
CONTRASTIVE EXAMPLE-BASED CONTROL

Anonymous authors
Paper under double-blind review

ABSTRACT

While there are many real-world problems that might benefit from reinforcement
learning, these problems rarely fit into the MDP mold: interacting with the envi-
ronment is often prohibitively expensive and specifying reward functions is chal-
lenging. Motivated by these challenges, prior work has developed data-driven
approaches that learn entirely from samples from the transition dynamics and ex-
amples of high-return states. These methods typically learn a reward function
from the high-return states, use that reward function to label the transitions, and
then apply an offline RL algorithm to these transitions. While these methods can
achieve good results on many tasks, they can be complex, carefully regulariz-
ing the reward function and using temporal difference updates. In this paper, we
propose a simple and scalable approach to offline example-based control. Un-
like prior approaches (e.g., ORIL, VICE, PURL) that learn a reward function, our
method will learn an implicit model of multi-step transitions. We show that this
implicit model can represent the Q-values for the example-based control problem.
Thus, whereas a learned reward function must be combined with an RL algorithm
to determine good actions, our model can directly be used to determine these good
actions. Across a range of state-based and image-based offline control tasks, we
find that our method outperforms baselines that use learned reward functions.

1 INTRODUCTION

Reinforcement learning is typically framed as the problem of maximizing a given reward function.
However, in many real-world situations, it is more natural for users to define what they want an
agent to do with examples of successful outcomes (Fu et al., 2018b; Zolna et al., 2020a; Xu &
Denil, 2019; Eysenbach et al., 2021). For example, a user that wants their robot to pack laundry into
a washing machine might provide multiple examples of states where the laundry has been packed
correctly. This problem setting is often seen as a variant of inverse reinforcement learning (Fu et al.,
2018b), where the aim is to learn only from examples of successful outcomes, rather than from
expert demonstrations. To solve this problem, the agent must both figure out what constitutes task
success (i.e., what the examples have in common) and how to achieve such successful outcomes.

In this paper, our aim is to address this problem setting in the case where the agent must learn from
offline data. The offline setting forces the RL agent to learn without trial and error. Instead, the
agent must infer the outcomes of potential actions from the provided data, while also relating these
inferred outcomes to the success examples. We will refer to this problem of offline RL with success
examples as offline example-based control.

Most prior approaches involve two steps: first learning a reward function, and second combining it
with an RL method to recover a policy (Fu et al., 2018b; Zolna et al., 2020a; Xu & Denil, 2019).
While such approaches can achieve excellent results when provided sufficient data (Kalashnikov
et al., 2021; Zolna et al., 2020a), learning the reward function is challenging when the number of
success examples is small (Li et al., 2021; Zolna et al., 2020a). These prior approaches are relatively
complex (e.g., they use temporal difference learning) and have many hyperparameters.

Our aim is to provide a simple an scalable approach that avoids the challenges of reward learning.
The main idea will be a learn a certain type of dynamics model. Then, using that model to predict
the probabilities of reaching each of the success examples, we will be able to estimate the Q-values
for every state and action. This approach does not require learning a reward function and does not
use an offline RL algorithm as a subroutine. The key design decision is the type of model; we

1

will use an implicit model of the time-averaged future (precisely, the discounted state occupancy
measure). This decision means that our model reasons across multiple time steps but will not output
high-dimensional observations (only a scalar number). A limitation of this approach is that it will
correspond to a single step of policy improvement: the dynamics model corresponds to the dynamics
of the behavioral policy, not of the reward-maximizing policy. While this means that our method
is not guaranteed to yield the optimal policy, our experiments nevertheless show that our approach
outperforms multi-step RL methods.

The main contribution of this paper is an offline RL method (“Learning to Achieve Examples Of-
fline”) that learns a policy from examples of high-reward states. The key idea behind this method
is an implicit dynamics model, which represents the probability of reaching states at some point in
the future. We show that this model can directly estimate the the probability of reaching successful
outcomes. Our method is simpler than prior approaches based on reward classifiers, and achieves
better results. Our experiments demonstrate that our method can successfully solve offline RL prob-
lems from examples of high-return states on three manipulation tasks, including from image-based
observations.

2 RELATED WORK

Reward learning. To overcome the challenge of hand-engineering reward functions for RL, prior
methods either use supervised learning or adversarial training to learn a policy that matches the ex-
pert behavior given by the demonstration (imitation learning) (Pomerleau, 1988; Ross et al., 2011;
Ho & Ermon, 2016; Spencer et al., 2021) or learn a reward function from demonstrations and opti-
mize the policy with the learned reward through trial and error (inverse RL) (Ng & Russell, 2000;
Abbeel & Ng, 2004; Ratliff et al., 2006; Ziebart et al., 2008; Finn et al., 2016; Fu et al., 2018a).
However, providing full demonstrations complete with agent actions is often difficult, therefore, re-
cent works have focused on the setting where only a set of user-specified goal states or human videos
are available (Fu et al., 2018b; Singh et al., 2019; Kalashnikov et al., 2021; Xie et al., 2018; Eysen-
bach et al., 2021; Chen et al., 2021). These reward learning approaches have shown successes in
real-world robotic manipulation tasks from high-dimensional image inputs (Finn et al., 2016; Singh
et al., 2019; Zhu et al., 2020; Chen et al., 2021). Nevertheless, to combat covariate shift that could
lead the policy to drift away from the expert distribution, these methods usually require significant
online interaction. Unlike these works that study online settings, we consider learning visuomotor
skills from offline datasets.

Offline RL. Offline RL (Ernst et al., 2005; Riedmiller, 2005; Lange et al., 2012; Levine et al., 2020)
studies the problem of learning a policy from a static dataset without online data collection in the
environment, which has shown promising results in robotic manipulation (Kalashnikov et al., 2018;
Mandlekar et al., 2020; Rafailov et al., 2021; Singh et al., 2020; Julian et al., 2020; Kalashnikov
et al., 2021). Prior offline RL methods focus on the challenge of policy distribution shift, by de-
veloping a variety of techniques such as regularization between the learned policy and the behavior
policy of the dataset using direct policy constraints (Fujimoto et al., 2018; Liu et al., 2020; Jaques
et al., 2019; Wu et al., 2019; Zhou et al., 2020; Kumar et al., 2019; Siegel et al., 2020; Peng et al.,
2019; Fujimoto & Gu, 2021; Ghasemipour et al., 2021), learning conservative Q-functions (Kumar
et al., 2020; Kostrikov et al., 2021; Yu et al., 2021; Sinha & Garg, 2021), and penalizing out-of-
distribution states generated by learned dynamics models (Kidambi et al., 2020; Yu et al., 2020;
Matsushima et al., 2020; Argenson & Dulac-Arnold, 2020; Swazinna et al., 2020; Rafailov et al.,
2021; Lee et al., 2021; Yu et al., 2021).

While prior works combat overestimation caused by distribution shift, they require reward annota-
tions of each datapoint in the large offline dataset. Practical approaches have used manual reward
sketching to train a reward model (Cabi et al., 2019; Konyushkova et al., 2020; Rafailov et al.,
2021) or heuristical reward functions (Yu et al., 2022). Others have considered offline learning
from demonstrations, without access to a pre-defined reward function (Mandlekar et al., 2020;
Zolna et al., 2020a; Xu et al., 2022; Jarboui & Perchet, 2021), however they require access to high-
quality demonstrations data. In contrast, our method: (1) addresses distributional shift induced by
both the learned policy and the reward function in a principled way, (2) only requires user-provided
goal states and (3) does not require expert-quality data, resulting in an effective and practical offline
reward learning scheme.

2

3 LEARNING TO ACHIEVE EXAMPLES OFFLINE

RL methods that operate in the offline setting typically require regularization, and our method will
employ regularization in two ways. First, we regularize the policy with an additional behavioral
cloning term, which penalizes the policy for sampling out-of-distribution actions. Second, our
method uses the Q-function for the behavioral policy, so it performs one (not many) step of pol-
icy improvement. These regularizers mean that our approach is not guaranteed the yield the optimal
policy.

3.1 PRELIMINARIES

We assume that an agent interacts with an MDP with states s ∈ S , actions a, a state-only reward
function r(s) ≥ 0, initial state distribution p0(s0) and dynamics p(st+1 | st, at). We use τ =
(s0, a0, s1, a1, · · ·) to denote an infinite-length trajectory. The likelihood of a trajectory under a
policy π(a | s) is

π(τ) = p0(s0)

∞∏
t=0

p(st+1 | st, at)π(at | st). (1)

The objective is to learn a policy π(a | s) that maximizes the expected, γ-discounted sum of rewards:

max
π

Eπ(τ)

[∞∑
t=0

γtr(st)

]
. (2)

We define the Q-function for policy π as the expected discounted sum of returns, conditioned on an
initial state and action:

Qπ(s, a) ≜ Eπ(τ)

[∞∑
t=0

γtr(st)

∣∣∣∣s0=s
a0=a

]
. (3)

We will focus on the offline (i.e., batch RL) setting. Instead of learning by interacting with the
environment (i.e., via trial and error), the RL agent will receive as input a dataset of trajectories
Dτ = {τ ∼ β(τ)} collected by a behavioral policy β(a | s). We will use Qβ(s, a) to denote the
Q-function of the behavioral policy.

Specifying the reward function. In many real-world applications, specifying and measure a
scalar reward function is challenging, but providing examples of good states (i.e., those which would
receive high rewards) is straightforward. Thus, we follow prior work (Fu et al., 2018b; Zolna et al.,
2020a; Eysenbach et al., 2021; Xu & Denil, 2019; Zolna et al., 2020b) in assuming that the agent
does not observe scalar rewards (i.e., Dτ does not contain reward information). Instead, the agent
receives as input a dataset D∗ = {s∗} of high-reward states s∗ ∈ S. These high-reward states are
examples of good outcomes, which the agent would like to achieve. The high-reward states are not
labeled with their specific reward value.

To make the control problem well defined, we must relate these success examples to the reward
function. We do this by assuming that the frequency of each success example is proportional to its
reward: very good states are more likely to appear (and be duplicated) as success examples.
Assumption 1. Let pτ (s) be the empirical probability density of state s in the trajectory dataset,
and let p∗(s) as the empirical probability density of state s under the high-reward state dataset. We
assume that there exists a positive constant c such that

r(s) = c
p∗(s)

pτ (s)
for all states s. (4)

This is the same assumption as Eysenbach et al. (2021), and similar assumptions are implicitly
made in prior work (). This assumption is important because shows how example-based control is
universal: for any reward function, we can specify the corresponding example-based problem by
constructing a dataset of success examples that are sampled according to their rewards. We assumed
that rewards are non-negative so that these sampling probabilities are positive.

This assumption can also be read in reverse. When a user constructs a dataset of success examples
in an arbitrary fashion, they are implicitly defining a reward function. In the tabular setting, the

3

(implicit) reward function for state s is the count of the times s occurs in the dataset of success
examples.

Compared with goal-conditioned RL (Kaelbling, 1993), defining tasks via success examples is more
general. By identifying what all the success examples have in common (e.g., laundry is folded), the
RL agent can learn what is necessary to solve the task and what is irrelevant (e.g., the color of the
clothes in the laundry).

We now can define our problem statement as follows:

Definition 1. In the offline example-based control problem, a learning algorithm receives as input
a dataset of trajectories Dτ = {τ} and a dataset of successful outcomes D∗ = {s} satisfying
Assumption 1. The aim is to output a policy that maximizes the RL objective (Eq. 2).

This problem setting is appealing because it mirrors many practical RL applications: a user has
access to historical data from past experience, but collecting new experience is prohibitively ex-
pensive. Moreoever, this problem setting can mitigate the challenges of reward function design ().
Rather than having to implement a reward function and add instruments to measure the correspond-
ing components, the users need only provide a handful of observations that solved the task. This
problem setting is similar to imitation learning, in the sense that the only inputs are data. However,
unlike imitation learning, in this problem setting the high-reward states are not labeled with actions,
and these high-reward states may not necessarily contain entire trajectories.

Figure 1: Our method will estimate the dis-
counted state occupancy measure using con-
trastive learning. Note that this is the aver-
age over many future states.

An implicit model of successor representations. Our
method will estimate the discounted state occupancy
measure,

pβ(st+ = s | s0, a0) ≜ (1− γ)
∞∑
t=0

γtpπt (st = s | s0, a0),

(5)

where pβt (st | s, a) is the probability of policy β(a | s)
visiting state st after exactly t time steps. Unlike the tran-
sition function p(st+1 | st, at), the discounted state occu-
pancy measure indicates the probability of visiting a state
at any point in the future, not just at the immediate next
time step. In tabular settings, this distribution corresponds
to the successor representations (Dayan, 1993). To handle
continuous settings, we will use the contrastive approach
from recent work (Mazoure et al., 2020; Eysenbach et al.,
2022). We will learn a function f(s, a, sf) ∈ R takes as input an initial state-action pair as well as
a candidate future state, and outputs a score estimating the likelihood that sf is a real future state.
The loss function is a standard contrastive learning loss(e.g., Ma & Collins (2018)), where positive
examples are triplets of a state, action, and future state:

max
f

L(f ;Dτ) ≜ Ep(s,a),sf∼pβ(st+|s,a) [log σ(f(s, a, sf))] + Ep(s,a),sf∼p(s) [log(1− σ(f(s, a, sf)))] ,

(6)
where σ(·) is the sigmoid function. At optimality, the implicit dynamics model encodes the dis-

counted state occupancy measure:

f∗(s, a, sf) = log pβ(st+ = sf | s, a)− log pτ (sf). (7)

We visualize this implicit dynamics model in Fig. 1. Note that this dynamics model is policy de-
pendent. Because it is trained with data collected from one policy (β(a | s)), it will correspond to
the probability that that policy visits states in the future. Because of this, our method will result in
estimating the value function for the behavioral policy (akin to 1-step RL (Brandfonbrener et al.,
2021)), and will not perform multiple steps of policy improvement.

Intuitively, the training of this implicit model resembles hindsight relabeling (Kaelbling, 1993;
Andrychowicz et al., 2017). However, it is generally unclear how to use hindsight relabeling for
single-task problems. Despite being a single-task method, our method will be able to make use of
hindsight relabeling to train the dynamics model.

4

3.2 DERIVING OUR METHOD

The key idea behind out method is that this implicit dynamics model can be used to represent the
Q-values for the example-based problem, up to a constant.
Lemma 3.1. Assume that the implicit dynamics model is learned without errors. Then the Q-
function for the data collection policy β(a | s) can be expressed in terms of this implicit dynamics
model:

Qβ(s, a) =
c

1− γ
Ep∗(s∗)

[
ef(s,a,s

∗)
]
. (8)

The proof follows by substituting Assumption 1 into the definition of Q-values (Eq. 3):

Proof.

Qβ(s, a) = Eβ(τ)

[
∞∑
t=0

γtr(st)

∣∣∣∣s0=s
a0=a

]
=

1

1− γ

∫
pβ(st+ = s∗ | s, a)r(s∗)ds∗

=
1

1− γ

∫
pβ(st+ = s∗ | s, a)c p∗(s

∗)

pτ (s∗)
ds∗

=
c

1− γ

∫
p∗(s

∗)ef(s,a,s
∗)ds∗ =

c

1− γ
Es∗∼p∗(s)

[
ef(s,a,s

∗)
]
.

So, after learning the implicit dynamics model, we can estimate the Q-values by averaging this
model’s predictions across the success examples. We will update the policy using Q-values estimated
in this manner, plus a regularization term:

min
π

L(π; f,D∗) ≜ −(1− λ)Eπ(a|s)p(s),s∗∼D∗

[
ef(s,a,s

∗)
]
− λEs,a∼Dτ [log π(a | s)] . (9)

In our experiments, we use a weak regularization coefficient of λ = 0.05.

0
dimension 1

0

di
m

en
sio

n
2

success example
representations, (s)

state-action
representation, (s, a)

Figure 2: If the state-action representation
ϕ(s, a) is close to the representation of a
high-return state ψ(s), then the policy is
likely to visit that state. Our method esti-
mates Q-values by combining the distances
to all the high-return states (Eq. 3).

It is worth comparing this approach to prior methods
based on learned reward functions (Xu & Denil, 2019;
Fu et al., 2018b; Zolna et al., 2020a). Those methods
learn a reward function from the success examples, and
use that learned reward function to synthetically label the
dataset of trajectories. Both approaches can be interpreted
as learning a function on one of the datasets and then ap-
plying that function to the other dataset. Because it is
easier to fit a function when given large quantities of data,
we predict that our approach will outperform the learned
reward function approach when the number of success ex-
amples is small, relative to the number of unlabeled tra-
jectories. Other prior methods (Eysenbach et al., 2021;
Reddy et al., 2020) avoid learning reward functions by
proposing TD update rules that are applied to both the
unlabeled transitions and the high-return states. However,
because these methods have yet to be adapted to the of-
fline RL setting, we will focus our comparisons on the
reward-learning methods.

3.3 A GEOMETRIC PERSPECTIVE

Before presenting the complete RL algorithm, we provide a geometric perspective on the repre-
sentations learned by our method. Our implicit models learns a representation of state-action pairs
ϕ(s, a) as well as a representation of future states ψ(s). One way that our method can optimize
these representations is by treating ϕ(s, a) as a prediction for the future representations.1 Each

1Our method can also learn the opposite, where ψ(s) is a prediction for the previous representations.

5

of the high-return states can be mapped to the same representation space. To determine whether a
state-action pair has a large or small Q-value, we can simply see whether the predicted representation
ϕ(s, a) is close to the representations of any of the success examples. Our method learns these rep-
resentations so that the Q-values are directly related to the Euclidean distances2 from each success
example. Thus, our method can be interpreted as learning a representation space such that estimating
Q-values corresponds to simple geometric operations (kernel smoothing with an RBF kernel (Hastie
et al., 2009, Chpt. 6)) on the learned representations. While the example-based control problem is
more general than goal-conditioned RL (see Sec. 3.1), we can recover goal-conditioned RL as a
special case by using a single success example.

3.4 A COMPLETE ALGORITHM

We now build a complete offline RL algorithm based on these Q-functions. We will call our method
“Learning to Achieve Examples Offline,” or LAEO for short. Our algorithm will resemble one-step
RL methods, but differ in how the Q-function is trained. After learning the implicit dynamics model
(and, hence, Q-function) we will optimize the policy. The objective for the policy is maximizing
Q-values plus a behavioral cloning regularization term, which penalizes sampling unseen actions:

max
π

(1− λ)Eπ(a|s)pτ (s) [Q(s, a)] + λE(s,a)∼pτ (s,a) [log π(a | s)]

= (1− λ)Eπ(a|s),s∗∼p∗(s)

[
ef(s,a,s

∗)
]
+ λE(s,a)∼pτ (s,a) [log π(a | s)] . (10)

Algorithm 1 Learning to Achieve Examples Offline

1: Inputs: dataset of trajectories D = {τ},
dataset of high-return states D∗ = {s}.

2: Learn the model via contrastive learning:
f ← argminf L(f ;Dτ) ▷ Eq. 9

3: Learn the policy: π ← argminπ L(π; f,D∗) ▷ Eq. 10
4: return policy π(a | s)

As noted above, this is a one-step
RL method: it updates the policy to
maximize the Q-values of the behav-
ioral policy. Performing just a sin-
gle step of policy improvement can
be viewed as a form of regulariza-
tion in RL, in the same spirit as early
stopping is a form of regularization in
supervised learning. Prior work has
found that one-step RL methods can
perform well in the offline RL setting. Because our method performs only a single step of policy
improvement, we are not guaranteed that it will converge to the reward-maximizing policy. We
summarize the complete algorithm in Alg. 1.

4 EXPERIMENTS

Our experiments will test whether LAEO can effectively solve offline RL tasks that are specified by
examples of high-return states, rather than via scalar reward functions. Our experiments will study
when our approach outperforms prior approaches based on learned reward functions. We will look
not just at the performance relative to baselines on state-based and image-based tasks, but also how
that performance depends on the input datasets. Additional experiments study how the example-
based problem setting allows agents to learn a generalized notion of each task, and study whether
our method can solve partially observed tasks. We include full hyperparameters and implementation
details in Appendix A. Code will be released.

Baselines. Our main point of comparison will be prior methods that use learned reward functions:
PURL (Xu & Denil, 2019), and ORIL (Zolna et al., 2020a). The main difference between these
methods is the loss function used to train reward function: ORIL uses binary cross entropy loss
while PURL uses a positive-unlabeled loss (Xu & Denil, 2019). After learning the reward function,
each of these methods applies an off-the-shelf RL algorithm. We will implement all baselines using
the TD3+BC (Fujimoto & Gu, 2021) offline RL algorithm. These offline RL methods achieve good
performance on tasks specified via reward functions (Kostrikov et al., 2021; Brandfonbrener et al.,
2021; Fujimoto & Gu, 2021).

2When representations are normalized, the dot product is equivalent to the Euclidean norm. We find that
unnormalized features work better in our experiments.

6

Figure 3: Offline RL from Examples: LAEO outperforms prior offline RL methods, including those that
learn a separate reward function (ORIL, PURL). The gap is especially large on the image-based tasks (right).

Figure 4: Effect of dataset size: (Left) LAEO outperforms PURL and ORIL when only a small number of
high-return states are given, likely because ORIL and PURL struggle to fit the learned reward function on such
a small dataset. (Right) LAEO continues to improve when trained with more reward-free trajectories, while
the ORIL’s and PURL’s performances plateau.

Benchmark comparison. We start by comparing the performance of LAEO to these baselines on
four manipulation tasks. FetchReach-state and FetchPush-state are two manipulation
tasks from Plappert et al. (2018) that use state-based observations. FetchReach-image and
FetchPush-image are the same tasks but with image-based observations. For each of these
tasks, we collect a dataset of medium quality by training an RL agent on the ground-truth reward
function and collecting data using an intermediate training checkpoint. We will also include an
ablation experiment where we use high-quality data, collected from the final checkpoint of this
oracle policy. Since we are in the offline setting, we do no report results as a function of number
of environment interactions (which is always 0). Instead, we will report results after 7000 training
epochs, each of which corresponds to one pass over the offlien dataset

We report results in Fig. 3. We observe that all methods (LAEO, PURL, ORIL) perform similarly on
FetchReach and FetchReach-image. This is likely because these are relatively easy tasks,
and each of these methods is able to achieve an almost perfect success rate. On FetchPush, LAEO
outperforms all of the baselines by a significant margin. Recall that the main difference between
LAEO and PURL/ORIL is by learning a dynamics model, rather than the reward function. These
experiments suggest that for tasks with more complex dynamics, such as FetchPush, learning
a dynamics model can achieve better performance than is achieved by model-free reward learning
methods.

Varying the input data. One important criterion for offline RL algorithms is that they can learn
from datasets of varying quality, varying from expert-level demonstrations to low-quality data
collected from a near-random policy. Our next experiment studies how the dataset composition
affects LAEO and the baselines. We will use three tasks: FetchReach, FetchPush, and
FetchReach-image. On each of these tasks, we generate a high-quality dataset and a low qual-
ity data. These datasets are generated by training an oracle policy using the ground-truth reward
function, and using a partially-trained policy (for the low-quality dataset) and the fully-trained pol-
icy (for the high-quality dataset). The high quality datasets have between 45% − 5 − % success
rates, and the low quality datasets have between 8%− 12% success rates.

We report results in Fig. 4. We observe that on FetchReach-image (hard) our method sig-
nificantly outperforms the baselines. This suggests that in image based domains with low quality
datasets, learning a dynamics model instead of a reward function is especially beneficial.

5 CONCLUSION

In this paper, we presented an RL algorithm aimed at settings where data collection and reward
specification are difficult. Our method learns from a combination of high-return states and reward-
free trajectories, integrating these two types of information to learn reward-maximizing policies.
Whereas prior methods perform this integration by learning a reward function and then applying an
off-the-shelf RL algorithm, ours learns an implicit dynamics model. Not only is our method simpler
(not additional RL algorithm required!), but also it achieves higher success rates on the benchmark

7

tasks. Because our reinforcement learning method resembles prior representation learning meth-
ods (Mazoure et al., 2020; Nair et al., 2022), we believe that scaling this method to very large offline
datasets is an important direction for future work.

Limitations. One limitation of our method is that it corresponds to a single step of policy im-
provement. Extending the method to be less regularized by performing multiple steps of policy
improvement remains an open problem. Second, our method learns to solve a single task, whereas
we arguably would like RL agents that could solve multiple tasks. Extending LAEO to the multi-task
setting is an exciting direction for future work.

REFERENCES

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the twenty-first international conference on Machine learning, pp. 1, 2004.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. arXiv
preprint arXiv:1707.01495, 2017.

Arthur Argenson and Gabriel Dulac-Arnold. Model-based offline planning. arXiv preprint
arXiv:2008.05556, 2020.

David Brandfonbrener, Will Whitney, Rajesh Ranganath, and Joan Bruna. Offline rl without off-
policy evaluation. Advances in Neural Information Processing Systems, 34:4933–4946, 2021.

Serkan Cabi, Sergio Gómez Colmenarejo, Alexander Novikov, Ksenia Konyushkova, Scott Reed,
Rae Jeong, Konrad Zołna, Yusuf Aytar, David Budden, Mel Vecerik, et al. A framework for
data-driven robotics. arXiv preprint arXiv:1909.12200, 2019.

Annie S Chen, Suraj Nair, and Chelsea Finn. Learning generalizable robotic reward functions from”
in-the-wild” human videos. arXiv preprint arXiv:2103.16817, 2021.

Peter Dayan. Improving generalization for temporal difference learning: The successor representa-
tion. Neural computation, 5(4):613–624, 1993.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning.
Journal of Machine Learning Research, 6:503–556, 2005.

Benjamin Eysenbach, Sergey Levine, and Ruslan Salakhutdinov. Replacing rewards with examples:
Example-based policy search via recursive classification, 2021.

Benjamin Eysenbach, Tianjun Zhang, Ruslan Salakhutdinov, and Sergey Levine. Contrastive learn-
ing as goal-conditioned reinforcement learning. arXiv preprint arXiv:2206.07568, 2022.

Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse optimal control
via policy optimization. In International conference on machine learning, pp. 49–58. PMLR,
2016.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse rein-
forcement learning. International Conference on Learning Representations, 2018a.

Justin Fu, Avi Singh, Dibya Ghosh, Larry Yang, and Sergey Levine. Variational inverse control with
events: A general framework for data-driven reward definition. arXiv preprint arXiv:1805.11686,
2018b.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
arXiv preprint arXiv:2106.06860, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. arXiv preprint arXiv:1812.02900, 2018.

Seyed Kamyar Seyed Ghasemipour, Dale Schuurmans, and Shixiang Shane Gu. Emaq: Expected-
max q-learning operator for simple yet effective offline and online rl. In International Conference
on Machine Learning, pp. 3682–3691. PMLR, 2021.

8

Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The elements of
statistical learning: data mining, inference, and prediction, volume 2. Springer, 2009.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Conference on Neural
Information Processing Systems, 2016.

Matt Hoffman, Bobak Shahriari, John Aslanides, Gabriel Barth-Maron, Feryal Behbahani, Tamara
Norman, Abbas Abdolmaleki, Albin Cassirer, Fan Yang, Kate Baumli, et al. Acme: A research
framework for distributed reinforcement learning. arXiv preprint arXiv:2006.00979, 2020.

Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Agata Lapedriza, Noah
Jones, Shixiang Gu, and Rosalind Picard. Way off-policy batch deep reinforcement learning of
implicit human preferences in dialog. arXiv preprint arXiv:1907.00456, 2019.

Firas Jarboui and Vianney Perchet. Offline inverse reinforcement learning, 2021. URL https:
//arxiv.org/abs/2106.05068.

Ryan Julian, Benjamin Swanson, Gaurav S Sukhatme, Sergey Levine, Chelsea Finn, and Karol
Hausman. Efficient adaptation for end-to-end vision-based robotic manipulation. arXiv preprint
arXiv:2004.10190, 2020.

Leslie Pack Kaelbling. Learning to achieve goals. In IJCAI, pp. 1094–1099. Citeseer, 1993.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Scalable deep reinforce-
ment learning for vision-based robotic manipulation. In Conference on Robot Learning, pp. 651–
673. PMLR, 2018.

Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Benjamin Swanson, Rico Jonschkowski,
Chelsea Finn, Sergey Levine, and Karol Hausman. Mt-opt: Continuous multi-task robotic re-
inforcement learning at scale. arXiv preprint arXiv:2104.08212, 2021.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. arXiv preprint arXiv:2005.05951, 2020.

Ksenia Konyushkova, Konrad Zolna, Yusuf Aytar, Alexander Novikov, Scott Reed, Serkan Cabi,
and Nando de Freitas. Semi-supervised reward learning for offline reinforcement learning. Offline
Reinforcement Learning Workshop at Neural Information Processing Systems, 2020.

Ilya Kostrikov, Jonathan Tompson, Rob Fergus, and Ofir Nachum. Offline reinforcement learning
with fisher divergence critic regularization. arXiv preprint arXiv:2103.08050, 2021.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. In Advances in Neural Information Processing Sys-
tems, pp. 11761–11771, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. arXiv preprint arXiv:2006.04779, 2020.

Sascha Lange, Thomas Gabel, and Martin A. Riedmiller. Batch reinforcement learning. In Rein-
forcement Learning, volume 12. Springer, 2012.

Byung-Jun Lee, Jongmin Lee, and Kee-Eung Kim. Representation balancing offline model-based
reinforcement learning. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=QpNz8r_Ri2Y.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Kevin Li, Abhishek Gupta, Ashwin Reddy, Vitchyr H Pong, Aurick Zhou, Justin Yu, and Sergey
Levine. Mural: Meta-learning uncertainty-aware rewards for outcome-driven reinforcement
learning. In International Conference on Machine Learning, pp. 6346–6356. PMLR, 2021.

Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Provably good batch reinforce-
ment learning without great exploration. arXiv preprint arXiv:2007.08202, 2020.

9

https://arxiv.org/abs/2106.05068
https://arxiv.org/abs/2106.05068
https://openreview.net/forum?id=QpNz8r_Ri2Y

Zhuang Ma and Michael Collins. Noise contrastive estimation and negative sampling for conditional
models: Consistency and statistical efficiency. arXiv preprint arXiv:1809.01812, 2018.

Ajay Mandlekar, Fabio Ramos, Byron Boots, Silvio Savarese, Li Fei-Fei, Animesh Garg, and Dieter
Fox. Iris: Implicit reinforcement without interaction at scale for learning control from offline
robot manipulation data. In 2020 IEEE International Conference on Robotics and Automation
(ICRA), pp. 4414–4420. IEEE, 2020.

Tatsuya Matsushima, Hiroki Furuta, Yutaka Matsuo, Ofir Nachum, and Shixiang Gu. Deployment-
efficient reinforcement learning via model-based offline optimization. arXiv preprint
arXiv:2006.03647, 2020.

Bogdan Mazoure, Remi Tachet des Combes, Thang Long Doan, Philip Bachman, and R Devon
Hjelm. Deep reinforcement and infomax learning. Advances in Neural Information Processing
Systems, 33:3686–3698, 2020.

Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A univer-
sal visual representation for robot manipulation. arXiv preprint arXiv:2203.12601, 2022.

Andrew Y. Ng and Stuart J. Russell. Algorithms for inverse reinforcement learning. In Proceedings
of the Seventeenth International Conference on Machine Learning, ICML ’00, 2000.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn Pow-
ell, Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, et al. Multi-goal reinforce-
ment learning: Challenging robotics environments and request for research. arXiv preprint
arXiv:1802.09464, 2018.

Dean A Pomerleau. Alvinn: an autonomous land vehicle in a neural network. In Proceedings of the
1st International Conference on Neural Information Processing Systems, pp. 305–313, 1988.

Rafael Rafailov, Tianhe Yu, A. Rajeswaran, and Chelsea Finn. Offline reinforcement learning from
images with latent space models. Learning for Decision Making and Control (L4DC), 2021.

Nathan D. Ratliff, J. Andrew Bagnell, and Martin A. Zinkevich. Maximum margin planning. In
Proceedings of the 23rd International Conference on Machine Learning, ICML ’06, 2006.

Siddharth Reddy, Anca D. Dragan, and Sergey Levine. Sqil: Imitation learning via reinforcement
learning with sparse rewards. International Conference on Learning Representations, 2020.

Martin Riedmiller. Neural fitted q iteration–first experiences with a data efficient neural reinforce-
ment learning method. In European Conference on Machine Learning, pp. 317–328. Springer,
2005.

Stephane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. AISTATS, 2011.

Noah Y Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Ne-
unert, Thomas Lampe, Roland Hafner, and Martin Riedmiller. Keep doing what worked: Be-
havioral modelling priors for offline reinforcement learning. arXiv preprint arXiv:2002.08396,
2020.

Avi Singh, Larry Yang, Kristian Hartikainen, Chelsea Finn, and Sergey Levine. End-to-end robotic
reinforcement learning without reward engineering. arXiv preprint arXiv:1904.07854, 2019.

Avi Singh, Albert Yu, Jonathan Yang, Jesse Zhang, Aviral Kumar, and Sergey Levine. Cog:
Connecting new skills to past experience with offline reinforcement learning. arXiv preprint
arXiv:2010.14500, 2020.

Samarth Sinha and Animesh Garg. S4rl: Surprisingly simple self-supervision for offline reinforce-
ment learning. arXiv preprint arXiv:2103.06326, 2021.

10

Jonathan Spencer, Sanjiban Choudhury, Arun Venkatraman, Brian Ziebart, and J. Andrew Bagnell.
Feedback in imitation learning: The three regimes of covariate shift. ArXiv Preprint, 2021.

Phillip Swazinna, Steffen Udluft, and Thomas Runkler. Overcoming model bias for robust offline
deep reinforcement learning. arXiv preprint arXiv:2008.05533, 2020.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Annie Xie, Avi Singh, Sergey Levine, and Chelsea Finn. Few-shot goal inference for visuomotor
learning and planning. In Conference on Robot Learning, pp. 40–52. PMLR, 2018.

Danfei Xu and Misha Denil. Positive-unlabeled reward learning. arXiv preprint arXiv:1911.00459,
2019.

Haoran Xu, Xianyuan Zhan, Honglei Yin, and Huiling Qin. Discriminator-weighted offline imitation
learning from suboptimal demonstrations. International Conference on Machine Learning, 2022.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. Mopo: Model-based offline policy optimization. arXiv preprint
arXiv:2005.13239, 2020.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
Combo: Conservative offline model-based policy optimization. arXiv preprint arXiv:2102.08363,
2021.

Tianhe Yu, Aviral Kumar, Yevgen Chebotar, Karol Hausman, Chelsea Finn, and Sergey Levine.
How to leverage unlabeled data in offline reinforcement learning. International Conference on
Machine Learning, 2022.

Wenxuan Zhou, Sujay Bajracharya, and David Held. Plas: Latent action space for offline reinforce-
ment learning. arXiv preprint arXiv:2011.07213, 2020.

Henry Zhu, Justin Yu, Abhishek Gupta, Dhruv Shah, Kristian Hartikainen, Avi Singh, Vikash Ku-
mar, and Sergey Levine. The ingredients of real-world robotic reinforcement learning. arXiv
preprint arXiv:2004.12570, 2020.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy inverse
reinforcement learning. In Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

Konrad Zolna, Alexander Novikov, Ksenia Konyushkova, Caglar Gulcehre, Ziyu Wang, Yusuf Ay-
tar, Misha Denil, Nando de Freitas, and Scott Reed. Offline learning from demonstrations and
unlabeled experience. arXiv preprint arXiv:2011.13885, 2020a.

Konrad Zolna, Scott Reed, Alexander Novikov, Sergio Gomez Colmenarejo, David Budden, Serkan
Cabi, Misha Denil, Nando de Freitas, and Ziyu Wang. Task-relevant adversarial imitation learn-
ing. Conference on Robot Learning, 2020b.

A EXPERIMENTAL DETAILS

We implemented our method and all baselines using the ACME framework (Hoffman et al., 2020).

• Batch size: 1024 for state based experiments, 256 for image based experiments

• Training iterations: 448, 000

• Representation dimension: 256

• Reward learning loss (for baselines): binary cross entropy (for ORIL) and positive unla-
beled (for PURL)

• Critic architecture: Two-layer MLP with hidden sizes of 1024. ReLU activations used
between layers.

11

• Reward function architecture (for baselines): Two-layer MLP with hidden sizes of 1024.
ReLU activations used between layers.

• Actor learning rate: 3× 10−4

• Critic learning rate: 3× 10−4

• Reward learning rate (for baselines): 1× 10−4

• η for PU loss: 0.5
• Size of offline datasets: Each dataset consists of 4000 trajectories of length 50, for 200, 000

total transitions.

12

	Introduction
	Related Work
	Learning to Achieve Examples Offline
	Preliminaries
	Deriving Our Method
	A Geometric Perspective
	A Complete Algorithm

	Experiments
	Conclusion
	Experimental Details

