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ABSTRACT

Reinforcement learning (RL) reliably improves LLM reasoning while appearing
to change only a small fraction of parameters. We revisit this paradox and argue
that the visible sparsity is not the phenomenon itself but the trace of a optimization
bias, where RLVR stubbornly commits updates to preferred regions that remain
invariant across datasets and RL variants, as if guided by an implicit compass.
We propose a Three-Gate Theory to formalize this mechanism, where the Anchor
Gate I shows RL induces a one-step policy-KL leash that keeps updates proximal
to the base policy; This constrained update is then steered by Gate II (Model Ge-
ometry) towards lower-curvature, spectra-preserving directions, a data-invariant
feature; and finally, it is filtered by Gate III (Precision), where the bfloat16 for-
mat acts as a lens that amplifies the bias by hiding micro-updates, making the
underlying pattern visible as apparent sparsity. Empirically, we validate this the-
ory with a comprehensive suite of experiments. We show that RL preserves the
model’s spectral structure and avoids its principal weights, in sharp contrast to
SFT, which alters spectra and mainly targets those weights. Causal interventions
confirm that this bias is destroyed when the model’s geometry is disrupted, prov-
ing that the geometry is the steering core of the “compass”. By providing the first
parameter-level account of RLVR’s training dynamics: RLVR learns off-principal
directions in weight space, our work not only demystifies its optimization bias but
also provides a new perspective of understanding RLVR. Crucially, we show that
RL operates in a distinct optimization regime from SFT, directly adapting SFT-era
parameter-efficient fine-tuning (PEFT) methods can be flawed, as evidenced by
our case studies on advanced sparse fine-tuning and LoRA variants, motivating
the design of efficient geometry-aware, RLVR-native learning algorithms.

Figure 1: SFT and RL update in different manners. (a) SFT follows a predefined (guided externally)
route, even over the mountain, to reach the target; (b) RLVR, without an explicit guide, behaves as
if steered by an implicit compass (optimization bias), taking a detour around the mountain, with
two (c) Evidences: RLVR avoids principal weights during updates (left) and rotates less in the top-k
subspace with preserved spectra (right).

1 INTRODUCTION

Large reasoning models (LRMs), such as OpenAI-o3 (Jaech et al., 2024) and DeepSeek-R1 (Guo
et al., 2025), have advanced the ability of large language models to solve complex mathematical and
programming tasks. A key driver is large-scale Reinforcement Learning with Verifiable Rewards
(RLVR), which uses simple, easy-to-verify rewards to incentivize complex, multi-step reasoning.
Yet, despite these advances, the mechanisms by which RL shapes model representations and behav-
ior remain poorly understood. Given the substantial computational resources devoted to RL (relative
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to SFT) and the emergence of striking new behaviors, it is natural to assume that realizing these be-
haviors requires substantial parameter changes. However, recent evidence points in the opposite
direction: RL induces sparse parameter updates, whereas SFT yields dense ones (Mukherjee et al.,
2025). This counterintuitive observation reveals a paradox: a high-cost, high-gain process that relies
on surprisingly minimal modifications.

Our thesis. We resolve this paradox by uncovering a deeper mechanism behind the apparent spar-
sity: RLVR has a stubborn persistent optimization bias. It consistently routes visible weight up-
dates into a narrow, reproducible subset of parameters, a pattern that remains strikingly invariant
across diverse algorithms and datasets. This inherent selectivity is then amplified by the precision
limit of bfloat16, which produces the apparent sparsity as the symptom of a persistent optimization
bias. We refer to the organizing principle behind this optimization bias as an implicit RL’s compass.
As illustrated in Fig. 1, while SFT is pulled toward an explicit external target, RLVR, despite having
no such teacher, is secretly guided.
These observations prompt two central questions:

Where does this optimization bias originate, and which parameters does it preferentially update?

In this paper, we present a Three-Gate Theory that formalizes this mechanism. We show that
an RL update is first constrained by Gate I (Anchoring), where an on-policy KL leash keeps the
policy proximal to its base. This update is then steered by Gate II (Geometry), with the intuition
that the unlike a random initialized model, the pretrained model’s structured landscape routes the
change away from high-curvature principal subspaces under the implicit KL leash. This geometry
gate serves as a key bridge to understand why the optimization bias is data- and algorithm-invariant.
Finally, we show that the Gate III: precision of bfloat16 storage acts as a realization filter, amplifying
the optimization bias by hiding minimal micro updates and leading to the apparent sparsity.
We validate this theory with a comprehensive suite of experiments, especially confirming its pre-
diction on which parameters it preferentially updates. We show that RL (1) preserves the model’s
spectral structure, in sharp contrast to SFT; (2) avoids updating the model’s principal weights (the
core pathways identified by the rank-k reconstruction of the weights, defined as a key driver for
parameter-efficient SFT Liu et al. (2025c); and (3) we establish causality via a geometry interven-
tion, showing that disrupting the model’s geometry with orthogonal rotations destroys the optimiza-
tion bias, confirming that the geometry is the steering compass. Finally, to validate the hypothesis,
we construct an “safe mask”, without any training, that can closely recover the training dynamics of
a dense RLVR model in terms of KL divergence wrt. base model Shenfeld et al. (2025), showing
less optimization intervention, while training on the “principal weights” yields the worst trend.
Our main contributions are:

• Observation.(Sec. 2). For the first time, we identify a persistent, data/algorithm-invariant op-
timization bias in RLVR fine-tuning, an implicit optimization compass that shapes the training
behaviors.

• Theory (Sec. 3). We propose a Three-Gate Theory (Anchor, Geometry, Precision) that provides
a mechanistic account of this bias, showing how an RL update is jointly constrained, steered, and
filtered.

• Evidence (Sec. 4). We provide strong empirical validation, consistently contrasting RL with SFT.
Our evidence includes near-invariant layer spectra, sub-random overlap with principal weights,
and causal interventions that confirm the role of model geometry in guiding the optimization.

• Insight (Sec. 5). We show that SFT-era sparse and low-rank priors (e.g., principal-targeted vari-
ants) are misaligned with RLVR’s off-principal dynamics, motivating geometry-aware, RLVR-
native learning algorithms.

Our results, to our knowledge, provide the first systematic link between RL training dynamics and
weight-space changes, complementing concurrent analyses that remain at the abstract level (policy
distribution, output KL loss) (Wu et al., 2025; Shenfeld et al., 2025). This parameter-level account
also explains why RL preserves pretrained capabilities more faithfully than SFT (Wang et al., 2024;
Chu et al., 2025) in large reasoning models from a fresh perspective. Furthermore, it provides
a critical insight for developing efficient RL algorithms: parameter-efficient fine-tuning (PEFT)
recipes must be rethought for RL, as SFT and RL show disjoint training dynamics (See Sec. 4).
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Table 1: Update sparsity in SFT vs. RLVR. Higher sparsitybf16 indicates more weights unchanged. RLVR
is consistently much sparser than SFT. † Mixed denotes a diverse data source combining math, coding, STEM,
logic puzzles, and instruction-following Liu et al. (2025a).

Base Model Finetuned (FT) Model Algorithm Data sparsitybf16

Qwen-1.5B DS-R1-Distill-Qwen-1.5B SFT Mixed 2.8%
DS-R1-Distill-Qwen-1.5B DeepScaleR-1.5B-Preview GRPO Math 53.8%
DS-R1-Distill-Qwen-1.5B DeepCoder-1.5B-Preview GRPO Code 45.5%
DS-R1-Distill-Qwen-1.5B Archer-Code-1.5B GRPO Code 52.5%
DS-R1-Distill-Qwen-1.5B NV-ProRL GRPO Mixed† 38.4%
DS-R1-Distill-Qwen-1.5B NV-ProRL-v2 Reinforcement++ Mixed† 36.3%

Qwen3-8B-Base Klear-Reasoner-8B-SFT SFT Math+Code 0.6%
Klear-Reasoner-8B-SFT Klear-Reasoner-8B GRPO Math+Code 69.5%
Qwen3-8B-Base GT-Qwen3-8B-Base GRPO Math 79.9%
Qwen3-8B-Base OURS DAPO Math 79.7%

Qwen3-14B-Base UniReason-Qwen3-14B-think-SFT SFT Math 18.8%
Qwen3-14B-Base UniReason-Qwen3-14B-RL GRPO Math 68.3%

Qwen3-4B Polaris-4B-Preview DAPO Math 79.3%
DS-R1-Distill-Qwen-7B Polaris-7B-Preview DAPO Math 61.7%
Qwen3-30B-A3B UloRL-A3B GRPO Math 91.7%

2 A STUBBORN OPTIMIZATION BIAS IN RLVR
We revisit the observation: RL induces sparse parameter updates, but move beyond quantification
by analyzing where RL localizes these changes. Our analysis uncovers a deep “optimization bias”
phenomenon, which we demonstrate RL exhibits a stubborn, structured optimization bias: it consis-
tently routes visible changes to specific regions of the network. The observed sparsity is a readout of
this bias, amplified by bfloat16, rather than intrinsically sparse gradients.
Model suite. We analyze publicly released checkpoints, as shown in Tab. 1. The suite spans mul-
tiple RLVR variants (e.g., GRPO, DAPO, Reinforcement++), diverse data domains (math, coding,
instruction), and several model families and types (dense and Mixture-of-Experts). We place partic-
ular emphasis on DeepSeek-R1-Distill-Qwen-1.5B (DS-Qwen-1.5B), for which a long-
horizon RL checkpoint is available (Liu et al., 2025a). This model serves as a robust case study
given its extensive training for over 3,000 steps on a diverse data mixture.

2.1 A ROBUST, BFLOAT16-AWARE ANALYSIS OF UPDATE SPARSITY

A bfloat16-aware probe for unchanged weights. bfloat16 (bf16) is standard in modern
RL frameworks like verl (Sheng et al., 2024), to improve throughput without compromising per-
formance. However, analyzing parameter changes under bf16 requires a careful probe. Its unique
numerical format, with only 7 mantissa bits for precision, means that the smallest representable dif-
ference between two numbers scales with their magnitude. Consequently, a fixed absolute-tolerance
check as used in (Mukherjee et al., 2025), is unreliable, which can over- or under-report (see Ap-
pendix D.1).
To ensure a rigorous report, we adopt a numerically robust, bfloat16-aware probe to define the
update sparsity sparsitybf16 as the fraction of parameters that remain unchanged.
Definition 2.1 (Unchanged Weight in bf16). Let wi, ŵi ∈ R be scalars stored in bf16 (finite,
nonzero). We say wi is unchanged with respect to ŵi iff

∣ ŵi −wi ∣ ≤ η max(∣wi∣, ∣ŵi∣), η = 10−3. (1)

Choosing η=10−3 < 2−9 makes equation 1 equivalent to bitwise equality (See Appendix D.2,).
Definition 2.2 (bf16-aware Update Sparsity). Write x ≈bf16η y for Def. 2.1. Define the bf16 change
count ∥θ1 − θ0∥bf160,η ∶= ∣{ i ∶ θ1i /≈

bf16
η θ0i }∣ and the corresponding sparsity

sparsitybf16(θ
0, θ1;η) ∶= 1 − ∥θ1 − θ0∥bf160,η /n. (2)

where n is the total number of parameters. Values near 1 indicate few stored changes, while values
near 0 indicate dense apparent change.
RLVR update sparsity results. As shown in Tab. 1, our analysis confirms that RL yields substan-
tially higher update sparsity than SFT. Across models, SFT sparsity is consistently low (typically
0.6%–18.8%), whereas RL sparsity is an order of magnitude higher, ranging from 36% to 92%.
However, absolute levels on recent checkpoints are lower than earlier reports (Mukherjee et al.,
2025), underscoring the need for bf16-aware probes and re-evaluation on current models.
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Figure 2: Consensus ratio of weight updates across five RLVR runs on the 13th layer’s projection (Q/K/V/O)
and the MLP down projection (zoom in for structures). Lighter bands indicate coordinates updated in most runs,
revealing a stable, stripe-like routing pattern rather than random scatter.

2.2 RLVR EXHIBITS A SURPRISING UPDATE BIAS

Magnitude alone does not reveal where changes occur, impeding the deep analysis on how sparse
changes arise. We therefore examine the updated subnetwork. We use 5 independent RLVR
checkpoints from the same DS-Qwen-1.5B in Tab. 1, trained on diverse data and different
RLVR algorithms. For each layer ℓ and run r, we first form the bf16-aware changed mask
M
(r)
ℓ ∶= 1[W

(r)
ℓ /≈

bf16
η W 0

ℓ ] (Def.2.2) against the base weights W 0
ℓ .

Stability across runs. We first analyze their spatial agreement using Jaccard Overlap. For runs
r, s, let A = {(i, j) ∶ M (r)

ℓ,ij = 1} and B = {(i, j) ∶ M
(s)
ℓ,ij = 1}. We report the mean off-diagonal of

the pairwise Jaccard matrix J(A,B) = ∣A∩B∣∣A∪B∣ and compare it to the independent Bernoulli baseline

Table 2: Cross-run stability for 13th block.
Layer Jaccard Overlap Random Baseline
Q 0.580 0.430
K 0.580 0.413
V 0.597 0.467
O 0.552 0.373
MLP-down 0.585 0.453
MLP-up 0.578 0.443
MLP-gate 0.575 0.437

E[J] = pq
p+q−pq . As summarized in Tab. 2, Jaccard

is consistently high across runs, confirming a shared
footprint when trained from the same base model, with
Jaccard matrix shown in Fig. 8.
Consensus ratio (where updates land). Stability
alone does not indicate where updates land. We there-
fore visualize and analyze the consensus ratio Cℓ,ij =
1
R ∑

R
r=1M

(r)
ℓ,ij , the fraction of runs realizing a weight update at coordinate (i, j). Values near 1

indicate that all runs consistently change that weight; values near 0 indicate that none do. As
shown in Fig. 2, consensus maps reveal contiguous row/column bands, stripe-like, localized routing
rather than scattered noise. Especially, there are obvious row-wise stripes in Q/K/V projections and
column-wise stripes in O projections. This exposes a clear optimization bias: RLVR consistently
concentrates updates in specific regions of the parameter matrices, even though the five runs use
disjoint data and RL variants.
Temporal stability (how the bias emerges). To examine within-run dynamics, we track the
row-wise ratio ρℓ,i(t) =

1
nℓ
∑j Mℓ,ij(t) and column-wise ratio κℓ,j(t) =

1
mℓ
∑iMℓ,ij(t) across

checkpoints at t steps. On DS-Qwen-1.5B (training setting in Appendix C.1), the relative profiles
ρℓ,⋅(t) and κℓ,⋅(t) remain aligned while overall density grows as shown in Fig. 3: peaks and troughs

Figure 3: Temporal emergence of the optimization bias with row and column-
wise update ratios for the 13th attention block across gradient update steps (t ∈
{240,720,1200}), smoothed with a 3-step window. The row-dominant (Q) and
column-dominant (O) patterns are consistent with the bias structures in Fig. 2. We
visualize the head boundaries with grey dashed lines. The bias appears not only
across heads but also within heads.

persist. The routing
bias emerges early
and is reinforced over
training, indicating a
temporally stable phe-
nomenon rather than
a transient artifact.
Moreover, the peak
is consistent with the
bias structure shown
in Fig. 2. We also
show their remaining
column-wise (Q) and
row-wise (O) update
ratio dynamics in Fig. 10, without a clear trend, indicating the bias is indeed structured, not random.
Other model families (whether only on Qwen). We observe similar stripe-structured footprints on
Llama and Mistral (Fig. 9 in Appendix), suggesting the routing bias is generic to RLVR. We
further examine the update consensus on the Llama model across RLVR variants in Appendix G.1.
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2.3 SPARSITY IS A SYMPTOM, NOT THE PHENOMENON

The stable footprint of where updates land, persisting both throughout training and in the final
model, suggests the focus should move from sparsity itself to the underlying optimization bias.
We find that sparsity is actually the readout of this optimization bias, whose visibility is amplified by
the precision limits of bf16 storage. Because bf16 has a limited mantissa, changes smaller than
the unit-in-the-last-place (ULP) threshold (Lemma D.2) are not representable. Therefore, if RLVR
consistently routes sub-ULP updates toward a particular subset of parameters, the stored values
will not change, and the result appears as sparsity.
We test this hypothesis by increasing the learning rate to scale otherwise sub-ULP updates above the
representable threshold. As predicted, the apparent update sparsity largely disappears. This directly
challenges the interpretation of (Mukherjee et al., 2025) that sparsity stems from zero gradients.
Instead, our results point to sparsity as a byproduct of an optimization bias interacting with finite
precision. Consistent with this view, concurrent work observes that sparsity mostly vanishes under
fp32 storage (Shenfeld et al., 2025), even though task performance does not improve.
Remark on precision. One natural confusion is treated the bf16 as the final cause, while it is
important to note that in verl, optimizer states and gradient reductions/accumulation are maintained
in float321. So the sparsity cannot show up unless the RL process is consistently biased toward
where to assign visible changes throughout the training.

Aha Finding! — RLVR exhibits a patterned, rather than random, optimization bias toward
where the visible changes land. The apparent sparsity is a direct readout of this underlying

bias, an effect amplified by bf16’s precision.

3 A MECHANISTIC THEORY OF THE RL OPTIMIZATION BIAS

In the post-training era, reinforcement learning (RL) has been the most compute-intensive yet pow-
erful stage xAI (2025). Paradoxically, as shown in Sec. 2, these large gains arise not through broad
updates, but through selective, patterned edits that reveal a persistent optimization bias. Understand-
ing this bias is essential to demystify how RL achieves its improvements with two central questions:

Where does this optimization bias originate, and what does RL preferentially optimize?

We answer this question with a Three-Gate Theory. First, on-policy RL introduces a KL constraint
that anchors the fine-tuned policy nearby. Second, the pretrained model geometry steers updates
towards specific regions, which is finally visualized through the lens of precision.
Notations. We consider a large language model with parameters θ, defining a conditional distribu-
tion πθ(y ∣ x) over possible output token sequences y = (y1, . . . , yT ) ∈ Y given a prompt x ∈ X
from the space X . Each sequence y is composed of tokens from a vocabulary V of size N .
RLVR objective. Various RLVR algorithms including PPO, GRPO, DAPO, and REINFORCE++,
learn a policy πθ by optimizing variants by optimizing variants of a KL-regularized objective:

max
θ

Ey∼πθ(⋅∣x),x∼X [R(x, y) − βKL(πθ(⋅ ∣ x) ∥πref(⋅ ∣ x))]. (3)

where πref is a fixed reference policy and β ≥ 0 controls the KL regularization (β = 0 recovers
the clip-only variants such as DAPO). Rewards R(x, y) are verifiable and (after normalization)
bounded (e.g., pass/fail or execution scores). Moreover, the surrogate typically uses the token-wise
importance ratio wt =

πθ(yt∣x,y<t)
πold(yt∣x,y<t) with clipping relative to πold.

3.1 GATE I: ANCHORING VIA AN ON-POLICY KL LEASH

We first show that online policy gradient updates yield a per-step policy KL bound (an anchoring
effect), which in turn limits parameter movement during the RLVR update.
One-step surrogate. With equation 3, a standard sequence-level online policy-gradient surrogate
is

LPG(θ) = −Ex∼X , y∼πθ(⋅∣x)[A
⊥(x, y) logπθ(y ∣ x)], (4)

where A⊥ is a (normalized) advantage estimate, optionally shaped by a reference-KL log-ratio term.
In practice, updates are performed over mini-batches, with a collected batch of data, not in a fully
on-policy manner. But the resulting error after a small step size ∆θ is O(∥∆θ∥2) (Lemma E.1).

1verl mixed-precision settings with {reduce type, buffer dtype}=float32.
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Implicit KL leash. The KL leash emerges as policy gradient methods can be understood as a
conservative projection, keeping new policy close to its starting point while reweighting it toward
higher-reward outcomes, not pulling it toward a potentially distant external distribution like SFT:

Proposition 3.1 (One-step policy-KL leash). Let q(⋅ ∣ x) be a full-support reference and let q̃β(⋅ ∣
x) ∝ q(⋅ ∣ x) exp(R/β) denote the soft-regularized improvement oracle. Let θ+ be the parametric
fit obtained by the M -projection of q̃β onto the policy class, θ+ ∈ argminθ DKL(q̃β∥πθ). Then, for
a sufficiently small one-step update,

DKL(πθ+ ∥ πθ) ≤ (1 + o(1))DKL(q̃β ∥ πθ), (5)

where the o(1) term vanishes as DKL(q̃β∥πθ) → 0.

Notably, even when the explicit KL term is removed (e.g., in DAPO with β = 0), the ratio clip-
ping trick still imposes a KL bound O(ε2) in the small-step regime (Appendix. E.2.4), confirmed
empirically with a bounded KL divergence change during a DAPO run (Fig. 11).
Weight update constraint. Now we show the KL leash puts a constraint on weight update ∆W

Proposition 3.2 (Policy-KL leash⇒ weight bound). Assume logπθ is C3 and let F (θ) denote the
Fisher information. If a one-step update θ+ = θ +∆ satisfies DKL(πθ+∥πθ) ≤K and, on the update
subspace, F (θ) ⪰ µI for some µ > 0, then for K sufficiently small

∥∆∥F (θ) ≜
√
∆⊺F (θ)∆ ≤

√
2K (1 + o(1)), ∥∆∥2 ≤

√
2K
µ
(1 + o(1)). (6)

Consequently, for any weight matrix block W ⊂ θ, ∥∆W ∥F ≤
√
2K/µ (1 + o(1)).

See a detailed proof for Proposition 3.1 in Appendix E.2.1 and Proposition 3.2 in Appendix E.2.2.

Take-away 1: RL update imposes an implicit KL leash (anchor effect), ensuring that the per-
step drift from the current policy is small. This aligns with recent work arguing that even the
final policy is KL-proximal Wu et al. (2025); Shenfeld et al. (2025). Our focus, however, is to
understand how this leash affects the weight change dynamics.

3.2 GATE II: PRETRAINED GEOMETRY DETERMINES Where A KL-BOUNDED STEP GOES

From Gate I to location. Gate I supplies a one-step KL leash, but it does not explain where the
step lands. We propose Gate II: the Model Geometry Gate, where we argue that unlike a randomly
initialized network, a well-pretrained model possesses a highly structured geometry, e.g., spectrum
statics, high-curvature directions related to reasoning performance, acts as a “key compass” that
determines where the update is favored to be applied.
Layerwise norm bound from the KL leash. Let W0 be a pretrained linear block, W+ =W0 +∆W
the post-step block, and let FW ⪰ µW I be a per-layer curvature proxy . If the per-layer KL budget
satisfies 1

2
⟨vec∆W,FW vec∆W ⟩ ≤ δW , then (Appendix E.10)

∥∆W ∥F ≤
√

2δW
µW

, ∥∆W ∥2 ≤
√

2δW
µW

. (7)

We then show this conservative update yields three consequences making them preserve pretrained
weight spectrum instead of destroying them based on weight perturbation theory Stewart (1998).
Limited subspace rotation. First, as shown in Theorem 3.3, the angle between the original and
updated subspaces is quadratically bounded, meaning the fundamental directions are preserved.

Theorem 3.3 (Constrained subspace rotation with Wedin’s sin–Θ theorem Wedin (1972).). For any
k with γk > 0,

max(∥ sinΘ(Uk(W0), Uk(W+))∥2, ∥ sinΘ(Vk(W0), Vk(W+))∥2 ≤
∥∆W ∥2

γk
≤
√
2δW /µW

γk
. (8)

Singular value stability. Second, the magnitudes of the principal components themselves are pre-
served. The change in each singular value is bounded by the norm of the update.

Corollary 3.4 (Singular-value stability). For each k,

∣σk(W+) − σk(W0)∣ ≤ ∥∆W ∥2 ≤
√

2δW
µW

, ∑
i

(σi(W+) − σi(W0))
2 ≤ ∥∆W ∥2F ≤

2δW
µW

. (9)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

RL

SFT

Principal Angle
(single-layer)

Singular Value
(single-layer)

Specturm Drift
(all-layer)

Max Principal Angle
(all-layer)

Figure 4: The spectrum probe results on the RL and SFT version on the Qwen3-8B Su et al. (2025)
with the full top-k principal angles and singular value curve on one exemplar layer. RLVR exhibits a
surprisingly stable top-k spectrum with minimal subspace rotation and changes in top-k eigenvalues.
More visualization in Appendix F.2.

Top-k energy preservation. Finally, these effects combine to ensure the cumulative energy of the
top-k components of the weights remains stable.

Corollary 3.5 (Top-k energy and Ky Fan norms). Let ∥ ⋅ ∥(k) ∶= ∑
k
i=1 σi(⋅) be the Ky Fan k-norm.

Then

∣ ∥W+∥(k) − ∥W0∥(k) ∣ ≤
k

∑
i=1

∣σi(W+) − σi(W0)∣ ≤ k ∥∆W ∥2 ≤ k

√
2δW
µW

. (10)

See a detailed proof in Appendix E.3.

Take-away 2: Under the KL leash, RL updates tend to preserve the model’s original weight
structure rather than destroy it. This naturally favors updates in low-curvature directions of
the optimization landscape, which avoids dramatic changes in model behavior. Since directly
quantifying curvature in LRM with long CoTs is computationally prohibitive, we instead adopt a
powerful and efficient proxy, principal weights Liu et al. (2025c), as detailed in Sec. 4.2.

3.3 GATE III: PRECISION AS A LENS THAT REVEALS THE COMPASS

Building on the optimization bias, the bfloat16 with limited precision acts as a lens: it hides those
micro-updates that occur where the RL consistently holds a weak willingness to apply large changes.

Corollary 3.6 (Magnitude-dependent realization threshold). A stored weight Wij changes at a step
iff ∣∆Wij ∣ ≳

1
2
ULPbf16(Wij).

The effect of this gate has been discussed aforementioned. We would emphasize again that precision
is more an amplifier for visible sparsity, not the cause of optimization bias, as optimizer states, etc.,
are still in float32 (See 2.3).

4 EMPIRICAL VALIDATION OF THE OPTIMIZATION COMPASS

We now present theory-driven empirical evidence to validate our “Optimization Compass”, the core
claim of Gate II: that the model’s geometry is the ”compass” that steers the KL-constrained up-
dates. The following experiments confirm our theory’s predictions about where the optimization
bias originates and what RL preferentially optimizes.

4.1 RLVR PRESERVES SPECTRAL STRUCTURE, WHILE SFT DOES NOT

First, we probe spectral changes to directly test the prediction of Gate II (Geometry): the model’s
geometry steers the update, causing RLVR to preserve the underlying structure rather than destroy
it. We examine checkpoints trained with a standard SFT-then-RLVR pipeline: one from Qwen3-
8B-Base (Su et al., 2025) and another long-horizon RL run on DS-Qwen-1.5B (Liu et al., 2025a),
both from industry with SOTA performance. Besides, we also analyze a setting where SFT and
RL are applied separately to the Qwen3-14B-Base model, delivering comparable in-domain math
performance (Huan et al., 2025). We compare the base weights W0 with the finetuned weights W+:
• Subspace rotation. For the top-k left (U )/right(V ) singular subspaces, we check the rotation

using principal angles via cos θi(U) ∶= σi(U
⊺
0,kU+,k) and cos θi(V ) ∶= σi(V

⊺
0,kV+,k).
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Figure 5: RL avoids updating principal weights. We compare the RL update mask with princi-
pal weight mask Mprinc, low magnitude mask Mlow, and the one Mprinc ∩M

c
low. The layer-wise

overlap between RL updates and principal weights is consistently sub-random, an effect more pro-
nounced when removing its overlapped weights with Mlow, i.e., Mprinc ∩M

c
low.

• Spectrum drift. Beyond showing the singular value curve, we quantify singular-value change
with a normalized ℓ2 shift: NSS(W ) = ∥σ(W+) − σ(W0)∥2/∥σ(W0)∥2

Our findings: RLVR checkpoints show a surprisingly stable spectrum within their top principal
components. As shown in Fig. 4, RLVR consistently exhibits low subspace rotation and low spec-
trum drift. In sharp contrast, SFT induces significantly higher rotation and drift across the same
metrics. This provides the first direct evidence for our ”compass” theory.

4.2 RLVR AVOIDS PRINCIPAL WEIGHTS WHILE SFT TARGETS THEM

Next, we examine which specific parameters the optimization compass targets or avoids beyond a
macro-level spectral check.
Principal weights as a proxy for high-curvature directions. Directly identifying high-curvature
directions is computationally prohibitive, especially given LRM with long CoTs. Instead, we adopt
a powerful proxy from recent work Liu et al. (2025c), principal weights, which is defined as the
weights with the largest magnitude after low-rank approximation, representing its most influential
computational pathways. The validity of this proxy is confirmed by their perturbation studies, which
show that modifying these specific weights causes sharp reasoning performance degradation. This
degradation is directly linked to high-curvature regions via a Taylor expansion of the loss. The
principal mask, M (k)

princ = Topα(s
(k)
ij ), is defined as the top-α fraction of weights with the highest

score, s(k)ij = ∣W
(k)
0 (i, j)∣, where W k

0 is the rank-k SVD reconstruction of W0.
Low-magnitude weights as low-resistance pathway. We further include the top-α lowest magni-
tude weights, as Mlow = Bottomα(∣W0∣). The magnitude is also a bias from the model geometry
(distribution prior), impacting how easily the weights can be updated based on our precision gate.
Metrics. Let M be the weight update update mask from an RLVR run. We report
the overlap ratio between our identified mask M● with it, defined as Overlap(M●,M) =
∣M●∩M ∣
∣M ∣ ., with a random guess baseline overlap ratio as the density of M● itself., i.e., α.

Figure 6: Overlap ratio after interven-
tion.

Our findings. Fig. 5 visualizes the RL update mask M
in relation to the principal mask Mprinc and the low-
magnitude mask Mlow, reporting their layer-wise overlap
against a random baseline as well.
The results show a clear dichotomy. RL updates exhibit
a sub-random overlap with principal weights, indicating
a strong tendency to avoid them. Conversely, the up-
dates show a super-random overlap with low-magnitude
weights due to their low-resistance to micro-updates. Be-
sides, we found that the residual overlap between updates
and principal weights is highly accounted for by weights
that are both principal (defined by the rank-k approxima-
tion of W0) and low-magnitude (original W0). After excluding this intersection, i.e., Mprinc∩M

c
low,

the overlap drops significantly.
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Remark. This leads to a crucial and counter-intuitive finding: RLVR and SFT are driven by updates
to fundamentally different regions of a model, though performance could be similar.

4.3 RLVR RELIES ON MODEL GEOMETRY, DISRUPTING GEOMETRY DESTROYS THE BIAS

Gate II posits that the pretrained model’s geometry steers RL updates. To test this causal link,
we deliberately ”scramble” the geometry of specific layers in a Qwen3-4B-Base model using
orthogonal rotations and head permutations (details in Appendix C.3) and compare the overlap
Overlap(M●,M) =

∣M●∩M ∣
∣M ∣ . between the base run with another independent run without inter-

vention and one run with intervention.
Findings. We modify (i) layer 20 with ROTATE+PERMUTE, and (ii) layer 25 with ROTATE. As
shown in Fig. 6, the update overlap collapsed to a random level in the intervened layers, while
remaining high in all untouched layers. This provides strong causal evidence that the pretrained
model’s geometry is the source of the optimization bias.

4.4 RLVR SIGNATURES PERSIST IN AGENTIC TASKS, RLHF, ROBOTICS

Setup. We analyze additional agent, RLHF (RL with human feedback), and embodied checkpoints
and apply the same weight–space diagnostics as in Sec. 4.1 and Sec. 4.2: (i) principal-subspace
rotation, (ii) spectral drift, and (iii) update–principal misalignment. The extended model suite
is summarized in Tab. 5. (i)Agents. We evaluate policies from AGENTFLOW (Li et al., 2025b)
and VERL-AGENT (Feng et al., 2025) on multi-turn and long-horizon tasks. We also assess tool-
augmented agents from SKYRL (Cao et al., 2025) and VERL-TOOL (Jiang et al., 2025) on Web-
Search, DeepSearch, and SWE. (ii)RLHF. We include preference-optimized models trained with
DPO (Rafailov et al., 2023a) and SimPO (Meng et al., 2024c), primarily targeting instruction follow-
ing. (iii)Embodied AI. We include embodied AI models with both language and vision backbones
from SimpleVLA-RL (Li et al., 2025a) and Embodied R1 (Yuan et al., 2025).

Our Findings. (i) Stable spectra, minimal rotation. Across models, top-k subspaces rotate only
slightly, and layer spectra remain near-identical to the base model (Fig. 15; Fig. 16; Fig. 17), match-
ing the spectrum-preserving, off-principal regime observed earlier. (ii) Off-principal updates. Up-
date masks in checkpoints consistently avoid principal weights: the most active bands are spatially
misaligned with the principal mask (Fig. 18). Takeaway. RLVR’s optimization dynamics, mini-
mal rotation, spectrum preservation, off-principal routing, persist beyond verifiable math/code to
agents, embodied AI RLHF, indicating a common, model-conditioned optimization bias within a
KL-anchored RL post-training game, consistent with our Three-Gate Theory.

5 THEORY-GUIDED RETHINKING OF LEARNING ALGORITHMS FOR RL
A good theory should not only explain a phenomenon, beautifully validated by observations, but
also provide actionable insights. Our account shows that RLVR and SFT follow disjoint optimiza-
tion dynamics in parameter space, which implies that many SFT-era PEFT methods, especially those
aligned with principal directions through sparse or low-rank priors, transfer poorly to RLVR. This
section validates our predictions and demonstrates how they guide the redesign of learning algo-
rithms for RL.

5.1 PROBING SPARSE FINE-TUNING IN RL
Rather than judge success by final task accuracy, which is noisy and can reward “lucky” runs in RL,
we instead track the token-wise forward KL drift KL(π ∥πref) throughout training. This allows
us to assess how closely a sparse run follows the dense baseline trajectory. Intuitively, if removing
weights impedes the training, the policy cannot effectively shift away from the base policy.
Masks. We evaluate by performing RLVR on the DS-Qwen-1.5Bwith only the following weights,
identified one-shot before training. (i) U = Mprinc (principal-only, sparsity 50%), (ii) U = M c

princ
(non-principal-only, sparsity 50%), (iii) U = Mlow (lowest weights with the threshold as the mean
of magnitude), (iv) U =Mlow ∪ M c

princ (favor non-principal and low-magnitude), and (v) a random
mask with the same layer-wise sparsity as (iv). We choose 50% for (i) as we want to isolate the
effect of the number of parameters for a fair comparison to see the difference between (i) and (ii).
Results (KL in Fig. 7 and accuracy in Tab. 3) The union mask Mlow ∪M

c
princ tracks the dense

run’s KL curve most closely and outperforms its random baseline, showing our theory indeed distin-
guishes those highly touchable weights with a similar trend. principal-only is the worst with much
slower increasing training KL loss and much lower accuracy, showing a clear training block.
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Takeaways and limits. (1) RLVR’s effective updates concentrate away from principal directions
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Figure 7: KL loss curve on
DS-Qwen-1.5B under different masks. A
Better visualization.

(the ones SFT tends to favor), consistent with our
theory. This reveals a fundamental contrast be-
tween SFT and RL: SFT directly targets principal
weights Liu et al. (2025c), whereas RL actively
avoids them. This finding demonstrates that tra-
ditional sparse fine-tuning algorithms designed for
SFT may be a poor match for RL and motivates
the need for a new class of RL-specific methods.
(2) Freezing principal and large-magnitude weights
while updating non-principal and low-magnitude
ones can approximate the dense KL trajectory with
competitive accuracy,demonstrating the guidance ef-
fect of our theory, especially since the mask is pre-
dicted without any additional training. (3) These
are one-shot masks without schedule/retuning, with
residual accuracy gaps expected. Future work com-
bining our theory with dynamic mask refresh or
PEFT schedules will be promising next steps (Zhao
et al., 2024; Zhu et al., 2024; Liu et al., 2025c).

5.2 REVISITING LORA THROUGH THE LENS OF OUR THEORY

A recent report (Schulman & Lab, 2025) finds that low-rank LoRA, even rank-1, can match full-
parameter RL performance. Our theory offers an explanation: in full-parameter RL, effective up-
dates lie off the principal directions and induce only small spectral changes. Low-rank adapters
can approximate these off-principal updates, while freezing the base weights regularizes training
and discourages moves toward principal directions. With an appropriately scaled learning rate, the
limited adapter capacity is therefore sufficient to catch up to full-parameter performance at least in
the short run.
However, the same report suggests principal-targeted variants such as PiSSA (Meng et al., 2024a)
should yield further gains. Our geometry account disagrees: aligning updates to top-r principal
directions enforces SFT-style behavior that is misaligned with RLVR’s off-principal bias.
Empirical test. On DS-Qwen-1.5B with DeepMath-103K (He et al., 2025), we sweep ranks
{8,32,64} and learning rates {1×10−4, 5×10−5, 1×10−5} for 200 steps, and report pass@1 (mean
over 16 samples) on AIME24 and AMC23 (Fig. 19). To control for model effects, we repeat on
Llama-3.2-3B-Instructwith a Math corpus and report pass@1 (mean over 4) on MATH500
(Fig. 20).
Our findings. Across settings, the principal-targeted PiSSA provides no clear gain over LoRA. At
the higher learning rates used for low-rank adapters to match full-parameter performance, PiSSA
often becomes unstable and collapses earlier than LoRA. This occurs because scaling the learning
rate in PiSSA enforces updates along principal directions, higher-curvature and spectrum-distorting,
precisely the directions RLVR tends to avoid. The result is brittle optimization and early collapse,
whereas LoRA’s off-principal updates remain better aligned with RLVR’s geometry.
Insight. These results support the geometry-based account: principal-aligned LoRA variants are
over-fit to SFT’s update geometry and misaligned with RL’s training dynamics, so success in SFT
does not transfer to RL.

6 CONCLUSION

In this work, we resolve the paradox of sparse but effective reinforcement learning (RL) updates
by identifying a persistent, geometry-aligned optimization bias, an ”implicit compass” that steers
training. We propose a Three-Gate Theory that provides a mechanistic account for this phenomenon,
showing how on-policy constraints, pretrained model geometry, and bfloat16 precision interact to
guide updates. Our experiments, including causal interventions, confirm that this compass steers RL
to preserve the model’s spectral structure by avoiding the principal weights targeted by Supervised
Fine-Tuning (SFT). This parameter-level account not only demystifies its optimization bias but also
charts a path toward a white-box understanding of RLVR and the design of geometry-aware, RLVR-
native learning algorithms, rather than repurposed SFT-era heuristics.
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A CLARIFICATION OF LLM USAGE

In this work, we employ LLMs to polish the writing throughout the paper and to assist in generating
code for figure plotting. Besides, we use it for drawing the teaser figure.

B MORE RELATED WORKS

Post-training Large-scale models pre-trained on broad domains serve as general-purpose back-
bones with extensive domain knowledge and notable zero-shot capabilities (Radford et al., 2021;
Achiam et al., 2023; Touvron et al., 2023; Hu et al., 2023; Li et al., 2024; Radford et al., 2018; Brown
et al., 2020). However, such pre-trained models often fail to meet the specific application require-
ments or align with domain-specific constraints. Post-training methods address this gap by adapting
foundation models to downstream tasks. Common approaches include supervised fine-tuning on
curated datasets (Howard & Ruder, 2018; Dodge et al., 2020; Wei et al., 2021; Chung et al., 2024),
reinforcement learning from human or automated feedback (Ziegler et al., 2019; Ouyang et al., 2022;
Guo et al., 2025; Zhai et al., 2024), and other recent techniques (Rafailov et al., 2023b).
Especially, the recent advances in LLM reasoning (DeepSeek-AI, 2025) highlight the effectiveness
of Reinforcement Learning with Verifiable Rewards (RLVR), which replaces subjective human judg-
ments with automatically verifiable signals. RLVR has been shown to significantly enhance reason-
ing ability using policy optimization algorithms such as PPO (Ouyang et al., 2022) and GRPO (Shao
et al., 2024). Building on these successes, a growing body of work (Yu et al., 2025; Liu et al., 2025b;
Luo et al., 2025a; Zhang et al., 2025; Liu et al., 2025a; Xiong et al., 2025) continues to refine RL
methods tailored for LLM reasoning.

SFT versus RL. Prior work comparing these paradigms has largely focused on downstream per-
formance. A foundational result shows that on-policy RL can outperform offline SFT even with the
same expert data (Ross et al., 2011). Recent empirical studies consistently reinforce this, finding
that RL-tuned models often generalize better out-of-distribution (Han et al., 2025; Chu et al., 2025)
and transfer more effectively to new tasks (Huan et al., 2025) than their SFT counterparts.
While these studies establish a performance hierarchy, our work investigates a different dimension:
how these distinct methods affect the model’s internal structure. A recent study observed that RL
fine-tunes only a fraction of the network’s parameters (Mukherjee et al., 2025), but this empirical
finding left the underlying mechanism unexplored and did not characterize or predict the affected
subnetwork. Our work aims to bridge this gap by providing a mechanistic explanation for this
phenomenon.

C EXPERIMENTAL DETAILS

C.1 TRAINING SETTINGS

Models & Datasets. We run post-training experiments on three open models:
DeepSeek-R1-Distill-Qwen-1.5B (Yang et al., 2024), Qwen2.5-Math-7B (Yang et al.,
2024), and Qwen3-Base (Team, 2025). The maximum context length is set to 8192 for
DeepSeek-R1-Distill-Qwen-1.5B and Qwen2.5-Math-7B, and to 20480for Qwen3--Base.
We evaluate primarily on mathematics using two training corpora to reduce dataset-specific
confounds. (1) DAPO+MATH (DM): a union of the DAPO-Math-17k set2 and the MATH
dataset (Hendrycks et al., 2021). (2) DS+SR: the 47k DeepScaler collection (Luo et al., 2025b) com-
bined with high-difficulty (levels 3–5) problems extracted from SimpleRL (Zeng et al., 2025).We
use the version from Huan et al. (2025).

2DAPO-Math-17k
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Training details. We implement RLVR on the VeRL pipeline (Sheng et al., 2024) and use
vLLM (Kwon et al., 2023) for rollouts. We use FSDPv2 with the default mixed precision configu-
ration. All experiments run on NVIDIA H200 GPUs. Unless otherwise noted, we use DAPO (Yu
et al., 2025) without an explicit reference-KL penalty (ratio clipping as in DAPO), a global batch
size of 256 (mini-batch 64) with 4 gradient update per step.
Per-model configurations without specific mention:
• Qwen2.5-Math-7B on DM: 16 rollouts per prompt; 8 x H200 GPUs; 300 training steps.
• DeepSeek-R1-Distill-Qwen-1.5B on DS+SR: 12 rollouts per prompt; 16 x H200 GPUs; 320

steps.
• Qwen3-4B-Base on DS+SR: 16 rollouts per prompt; 32 x H200 GPUs; 150 steps.

We optimize the actor with AdamW (Loshchilov & Hutter, 2017) (constant learning rate 1 × 10−6,
β1=0.9, β2=0.999). Rewards are verifiable: +1.0 if the extracted final answer is correct, otherwise
−1.0 (no separate format score), following the detailed verifier implementation in Su et al. (2025).
We enable an over-length penalty with an extra 1024-token budget and penalty factor 1.0.

C.2 EVALUATION SETTINGS

We evaluate models on four widely used benchmarks: AIME24 (MAA, 2024), AIME25 (MAA,
2025), AMC23 (MAA, 2023), MATH-500 (Lightman et al., 2023), as we main train using math
daastets. We used Eval-Chemy (Raoof et al., 2025) with their default temperature 0.7 and 0.8 as
the top-p value. In our experiments, we used the averaged accuracy, i.e., pass@1(avg@k) for
all benchmarks. to evaluate the models’ performance. Specifically, for AIME24 and AIME 25, we
averaged accuracy on 64 samples, for AMC, we average accuracy on 32 samples, For MATH 500,
our score is the average accuracy over 2 samples.

C.3 INTERVENTION DETAILS

Intervention 1: loss–preserving V/O rotation. Let D be the head dimension, Hq the number of
query heads, Hkv the number of key/value heads, and nrep =Hq/Hkv (grouped GQA). Denote

Wv ∈ Rdmodel×(HkvD), Wo ∈ Rdmodel×(HqD).

Draw any orthogonal R ∈ RD×D (Haar/Hadamard) and form the block rotations

Rkv = diag(R, . . . ,R
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Hkv

) ∈ R(HkvD)×(HkvD), Rq = diag(R, . . . ,R
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

nrep

, R, . . . ,R
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

nrep

, . . .) ∈ R(HqD)×(HqD).

We edit the weights by right–multiplication along the head axis:

W ′
v =WvRkv, W ′

o =WoRq. (11)

If bv exists, reshape bv per head and set b′v = bvRkv .
Proposition C.1 (Exact invariance). Let Ctx = Attn(Q,K,V ) ∈ R⋅×(HqD). Under equation 11,

out′ = Attn(Q,K,V Rkv) (WoRq)
⊺
= CtxRqR

⊺
qW

⊺
o = CtxW ⊺

o = out.

Intervention 2: head shuffle (lossless). Let Pkv be a permutation of the Hkv KV heads and Pq

its grouped expansion to Hq heads. Apply

rows of (Wk,Wv) ← Pkv, rows of Wq ← Pq, columns of Wo ← P −1
q .

cols of (Wk,Wv) ← Pkv, cols of Wq ← Pq, columns of Wo ← P −1
q .

This relabels which head carries which subspace, while leaving the block function unchanged.
We show that after weight intervention, the model weights update position has a sub-random overlap
while those untouched weights stay a high overlap.

C.4 EVALUTION SETTINGS

D EXAMPLES OF WHY PREVIOUS IDENTIFIED METHOD FAILS

D.1 FAILURES OF A FIXED ABSOLUTE TOLERANCE RULE

• False positives at large scale. Within [210,211)=[1024,2048), the bf16 spacing is ULPbf16 =

210−7 = 8. Numbers like 1024.001 and 1024.002 differ by 10−3>10−5, hence would be flagged as
“changed” by the 10−5 rule, yet both round to the same bf16 code (1024), i.e., no storage-level
change.
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• False negatives at small scale. Around 10−6 ≈ 2−20, the bf16 spacing is ULPbf16 = 2−27 ≈
7.45×10−9. Weights w=10−6 and ŵ=2×10−6 differ by 10−6≤10−5 and would be marked “equal”
by the 10−5 rule, yet they are separated by ≈ 134 ULPs and quantize to different bf16 codes.

D.2 JUSTIFICATION OF OUR PROBE

Lemma D.1 (Gap between distinct bf16 representables). If x ≠ y are normalized bf16 numbers in
the same binade [2e,2e+1), then

∣x − y∣ ≥ 2 e−7 and
∣x − y∣

max(∣x∣, ∣y∣)
> 2−8.

The strict inequality also holds across the binade boundary.
Lemma D.2 (ULP lens: magnitude-dependent threshold). For normalized bf16 values x with ∣x∣ ∈
[2e,2e+1),

ULPbf16(x)

∣x∣
∈ (2−8, 2−7] = (0.390625%, 0.78125%].

Hence the minimal realized relative update at magnitude ∣x∣ is ≳ 1
2
ULPbf16(x)/∣x∣ ∈

(0.195%, 0.391%]. In particular, larger ∣x∣ requires a larger absolute step to register.
Proposition D.3 (Soundness and completeness of the probe). Let wi, ŵi be normalized bf16 values
(finite, nonzero), and suppose η < 1

2
minxULPbf16(x)/∣x∣ = 2

−9 ≈ 1.953 ⋅ 10−3. Then

∣ ŵi −wi ∣ ≤ ηmax(∣wi∣, ∣ŵi∣) ⇐⇒ bf16(wi) = bf16(ŵi).

Proof. (⇒)If wi ≠ ŵi, Lemma D.2 gives ∣ŵi−wi∣/max(∣wi∣, ∣ŵi∣) > 2
−8 > 2η, contradiction. Hence

wi = ŵi as bf16 numbers.
(⇐) If the stored bf16 values are equal, the difference is 0, which satisfies equation 1.

Corollary D.4 (Choice η = 10−3 is safe). Since 10−3 < 2−9, Proposition D.3 applies: the test
equation 1 passes iff the two bf16 entries are bit-wise identical (or both zero). Thus η = 10−3 yields
a scale-aware probe that flags equality only when storage is unchanged.

E MATH ANALYSIS

E.1 POLICY-GRADIENT FINE-TUNING (DAPO)
Assume an old policy πold that we use to sample G candidate completions y1∶G for each prompt
x ∈ X . For a single token yi,t (token t in completion i) we define the importance-weighted advantage

wi,t =
πθ(yi,t∣x, y<t)

πold(yi,t∣x, y<t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

importance ratio

Âi,t Iclip ∈ R, (1)

where Âi,t is the estimated advantage and Iclip ∈ {0,1} implements the usual trust-region clipping.

Token-level objective. The DAPO loss can be written as a sum of weighted log-probabilities

JRL(θ) = Ex∼X , y1∶G∼πold
[ 1
∑i ∣yi∣

G

∑
i=1

∣yi∣
∑
t=1

wi,t logπθ(yi,t ∣ x, y
i
<t)]. (2)

E.2 PROOF OF GATE I: ON-POLICY RL IMPLIES A ONE-STEP KL LEASH

This appendix provides the standard tilting oracle and M -projection facts, local second-order ex-
pansions, and the proof of the one-step policy-KL leash (Prop. 3.1 in the main text). We keep the
proof concise, otherwise too lengthy, especially for those has shown in some prior work Shenfeld
et al. (2025); Wu et al. (2025). Our one-step analysis is inspired by recent work Wu et al. (2025);
Shenfeld et al. (2025), which uses a similar variational approach to show that even the final con-
verged policy remains KL-proximal to the base policy. We also record a trust-region/clipping bound
used when β = 0.
Throughout, x is fixed, q(⋅ ∣ x) has full support on Y , and πθ(⋅ ∣ x) is a C3 parametric family with
log-density logπθ locally smooth. Expectations without explicit subscript are conditional on x.
We first show useful lemmas here.
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Lemma E.1 (Frozen-policy surrogate is second-order tight). Let f(θ) ∶= LPG(θ) in equation 4 and
g(θ) ∶= L̃PG(θ; θt) be the frozen-policy surrogate with Aθt . Then f(θt) = g(θt) and ∇f(θt) =
∇g(θt). If ∇f and ∇g are L-Lipschitz in a neighborhood of θt, then

∣ f(θt +∆θ) − g(θt +∆θ) ∣ ≤ L
2
∥∆θ∥2.

Proof. At θt, both objectives evaluate to −Eπθt
[Aθt logπθt]. For the gradient, using the

log-derivative trick and the centering of Aθt , both yield −Eπθt
[Aθt∇ logπθt]. Thus f(θt) = g(θt)

and ∇f(θt) = ∇g(θt). The bound is the standard second-order Taylor remainder under Lipschitz
gradients.

1: Exponential tilting and M-projection
Lemma E.2 (Gibbs variational principle / exponential tilting). Fix β > 0 and a full-support reference
q(⋅ ∣ x). Then

max
π≪q

{Ey∼π[R(x, y)] − βDKL(π∥q)}

is uniquely maximized by

q̃β(y ∣ x) =
q(y ∣ x) exp(R(x, y)/β)

Ey∼q[exp(R(x, y)/β)]
.

Proof. Consider L(π,λ) = Eπ[R] − βEπ[ log
π
q
] + λ(∑y π(y) − 1). Stationarity in π gives log π

q
=

R/β − λ − 1, hence π ∝ q eR/β . Strict concavity in π yields uniqueness.

Lemma E.3 (Policy Gradient Update as Parametric M -projection). For fixed q̃β ,

argmin
θ

DKL(q̃β∥πθ) = argmax
θ

Ey∼q̃β [logπθ(y ∣ x)].

Proof. DKL(q̃β∥πθ) = Eq̃β [log q̃β] − Eq̃β [logπθ], where the first term is θ-independent. We omit
the full proof here, with one can be found in Shenfeld et al. (2025).

2: Local second-order identities
Lemma E.4 (Local Pythagorean identity for the M -projection). Let f(θ) ∶= DKL(q̃β∥πθ) =

Eq̃β [− logπθ] + const. Assume logπθ is C3 near θ, and let θ+ ∈ argmin f . Writing ∆ ∶= θ+ − θ, for
∥∆∥ small,

f(θ) − f(θ+) = 1
2
∆⊺Hq̃(θ)∆ +O(∥∆∥

3
), Hq̃(θ) ∶= −Eq̃β [∇

2 logπθ].

Proof. Taylor-expand f at θ+: f(θ) = f(θ+) + 1
2
∆⊺Hq̃(θ

+)∆+O(∥∆∥3) since ∇f(θ+) = 0. Local
C3 smoothness implies Hq̃(θ

+) =Hq̃(θ)+O(∥∆∥), which is absorbed into the cubic remainder.

Lemma E.5 (Quadratic expansion of policy KL). Let F (θ) ∶= −Eπθ
[∇2 logπθ] be the Fisher in-

formation. Then
DKL(πθ+∆∥πθ) =

1
2
∆⊺F (θ)∆ +O(∥∆∥3).

Proof. Expand log πθ+∆

πθ
=∆⊺∇ logπθ+

1
2
∆⊺∇2 logπθ ∆+O(∥∆∥

3), take expectation under πθ+∆ =

πθ +O(∥∆∥), use Eπθ
[∇ logπθ] = 0 and −Eπθ

[∇2 logπθ] = F (θ).

3. Relating projection Hessian and Fisher under small tilt
Lemma E.6 (Hessian–Fisher proximity). Suppose ∥∇2 logπθ(y ∣ x)∥op ≤ L uniformly near θ. Then

∥Hq̃(θ) − F (θ)∥op ≤ 2LTV(q̃β , πθ) ≤ L
√
2DKL(q̃β∥πθ).

In particular, with κ ∶=DKL(q̃β∥πθ) → 0, we have Hq̃(θ) = (1+O(
√
κ))F (θ) as quadratic forms.

Proof. For bounded matrix-valued h, ∥Eq̃h − Eπh∥op ≤ 2∥h∥∞TV(q̃, π). Apply this with h ∶=

−∇2 logπθ and Pinsker’s inequality TV(p, q) ≤
√

1
2
DKL(p∥q).
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4. Remainder control
Lemma E.7 (Cubic remainder is o(f)). If Hq̃(θ) ⪰ mI on the update subspace (local strong
convexity), then for ∥∆∥ small

∥∆∥2 ≤ 2
m
(f(θ) − f(θ+)), O(∥∆∥3) = o(f(θ)).

Proof. From Lemma E.4, f(θ)−f(θ+) ≥ m
2
∥∆∥2+O(∥∆∥3). Rearranging yields ∥∆∥2 = O(f(θ)−

f(θ+)), so the cubic term is lower order.

E.2.1 PROOF OF PROPOSITION 3.1
Proof of Proposition 3.1. Let f(θ) =DKL(q̃β∥πθ) and ∆ = θ+ − θ. By Lemma E.4,

f(θ) − f(θ+) = 1
2
∆⊺Hq̃(θ)∆ +O(∥∆∥

3
).

By Lemma E.5,
DKL(πθ+∥πθ) =

1
2
∆⊺F (θ)∆ +O(∥∆∥3).

By Lemma E.6 with κ = f(θ), ∆⊺F∆ = (1 +O(
√
κ))∆⊺Hq̃∆. Hence

DKL(πθ+∥πθ) = (1 +O(
√
κ)) (f(θ) − f(θ+)) + O(∥∆∥3).

Since f(θ+) ≥ 0, f(θ) − f(θ+) ≤ f(θ) = κ. By Lemma E.7, O(∥∆∥3) = o(f(θ)). Therefore

DKL(πθ+∥πθ) ≤ (1 + o(1)) f(θ) = (1 + o(1))DKL(q̃β∥πθ),

which is the desired inequality.

E.2.2 PROOF OF PROPOSITION 3.2
Proof of Proposition 3.2. By the quadratic expansion of policy KL (Lemma E.5),

DKL(πθ+∆∥πθ) =
1
2
∆⊺F (θ)∆ + R(∆), ∣R(∆)∣ ≤ C ∥∆∥3 (12)

for some local constant C > 0 (from C3 smoothness). Let a ∶= ∆⊺F (θ)∆. Using the spectral lower
bound F (θ) ⪰ µI on the update subspace,

∥∆∥2 ≤ a
µ
. (13)

Combining equation 12–equation 13 yields

DKL(πθ+∆∥πθ) ≥
1
2
a − C ( a

µ
)
3/2

.

Since DKL(πθ+∥πθ) ≤K, we have

K ≥ 1
2
a − C µ−3/2a3/2. (14)

For a sufficiently small (equivalently, K small), the cubic term is dominated by the linear term:
choose a0 > 0 so that C µ−3/2

√
a ≤ 1

4
whenever 0 < a ≤ a0. Then from equation 14

K ≥ ( 1
2
− 1

4
)a = 1

4
a ⇒ a ≤ 4K.

Substituting a ≤ 4K back into equation 12 refines the remainder: ∣R(∆)∣ ≤ C∥∆∥3 ≤ C(a/µ)3/2 =
O(K3/2) = o(K), so DKL(πθ+∆∥πθ) =

1
2
a + o(K). Hence a = 2DKL(πθ+∆∥πθ) + o(K) ≤

2K + o(K), i.e.
∆⊺F (θ)∆ ≤ 2K (1 + o(1)).

Taking square roots gives the Fisher-norm bound in equation 6: ∥∆∥F (θ) =
√
∆⊺F (θ)∆ ≤

√
2K (1 + o(1)). The Euclidean bound follows from equation 13:

∥∆∥2 ≤

√
∆⊺F (θ)∆

µ
≤
√

2K
µ
(1 + o(1)).

Finally, for any parameter block W ⊂ θ, its Frobenius change is the ℓ2-norm of the corresponding
subvector of ∆; therefore ∥∆W ∥F ≤ ∥∆∥2.
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E.2.3 ONE-STEP KL BUDGET (USED IN GATE II)
Corollary E.8 (KL budget). If DKL(πθ+∥πθ) ≤K, then

1
2
∆⊺F (θ)∆ ≤ K (1 + o(1)).

Proof. Apply Lemma E.5 and Lemma E.7.

E.2.4 TRUST-REGION / CLIPPING BOUND (FOR β = 0)

Lemma E.9 (Implicit KL leash from ratio clipping). Let rt =
πθ+(yt∣x,y<t)
πθ(yt∣x,y<t) and suppose clipping

enforces rt ∈ [1 − ε, 1 + ε] on the batch. Then

D̂KL(πθ+∥πθ) ≤ Ê[T (x)] ⋅max{− log(1 − ε), log(1 + ε)} = O(ε) ⋅ Ê[T (x)],

and in the small-step regime (mean-zero advantage) this tightens to O(ε2).

Proof. Autoregressive factorization gives DKL(πθ+∥πθ) = Eπθ+
[∑t log rt]. Because log rt ∈

[log(1 − ε), log(1 + ε)], we have ∣ log rt∣ ≤ c(ε); summing over t and taking batch expectation
yields the stated bound. Using log(1± ε) = ±ε+O(ε2) and small-step arguments gives O(ε2).

E.3 PROOFS FOR GATE II (SEC. 3.2)
Setup (layer-conditioned budget). Partition θ = (vec(W ), θ¬W ) and let the Fisher at θ = θt be

F (θ) = [
FW,W FW,¬W
F¬W,W F¬W,¬W

] ⪰ 0.

For a one-step update ∆θ, the global KL leash implies 1
2
∆θ⊺F (θ)∆θ ≤ K. Define the

layer-conditioned curvature

SW ∶= FW,W − FW,¬WF −1
¬W,¬WF¬W,W ⪰ 0,

and the per-layer budget δW ∶= 1
2
vec(∆W )⊺SW vec(∆W ) ≤ K. Let µW ∶= λmin(SW ) > 0 on the

update subspace.

Lemma E.10 (Layer-conditioned Frobenius/operator bounds). ∥∆W ∥F ≤
√
2δW /µW and

∥∆W ∥2 ≤ ∥∆W ∥F .

Proof. Since SW ⪰ µW I , δW ≥ 1
2
µW ∥∆W ∥2F .

Lemma E.11 (Wedin’s sin–Θ). For W+ = W0 + ∆W , the principal subspace angles satisfy
∥ sinΘ(Uk(W0), Uk(W+))∥2 ≤ ∥∆W ∥2/γk and similarly for Vk.

Lemma E.12 (Weyl/Mirsky and Hoffman–Wielandt). ∣σk(W+) − σk(W0)∣ ≤ ∥∆W ∥2 and
∑i(σi(W+) − σi(W0))

2 ≤ ∥∆W ∥2F .

Corollary E.13 (Projection stability). With the same assumptions,

∥Uk(W0)Uk(W0)
⊺
−Uk(W+)Uk(W+)

⊺∥
2
= ∥ sinΘ(Uk(W0), Uk(W+))∥2 ≤

√
2δW /µW

γk
.

The analogous bound holds for the right subspaces with Vk. Interpretation. The leading invariant
subspaces rotate by at most O(

√
δW /µW /γk); when the gap is moderate, the rotation is small.

F MORE VISUALIZATION

F.1 JACCARD MATRIX

RL updates are highly consistent across independent training runs. Fig. 8 shows the pair-wise Jac-
card similarity between the final update masks from five RLVR runs on different data and algorithms.
The high similarity scores demonstrate that the optimization process consistently targets the same
subset of parameters, providing strong evidence for a deterministic, non-random optimization bias.

F.2 SPECTRUM SHIFT FOR DS-1.5B AND QWEN3-1
We also show the spectrum shift for DS-1.5B and Qwen3-1 here.
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Figure 8: Pair-wise Jaccard similarity of update masks from five independent RLVR runs on Layer
13 of the DS-Distill-Qwen-1.5B model.

Table 3: Performance of DS-Qwen-1.5B with different masking strategies with a extended training
window to 500 steps. Parameter counts shown are for linear layers only, excluding the embedding
and head layers. Detailed evaluation settings are available in Appendix C.2. We observe that train-
ing only on principal weights Mprinc results in a clear accuracy gap compared to both the dense
baseline and its complement M c

princ. The models using the Mlow and M c
princ ∪Mlowest masks

achieve performance closest to the dense baseline.
Model Mask Math500 AMC23 AIME24 AIME25 Average #params

DS-Qwen-1.5B

Dense 84.5 83.52 38.28 28.075 58.59 100%
Mprinc 83.60 78.83 34.06 25.63 55.44 50%
Mc

princ 84.0 77.97 38.64 27.81 56.90 50%
Mlow 83.8 82.42 37.03 27.82 57.77 58.59%

Mc
princ ∪Mlow 84.10 81.41 40.30 27.70 58.37 74.02%

Random-Mc
princ ∪Mlow 84.10 81.72 34.69 27.34 56.89 74.02%
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Figure 9: Structured Update observed on LLama and mistral models.

Figure 10: Temporal emergence of the optimization bias with row and column-wise update ratios for
the 13th attention block across gradient update steps (t∈{240,720,1200}), smoothed with a 3-step
window. The column-wise (Q) and row-wise (O) update ratios show a much weaker bias.

Figure 11: Token-wise KL loss. We show the token-wise KL loss during a DAPO run without a KL
loss penalty, which shows a steadily increasing KL loss instead of being unconstrained.
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RL

SFT

Principal Angle
(single-layer)

Singular Value
(single-layer)

Specturm Drift
(all-layer)

Max Principal Angle
(all-layer)

Figure 12: The spectrum probe results on the RL and SFT version on the
DS-Distill-Qwen-1.5B Liu et al. (2025a). RLVR shows surprisingly stable top-k spectrum
with minimal subspace rotation and top-k eigenvalue changes.

RL

SFT

Principal Angle
(single-layer)

Singular Value
(single-layer)

Specturm Drift
(all-layer)

Max Principal Angle
(all-layer)

Figure 13: The spectrum probe results on the RL and SFT version on the Qwen3-14B Huan et al.
(2025). RLVR shows surprisingly stable top-k spectrum with minimal subspace rotation and top-k
eigenvalue changes.
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G ADDED RESULTS DURING REBUTTAL

G.1 CONSENSUS RATIO AND ALGORITHM ROBUSTNESS

To further validate our findings on the ”Implicit Compass,” we extended our analysis to Llama-
3.2-3b-Instruct across five distinct reinforcement learning configurations. We varied the algorithm
(Majority-Voting, Self-Certainty, Co-rewarding, GRPO) and the dataset (MATH vs. DAPO-14k).
The resulting sparsity levels are detailed in Table 4.

Table 4: Additional Rebuttal Runs (Llama-3.2-3b-Instruct). All from Co-reward Comparison of
update sparsity across different RL algorithms and datasets.

Dataset Method Sparsity
MATH Majority-Voting 71.21%
MATH Self-Certainty 83.24%
MATH Co-rewarding 71.86%
MATH GRPO 71.28%

DAPO-14k GRPO 66.00%

Figure 14: Robustness of Consensus across Algorithms. Visualization of the update consensus
masks for Llama-3.2-3b-Instruct across five different runs using distinct RL algorithms (Majority-
Voting, Self-Certainty, Co-rewarding, GRPO) and datasets (MATH, DAPO-14k). The consistent
observation of ”stripe-like” structures (row-wise in Q/K/V, column-wise in O) confirms that the
”Implicit Compass” is intrinsic to the model’s optimization dynamics and robust to the choice of
reinforcement learning method.

Same Model, Different Algorithms (Consensus Check): We applied the consensus ratio metric
Cℓ,ij to these new runs. As shown in Figure 9 (Appendix), we observe the identical ”stripe-like”
consensus in update masks. Even without changing the task, the fact that independent RL runs
(using disjoint data and variants like Self-Certainty or Co-rewarding) consistently route updates to
the same regions confirms the ”Implicit Compass” is intrinsic to the optimization dynamics, not a
artifact of a specific model.

G.2 NEW CHECK ON AGENT, EMBODIED AND RLHF TASKS

To assess the universality of the RLVR optimization signatures—specifically the ”Implicit Compass”
and ”Three-Gate” dynamics—we extended our analysis beyond mathematical reasoning to a broader
suite of post-training paradigms. These include multi-turn agentic workflows, tool-augmented rea-
soning, and standard preference optimization (RLHF).
Model Details. The specific checkpoints analyzed, along with their corresponding base models and
task domains (ranging from web navigation to robotic control), are detailed in Table 5.

Spectral Stability. We first examine the spectral properties of the weight matrices after RL fine-
tuning. Across agents (Figure 15), embodied AI models (Figure 17), and RLHF checkpoints (Fig-
ure 16), we observe a striking consistency with our reasoning-task findings. Specifically, the layer
spectra remain stable, exhibiting near-identical singular values between the RL-finetuned weights
(WRL) and their base counterparts (WBase). Furthermore, the principal subspaces (top-k singular
vectors) undergo only small rotation.
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Table 5: Model List for analyzed checkpoints for agentic and embodied AI (robotics manipulation) tasks
and RLHF algorithms.

Category Base Model FT Model Algorithm Data Sparsity

Agent

Qwen3-8B SkyRL-Agent-WebResearch-8B GRPO WebResearch 40.56%
Qwen3-8B VT-deepsearch-8B GRPO Deepsearch 89.67%
Qwen3-8B VT-SWE-8B GRPO SWE 84.32%
Qwen2.5-7B-Instruct agentflow-planner-7b Flow-GRPO Planning 80.99%
Qwen2.5-7B-Instruct GiGPO-Qwen2.5-7B-Instruct-WebShop GiGPO WebShop 51.7%
Qwen2.5-7B-Instruct GiGPO-Qwen2.5-7B-Instruct-ALFWorld GiGPO ALFWorld 62.08%

RLHF Meta-Llama-3-8B-Instruct Llama-3-Instruct-8B-DPO DPO instruction-following 82.38%
Meta-Llama-3-8B-Instruct Llama-3-Instruct-8B-SimPO SimPO instruction-following 71.00%

Embodied AI
openvla/openvla-7b Openvla-oft-SFT-libero10-trajall SFT Robotic manipulation Liu et al. (2023) 3.46%
Openvla-oft-SFT-libero10-traj1 openvla-oft-libero10-traj1-rl GRPO Robotic manipulation Liu et al. (2023) 35.04%
Qwen2.5-VL-3B-Instruct Embodied-R1-3B-v1 GRPO Robotic Manipulation 44.28%

Figure 15: Spectrum under RL in agent tasks. In agent settings, including multi-turn interactions and tool
use, RL leaves layer singular-value spectra nearly unchanged and induces only small rotations of the top-k
singular subspaces, consistent with the spectrum-preserving, off-principal RLVR regime. Results for RL with
human feedback (RLHF), which exhibit the same optimization signature, appear in Fig. 16. For consistency,
we use the second block O-projection layer as an exemplar single-layer readout.

Off-Principal Routing. Finally, we verify the spatial distribution of the updates. Figure 18 visual-
izes the update masks (Mℓ) against the principal masks (P (k)ℓ ) for representative agent and embodied
models. Consistent with the ”Implicit Compass” hypothesis, the updates strictly avoid the principla
parts.
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Figure 16: Spectral geometry under RLHF setting Meng et al. (2024b). Across RLHF checkpoints, RL
training preserves layer spectra and induces only minor rotation of the top-k subspaces, consistent with the
RLVR regime.
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Figure 17: Spectral geometry under embodied AI tasks: SimpleVLA-RL (Li et al., 2025a) and Embodied
R1 (Yuan et al., 2025). Across language and vision backbone, RL training preserves layer spectra and induces
only minor rotation of the top-k subspaces.
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Figure 18: Update–principal misalignment in RL-trained agents and embodied AI models. The figure
visualizes the bf16-aware update mask Mℓ (left, showing locations changed under RL) versus the principal
mask P

(k)
ℓ (right, showing top-k singular-subspace support) for representative layers across different domains.

Top row: AGENTFLOW-PLANNER-7B (Layer 16, oproj). Second row: SKYRL-AGENT-WEBRESEARCH-8B
(Layer 11, kproj). Third row: SIMPLE-VLA-RL (language model Layer 2, qproj). Bottom row: SIMPLE-
VLA-RL (Vision Layer 25, oproj). Dashed blue boxes highlight regions where RL updates concentrate outside
principal-weight bands. This consistently shows that RL updates are misaligned with the principal subspace,
indicating a robust off-principal routing mechanism across agent, tool-use, and embodied AI settings.
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Figure 19: LoRA vs. PiSSA on DS-Qwen-1.5B (DeepMath-103K). We sweep ranks {8,32,64}
and learning rates {1×10−4,5×10−5,1×10−5} for 200 steps, reporting pass@1 (avg@16) on AIME24
(top) and AMC23 (bottom). Across settings, PiSSA (principal-targeted) provides no additional
gains over LoRA and, at higher learning rates that force principal-direction updates, often collapses
early; LoRA remains more stable. This supports our geometric account: forcing updates into prin-
cipal directions (favored in SFT) is misaligned with RL, offering no obvious gain and leading to
training collapse when scaling up learning rates.
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Figure 20: LoRA vs. PiSSA on LLaMA-3.2-3B. We sweep learning rates {1×10−4,5×10−5,1×
10−5} with a fixed rank of 64 for 200 steps, reporting pass@1 (mean@4) on MATH500. Consistent
with the DS-Qwen-1.5B results in Fig. 19, PiSSA provides no additional gain over LoRA and,
under higher learning rates that emphasize principal-direction updates, often collapses early.
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