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Abstract

Bi-encoders have been shown to be effective001
for intent classification. Current Bi-encoders002
use the same weights to learn the embedding003
of both the contexts and candidates. However,004
this can be counter-productive when there ex-005
ist contexts with overlapping keywords from006
competing candidate labels. This could lead007
to unrelated context and candidate having sim-008
ilar embeddings and being mis-classified. In009
this work, we investigate the potential of non-010
siamese Bi-encoders for intent detection, where011
separate weights are learned for context and012
candidate. Our results show that non-siamese013
Bi-encoders improve the performance of tra-014
ditional Bi-encoders across datasets. We also015
show that using heterogeneous architectures016
in a non-siamese Bi-encoder can effectively017
reduce memory and computation requirement018
while maintaining prediction performance.019

1 Introduction020

Intent classification is the task of classifying a021

sequence of text (context) into one of a set of022

predefined intents (candidates). A promising ap-023

proach for this task involves the use of Bi-encoders024

(Reimers and Gurevych, 2019; Casanueva et al.,025

2020; Clarke et al., 2022) which encode the con-026

text and candidate into a latent embedding space027

and compute the semantic similarity to predict an028

appropriate candidate.029

This dual encoder architecture has the advan-030

tage of being more computationally efficient and031

flexible compared to its cross-encoding and con-032

ventional sequence classifier counterparts. At infer-033

ence time, the candidate embeddings only need to034

be generated once. Therefore these representations035

can be cached and subsequently used when infer-036

ring future context-candidate pairs, thus reduce037

the amount of computation required and vastly im-038

prove evaluation and inference time (Humeau et al.,039

2020; Thakur et al., 2020; Geigle et al., 2021). Ad-040

ditionally, since predictions are done via distance041

comparisons of vector representations, bi-encoders042

(a) Siamese Bi-encoder

(b) Non-Siamese Bi-encoder

Figure 1: Siamese vs non-siamese Bi-encoder for intent clas-
sification

can be easily adapted to novel candidates unseen 043

during training. 044

Typically, dual encoders utilize a siamese net- 045

work structure where the models for the context and 046

candidate encoders have tied weights, as shown in 047

Figure 1a. This is desirable when the two inputs 048

share many common traits, e.g., image matching 049

and voice recognition (Zhang and Duan, 2017; Han 050

et al., 2015). However, when applied to the nu- 051

anced task of intent detection, this siamese struc- 052

ture can be counter-productive for generating truly 053

representative and accurate vector representations, 054

as contexts can contain meaningful and impactful 055

tokens from conflicting candidates and vice versa. 056

Figure 1 shows a real example from the Clinc-150 057

dataset: the context sentence contains the key (and 058

only) word in a competing candidate label ( order). 059

As such, tying the network weights can potentially 060

result in context representations being overly and 061

incorrectly fit to conflicting candidates (Figure 1a), 062

causing mis-classification. 063

In this work, we investigate the potential of learn- 064

ing separate weights for context and candidate in 065

Bi-encoders for intent classification. We study the 066

non-siamese Bi-encoder architecture, where the 067

weights are trained and updated through two sepa- 068
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rate back-propagation passes for context and can-069

didate during training. Our key intuition is that by070

learning the two embedding spaces independently,071

we can learn more accurate semantic relationships072

between contexts and candidates pairs (Figure 1b).073

One consideration of non-siamese Bi-encoders074

is the additional memory requirement for two en-075

coder models. To alleviate this, we explore hetero-076

geneous encoder models for context and candidate,077

where one of the encoders is a lightweight trans-078

former (e.g. TinyBert).079

To study the performance of non-siamese and080

heterogeneous Bi-encoders, we use 4 representa-081

tive intent classification datasets. Additionally, to082

further study the phenomenon of conflicting con-083

text and candidates, we create new borderline ver-084

sions of the 4 datasets representing the more chal-085

lenging case of conflicting context candidate pairs.086

Our experimental results show that non-siamese087

Bi-encoders outperforms siamese Bi-encoders by088

up to 4.6% on the vanilla datasets and 8.7% on089

the borderline versions. We also show that het-090

erogenous Bi-encoder perform similarly or better091

than homogeneous non-siamese Bi-encoders while092

reducing memory and computation requirement.093

2 Related Work094

The task of classifying a given input context to a095

candidate label is a well-studied in machine learn-096

ing. A promising approach to this problem is Bi-097

Encoder. The core idea of Bi-encoders is to map098

the input and a candidate label separately into a099

common dense vector space and perform scoring100

via a distance metric such as dot product or cosine101

similarity (Wu et al., 2017; Reimers and Gurevych,102

2019; Mithun et al., 2018; Jung et al., 2022). A103

major advantage of Bi-encoder architecture is its104

computation efficiency during evaluation, because105

of its ability to cache the representations of the106

candidates.107

Typical Bi-encoder models use the siamese struc-108

ture (Bromley et al., 1993) where the models con-109

tain two or more identical sub-networks. This ap-110

proach has shown impressive results across a range111

of tasks such as face recognition, speech process-112

ing and informational retrieval (Han et al., 2015;113

Zhang and Duan, 2017; Jung et al., 2022; Clarke114

et al., 2022). However, when applied to a more115

nuanced task such as intent classification where116

context and candidate differ in length and have the117

potential for large amounts of meaningful token118

overlap, it makes sense to allow a degree of devi-119

ation between the context and candidate. As such120

(a) Siamese (b) Non-Siamese

Figure 2: Arch. of siamese and non-siamese Bi-encoder.

we explore the use of non-siamese networks and 121

heterogeneous bi-encoders to address these issues. 122

3 Method 123

In this section, we formulate using Bi-encoders 124

for intent classification and describe the siamese, 125

non-siamese and heterogenous architectures. 126

3.1 Problem Formulation 127

The intent classifications task defines a set of can- 128

didate categories Y = {yi}1n. The task is to map a 129

given sequence of text x (context) into one of the 130

candidate categories. During inference using Bi- 131

encoder, each text and label pair {(x, yi) | yi ∈ Y} 132

is encoded by their respective models. We define 133

the context encoder as Φt and the candidate en- 134

coder as Φl, which produces vectors t⃗, l⃗ ∈ Rd for 135

input context and candidate, respectively. Similar- 136

ity score is computed for each (x, yi) pair with a 137

distance metric θ and the candidate label yi clos- 138

est to the context text x in the embedding space is 139

selected as the prediction, as follows: 140

ŷ = argmax
yi∈Y

θ
(
ΦWt
t (x),ΦWl

l (yi)
)

(1) 141

where Wt,Wl are the weights for encoders Φt and 142

Φl, respectively. 143

3.2 Siamese Bi-encoders 144

Siamese networks such as the one depicted in Fig- 145

ure 2a are trained with tied weights. The same 146

network Φ embeds the context and candidates, so 147

Φ ≡ Φt ≡ Φl and W ≡ Wt ≡ Wl. During 148

training, the gradients of the candidate and context 149

accumulate and then update the same network: 150

∂Φ = BackProp (x) + BackProp (yi) (2) 151

3.3 Non-Siamese Bi-encoders 152

As shown in Figure 2b, non-siamese Bi-encoders 153

use separate dedicated networks for context and 154
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Figure 3: Heterogeneous Bi-encoder

candidate, i.e., Φt and Φl are separate instances155

with independent weights. In contrast to siamese156

networks, non-siamese networks learn the represen-157

tation for context and candidate independently. We158

define the homogeneous non-siamese Bi-encoders,159

where the two encoders share the same architec-160

ture but with distinct weights, as in, Φt = Φl and161

Wt ̸= Wl. The inference process is the same as162

defined in Equation 1. During training, the network163

weights are updated independently:164

∂Φt = BackProp (x)

∂Φl = BackProp (yi)
(3)165

3.4 Heterogeneous Bi-encoder166

One drawback for non-siamese Bi-encoder is the167

additional memory required for the second encoder168

model. To alleviate this, we explore heterogeneous169

Bi-encoders. Figure 3 shows this design where the170

two encoders can vary in model architecture and171

size. This opens up a significant design space for172

mixing and matching different encoder models and173

the opportunity to use a more lightweight model for174

one of the encoders to reduce memory consump-175

tion. For heterogeneous Bi-encoders, Φt ̸= Φl and176

Wt ̸= Wl.177

3.5 Training Bi-encoders178

We investigate the optimal training strategy using179

Bi-encoders for intent classification. Specifically,180

we investigate the implication of 1) loss function181

design, 2) distance metric and 3) data augmentation.182

For loss function, we consider contrastive loss and183

mean-squared-error (MSE) loss. We compare the184

impact of the distant metrics consine similarity and185

dot product. Lastly, we experiment with training186

using only positive examples and augmenting with187

negative examples.188

4 Experimental Setup189

Dataset We select 4 intent classification datasets,190

with a wide range of label counts (7 - 150) and di-191

verse domains including banking, travel and dining192

(Table 1).193

Dataset Description #Label Train Test

Banking77 Online banking queries 77 10K 3.1K
Clinc-150 Virtual assistants in production 150 15K 4.5K

SGD Task-oriented conversations 34 16K 4.2K
SNIPS Smart assistants questions 7 11K 4.0K

Table 1: Datasets

Datasets
% no-overlap w/

ground truth
% overlap w/

negative candidates Total Size

Banking77 8.6 8.3 10K
Clinc-150 14.8 12.5 15K

SGD 4.6 4.6 16K
SNIPS 26.4 8.4 11K

Table 2: Borderline versions of the datasets. Percentages of
examples sub-sampled at each stage are shown here, as well
as the total number of sub-sampled examples.

Borderline Dataset Construction To investigate 194

the impact of the word overlap between conflict- 195

ing context and candidate on Bi-encoder perfor- 196

mance, we construct a new version of the 4 datasets 197

through a 2-stage sub-sampling process: 1) we re- 198

move the context utterances that share tokens with 199

its ground-truth candidate label; and 2) we select 200

the context utterances with tokens from competing 201

(non ground-truth) candidate labels, which we refer 202

to as Borderline examples. Table 2 summarizes this 203

process. 204

Implementation We implement our Bi-encoder 205

based on the design and open-source code of 206

SBERT (Reimers and Gurevych, 2019). We use 207

BERT (Devlin et al., 2018) as the encoder model 208

unless specified otherwise. We use dimension-wise 209

mean as the pooling operation. For training, we 210

use the Adam optimizer (Kingma and Ba, 2015) 211

with weight decay of 0.01, batch size of 16 and 50 212

epochs. We use linear learning rate warm-up over 213

the first 10% steps and a linear schedule. 214

5 Results and Discussion 215

5.1 Training a Bi-encoder 216

Table 3 shows the accuracy of a siamese Bi-encoder 217

trained using different loss function and similarity 218

metrics and trained on dataset with positive-only 219

examples vs. positive+negative examples. We draw 220

several key insights. First, we observe that the 221

models do not learn effectively when using cosine 222

scoring with positive-only examples, especially on 223

the Clinc-150 dataset. When the training data is 224

augmented with negative examples, performance 225

improves significantly across datasets. Second, the 226

design of loss function and distance metric need to 227

be considered jointly. Specifically, MSE performs 228

better with cosine scoring while contrastive loss 229
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Dataset Loss
Function

Similarity
Metric

+ive
Only

+ive
&

-ive

SNIPS
MSE cos 82.9 97.9

dot 24.7 97.7

Contrastive cos 78.9 98.4
dot 98.4 98.1

Clinc-150
MSE cos 33.6 76.8

dot 28.4 46.7

Contrastive cos 34.5 77.7
dot 89.4 89.1

Table 3: Configuration search results on siamese TinyBERT
(Jiao et al., 2020), trained with +ive (positive) only and (+ive
plus -ive) negative sampling.

Model Type Banking77 Clinc-150 SGD SNIPS

Siamese 87.3 86.5 74.3 97.8
Non-Siamese 88.8 88.9 77.7 97.6

Table 4: Siamese vs Non-Siamese Accuracy Score with con-
trastive loss and dot distance metric trained on only positive
samples

performs best with dot product. Third, when com-230

paring across all three design choices, we find that231

bi-encoders perform the best with contrastive loss232

function and dot product distance metric training233

on positive-only examples. This conclusion holds234

true for non-siamese Bi-encoder as well (Table 6).235

5.2 Non-Siamese vs Siamese236

Table 4 shows the accuracy of non-siamese Bi-237

encoder with traditional siamese Bi-encoder. We238

observe that learning representations for the con-239

text and candidate separately improves the perfor-240

mance of Bi-encoder for 3 of the 4 datasets. Table 5241

shows the comparison of non-siamese and siamese242

on the more challenging Borderline datasets de-243

scribed in Section 4. Borderline examples are con-244

texts that contain meaningful and impactful tokens245

from competing, non-ground-truth candidate labels.246

We observe a larger accuracy gap between non-247

siamese and siamese on the borderlines examples248

of Banking77 and Clinc-150, while they perform249

comparably on SGD and SNIPS. Banking77 and250

Clinc-150 have significantly more borderline can-251

didate labels (32 and 80) than SGD and SNIPS (11252

and 6) and our intuition is that a larger and more253

diverse candidate pool creates a more challenging254

context/candidate conflicting scenario.255

5.3 Exploring the Heterogeneous Bi-encoder256

We experiment with heterogeneous Bi-encoders by257

configuring one of the encoders as Bert-base and258

the other as TinyBERT. BERT-base and TinyBERT259

differ in model size (12 vs 2 layers) and output260

embedding size (768 vs. 128). We reduce the261

Model Type Banking77 Clinc-150 SGD SNIPS

Siamese 69.3 72.9 83.8 97.2
Non-Siamese 75.3 76.5 83.1 95.1

Table 5: Siamese vs Non-Siamese Accuracy Score with con-
trastive loss and dot distance metric trained on BLCD dataset

Figure 4: Heterogeneous Bi-encoder results with contrastive
loss and dot product. For Non-Siamese setups, separated by
the dash, the legend shows the base encoder for context and
candidate respectively. The marker sizes correspond to model
# parameters.

hidden dimension size of BERT-base encoder to 262

match that of the TinyBERT encoder. We com- 263

pare the classification accuracy and model size 264

of siamese, homogeneous and heterogeneous non- 265

siamese Bi-encoders in Figure 4, where the marker 266

size represents the size of the overall model. We 267

observe that the two heterogeneous configurations 268

perform similarly or better than the homogeneous 269

non-siamese models while requiring significantly 270

less memory (91.5%). In addition, heterogeneous 271

Bi-encoders allow different sequences length for 272

context and candidate. This shows heterogeneous 273

Bi-encoders is a promising architecture design to 274

further improve the performance and practicality of 275

Bi-encoders and it can benefit from further studies. 276

6 Conclusion 277

In this paper, we study the potential of Non- 278

Siamese Bi-encoders for intent classification. We 279

highlight the power of independently learning sen- 280

tence representations and it ability to resolve chal- 281

lenges cases of meaningful token overlap in content 282

candidate pairs. We also show that heterogenous 283

Bi-encoder perform similarly or better than homo- 284

geneous non-siamese Bi-encoders while reducing 285

memory and computation requirement. 286
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Hyperparameter Siamese Non-Siamese

Learning
Rate

Loss
Function

Similarity
Metric SNIPS Clinc-150 SNIPS Clinc-150

1e-2
MSE cos 54.6 / 13.2 30.0 / 0.8 60.0 / 20.1 5.7 / 0.7

dot 28.5 / 96.2 5.9 / 13.6 14.2 / 14.1 0.2 / 0.7

Contrastive cos 52.9 / 15.0 23.8 / 0.9 68.8 / 8.7 4.9 / 0.7
dot 71.5 / 15.1 44.0 / 0.7 65.9 / 15.1 0.7 / 2.0

1e-3
MSE cos 71.7 / 98.1 29.5 / 68.5 86.2 / 98.1 3.4 / 66.4

dot 45.3 / 97.7 32.2 / 58.1 34.8 / 97.7 1.3 / 32.4

Contrastive cos 75.4 / 98.1 30.6 / 80.1 84.9 / 98.1 2.6 / 81.9
dot 98.6 / 97.5 89.3 / 89.2 98.1 / 98.4 90.0 / 90.3

1e-4
MSE cos 82.9 / 97.9 33.6 / 76.8 86.8 / 98.1 5.2 / 77.9

dot 24.7 / 97.7 28.4 / 46.7 19.3 / 97.8 6.8 / 22.9

Contrastive cos 78.9 / 98.4 34.9 / 77.7 85.3 / 98.6 3.6 / 78.8
dot 98.4 / 98.1 89.1 / 89.4 98.4 / 98.4 90.0 / 90.5

Table 6: Configuration search results on TinyBERT (Jiao et al., 2020). Separated by a slash, each column contains test ac
curacies when trained on positive pairs only and trained with negative sampling.
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