Siamese vs Non-Siamese: Dual Encoders for Intent Detection

Anonymous ACL submission

Abstract

Bi-encoders have been shown to be effective
for intent classification. Current Bi-encoders
use the same weights to learn the embedding
of both the contexts and candidates. However,
this can be counter-productive when there ex-
ist contexts with overlapping keywords from
competing candidate labels. This could lead
to unrelated context and candidate having sim-
ilar embeddings and being mis-classified. In
this work, we investigate the potential of non-
siamese Bi-encoders for intent detection, where
separate weights are learned for context and
candidate. Our results show that non-siamese
Bi-encoders improve the performance of tra-
ditional Bi-encoders across datasets. We also
show that using heterogeneous architectures
in a non-siamese Bi-encoder can effectively
reduce memory and computation requirement
while maintaining prediction performance.

1 Introduction

Intent classification is the task of classifying a
sequence of text (context) into one of a set of
predefined intents (candidates). A promising ap-
proach for this task involves the use of Bi-encoders
(Reimers and Gurevych, 2019; Casanueva et al.,
2020; Clarke et al., 2022) which encode the con-
text and candidate into a latent embedding space
and compute the semantic similarity to predict an
appropriate candidate.

This dual encoder architecture has the advan-
tage of being more computationally efficient and
flexible compared to its cross-encoding and con-
ventional sequence classifier counterparts. At infer-
ence time, the candidate embeddings only need to
be generated once. Therefore these representations
can be cached and subsequently used when infer-
ring future context-candidate pairs, thus reduce
the amount of computation required and vastly im-
prove evaluation and inference time (Humeau et al.,
2020; Thakur et al., 2020; Geigle et al., 2021). Ad-
ditionally, since predictions are done via distance
comparisons of vector representations, bi-encoders
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Figure 1: Siamese vs non-siamese Bi-encoder for intent clas-
sification

can be easily adapted to novel candidates unseen
during training.

Typically, dual encoders utilize a siamese net-
work structure where the models for the context and
candidate encoders have tied weights, as shown in
Figure 1a. This is desirable when the two inputs
share many common traits, e.g., image matching
and voice recognition (Zhang and Duan, 2017; Han
et al., 2015). However, when applied to the nu-
anced task of intent detection, this siamese struc-
ture can be counter-productive for generating truly
representative and accurate vector representations,
as contexts can contain meaningful and impactful
tokens from conflicting candidates and vice versa.
Figure 1 shows a real example from the Clinc-150
dataset: the context sentence contains the key (and
only) word in a competing candidate label ( order).
As such, tying the network weights can potentially
result in context representations being overly and
incorrectly fit to conflicting candidates (Figure 1a),
causing mis-classification.

In this work, we investigate the potential of learn-
ing separate weights for context and candidate in
Bi-encoders for intent classification. We study the
non-siamese Bi-encoder architecture, where the
weights are trained and updated through two sepa-



rate back-propagation passes for context and can-
didate during training. Our key intuition is that by
learning the two embedding spaces independently,
we can learn more accurate semantic relationships
between contexts and candidates pairs (Figure 1b).

One consideration of non-siamese Bi-encoders
is the additional memory requirement for two en-
coder models. To alleviate this, we explore hetero-
geneous encoder models for context and candidate,
where one of the encoders is a lightweight trans-
former (e.g. TinyBert).

To study the performance of non-siamese and
heterogeneous Bi-encoders, we use 4 representa-
tive intent classification datasets. Additionally, to
further study the phenomenon of conflicting con-
text and candidates, we create new borderline ver-
sions of the 4 datasets representing the more chal-
lenging case of conflicting context candidate pairs.
Our experimental results show that non-siamese
Bi-encoders outperforms siamese Bi-encoders by
up to 4.6% on the vanilla datasets and 8.7% on
the borderline versions. We also show that het-
erogenous Bi-encoder perform similarly or better
than homogeneous non-siamese Bi-encoders while
reducing memory and computation requirement.

2 Related Work

The task of classifying a given input context to a
candidate label is a well-studied in machine learn-
ing. A promising approach to this problem is Bi-
Encoder. The core idea of Bi-encoders is to map
the input and a candidate label separately into a
common dense vector space and perform scoring
via a distance metric such as dot product or cosine
similarity (Wu et al., 2017; Reimers and Gurevych,
2019; Mithun et al., 2018; Jung et al., 2022). A
major advantage of Bi-encoder architecture is its
computation efficiency during evaluation, because
of its ability to cache the representations of the
candidates.

Typical Bi-encoder models use the siamese struc-
ture (Bromley et al., 1993) where the models con-
tain two or more identical sub-networks. This ap-
proach has shown impressive results across a range
of tasks such as face recognition, speech process-
ing and informational retrieval (Han et al., 2015;
Zhang and Duan, 2017; Jung et al., 2022; Clarke
et al., 2022). However, when applied to a more
nuanced task such as intent classification where
context and candidate differ in length and have the
potential for large amounts of meaningful token
overlap, it makes sense to allow a degree of devi-
ation between the context and candidate. As such
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Figure 2: Arch. of siamese and non-siamese Bi-encoder.

we explore the use of non-siamese networks and
heterogeneous bi-encoders to address these issues.

3 Method

In this section, we formulate using Bi-encoders
for intent classification and describe the siamese,
non-siamese and heterogenous architectures.

3.1 Problem Formulation

The intent classifications task defines a set of can-
didate categories ) = {yz}; The task is to map a
given sequence of text x (context) into one of the
candidate categories. During inference using Bi-
encoder, each text and label pair {(z, y;) | v; € Y}
is encoded by their respective models. We define
the context encoder as ®; and the candidate en-
coder as ®;, which produces vectors , I'e RY for
input context and candidate, respectively. Similar-
ity score is computed for each (z,y;) pair with a
distance metric 8 and the candidate label y; clos-
est to the context text z in the embedding space is
selected as the prediction, as follows:

j = argmaxd ()" (@), 2" () ()
Yi€Y
where Wk, W, are the weights for encoders ®; and
®,, respectively.

3.2 Siamese Bi-encoders

Siamese networks such as the one depicted in Fig-
ure 2a are trained with tied weights. The same
network ® embeds the context and candidates, so
b =& = ¢and W = W, = W,. During
training, the gradients of the candidate and context
accumulate and then update the same network:

0% = BackProp (z) + BackProp (y;)  (2)

3.3 Non-Siamese Bi-encoders

As shown in Figure 2b, non-siamese Bi-encoders
use separate dedicated networks for context and
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Figure 3: Heterogeneous Bi-encoder

candidate, i.e., ®; and ®; are separate instances
with independent weights. In contrast to siamese
networks, non-siamese networks learn the represen-
tation for context and candidate independently. We
define the homogeneous non-siamese Bi-encoders,
where the two encoders share the same architec-
ture but with distinct weights, as in, ; = ®; and
W # W,. The inference process is the same as
defined in Equation 1. During training, the network
weights are updated independently:

0®; = BackProp ()

3
0®; = BackProp (y;) ©)

3.4 Heterogeneous Bi-encoder

One drawback for non-siamese Bi-encoder is the
additional memory required for the second encoder
model. To alleviate this, we explore heterogeneous
Bi-encoders. Figure 3 shows this design where the
two encoders can vary in model architecture and
size. This opens up a significant design space for
mixing and matching different encoder models and
the opportunity to use a more lightweight model for
one of the encoders to reduce memory consump-
tion. For heterogeneous Bi-encoders, ®; # ®; and
W # W,

3.5 Training Bi-encoders

We investigate the optimal training strategy using
Bi-encoders for intent classification. Specifically,
we investigate the implication of 1) loss function
design, 2) distance metric and 3) data augmentation.
For loss function, we consider contrastive loss and
mean-squared-error (MSE) loss. We compare the
impact of the distant metrics consine similarity and
dot product. Lastly, we experiment with training
using only positive examples and augmenting with
negative examples.

4 Experimental Setup

Dataset We select 4 intent classification datasets,
with a wide range of label counts (7 - 150) and di-
verse domains including banking, travel and dining
(Table 1).

Dataset Description #Label  Train Test
Banking77 Online banking queries 71 10K 3.1K
Clinc-150 Virtual assistants in production 150 15K 4.5K
SGD Task-oriented conversations 34 16K 42K
SNIPS Smart assistants questions 7 11K 4.0K
Table 1: Datasets
o % no-overlap w/ % overlap w/ .
Datasets ground truth negative candidates Total Size
Banking77 8.6 8.3 10K
Clinc-150 14.8 12.5 15K
SGD 4.6 4.6 16K
SNIPS 26.4 8.4 11K

Table 2: Borderline versions of the datasets. Percentages of
examples sub-sampled at each stage are shown here, as well
as the total number of sub-sampled examples.

Borderline Dataset Construction To investigate
the impact of the word overlap between conflict-
ing context and candidate on Bi-encoder perfor-
mance, we construct a new version of the 4 datasets
through a 2-stage sub-sampling process: 1) we re-
move the context utterances that share tokens with
its ground-truth candidate label; and 2) we select
the context utterances with tokens from competing
(non ground-truth) candidate labels, which we refer
to as Borderline examples. Table 2 summarizes this
process.

Implementation We implement our Bi-encoder
based on the design and open-source code of
SBERT (Reimers and Gurevych, 2019). We use
BERT (Devlin et al., 2018) as the encoder model
unless specified otherwise. We use dimension-wise
mean as the pooling operation. For training, we
use the Adam optimizer (Kingma and Ba, 2015)
with weight decay of 0.01, batch size of 16 and 50
epochs. We use linear learning rate warm-up over
the first 10% steps and a linear schedule.

5 Results and Discussion

5.1 Training a Bi-encoder

Table 3 shows the accuracy of a siamese Bi-encoder
trained using different loss function and similarity
metrics and trained on dataset with positive-only
examples vs. positive+negative examples. We draw
several key insights. First, we observe that the
models do not learn effectively when using cosine
scoring with positive-only examples, especially on
the Clinc-150 dataset. When the training data is
augmented with negative examples, performance
improves significantly across datasets. Second, the
design of loss function and distance metric need to
be considered jointly. Specifically, MSE performs
better with cosine scoring while contrastive loss



+ive

Loss Similarity  +ive

Dataset Function Metric Only &
-ive
cos 829 979
SNIPS MSE dot 247 9717
: cos 78.9 98.4
Contrastive dot 084 981
cos 336 76.8
Clinc-150 MSE dot 284 46.7
Contrastive cos 345 717

dot 894 89.1

Table 3: Configuration search results on siamese TinyBERT
(Jiao et al., 2020), trained with +ive (positive) only and (+ive
plus -ive) negative sampling.

Model Type Banking77 Clinc-150 SGD SNIPS
Siamese 87.3 86.5 74.3 97.8
Non-Siamese 88.8 88.9 77.7 97.6

Table 4: Siamese vs Non-Siamese Accuracy Score with con-
trastive loss and dot distance metric trained on only positive
samples

performs best with dot product. Third, when com-
paring across all three design choices, we find that
bi-encoders perform the best with contrastive loss
function and dot product distance metric training
on positive-only examples. This conclusion holds
true for non-siamese Bi-encoder as well (Table 6).

5.2 Non-Siamese vs Siamese

Table 4 shows the accuracy of non-siamese Bi-
encoder with traditional siamese Bi-encoder. We
observe that learning representations for the con-
text and candidate separately improves the perfor-
mance of Bi-encoder for 3 of the 4 datasets. Table 5
shows the comparison of non-siamese and siamese
on the more challenging Borderline datasets de-
scribed in Section 4. Borderline examples are con-
texts that contain meaningful and impactful tokens
from competing, non-ground-truth candidate labels.
We observe a larger accuracy gap between non-
siamese and siamese on the borderlines examples
of Banking77 and Clinc-150, while they perform
comparably on SGD and SNIPS. Banking77 and
Clinc-150 have significantly more borderline can-
didate labels (32 and 80) than SGD and SNIPS (11
and 6) and our intuition is that a larger and more
diverse candidate pool creates a more challenging
context/candidate conflicting scenario.

5.3 Exploring the Heterogeneous Bi-encoder

We experiment with heterogeneous Bi-encoders by
configuring one of the encoders as Bert-base and
the other as TinyBERT. BERT-base and TinyBERT
differ in model size (12 vs 2 layers) and output
embedding size (768 vs. 128). We reduce the

Model Type  Banking77  Clinc-150 SGD  SNIPS
Siamese 69.3 72.9 83.8 97.2
Non-Siamese 75.3 76.5 83.1 95.1

Table 5: Siamese vs Non-Siamese Accuracy Score with con-
trastive loss and dot distance metric trained on BLCD dataset

100
Siamese: BERT
Non-Siamese: BERT-BERT
Heterogeneous: TinyBERT-BERT
95 Heterogeneous: BERT-TinyBERT

90

85

Accuracy (%)

80
75

70
SGD Clinc-150 Banking77 SNIPS
Dataset

Figure 4: Heterogeneous Bi-encoder results with contrastive
loss and dot product. For Non-Siamese setups, separated by
the dash, the legend shows the base encoder for context and
candidate respectively. The marker sizes correspond to model
# parameters.

hidden dimension size of BERT-base encoder to
match that of the TinyBERT encoder. We com-
pare the classification accuracy and model size
of siamese, homogeneous and heterogeneous non-
siamese Bi-encoders in Figure 4, where the marker
size represents the size of the overall model. We
observe that the two heterogeneous configurations
perform similarly or better than the homogeneous
non-siamese models while requiring significantly
less memory (91.5%). In addition, heterogeneous
Bi-encoders allow different sequences length for
context and candidate. This shows heterogeneous
Bi-encoders is a promising architecture design to
further improve the performance and practicality of
Bi-encoders and it can benefit from further studies.

6 Conclusion

In this paper, we study the potential of Non-
Siamese Bi-encoders for intent classification. We
highlight the power of independently learning sen-
tence representations and it ability to resolve chal-
lenges cases of meaningful token overlap in content
candidate pairs. We also show that heterogenous
Bi-encoder perform similarly or better than homo-
geneous non-siamese Bi-encoders while reducing
memory and computation requirement.
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Hyperparameter Siamese Non-Siamese
Leamming . Loss o Similatity s Clinc-150 SNIPS Clinc-150
MSE cos 54.6/132 30.0/0.8 60.0/20.1 5.7/0.7
le2 dot 28.5/96.2 59/13.6 142/14.1 0.2/0.7
Contrastive cos 5297150 23.8/0.9 68.8/8.7 49/70.7
© dot 71.5/15.1 44.0/0.7 659/15.1 0.7/2.0
MSE cos 71.7/98.1 29.5/68.5 86.2/98.1 34/66.4
le-3 dot 453/97.7 322/58.1 348/977 13/324
Contrastive cos 75.4/98.1 30.6/80.1 84.9/98.1 2.6/819
dot 98.6/97.5 89.3/89.2 98.1/984 90.0/90.3
MSE cos 82.9/979 336/768 86.8/98.1 52/779
le-d dot 24771977 28.4/467 193/97.8 6.8/229
Contrastive cos 789/98.4 349/777 853/98.6 3.6/78.8
dot 98.4/98.1 89.1/894 98.4/984 90.0/90.5

Table 6: Configuration search results on TinyBERT (Jiao et al., 2020). Separated by a slash, each column contains test ac
curacies when trained on positive pairs only and trained with negative sampling.



