasks with less overlap. The English corpus
in the distribution A will contribute to the downstream QA
task (Joshi et al., 2017). The dialogs in C further diversify
the English corpus but contribute less to QA. In contrast, the
non-English materials in distribution 53 has zero (or possibly
negative) contribution to English-based tasks and will only
benefit to translations. The order of these three distributions
is highly related to the study on our downstream tasks: 1)
after distribution .4, keep pretraining on 53 and C will lead to
the forgetting issue on the QA task; 2) after distribution B,

keep pretraining on C will lead to the forgetting issue on the
translation task. We show more studies on influences from
these distributions to downstream tasks in our Appendix A.

As we will see in Section 5.1 and Figure 3, this design explic-
itly introduces a challenging scenario for our experiments,
leading to sharp transitions and a high risk of forgetting
issues between corpus distributions. Similar forgetting is-
sues can also be observed in previous works (e.g. Figure 2
in (Hussain et al., 2021).

4.2. Architecture Setting

Table 2 shows the hyperparameter settings of different mod-
els, ranging from 145 million to 1.878 billion activated
parameters. Here, F is the number of experts (or the dimen-
sion of the gating’s weight) in each MoE layer, M is the
feature/embedding dimension, H is the hidden dimension
of the feed-forward layers, L is the number of attention or
dense blocks. In addition, 7parms 1S the total number of
trainable model parameters, and Nuct-params 18 the number
of activated model parameters per input token. npeaqs 18
the number of self-attention heads, and djpe,q is the hidden
dimension of each attention head.

4.3. Hyperparameters

We use the same learning hyperparameters for all models
and for all data distributions. More specifically, We use
a maximum sequence length of 1024 tokens in each mini-
batch, and pack each input example to have up to 1 million
tokens per batch. The dropout rate is set to 0 since the
number of available tokens in the training corpus is much
greater than the number of processed tokens during train-
ing. Our optimizer is Adafactor (Shazeer & Stern, 2018)
with first-moment decay 8; = 0, second-moment decay
B2 = 0.99 with a 1 — =98 decay schedule, update clipping
threshold of 1.0, and factored second-moment estimation.
When pretraining on each data distribution, we keep the ini-
tial learning rate as 0.01 for the first 10K training steps, and
then decay it with inverse square root schedule Ir(t) oc %
We use the SentencePiece (Kudo & Richardson, 2018) sub-
word tokenizer with a vocabulary of size of 256K. During
training, we use float32 for model weights and bfloat16 for
activations. The largest Lifelong-MoE model has 1.878B
activated parameters with 40 experts (per expert-layer) and
is trained on 128 Cloud TPU-V4 chips.

4.4. Pretraining Procedure

The pretraining task is to predict the next token in a given
sequence with a cross-entropy loss. To simulate the lifelong
pretraining setting, unless explicitly stated, otherwise we
will sequentially pretrain models on a distribution streams
A — B — C. On each distribution, the model will first
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Table 2: Sizes and architectures of both our Lifelong-MoE and dense models (Gshard) that we will study in our experiments. All trained
models share the same learning hyperparameters described in Session 4.3.

E Type Tlparams Tact-params L M H Nheads  Ghead
4~16 MoE  241~573M 145M 12 768 3,072 12 64
- Dense 1.7B 1.700B
16~32 MoE  11~22B  1g7gg 2+ 2048 8192 16 128
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Figure 3: Our method can ameliorate catastrophic forgetting issue in large LMs. Left: next-token accuracy. Right: perplexity. Top/bottom:
evaluation on distribution A/B during lifelong pretraining. We pretrain models on a sequence of data distributions A — B — C. We train
on each data distribution for 500K steps. “0~5007/“500~1000" (K) steps in top/bottom rows represent the pretraining phase on .A/3, and
subsequent steps stand for forgetting phases (i.e. pretraining on other distributions).

restore the previous checkpoint, and start the pretraining on

the new distribution with the same set of hyperparameters.

After pretraining on all three distributions, the model will
be evaluated on downstream tasks (described below). The
next-token accuracy and perplexity on all three distributions
will be monitored throughout all pretraining phases.

4.5. Downstream Evaluations

Protocol. To clearly demonstrate the effectiveness of
Lifelong-MoE models, we mainly focus on evaluating the
one-shot and zero-shot decoding tasks suggested by Radford
et al.; Brown et al.. We randomly draw one example from
the target task’s training set serving as the only demonstra-
tion and context. Such a demonstration is concatenated with
the evaluation example with two newlines in between, and
then fed into the model.

Natural Language Generation Tasks. To allow for an
apples-to-apples comparison between GShard (densly con-
nected LM) (Lepikhin et al., 2021) and our method, we
follow the evaluation tasks in Brown et al.. We mainly study
the one-shot decoding task on TriviaQA (Joshi et al., 2017)

and the translation task on WMT16 (Bojar et al., 2016). We
compare the language sequences decoded by the models to
the ground truth in generative tasks. The performance is
measured by the accuracy of exact match (EM) and F1 score,
following the standard for each task in Brown et al.. We use
beam search with a width of 4 to generate the sequences. For
WMT16, we calculate the bleu score (bilingual evaluation
understudy).

Natural Language Understanding Tasks. Most lan-
guage understanding tasks require the model to select one
correct answer from multiple options. All binary classifica-
tion tasks are formulated into the form of selecting among
two options (‘Yes’ or ‘No’). The prediction is based on the
maximum log-likelihood of each option given the context
log P(option|context) normalized by the token length of
each option. On a few tasks, such as ReCoRD (Zhang et al.,
2018) and COPA (Gordon et al., 2012), the non-normalized
loss can yield better results and thus is adopted. We use the
average of the scores reported in all datasets to report the
overall few-shot performance of models on NLU tasks. The
F1 scores has been normalized to lie between 0 and 100.
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5. Experiments
5.1. Lifelong Pretraining

We first verify that our method can ameliorate the catas-
trophic forgetting issue during lifelong pertaining (Figure 3).
As we pretrain our lifelong-GLaM sequentially on distribu-
tions A — B — C, we expect two forgetting phases for A
(when the model is being pretrained on B and C), and one
forgetting phase for B (when the model is being pretrained
on C). For both next-token accuracy (higher the better)
and perplexity (lower the better), we can see huge drops of
blue lines at phase transitions. However, our method (red
lines) can clearly reduce the drop, retaining the pretrained
knowledge from previous distributions.

It is worth noting that this experiment is to our disadvan-
tage: the baseline has a constant 10 experts (per expert
layer) throughout all three pretraining phases, whereas we
progressively expand the experts “4 — 7 — 10”. That
means, during some phases (e.g. evaluation on .4 during
500~1000K steps), our model with less experts (model
capacity) can outperforms the GLaM with more experts.

5.2. Ablation Study

In this section, we step-by-step study the contributions of
expert regularization and expansions to downstream one-
shot decoding tasks after the lifelong pretraining.

Output Regularization. We first study the choices of
different scaling factor (\) for our output regularization on
a basic GLaM model with four experts. By increasing A
from 0, 0.1, to 1, we can improve our F1 score on TriviaQA
from 5.93 to 6.96 (row 1~3 in Table 3). We also find that A
larger than 1 will cause unstable pretraining.

Expert/Gating Freeze. An intuitive goal to expand ex-
perts is to inherit all pretrained experts into newly expanded
ones. Therefore, starting from 4 experts, our basic expan-
sion strategy is to expand into 8 and 16 experts.

We now study whether to freeze pretrained experts or gat-
ing dimentions during training on new distributions. As
shown in Table 3 row 4~7, freezing either the experts or the
gating dimensions are not effective, and only freezing both
performs the best.

Partial Expert Expansion. Naively duplicating experts
and gating dimensions will exponentially increase the model
capacity and introduce redundancy. In our experiments, we
study how to achieve comparable performance with reduced
experts and gating dimensions. We explore different expan-
sion ratios, and observe that with “4—7—10" expert expan-
sion (row 9), we can reduce the model size and achieve even
slightly better performance than naive expert duplication.

5.3. Lifelong-MoE Mitigates Forgetting Issues in
Downstream Tasks

Finally, we compare our method with the dense
GShard (Lepikhin et al., 2021), GLaM (Du et al., 2022),
and classic lifelong learning methods.

Our Final Large Lifelong-MoE. We scale up our final
large model of over 1 billion parameters (Table 2) based on
the best expert expansion strategy we found in the last row
in Table 2. We start our lifelong pretraining on distribution
A with 16 experts per expert-layer, and subsequently expand
into 28 and 32 for pretraining on distribution B and C.

Online L2 Regularization. The most popular yet simple
way of preventing catastrophic forgetting is to regularize
the network parameters from deviating too much from its
pretrained values using ¢s-regularization (Lin et al., 2022),
as follows:

min L(W; X ) £ \|WO - WEDE ()
where ¢ indicates the training step for the current distribution,
W (t=1) stands for all weights pretrained on the the previous
distribution, and X is the regularization scaling factor. This
(y-regularization will explicitly enforce the solution W (%)
to be close to W(~1) We set A = 1 in our experiment.

Memory Replay The other important group of lifelong
learning methods is based on retraining on previous samples.
Experience Replay (ER) (Rolnick et al.) is a simple yet
effective replay method that stores the previous examples
into a growing memory module and periodically sample a
small subset of the memory as additional training samples
for model training. We follow the most competitive setting
in the recent benchmarking work (Lin et al., 2022), which
sampled one mini-batch of previous data per three mini-
batch of current data. In our experiment, we always keep
25% historic data when training on a new distribution, i.e.,
A — 25%A + 75%B — 25% (A + B) + 75%C.

Joint Pretraining on Multi-distributions We can also
jointly train a dense LM on our three distributions (with a
predefined mixture ratio in (Du et al., 2022), as shown in
Table 1). The LM will see all corpus and serve as the oracle
model for comparison. We denote this result as “Oracle”.

Results Our Lifelong-MoE is strong on TriviaQA,
WMT16, Ubuntu, and other 19 NLU tasks. These down-
stream tasks are associated with our pretraining distribu-
tions: The corpus of TriviaQA is similar to distribution
A (wikipedia + webpages); WMT16 is similar to distribu-
tion B (i18n); Ubuntu and other NLU tasks are similar to
distribution C (conversations). Therefore, these tasks can
faithfully reflect the quality of lifelong pretraining on each
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Table 3: Ablation study of our proposed progressive experts expansion and regularization methods. Results are evaluated on downstream

TriviaQA few-shot decoding task after pretraining on 4 — B — C.

# Expert Expansion Freeze Regularization (A) F1 score
1 4—4—4 N/A 0 5.93
2 4—4—4 N/A 0.1 5.64
3 4—4—4 N/A 1 6.96
4 4—8—16 N/A 0 6.90
5 4—8—16 Experts 0 6.39
6 4—8—16 Gatings 0 6.82
7 4—8—16 Experts + Gatings 0 6.98
8 4—5—6 Experts + Gatings 1 5.82
9 4—7—10 Experts + Gatings 1 7.06

Table 4: Comparison between our Lifelong-MoE with dense GShard

(Lepikhin et al., 2021), GLaM (Du et al., 2022), and classic lifelong

learning methods. F1 score is evaluated on TriviaQA. Bleu is evaluated on WMT16.

Experts F1 Score Bleu Ubuntu Avg. of 19 NLU Tasks
Dense + Online L2 Reg. 12.99 5.66 27 48.65
Dense + Memory Replay 14.18 7.54 26 48.65
Dense Oracle 21.25 11.14 26 49.03
GLaM 21.76 6.97 26 50.9
Lifelong-MoE (ours) 20.22 19.16 27 50.26

Table 5: Decoding results during sequential pretraining on “4 — B — C”.

Method Phase TriviaQA F1 WMT Bleu

A 25.23 2.84

Online L2 Reg. A= B 17 (-32.6%) 20.77
A—=B—C 1299 (-48.5%) 5.66 (-72.7%)

A 25.23 2.84

Memory Replay A— B 12.23 (-51.5%) 12.34
A—B—C 14.18(-43.7%) 7.54 (-38.8%)

A 33.66 441

Ours A— B 26.81 (-20.4%) 22.63
A—B—C 2022(-39.9%) 19.16 (-15.3%)

distribution. As shown in Table 4, even comparing with the
“Dense Oracle”, we still achieve better Bleu and NLU scores,
with a competitive F1 score on TriviaQA. Note that GLaM
achieves better performance on TriviaQA mainly because it
starts with much more experts when training on “.A”.

Moreover, as shown in Table 5, our method not only demon-
strates the best decoding results on TriviaQA and WMT,
but also achieves the lowest performance drop (shown in
parentheses) when switching to new data distributions.

6. Conclusion

In this work, we for the first time aim at solving the data-
level lifelong pretraining problem, which considers a stream
of online changing distributions in pretraining data resources
in NLP tasks, especially for large language models. Our

results demonstrate that, for an MoE architecture, by only
introducing extra expert layers, together with appropriate ex-
pert/gating regularizations, we can continuously pretrain the
MOoE on a sequence of data distributions with preserved old
knowledge, achieving competitive or even better pretraining
quality for downstream tasks. The expanded experts allocate
extra model capacity for new corpus distribution but will
not increase computation overhead as the MoE is sparsely
activated. With our method, not only the forgetting issue
can be largely mitigated during online pretraining, but each
new distribution can be fitting with specific experts. We can
achieve state-of-the-art performance on downstream NLU
decoding tasks under the lifelong pretraining setting. We
hope our paper could motivate more works and raise more
attentions on realistic NLP scenarios during model pretrain-
ing, include the distribution shift in pretraining corpus and
online pretraining.
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Lifelong Language Pretraining with Distribution-Specialized Experts

A. Influence of different distributions on downstream decoding performance.

We also study the influence of different corpus distributions (Table 1) on the downstream TriviaQA F1 decoding task. As
shown in Table 6, A is the most important to TriviaQA, whereas B will do harms.

Table 6: Influence of different distributions on TriviaQA F1 decoding performance.

Distribution  F1

A 10.2
B 4.64
C 7.60
A+C 9.29
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