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ABSTRACT

Sparse Autoencoders (SAEs) are widely used to steer large language models
(LLMs), based on the assumption that their interpretable features naturally enable
effective model behavior steering. Yet, a fundamental question remains unan-
swered: does higher interpretability indeed imply better steering utility? To an-
swer this question, we train 90 SAEs across three LLMs (Gemma-2-2B, Qwen-
2.5-3B, Gemma-2-9B), spanning five architectures and six sparsity levels, and
evaluate their interpretability and steering utility based on SAEBENCH (Karvonen
et al., 2025) and AXBENCH (Wu et al., 2025) respectively, and perform a rank-
agreement analysis via Kendall’s rank coefficients τb. Based on the framework,
Our analysis reveals only a relatively weak positive association (τb ≈ 0.298), in-
dicating that interpretability is an insufficient proxy for steering performance. We
conjecture the interpretability-utility gap may stem from the selection of SAE fea-
tures as not all of them are equally effective for steering. To further find features
that truly steer the behavior of LLMs, we propose a novel selection criterion: ∆
Token Confidence, which measures how much amplifying a feature changes the
next token distribution. We show that our method improves the steering perfor-
mance of three LLMs by 52.52% compared to the current best output score-based
criterion (Arad et al., 2025). Strikingly, after selecting features with high ∆ Token
Confidence, the correlation between interpretability and utility vanishes (τb ≈ 0),
and can even become negative. This further highlights the divergence between
interpretability and utility for the most effective steering features.

1 INTRODUCTION

As Large Language Models (LLMs) become more widely used in real-world applications, ensur-
ing the safety of their outputs is increasingly important (Kumar et al., 2024; Ji et al., 2023; Inan
et al., 2023). Reliable and controllable behavior is essential for deploying these LLMs in more
situations (Chen et al., 2024). Fine-tuning is the standard way to improve controllability, but it re-
quires labeled data, significant training time, and compute resources (Hu et al., 2022; Wang et al.,
2025c). This has spawned a series of representation-based interventions, i.e., steering, that guide
LLM inference by manipulating internal representations, aiming for faster and more lightweight
output control (Turner et al., 2023; Turner et al., 2024; Wang et al., 2025b; Stolfo et al., 2025).

However, activation-level edits are often coarse: they mix multiple semantics, a phenomenon called
polysemanticity (Bricken et al., 2023). Recently, Sparse Autoencoders (SAEs) have become a valu-
able tool in the interpretability field. They are trained to actively decompose the hidden states of
the LLM into sparse and human readable features (Templeton et al., 2024; Mudide et al., 2025).
Their interpretable nature has subsequently spurred research into leveraging SAE features for more
precise, concept-level control over model behavior (Ferrando et al., 2025; Chalnev et al., 2024).

Despite this progress, a critical question remains unanswered: does higher interpretability truly
imply better utility? Since SAEs are trained to balance reconstruction and sparsity to yield human-
readable features (Cunningham et al., 2023; Makelov, 2024; O’Brien et al., 2025), their utility for
downstream tasks is not a primary objective. Understanding and characterizing this gap is critical
to enabling more interpretable and effective steering with SAEs, because (i) it clarifies when in-
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Figure 1: Overview of our goal: building a bridge for SAE interpretability and utility. In-
terpretability (left): an SAE attached to the LLM decomposes hidden states into sparse, human-
describable features. An LLM judge yields an interpretability score for the SAE (Paulo et al., 2025).
Utility (right): at inference, we activate a target SAE feature (e.g., ‘cake’) to steer generation. An
LLM judge yields steering utility score (Wu et al., 2025).

terpretability scores can (and cannot) be used as a practical proxy for utility, and (ii) it motivates
training objectives that explicitly balance reconstruction, interpretability, and downstream steering
performance. To this end, we conduct a systematic study to build a bridge between SAE inter-
pretability and steering utility (see Figure 1).

To perform a comprehensive association analysis, we train 90 SAEs across three LLMs (Gemma-2-
2B (Team et al., 2024), Qwen-2.5-3B (Yang et al., 2024), and Gemma-2-9B) spanning diverse archi-
tectures and sparsity levels. We compute interpretability using SAEBENCH (Karvonen et al., 2025)
and steering utility using AXBENCH (Wu et al., 2025). Then, we leverage a pairwise-controlled
framework to evaluate whether interpretability predicts steering performance across the pool of
trained SAEs. To quantify this relationship, we follow the idea of prior works (Jiang et al., 2020; Hu
et al., 2024) and measure rank agreement between interpretability and utility using Kendall’s rank
coefficient τb. We control confounders with an axis-conditioned analysis, isolating each design axis
(architecture, sparsity, model) by varying one at a time and aggregating per-axis metrics.

Furthermore, as identified in Arad et al. (2025); Wu et al. (2025), not all interpretable features in
SAE are equally effective for steering. This motivates our next objective to identify the specific
features critical for behavior control and steering utility analysis. Motivated by the recent progress
on the entropy mechanism in LLM reasoning (Fu et al., 2025; Wang et al., 2025a), we propose an
innovative selection criterion for SAE features: ∆ Token Confidence, which measures the degree to
which amplifying a single feature shifts the model’s next-token distribution. Features that induce
the most substantial change in model confidence are identified as high-utility candidates features for
steering, as they exert a measurable and targeted influence on model behavior. Finally, we leverage
these critical features to conduct a refined analysis of the interpretability-utility gap.

The primary contributions and insights of this paper are summarized as follows:

1. (§3.4) Interpretability shows a relatively weak positive association with utility. Across 90
SAEs that are trained across three model sizes, five architectures, and six sparsity levels, we
find that a higher interpretability score tends to shows a relatively weak positive association with
steering performance (the Kendall’s rank coefficient τb ≈ 0.298)). This identifies a notable
interpretability-utility gap of the existing SAEs.

2. (§4.2) ∆ Token Confidence effectively selects features with strong steering performance. To
identify the SAE features that are critical for steering, we introduce ∆ Token Confidence, an
innovative metric that identifies steering-critical SAE features by measuring their impact on the
model’s next-token distribution. When benchmarked against the best existing output score-based
method (Arad et al., 2025), our approach yields a substantial 52.52% average improvement in
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steering score. This result validates the superiority of our method and underscores the critical
role of feature selection in characterizing and enhancing the steering utility of SAEs.

3. (§4.3) The interpretability-utility gap widens among high-utility features. By reapplying
our association analysis exclusively to SAE features with strong steering utility, we uncover a
counterintuitive finding: the interpretability-utility correlation vanishes or even becomes negative
(Kendall’s rank coefficient τb ≈ 0). This indicates that for the most effective steering features,
interpretability is at best irrelevant and potentially detrimental, further emphasizing the critical
nature of the interpretability-utility gap.

Our results demonstrate a significant divergence between SAE’s interpretability and steering utility,
suggesting that prioritizing interpretability does not enable improved steering performance. This gap
highlights a crucial research direction: mitigating it will likely necessitate advanced post-training
feature selection protocols or fundamentally new, utility-oriented SAE training paradigms.

2 PRELIMINARY

2.1 SPARSE AUTOENCODERS

Sparse Autoencoders (SAEs) decompose internal model activations x into sparse, higher-
dimensional features h that can be linearly decoded back to the original space (Cunningham et al.,
2023; Leask et al., 2025). A standard SAE with column-normalized decoder weights (Bricken et al.,
2023; Karvonen et al., 2024) is defined by the following forward map and optimization objective:

L = ∥x− x̂∥22 + λ∥h∥1, where h = ReLU(WEx+ bE), x̂ =WDh+ bD,

where WE , bE are encoder parameters, WD, bD are decoder parameters, x̂ is the reconstruction, and
λ controls sparsity. This training balances reconstruction accuracy with sparse representations.

2.2 INTERPRETABILITY: AUTOMATED INTERPRETABILITY SCORE

SAEBENCH (Karvonen et al., 2025) uses an LLM-as-judge (Paulo et al., 2025) to assess each latent:
the judge drafts the description from examples and then predicts, on a held-out set, which sequences
activate it. The Automated Interpretability Score is the average precision of the judge’s prediction.

AutoInterp Score =
1

M

M∑
m=1

1[ŷm = ym] ,

where ym ∈ {0, 1} indicates whether the latent activates in the sequence m and ŷm is the judge’s
prediction. We use this score as our interpretability metric. For the complete details, see Appendix B.

2.3 UTILITY: STEERING SCORE

SAE steering injects the SAE decoder atom vf (the f -th column of the column-normalized decoder
Wdec[f ]) into the residual stream at a target layer to push the hidden state x along a chosen feature
direction (Durmus et al., 2024). Given a feature index f , a steering factor α, and a per-sample scale
mf (e.g., the feature’s maximum activation), the intervention is

xsteer = x + (αmf ) · vf . (1)

Through the above formula (1), we can use SAE features for steering to achieve the output of control-
ling LLM. AXBENCH (Wu et al., 2025) measures causal control by steering internal representations
during generation and asking an LLM judge to rate three aspects, each on a discrete scale {0, 1, 2}:
Concept (C), Instruction (I), and Fluency (F ). The overall Steering Score is the harmonic mean:

Steering Score = HM(C, I, F ) =
3

1
C + 1

I + 1
F

∈ [0, 2].

Following AXBENCH, for each concept we sample instructions (e.g., 10 from Alpaca-Eval (Dubois
et al., 2023)), generate continuations under different steering factors, pick the best factor on one
split, and evaluate the held-out split with the judge to obtain the final utility score averaged across
prompts (Gu et al., 2025). The complete scoring procedure is detailed in Appendix C.
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S3 Choose

Feature

Selection

Further showing the 

critical nature of the 

interpretability-utility gap. Interpretability Utility
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Figure 2: Overview of our pairwise-controlled workflow linking SAE interpretability with
steering utility. (S1) Compute interpretability score and steering score for each SAE. (S2) Pair-
wise analysis across SAEs and get an insight (the top-right green box), revealing an interpretabil-
ity–utility gap. The red box (lower right) is our further inference based on the above green box and
previous studies (Wu et al., 2025). (S3) Use ∆ Token Confidence to select higher-utility features.
(S4) Compute steering score after selection per SAE, then do the pairwise analysis between steering
score and interpretability. The green box in the middle left is our final conclusion.

3 CAN SAE INTERPRETABILITY INDICATE STEERING PERFORMANCE?

3.1 EXPERIMENTAL SETUP

Dataset. For each trained SAE, we score 1,000 latents with LLM-as-judge (Paulo et al., 2025) and
randomly sample 100 to form that SAE’s CONCEPT100: 100 human–readable concept descriptions
per evaluation set, each pairing a latent (layer, feature id) with a short natural–language description.
(see details in Appendix F). For steering, we sample 10 Alpaca-Eval instructions, allow up to 128
generated tokens, and test 6 steering factors; the 10 instructions are split 5/5 for factor selection vs.
held-out evaluation.

Model. We evaluate three open LLMs: Gemma-2-2B (Team et al., 2024), Qwen-2.5-3B (Yang
et al., 2024), and Gemma-2-9B (Team et al., 2024). SAEs are trained on residual-stream activations
at a fixed mid-layer for each model: Layer 12 for Gemma-2-2B, Layer 17 for Qwen-2.5-3B, and
Layer 20 for Gemma-2-9B—and steering is applied to the corresponding layer.

SAE with different architectures We train 90 SAEs covering a range of architectures and spar-
sity. All SAEs use a latent dictionary width of 16k. We instantiate five variants: BatchTopK (Buss-
mann et al., 2024), Gated (Rajamanoharan et al., 2024a), JumpReLU (Rajamanoharan et al., 2024b),
ReLU (Team, 2024), TopK (Gao et al., 2024) and sweep six target sparsity levels with approximate
per-token activations L0 ≈ 50, 80, 160, 320, 520, 820. Further details are provided in Appendix A.

3.2 PAIRWISE RANK CONSISTENCY BETWEEN INTERPRETABILITY AND UTILITY

We test whether higher interpretability of SAE is predictive of higher steering performance across
a set of trained SAEs attached to a fixed LM. For each SAE θ in a pool Θ, we record a pair
(µ(θ), g(θ)) ∈ R2, where µ is the SAE-level Interpretability Score and g is an aggregated Steering
Score over a standardized evaluation suite.

Given two SAEs θi, θj ∈ Θ, define the concordance indicator

vij = sign
(
µ(θi)− µ(θj)

)
· sign

(
g(θi)− g(θj)

)
∈ {−1, 0,+1}. (2)

4
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Kendall’s tie-corrected rank coefficient τb (Kendall, 1938) summarizes agreement over unordered
pairs and reduces to average concordance when there are no ties:

τb =

∑
i<j

vij√(∑
i<j

1
[
µ(θi) ̸= µ(θj)

])(∑
i<j

1
[
g(θi) ̸= g(θj)

]) ∈ [−1, 1], (3)

In this study, we instantiate µ with the Interpretability Score and g with the Steering Score, then
compute τ for three model–layer settings (Gemma-2-2B, Qwen-2.5-3B, Gemma-2-9B). Each setting
includes 30 SAEs spanning architectures and sparsity to ensure sufficient pair coverage.

3.3 GRANULATED KENDALL’S COEFFICIENT TO CONTROL CONFOUNDERS

Global rank agreement can be confounded by hyperparameters that jointly influence interpretability
and utility. To obtain an axis-controlled assessment, we factor the SAE design space into orthogonal
axes and evaluate rank consistency while varying one axis at a time and holding the others fixed.

We define three conditioning axes: (A) Architecture — fix architecture (and layer), vary sparsity;
(B) Sparsity — compare architectures at matched sparsity ranks; (C) Model — fix the base model,
compare all SAEs within it. For axis i, partition Θ into groups Gi that are matched on all axes except
i. Within each group G ∈ Gi, compute Kendall’s coefficient in {(µ(θ), g(θ)) : θ ∈ G}, and average
between groups to obtain the statistic at the axis level:

ψi =
1

|Gi|
∑
G∈Gi

τ({(µ(θ), g(θ)) : θ ∈ G}) . (4)

Aggregate the axis-level outcomes by

Ψ =
1

n

n∑
i=1

ψi, (5)

where n is the number of axes. Eachψi captures rank consistency conditioned on axis i (varying only
that axis while matching the others), and Ψ aggregates these into a single axis-controlled measure.
This construction mitigates cross-axis trends—e.g., architecture, sparsity, or model-driven shifts that
can obscure local relationships between interpretability and utility.

We report the per-axis statistics ψi together with the aggregate Ψ for the same model settings as in
section 3.2, providing both axis-specific and aggregated assessments.

3.4 PAIRWISE ANALYSIS RESULTS

In this section, we assess whether higher SAE interpretability predicts stronger steering by comput-
ing Kendall’s τb between the Interpretability Score µ(θ) and the Steering Score gbase(θ) (before any
feature selection) over a pooled set of SAEs attached to a fixed LLM.

To control confounders and localize effects, we apply the axis-conditioned procedure defined in
section 3.3. For each axis, we form matched groups, compute within-group τb, average to obtain a
per-axis summary, and aggregate these summaries into an overall axis-controlled coefficient.

Table 1 shows that across SAEs, higher interpretability tends to be modestly associated with
better steering on average, pointing to a consistent but limited impact. The pooled Kendall’s
τb ≈ 0.30 is positive, and the axis-controlled aggregate remains positive (Ψ ≈ 0.25), indicating that
more interpretable features generally translate into better steering utility across designs and models.

The strength of the link between interpretability and utility depends on SAE architecture,
sparsity, and the base model. By architecture, the association is positive on average (ΨA ≈ 0.26),
with ReLU-like variants reinforcing the trend and Gated weakening it. By sparsity, alignment is
strongest when the SAE is more sparse and weakens—sometimes reversing—as the number of active
features increases. By model, the underlying LM shapes the effect, with the signal clearest in Qwen-
2.5-3B and weaker in Gemma-2-2B, while the model-wise summary remains positive (ΨC ≈ 0.33).
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Table 1: Pairwise Analysis Between Interpretability Score µ(θ) and Steering Score gbase(θ). Here gbase(θ)
is steering score before any feature selection. We report Kendall’s τb overall and by axis-controlled measures
ΨA (Architecture), ΨB (Matched Sparsity), and ΨC (Model). n = number of SAEs; Pairs = number of pairwise
comparisons; p = permutation p-value for testing H0 : τb = 0 within each group (by shuffling steering scores);
95% CI = 95% bootstrap percentile confidence interval for τb.
Axis SAEs n Pairs τb p 95% CI
Overall All SAEs 90 4005 0.2979 0.0002 [0.1591, 0.4191]

ΨA = 0.2575 (SE ≈ 0.1163, 95% boot CI [0.0222, 0.3961])

ΨA: Architecture

BatchTopK 18 153 0.3203 0.0712 [0.0000, 0.6429]
Gated 18 153 -0.2026 0.2577 [−0.5493, 0.1918]
JumpReLU 18 153 0.4248 0.0160 [0.0563, 0.7183]
ReLU 18 153 0.3595 0.0392 [0.0274, 0.6528]
TopK 18 153 0.3856 0.0272 [0.0282, 0.6966]

ΨB = 0.1651 (SE ≈ 0.1112, 95% boot CI [−0.0286, 0.3587])

ΨB: Sparsity

L0 ≈ 50 15 105 0.5429 0.0034 [0.1578, 0.8737]
L0 ≈ 80 15 105 0.3524 0.0740 [0.0000, 0.6304]
L0 ≈ 160 15 105 0.1810 0.3821 [−0.2501, 0.5464]
L0 ≈ 320 15 105 0.1810 0.3673 [−0.1579, 0.5208]
L0 ≈ 520 15 105 -0.2190 0.2837 [−0.5914, 0.1648]
L0 ≈ 820 15 105 -0.0476 0.8484 [−0.4409, 0.3750]

ΨC = 0.3272 (SE ≈ 0.0698, 95% boot CI [0.2184, 0.4575])

ΨC: Model
Gemma-2-2B 30 435 0.2184 0.0980 [−0.0644, 0.4764]
Qwen-2.5-3B 30 435 0.4575 0.0008 [0.2086, 0.6580]
Gemma-2-9B 30 435 0.3057 0.0166 [0.0521, 0.5277]

Ψ =
(
ΨA +ΨB +ΨC

)
/3 = 0.2499

Key Observation 1: Interpretability shows a relatively weak positive correlation with steering
performance, highlighting a notable gap between interpretability and utility across SAEs.

4 FROM INTERPRETABILITY TO UTILITY: WHICH SAE FEATURES
ACTUALLY STEER?

In Sec. 3.4, We find that SAE interpretability is a relatively weak prior for steering utility. Prior
work (Arad et al., 2025) shows many features lack steerability and we speculate that this factor may
render the previous conclusion inaccurate. Therefore, we introduce a metric to identify steering-
effective features. Metrics derived from a model’s internal token distributions can assess reasoning
quality (Kang et al., 2025). In particular, token entropy offers a unified view: high entropy highlights
critical decision points (Fu et al., 2025; Wang et al., 2025a). We apply this idea to SAE steering.

4.1 FEATURE SELECTION VIA ∆ TOKEN CONFIDENCE

We start from the model’s next-token distribution. Given logits z ∈ RV and p = softmax(z) over a
vocabulary of size V , the token entropy is

H(p) = −
V∑

j=1

pj log pj , (6)

Entropy summarizes dispersion over the vocabulary: smaller values reflect a sharper, more concen-
trated prediction, while larger values indicate greater uncertainty at a given position.

To focus on the head of the distribution that matters most for sampling, we use token confidence.
Let Ik(p) ⊆ {1, . . . , V } denote the indices of the k largest probabilities in p. The top-k token
confidence is the negative average log-probability over these entries:

Ck(p) = −1

k

∑
j∈Ik(p)

log pj . (7)

6
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Figure 3: Distribution of per-feature ∆ Token Confidence across all SAEs. Panels show his-
tograms for Gemma-2-2B, Qwen-2.5-3B, and Gemma-2-9B; the x-axis is ∆Ck (negative values
indicate increased confidence, positive values decreased confidence) and the y-axis is the number of
SAE features. The shaded area marks the high-magnitude tails from which candidate steering fea-
tures are selected, while the central mass near 0 indicates features with little distributional impact.

Lower Ck implies higher confidence, while higher Ck implies a flatter top-k distribution. Unlike
entropy, Ck directly captures the sharpness of the outcomes that drive next-token behavior.

We turn confidence into a feature-level selector via a single-feature SAE intervention. Consider
an SAE feature f at layer ℓ. We amplify only the coefficient of f by a factor α > 0 in the SAE
reconstruction, leaving the base model and all other features unchanged. Denote the baseline next-
token distribution by pbase and the intervened distribution by pintf,ℓ,α. ∆ Token Confidence is

∆Ck(f ; ℓ, α) = Ck

(
pintf,ℓ,α

)
− Ck

(
pbase

)
. (8)

Negative values ∆Ck < 0 mean that amplifying f sharpens the top-k distribution, while positive
values indicate greater dispersion. We compute this using one baseline and one intervened forward
pass via an SAE hook. Implementation details and hyperparameters are provided in Appendix D.

We select features with extreme signed changes in token confidence under single-feature SAE inter-
ventions, and pick the better direction (see Figure 3). For each feature, we compute ∆Ck, rank by
|∆Ck|, form tiers, evaluate subsets for steering, and keep the best per SAE.

4.2 STEERING PERFORMANCE RESULTS AFTER FEATURE SELECTION

Arad et al. (2025) has shown that SAE steering works well if features are chosen by their causal
impact on model outputs, introducing the output score as a metric to identify output-aligned features.
For a given SAE feature, a logit-lens procedure is used to select a representative token set M . Let
Pbase(M) and Pint(M) denote the aggregate support for M in the base and intervened (feature-
amplified) runs, respectively, where

P (M) =
(
1− mini∈M rank(i)

|V |

)
max
i∈M

p(i),

with |V | the vocabulary size, rank(i) the rank of token i, and p(i) its probability. The single-feature
steering score is then

Sout = Pint(M)− Pbase(M),

which is large when amplifying the feature increases the rank and probability of representative
token set. Following this insight, we evaluate our ∆ token confidence selection on three base LLMs
(Gemma-2-2B, Qwen-2.5-3B, Gemma-2-9B) using the CONCEPT100 (see details in 3.1). We set
k = 1 in our ∆ token confidence selection. In ablations over k ∈ {1, 3, 5, 10} on Gemma and Qwen,
all choices of k yield large gains over the SAE baseline, and k = 1 is in fact the best-performing
setting on both models, so we adopt it as our default (see Appendix L). The experiments on steering
performance improvement of each SAE can be referred to Appendix E.

7
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Figure 4: Comparison of different SAE steering methods with five SAE architecture across
three LLMs. Panels correspond to Gemma-2-2B, Qwen-2.5-3B, and Gemma-2-9B. The horizontal
axis groups SAE architectures (BatchTopK, Gated, JumpReLU, ReLU, TopK), and the vertical axis
reports the steering score. Bars show three conditions: SAE Base (no feature selection), Output
Score Selection, and ∆ Token Confidence Selection (ours). Panel annotations summarize the average
lift of each selection method relative to the SAE-based steering.

Table 2: Steering score after feature selection com-
pared with SAE-based steering. Columns report
scores (higher is better) for Gemma-2-2B, Qwen-2.5-
3B, and Gemma-2-9B. Rows: ‘SAE-based’ uses all
SAE features without selection (Wu et al., 2025);
‘+Output’ selects features using Sout (Arad et al.,
2025); “+∆Ck (Ours)” selects by the ∆ Token Con-
fidence. Boldface indicates the best method per model.

Method Gemma-2-2B Qwen-2.5-3B Gemma-2-9B

SAE-based 0.133 0.171 0.142
+Output 0.233 0.292 0.255
+∆Ck(Ours) 0.328 0.399 0.289

Table 2 shows that our selection yields
consistent gains across all models, out-
performing the vanilla SAE baseline by
large margins, and also improving over an
output-score–based selector. These gains
indicate that ranking and filtering by the
magnitude of distributional change cap-
tured by ∆Ck reliably isolates features
with the strongest steering utility.

Furthermore, we conducted a comparative
analysis of SAEs of different architectures
on three models. For fair comparison,
the two feature selection methods use the
same subset size. Figure 4 compares steer-
ing scores across SAE architectures and selection methods. In all three models, selecting features
by ∆ Token Confidence consistently outperforms both the no-selection SAE baseline and the output-
score selector across architectures.

On average, our method improves steering performance by 52.52% over the strongest competing
baseline. The BatchTopK architecture is the one that has the most stable and significant improvement
in steering capabilities on models of different sizes among the five SAE architectures.

Key Observation 2: ∆ Token Confidence reliably selects high-utility SAE features across mod-
els. Among SAE architectures, BatchTopK achieves the most stable and sizable steering score.

4.3 PAIRWISE ANALYSIS AFTER HIGH-CONFIDENCE FEATURE SELECTION

Building on the high ∆ Token Confidence feature selection introduced above, we now ask whether
SAE interpretability can serve as a prior for post-selection steering performance. For each SAE
θ, we write gbase(θ) for its Steering Score before feature selection and ghigh(θ) for the best score
achieved after selecting features with high ∆ Token Confidence. Both quantities are measured in the
same steering metric; ghigh(θ) is simply the steering score recomputed on a restricted set of high ∆
Token Confidence features for the same SAE.
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Table 3: Pairwise Analysis Between Interpretability Score µ(θ) and Steering Score ghigh(θ). Here ghigh(θ)
is steering score after selecting features with high ∆ Token Confidence. We report Kendall’s τb overall and
under axis-controlled summaries ΨA (Architecture), ΨB (Matched Sparsity), and ΨC (Model). n = number of
SAEs; Pairs = number of pairwise comparisons; p = permutation p-value for testing H0 : τb = 0 within each
group (by shuffling steering scores); 95% CI = 95% bootstrap percentile confidence interval for τb.
Axis SAEs n Pairs τb p 95% CI
Overall All SAEs 90 4005 0.0823 0.2645 [−0.0560, 0.2243]

ΨA = 0.0618 (SE ≈ 0.1136, 95% boot CI [−0.1149, 0.2810])

ΨA: Architecture

BatchTopK 18 153 -0.1895 0.2933 [−0.5694, 0.1918]
Gated 18 153 0.0338 0.8764 [−0.3656, 0.3853]
JumpReLU 18 153 0.0950 0.6209 [−0.3373, 0.4697]
ReLU 18 153 -0.1007 0.5803 [−0.4833, 0.2857]
TopK 18 153 0.4702 0.0078 [0.0794, 0.8043]

ΨB = 0.1002 (SE ≈ 0.0700, 95% boot CI [−0.0288, 0.2188])

ΨB: Sparsity

L0 ≈ 50 15 105 0.2488 0.2212 [−0.1828, 0.6300]
L0 ≈ 80 15 105 0.2899 0.1602 [−0.0673, 0.5876]
L0 ≈ 160 15 105 0.1183 0.5747 [−0.2357, 0.4151]
L0 ≈ 320 15 105 0.1171 0.5803 [−0.3531, 0.5209]
L0 ≈ 520 15 105 -0.1827 0.3747 [−0.6490, 0.3524]
L0 ≈ 820 15 105 0.0097 1.0000 [−0.3724, 0.3572]

ΨC = 0.0538 (SE ≈ 0.0700, 95% boot CI [−0.0540, 0.1850])

ΨC: Model
Gemma-2-2B 30 435 -0.0540 0.6963 [−0.3127, 0.2125]
Qwen-2.5-3B 30 435 0.1850 0.1668 [−0.0872, 0.4413]
Gemma-2-9B 30 435 0.0303 0.8284 [−0.2552, 0.3233]

Ψ =
(
ΨA +ΨB +ΨC

)
/3 = 0.0719

We quantify the relationship between interpretability and post-selection steering by computing
Kendall’s τb between the Interpretability Score µ(θ) of SAEs and the Steering Score ghigh(θ). As
in Section 3.4, we report both pooled coefficients and axis-conditioned summaries that control for
design and model factors (architecture, sparsity and model). In addition, Section 3.4 and Table 1
report the corresponding coefficients for µ(θ) vs. gbase(θ), allowing a direct comparison between
“before” and “after” feature selection using the same steering metric.

Overall, Table 3 shows that interpretability is not a reliable prior for steering performance after
selection. The pooled association between µ(θ) and ghigh(θ) is small and statistically indistinguish-
able from zero (τb ≈ 0.08), and the axis-controlled aggregate is likewise close to zero (Ψ ≈ 0.07).
Estimates across architectures, sparsity levels, and models cluster around zero and are mostly non-
significant. These results indicate that once we focus on features that are most useful for steering (as
selected by high ∆ Token Confidence), higher interpretability can’t predict better steering scores.

Key Observation 3: Surprisingly, the interpretability–utility gap widens after feature selection:
higher interpretability scores can’t provide a prior for which SAEs achieve better steering.

5 RELATED WORK

5.1 REPRESENTATION-BASED STEERING

Activation-based steering arose as a lightweight alternative to fine-tuning, enabling on-the-fly con-
trol of LLM behavior without retraining (Giulianelli et al., 2018; Vig et al., 2020; Geiger et al.,
2021; 2025). The core idea is to inject carefully chosen directions into hidden states, typically in the
residual stream, scaling interventions by a gain and selecting layers for maximal effect (Zou et al.,
2025; Rimsky et al., 2024; van der Weij et al., 2024). It has been applied to safety and moderation,
persona and sentiment control, and instruction adherence, promising low-latency deployment-time
adjustment but facing polysemantic entanglement and brittleness that motivate standardized evalua-
tion (Chen et al., 2025; Liu et al., 2024). However, this approach injects polysemantic activations at
intervention time, yielding coarse-grained effects for output control (Bricken et al., 2023). Our work
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is related to activation-level interventions, but differs by grounding directions in sparse, interpretable
SAE features and applying utility-oriented feature selection to mitigate these failure modes.

5.2 SAE-BASED STEERING

Sparse Autoencoders (SAEs) decompose activations into sparse, human-readable features to mit-
igate polysemanticity and expose concept-level structure (Bricken et al., 2023; Templeton et al.,
2024; Gao et al., 2024). For steering, practitioners use decoder atoms as directions and add scaled
injections at chosen layers, with architecture and sparsity choices trading reconstruction for feature
granularity (Zhao et al., 2025; Wang et al., 2025d; Ferrando et al., 2025). SAE-based steering en-
ables targeted safety control, style modulation, and instruction emphasis, yet the utility of individual
features varies widely (Chalnev et al., 2024; Mayne et al., 2024). While the connection between
SAE interpretability and steering utility remains unclear, and our goal is to build a principled bridge
between them. To this end, we conduct a large-scale experiments across multiple model sizes and
SAE architectures, demonstrating the critical nature of the interpretability-utility gap.

6 CONCLUSION AND DISCUSSION

In summary, SAE interpretability shows relatively weak positive association with steering utility
across 90 SAEs (τb ≈ 0.298), revealing a clear interpretability–utility gap. Selecting features with
∆ Token Confidence yields substantial gains (average +52.52% over the strongest existing baseline).
Surprisingly, when analyzing steering score after selection, the correlation with interpretability col-
lapses toward zero and can even turn negative for the highest-utility features, further underscoring
this gap. This gap points to a key direction: develop task-general utility indicators that reliably
predict steerability across models, or design training objectives that directly optimize controllability
under sparsity so features are utility-calibrated without heavy post-hoc selection. Our work provides
valuable insight for the further development of SAEs as interpretable tools.

REPRODUCIBILITY STATEMENT

We aim to facilitate full reproduction of our results. All model code, training and evaluation scripts,
configuration files, and experiment logs are released at an anonymous repository as part of the sup-
plementary materials: https://anonymous.4open.science/r/SAE4Steer. Training architectures, hy-
perparameters, sparsity schedules, and optimization details are specified in the main text and Ap-
pendix A.2 (see also the per-family settings in Appendix A). The datasets used are openly licensed:
all SAEs are trained on The Common Pile v0.1 (Kandpal et al., 2025) as described in Appendix F;
our evaluation concepts (CONCEPT100) and their automatic generation pipeline are documented
in Appendix B and Appendix F. The complete procedures for automated interpretability scoring
(SAEBENCH) and steering utility (AXBENCH), including sampling, judging protocols, and scoring
functions, are detailed in Appendix B and Appendix C, with the ∆ Token Confidence selector defined
in Appendix D and the post-selection results summarized in Appendix E. Hardware, runtime, and
memory footprints for both SAEBENCH and AXBENCH are reported in Appendices B.3 and C.2.
Together, these materials, along with seed-controlled configuration files and exact command-line
invocations provided in the anonymous repository, are intended to enable independent researchers
to replicate and extend our findings.
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LLM USAGE

In preparing this paper, large language models (LLMs) were used as an assistive tool for minor
language polishing and stylistic improvements. All technical contributions, results, and conclusions
are solely the work of the authors.

A SAE ARCHITECTURES AND TRAINING DETAILS

We train 90 SAEs (30 per base model) across five architectures and six target sparsity levels. Unless
stated otherwise, the dictionary width is 16K codes (F=16,384), SAEs are attached to the residual
stream at the layer described in the main text, and decoder columns are ℓ2–normalized. All models
are trained on The Common Pile v0.1 (Kandpal et al., 2025).

A.1 ARCHITECTURES AND PARAMETERIZATION

We list the five SAE families with their named parameters (as implemented) and the correspond-
ing shapes. The last column records architecture-specific thresholding/gating fields when present.
Shapes assume residual dimension d=2304 and dictionary width F=16,384.
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Architectures Wenc benc Wdec bdec Threshold /
Extras

ReLU encoder.weight:
shape (16,384,
2,304)

encoder.bias:
shape (16,384)

decoder.weight:
shape (2,304,
16,384)

bias: shape
(2,304)

—

Gated encoder.weight:
shape (16,384,
2,304)

gate bias:
shape (16,384)

decoder.weight:
shape (2,304,
16,384)

decoder bias:
shape (2,304)

r mag: shape
(16,384);
mag bias:
shape (16,384)

TopK encoder.weight:
shape (16,384,
2,304)

encoder.bias:
shape (16,384)

decoder.weight:
shape (2,304,
16,384)

b dec: shape
(2,304)

k

BatchTopK encoder.weight:
shape (16,384,
2,304)

encoder.bias:
shape (16,384)

decoder.weight:
shape (2,304,
16,384)

b dec: shape
(2,304)

k

JumpReLU W enc: shape
(2,304,
16,384)

b enc: shape
(16,384)

W dec: shape
(16,384,
2,304)

b dec: shape
(2,304)

threshold:
shape (16,384)

A.2 TRAINING, SPARSITY, AND COMPUTE SETUP

Optimization and schedule. Adam with learning rate 3×10−4; LR warmup 1000 steps; sparsity
warmup 5000 steps; LR decay starting at 80% of total steps. Precision: bfloat16. LM batch size
= 4, context length = 2048, SAE batch size = 2048. Each run trains on ∼ 5×108 tokens.

Sparsity controls. We sweep six target activity levels

L0 ≈ {50, 80, 160, 320, 520, 820}.

For TopK/BatchTopK we set k equal to the chosen L0 (aux-k coefficient 1/32; moving-threshold
momentum 0.999; threshold tracking begins at step 1000). JumpReLU uses the same set via
target l0. For L1–penalized families, we search the following penalty grids:

Family L1 penalty values (used to span sparsity
levels)

Standard / Standard-New 0.012, 0.015, 0.020, 0.030, 0.040, 0.060
Gated SAE 0.012, 0.018, 0.024, 0.040, 0.060, 0.080

Training details. All training uses two NVIDIA RTX A800 GPUs. The table below reports the
aggregated artifacts and training time (hours) for 30 SAEs per model (total 90), together with the
runtime configuration. Times and sizes are approximate.

Model #SAEs Disk
(GB)

Traing
Time (H)

LM
Batch

Context SAE
Batch

Peak
Mem
(GB)

Gemma-
2-2B

30 8.7 17 4 2048 2048 20

Gemma-
2-9B

30 13.2 60 4 2048 2048 70

Qwen-
2.5-3B

30 7.7 37 4 2048 2048 30
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B SAEBENCH DETAILS, RESULTS AND OUR COSTS

B.1 AUTOMATED INTERPRETABILITY SCORE PROCESS

SAEBENCH (Karvonen et al., 2025) follow an LLM-as-judge pipeline to assign an automated in-
terpretability score to each SAE latent. First, we collect layer activations by running the base LM
with caching and encoding the residual stream through the SAE to obtain h ∈ RN×L×F . We define
a token window of length 21 (buffer = 10) around any center (i, t) and, unless stated otherwise,
mask BOS/PAD/EOS positions. For a latent ℓ, we sample three window types: (i) Top (n = 12
non-overlapping peaks of h[:, :, ℓ]), (ii) Importance-Weighted (n = 7, sampled proportional to ac-
tivation after removing values at least as large as the smallest Top peak), and (iii) Random (n = 10,
uniform over valid centers). Let vmax be the maximum activation seen in any Top window position
and set a global threshold τact = 0.01 vmax.

We split the sampled windows into a generation set (10 Top + 5 IW) and a scoring set (2 Top + 2
IW + 10 Random, shuffled). In generation, tokens with activation > τact are bracketed to highlight
evidence; the judge LLM receives these 15 windows and returns a short English description of when
the latent fires. In scoring, the judge sees the description and the 14 held-out windows without
highlights and outputs a comma-separated list of indices it predicts as activations (or None).

Ground truth for a window W is ⊮[maxu∈W h[u, ℓ] > τact]. The per-latent score is the accuracy
over the M = 14 scoring windows, i.e.,

Score(ℓ) =
1

M

M∑
m=1

1
[
ŷm = ym

]
,

where ŷm ∈ {0, 1} is the judge prediction and ym is the label defined above. For each SAE θ, we
evaluate 1,000 latents and report the mean over a random CONCEPT100 subset:

µ(θ) =
1

100

∑
ℓ∈CONCEPT100

Score(ℓ).

B.2 PERFORMANCE OF SAES ON THREE MODELS ON SAEBENCH

Across the three backbones, the six SAEBENCH metrics (for information about these indicators, see
SAEBENCH (Karvonen et al., 2025))jointly reveal how sparsity mechanisms balance interpretabil-
ity, faithfulness, and causal structure. Automated Interpretability is strongest when encoders enforce
compact latent usage (e.g., TopK/BatchTopK and ReLU at lower L0), and it gradually softens as ca-
pacity expands. The Absorption metric (considered via its complement in the plots) indicates that de-
signs concentrating signal into a small set of latents are less prone to feature stealing, whereas higher
effective capacity encourages redundancy and competition across latents. Meanwhile, Core/Loss-
Recovered remains uniformly high, showing that even sparse codes closely preserve original model
behavior; increasing L0 pushes faithfulness toward a ceiling without overturning the core trade-offs
visible in the other metrics.

Gemma-2-2B. As shown in Fig. 5, Gemma-2-2B exhibits a balanced profile: interpretability stays
robust for TopK/BatchTopK and ReLU at modest sparsity; absorption is contained when the code
remains compact; and Core is near-saturated across the range. Improvements in SCR@20 are steady
but measured, suggesting targeted debiasing with small k. Sparse Probing indicates that relatively
few latents already carry much of the predictive signal, while RAVEL strengthens with moderate
capacity, reflecting cleaner separation of attributes without undermining compactness.

Qwen-2.5-3B. For Qwen-2.5-3B (Fig. 6), interpretability at low–to–moderate L0 is competi-
tive—especially for TopK and JumpReLU—yet the model is more sensitive to absorption as ca-
pacity grows, implying greater latent competition and signal spread. Core remains excellent, so
reconstructions are faithful; however, SCR gains can flatten at high L0 where residual spurious cues
reappear. Sparse Probing is solid but a touch behind the strongest Gemma configurations, consis-
tent with its flatter RAVEL patterns: causal structure is present but less crisply disentangled when
attributes begin to diffuse across latents.
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Figure 5: SAEbench results for Gemma-2-2B: interpretability remains strong at lower L0, absorp-
tion stays low for compact codes, Core is near ceiling, and structure (SCR/RAVEL) improves with
moderate capacity.

Gemma-2-9B. Gemma-2-9B (Fig. 7) pushes the upper envelope on structure: interpretability re-
mains solid for compact encoders; absorption is low at moderate L0 that avoids unnecessary latent
proliferation; and Core is near its ceiling. SCR@20 is the most decisive among the three, pointing
to cleaner isolation of spurious factors with small, targeted ablations. Sparse Probing is strong and,
together with higher RAVEL, indicates that only a handful of latents capture both predictive signal
and causally specific attributes with minimal collateral interference.

B.3 SAEBENCH RUNTIME COST

The computational requirements for running SAEBench evaluations were measured on two NVIDIA
RTX A800 GPUs using 16K-width SAEs trained on the Gemma-2-2B (Team et al., 2024), Qwen-
2.5-3B (Yang et al., 2024) and Gemma-2-9B. Table 4 summarizes the per-SAE runtime for each
evaluation type. Several evaluations include a one-time setup phase (e.g., precomputing activations
or training probes) that can be reused across multiple SAEs; after this setup, each evaluation has its
own runtime per SAE. We therefore report amortized per-SAE minutes.

Table 4: Approximate SAEBench runtime per SAE (minutes). Values are per-SAE and represent
amortized minutes after any one-time setup; each minute figure is an approximation and may vary
with hardware and I/O.
Model Core Interpretability Absorption Sparse Probing Ravel SCR

Gemma-2-2B 4 8 12 2 18 10
Qwen-2.5-3B 7 9 15 8 17 16
Gemma-2-9B 11 12 17 30 40 28
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Figure 6: SAEbench results for Qwen-2.5-3B: strong interpretability at lower L0, rising absorption
with capacity, consistently high Core, and more fragile SCR/RAVEL at the highest capacities.

C AXBENCH DETAILS AND OUR COSTS

C.1 STEERING SCORE PROCESS

For each SAE feature (concept) we evaluate steering utility with an AXBENCH-style judge (Wu
et al., 2025). Given the concept description from SAEBench and the intervention rule in Eq. equa-
tion 1, we sample 10 instructions (Alpaca-Eval style) and split them 5/5 into a development set
for factor selection and a held-out set for evaluation. We generate continuations (up to 128 tokens)
for a grid of steering factors α ∈ A by injecting the feature direction at the target layer. For each
generated continuation, an LLM judge assigns three subscores on the discrete scale {0, 1, 2} (floats
allowed but clamped to [0, 2]): Concept (C; does the output express the concept?), Instruction (I;
is it on-topic for the instruction?), and Fluency (F ; is it well-formed?). We aggregate with the
harmonic mean

HM(C, I, F ) =


0, if C≤0 or I≤0 or F≤0,

3
1
C + 1

I + 1
F

, otherwise,
∈ [0, 2].

On the development split we pick α⋆ = argmaxα∈A
1
5

∑
HM, then evaluate the held-out split with

α⋆ to obtain the per-concept Steering Score (mean HM over the 5 held-out prompts). SAE-level
utility g(θ) is the average of per-concept scores over the evaluation set for that SAE.

CONCEPT TEMPLATE
[System]
Please act as an impartial judge and evaluate whether the specified concept is presented in the sentence
fragment provided below. Focus solely on whether the concept is clearly incorporated, without regard for
grammar or logical coherence.
Begin your evaluation by providing a short explanation of whether the concept is clearly incorporated.
Point out references to the concept in the fragment, noting any minimal or awkward incorporations. After
providing your explanation, rate the concept’s relevance on a scale from 0 to 2, where 0 indicates the
concept is not present at all, 1 indicates the concept is somewhat present but minimally or awkwardly
incorporated, and 2 indicates the concept is more fully and effectively incorporated, with stronger and
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Figure 7: SAEbench results for Gemma-2-9B: robust interpretability with compact codes, low ab-
sorption at moderate L0, near-ceiling Core, and the clearest gains in SCR/RAVEL among the three
backbones.

more natural integration. Provide your rating using this exact format: “Rating: [[score]]”.
[Concept Start] {concept} [Concept End]
[Sentence Fragment Start] {sentence} [Sentence Fragment End]

INSTRUCT TEMPLATE
[System]
Please act as an impartial judge and evaluate whether the sentence fragment provided below is related
to the instruction. Focus solely on the degree of relatedness in terms of topic, regardless of grammar,
coherence, or informativeness.
Begin your evaluation by providing a brief explanation of whether the sentence is related to the instruction,
and point out references related to the instruction. After providing your explanation, rate the instruction
relevance on a scale from 0 to 2, where 0 indicates the sentence is unrelated to the instruction, 1 indicates
it is somewhat related but only minimally or indirectly relevant in terms of topic, and 2 indicates it is
more clearly and directly related to the instruction. Provide your rating using this exact format: “Rating:
[[score]]”.
[Instruction Start] {instruction} [Instruction End]
[Sentence Fragment Start] {sentence} [Sentence Fragment End]

FLUENCY TEMPLATE
[System]
Please act as an impartial judge and evaluate the fluency of the sentence fragment provided below. Focus
solely on fluency, disregarding its completeness, relevance, coherence with any broader context, or infor-
mativeness.
Begin your evaluation by briefly describing the fluency of the sentence, noting any unnatural phrasing,
awkward transitions, grammatical errors, or repetitive structures that may hinder readability. After provid-
ing your explanation, rate the sentence’s fluency on a scale from 0 to 2, where 0 indicates the sentence is
not fluent and highly unnatural (e.g., incomprehensible or repetitive), 1 indicates it is somewhat fluent but
contains noticeable errors or awkward phrasing, and 2 indicates the sentence is fluent and almost perfect.
Provide your rating using this exact format: “Rating: [[score]]”.
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[Sentence Fragment Start] {sentence} [Sentence Fragment End]

C.2 AXBENCH STEERING EVALUATION COST

All steering-score evaluations were run on two NVIDIA RTX A800 GPUs. The LLM-as-judge
backend was gpt-4o-mini. Evaluating one SAE on CONCEPT100 costs approximately $5 in
judge API fees; with 90 SAEs total (≈ 30 per model), the per-model API cost is about $150. Table 5
lists approximate per-SAE runtime and peak VRAM for each model.

Table 5: AxBench steering evaluation cost per SAE. Runtimes are per-SAE (hours) and approxi-
mate; VRAM is peak memory (GB). Judge fees assume gpt-4o-mini: ∼ $5 per SAE on CON-
CEPT100; -Model Cost assumes ∼ 30 SAEs/model (≈ $150).
Model Runtime / SAE (h) Peak VRAM (GB) Per-Model Cost (USD)

Gemma-2-2B 15 10 150
Qwen-2.5-3B 16 12 150
Gemma-2-9B 23 36 150

D IMPLEMENTATION OF ∆ TOKEN CONFIDENCE

For a fixed, neutral prefix s (we use “From my experience,”, following the previous work(Arad et al.,
2025)) we compare the next-token distribution of the base model with that of an intervened model in
which a single SAE feature is amplified at layer L by a factor α. The intervention is applied via the
same SAE hook point used during training (on the residual stream of block L). We then compute
the change in a confidence surrogate built from the top-k probabilities.

Token confidence. (Fu et al., 2025) For a distribution p over the vocabulary, let p(1)≥· · ·≥p(k)
be the top-k probabilities.

Ck(p) = −1

k

k∑
i=1

log p(i).

Delta token confidence. With pbase from a standard forward pass and pint from a pass with the
SAE feature intervention,

∆Ck(f ;α,L) = Ck

(
pint

)
− Ck

(
pbase

)
.

Each feature f is evaluated with two single-step forwards on the same prefix s: (i) a baseline pass;
(ii) an intervened pass where we scale the code for f by α before decoding it into the residual at
layer L while keeping all other codes at zero. Hooks are removed immediately after the intervened
pass to prevent accumulation across evaluations. In this work, we choose α = 10 and k = 1.

Feature selection from ∆Ck. For each SAE we rank its features by ∆Ck in two directions: UP
(largest positive ∆Ck) and DOWN (most negative ∆Ck). We form selection sets using either (i) top-
K by magnitude with K ∈ {1, 2, 3, 4, 5} per direction, or (ii) upper/lower-tail quantiles (e.g., q ∈
{0.99, 0.95, 0.90, 0.80} mirrored for the lower tail). These sets are then carried into AXBENCH (Wu
et al., 2025) to measure utility lift.

E STEERING RESULTS OF SAE ARCHITECTURES AFTER FEATURE
SELECTION

We quantify steering with the AXBENCH judge after selecting features using ∆ Token Confidence
(Appendix D). Unless otherwise noted, lifts are reported as the percentage change of a given SAE’s
steering score relative to its own baseline (no selection). Results are organized at three levels:
aggregate across SAEs per base model, per-SAE rankings, and distribution by architecture.
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Figure 8: Overall steering score before and after feature selection. For each base model, the panel
shows two bars: the average baseline steering score across its SAEs and the average after applying
∆ Token Confidence–based selection. Bars are annotated with the corresponding values; axes share
the same scale across panels.

The aggregate view in Figure 8 summarizes how selection affects the mean steering score across
all SAEs of a base model. Using ∆ Token Confidence for feature selection markedly improves the
steering score across all three models in the figure. For Gemma-2-2B, the score rises from 0.133
to 0.328, which is a 146.6% relative improvement. Qwen-2.5-3B increases from 0.171 to 0.399, a
133.3% improvement, and achieves the highest post-selection score overall. Gemma-2-9B moves
from 0.142 to 0.289, a 103.5% improvement.

Conclusions: (i) feature selection via ∆ Token Confidence consistently boosts steering for all mod-
els; (ii) relative gains are largest for the smallest model (Gemma-2-2B) and smallest for the largest
model (Gemma-2-9B), suggesting diminishing relative returns with scale; and (iii) in absolute terms,
Qwen-2.5-3B reaches the strongest final steering score after selection.

0 200 400 600 800
Lift (%) vs. SAE-based steering score

Gemma-2-2B

0 100 200 300 400 500
Lift (%) vs. SAE-based steering score

Qwen-2.5-3B

100 0 100 200 300 400
Lift (%) vs. SAE-based steering score
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Architecture

BatchTopK
Gated
JumpReLU
ReLU
TopK

Per-SAE lifts after  Token Confidence feature selection (ranked)

Figure 9: Per-SAE percentage lift after ∆ Token Confidence selection. Each panel corresponds
to a base model. Horizontal bars report the percent lift of the SAE-level steering score relative to its
own baseline, sorted from largest to smallest within the panel. Bar colors indicate the SAE training
architecture (legend shared across panels).
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Figure 9 ranks SAEs within each model by their relative lift. Architecturally, no single SAE train-
ing approach dominates; however, the top-ranked lifts are frequently occupied by BatchTopK and
Gated variants, with ReLU/JumpReLU also contributing strongly and TopK showing more mixed
outcomes. Overall, ∆ Token Confidence yields consistent per-SAE gains, with variance decreas-
ing and stability increasing as model size grows, while architectural diversity remains valuable for
capturing the largest lifts.
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Figure 10: Lift distributions by SAE architecture. For each base model, box-and-whisker plots
(with individual points overlaid) summarize the distribution of percentage lifts grouped by training
architecture. Dashed horizontal lines denote the mean within each group, and whiskers follow the
conventional interquartile rule.

Figure 10 groups lifts by architecture to visualize differences in central tendency and dispersion
under the same selection and evaluation protocol. Read together with the per-SAE ranking, this
distributional view helps disentangle architecture effects from model-specific variation and indi-
cates which families tend to produce more stable or more variable outcomes after feature selection.
BatchTopK and Gated generally occupy the highest central tendency with wide—but mostly posi-
tive—spread, especially on Gemma-2-2B and Qwen-2.5-3B. BatchTopK achieves the most stable
and sizable steering score. Variance is largest for the smallest model (Gemma-2-2B), indicating
architecture-sensitive wins at small scale.

F DATASET

Training corpus for SAEs. We train all SAEs on The Common Pile v0.1 (Kandpal et al., 2025),
an openly licensed ∼8 TB text collection built for LLM pretraining from ∼30 sources spanning
research papers, code, books, encyclopedias, educational materials, and speech transcripts. The
corpus was curated as a principled alternative to unlicensed web text and has been validated by
training competitive 7B models on 1–2T tokens. We use it as the sole pretraining dataset for all SAE
runs. More training details provided in Appendix A.2.

CONCEPT100 for steering utility. To evaluate steering, we construct CONCEPT100: a
compact benchmark of 100 human-readable concept descriptions per evaluation set, pro-
duced automatically by our interpretability pipeline (Appendix B). Each entry is a pair
(layer feature id,description) that summarizes a latent’s activation pattern in plain lan-
guage (e.g., mathematical symbols, scientific terms, pronouns, or domain phrases). These descrip-
tions are supplied to the AXBENCH judge when computing steering score. The examples below
illustrate the style and domain coverage.

Gemma-2-9B, BatchTopK, L0 ≈ 80. Ten examples:
1. 20 14429: concepts related to optical communication systems and their performance

characteristics
2. 20 5795: specific technical terms and chemical compounds often related to scientific

contexts
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3. 20 7908: terms related to gravitational lensing and its effects in cosmology
4. 20 3042: pronouns and verbs indicating relationships or contributions in various con-

texts
5. 20 11897: scientific measurements and units related to energy, concentration, or bi-

ological data
6. 20 12944: terms related to cell types and apoptosis mechanisms in scientific contexts
7. 20 8796: references to specific authors and statistical concepts in mathematical con-

texts
8. 20 6430: the phrase “action” in mathematical and theoretical contexts
9. 20 2220: chemical elements and compounds, particularly including metals and

metal-related terms
10. 20 585: various forms of the word “energy” and related concepts in scientific contexts

Qwen-2.5-3B, Gated, L0 ≈ 72. Ten examples:
1. 17 15113: terms related to mathematical concepts and various scientific names or

terms
2. 17 11476: the phrase “as a function of” in contexts of measurement and analysis
3. 17 162: mathematical symbols and concepts related to coordinates, magnitudes, and

parameters in equations
4. 17 2552: dataset identifiers and technical terms common in research and academic

documents
5. 17 16377: mathematical notation and technical terms commonly found in formal

documents
6. 17 3195: demographic, clinical, and biological characteristics in study populations

and related comparisons
7. 17 9186: specific technical terms and concepts related to networking and program-

ming
8. 17 11487: mathematical notation and variables related to functions and equations
9. 17 14657: mathematical notations and structures involving angle brackets and prop-

erties of functions
10. 17 1256: terms related to errors and error correction in coding theory and quantum

operations

Gemma-2-2B, JumpReLU, L0 ≈ 81. Ten examples:
1. 20 11531: terms related to sports, programming, or specific keywords from various

contexts
2. 20 10460: terms related to fractional differential equations and numerical methods

for solving them
3. 20 4882: terms related to asymptotic theory, robustness, and statistical estimation

methods
4. 20 4425: first-person plural pronouns and expressions of intention or conjecture
5. 20 372: technical terms related to measurement and structure in scientific contexts
6. 20 9999: the word “from” and contexts implying deviation or distance from some-

thing
7. 20 9703: the word “based” in various contexts of theoretical foundations and

methodologies
8. 20 15509: technical or numerical concepts in a variety of contexts
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9. 20 8218: phrases indicating conditions or assumptions that must be met in theoretical
contexts

10. 20 4614: time intervals and durations mentioned in the context of studies or obser-
vations

We currently maintain 90 SAEs (30 per base model). Beyond the CONCEPT100 sets evaluated in
this paper, we have constructed the CONCEPT1000 and CONCEPT16K suites that scale the number
of human-readable concepts up to 16K. We will extend training and evaluation to these larger suites
in forthcoming releases to further substantiate the reliability and generality of this work.

G ANALYSIS OF STEERING STRENGTH ACROSS INTERPRETABILITY LEVELS

To directly address the concern that highly interpretable SAE features might have negligible steering
effects, we conduct an additional analysis combining interpretability scores with steering scores at
the feature level.

Figure 11: Feature-level relationship between interpretability and steering strength across
models. Panels are shown separately for Gemma-2-2B, Gemma-2-9B, and Qwen-2.5-3B. The first
set of panels plots interpretability score (AutoInterp) against steering overall score for every latent.
The second set of panels flips the axes and highlights the top steering quartile in orange, with all
latents shown in blue.

We do not find that interpretable SAE features have negligible steering effects. As the first set of
panels in Figure 11 shows, high-interpretability features span the full range of steering strengths,
including many strongly steering latents; high-interpretability features are not dominated by weak
steering. Conversely, the second set of panels in Figure 11 shows that strongly steering features
(top steering quartile) also cover almost the full range of interpretability scores, and many of them
are only moderately or weakly interpretable according to interpretability score. In the SAEs under
Qwen-2.5-3B, we found that features with extremely high steering scores also tend to have higher
interpretability scores. This explains why, in Appendix J, only the SAE model under Qwen-2.5-3B
shows improved steering performance when using high interpretability scores. However, below 1.0,
the performance becomes highly dispersed again.

Taken together, these two views indicate that (i) high interpretability does not guarantee strong
steering, and (ii) strong steering does not require high interpretability. In other words, feature-level
interpretability scores provide limited information about how strongly a latent direction pushes the
logits, reinforcing our claim that interpretability and steering strength are nearly orthogonal at the
feature level.
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H INSTRUCTION-FOLLOWING UNDER FEATURE-SELECTION STRATEGIES

To address whether our feature-selection metric surfaces features that make model outputs inco-
herent, we compare the AxBench Instruction subscore when steering with three strategies: using all
SAE features (“SAE Base”), using features selected by the Output Score baseline, and using features
selected by our ∆ Token Confidence metric. For each model and SAE architecture, we aggregate
the instruction subscores of the steered generations and plot them in Figure 12.
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Figure 12: Instruction subscore across SAE architectures when steering with different feature-
selection strategies. For each model, we compare the AxBench Instruction score under three setups:
using all SAE features (SAE Base), using Output Score selection, and using ∆ Token Confidence
selection.

Across all models, both selection methods keep the instruction subscore close to the base level (typ-
ically in the 1.5–2.0 range on a 0–2 scale), indicating that neither Output Score nor ∆ Token Con-
fidence systematically degrades instruction following. This behavior is expected because coherence
is primarily controlled by the steering factor α in the intervention

xsteer = x+ (αmf ) · vf ,
which scales how strongly a feature f is injected into the hidden state. AxBench already tunes α
per feature to balance concept shift against instruction following and fluency. The role of ∆ Token
Confidence is not to push the model into incoherent regimes, but to select features for which even
small interventions induce a strong, directional change in the token-level logits.

I EXPLORING THE STEERING UTILITY OF SAES WITH HIGH
INTERPRETABILITY

To directly test whether selecting features by interpretability also selects for high steering utility, we
run a controlled comparison at the feature level. For each SAE in our three model–layer settings, we
compute three steering configurations on AxBench: (i) SAE Base, which steers with all evaluated
features; (ii) Interpretability selection, which steers using only the top-p% latents by AutoInterp
score (we use p = 10% in Figure 13); (iii) ∆ Token Confidence selection

Across all three models, selecting features by interpretability alone yields at best modest and often
negative changes in steering strength relative to using all SAE features (about 35% for Gemma-2-2B,
+10% for Qwen-2.5-3B, and 19% for Gemma-2-9B), whereas Token Confidence consistently deliv-
ers large gains of roughly 1.1–1.5× over the same SAE base. This pattern indicates that feature-level
interpretability is a weak signal for steering utility, while Token Confidence reliably concentrates
probability mass on features that produce substantially stronger steering effects.

J SIGNIFICANCE ANALYSIS FOR DIFFERENT SAE STEERING METHODS

To address the question of whether the improvements in Figure 4 are statistically significant, we
reran the analysis at the SAE level and, for each model and architecture, computed the mean steering
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Figure 13: Steering scores under different feature-selection strategies across SAE architectures
and three models. Bars show the AxBench overall steering score for (left) steering with all features
(SAE Base), (middle) steering with the top-10% most interpretable features (AutoInterp), and (right)
steering with features selected by ∆ Token Confidence. The banners report the macro-average
percentage lift over the SAE Base.

score and its 95% confidence interval across SAEs (shown as error bars in Figure 14). In addition, we
performed paired bootstrap tests over SAEs for three contrasts: (i) ∆ Token Confidence selection vs.
SAE Base, and (ii) ∆ Token Confidence selection vs. Output Score selection. Finally, we repeated
the paired bootstrap test pooled over all 90 SAEs.
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Figure 14: Error-bar version of Figure 4. Mean steering score and 95% confidence intervals across
SAEs for the SAE Base, Output Score selection, and ∆ Token Confidence selection, grouped by
architecture and model. When aggregated across SAEs, there is a statistically significant difference
between ∆ Token Confidence and the baselines.

The error bars in Figure 14 show that ∆ Token Confidence selection consistently lifts steering scores
above the SAE Base across architectures and models.

In this experiment, steering scores are first computed for each of the 90 SAEs under three conditions:
SAE Base (no feature selection), Output Score-based selection, and ∆TokenConf-based selection.
We then form per-SAE paired differences and apply a paired bootstrap over SAEs to estimate the
mean difference, its 95% confidence interval, and a two-sided p-value, yielding the global signifi-
cance results summarized in Table 6.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 6: Pooled paired-bootstrap comparison of steering scores across all 90 SAEs. For each con-
trast, we report the mean per-SAE difference in steering score, a 95% bootstrap confidence interval,
the two-sided p-value, and whether the effect is significant at the 5% level.
Comparison Mean difference 95% bootstrap CI Two-sided p Significant at 5%?

∆TokenConf − Base 0.1899 [0.1454, 0.2339] ≈ 0.0000 Yes
∆TokenConf − Output Score 0.0786 [0.0261, 0.1305] ≈ 0.0032 Yes

Concretely, we find that our selection method yields a statistically significant improvement in steer-
ing score both relative to the SAE Base and relative to the Output Score selection.

K ANALYSIS OF GAP BETWEEN SAE INTERPRETABILITY AND UTILITY

Regarding why there is a gap, our view is that the root cause lies in the training paradigm of SAEs.
Current SAE training is almost entirely reconstruction-centric: the objective is to accurately recon-
struct internal activations while enforcing sparsity, so as to obtain a more monosemantic basis in a
higher-dimensional space. This is precisely what makes SAE features interpretable, but it does not
directly optimize how useful those features are for steering. In other words, the training objective is
aligned with reconstruction fidelity and monosemanticity, not with control over model outputs.

To make this concrete, we perform a pairwise Kendall–τb analysis over all 90 SAEs, relating inter-
pretability, steering, and two standard reconstruction-side metrics (both higher-is-better): (i) the CE
loss score and (ii) explained variance. Table 7 reports τb, bootstrap standard error, a 95% bootstrap
confidence interval, and a permutation p-value for the null H0 : τb = 0 for each pair of metrics.

Table 7: Pairwise Kendall–τb between interpretability, reconstruction metrics, and steering score
over all 90 SAEs. “CE loss score” and “explained variance” are standard post-hoc reconstruction
metrics (higher is better).

Pair τb SE 95% bootstrap CI perm p ( H0 : τb = 0 )

Interpretability – CE loss score −0.433 0.056 [−0.539, −0.322] 0.0002
Interpretability – Explained variance −0.405 0.059 [−0.521, −0.289] 0.0002
CE loss score – Steering −0.243 0.067 [−0.377, −0.112] 0.0006
Explained variance – Steering −0.195 0.066 [−0.323, −0.062] 0.0062

As Table 7 shows, the reconstruction metrics exhibit only a weak association with steering (|τb| ≈
0.2), but a substantially stronger association with interpretability (|τb| ≈ 0.4). In other words, the
reconstruction-focused training objective is much more predictive of which SAEs score well under
interpretability metrics than of which SAEs are actually good for steering, and is close to orthogonal
to steering utility. This supports our claim that the observed interpretability–utility gap is not an
artifact of our evaluation, but a structural consequence of the current SAE training paradigm, in
which reconstruction fidelity—rather than steering behavior—is the primary optimization target.

L ABLATION ON THE TOP-k IN ∆ TOKEN CONFIDENCE

In our ∆ token confidence selection, we measure how much a feature shifts the model’s confidence
over the top-k tokens in the output distribution. Unless otherwise noted, all main experiments use
k = 1, so that the score directly tracks the change in probability of the top-1 predicted token, which
typically dominates next-token behavior in standard generation settings.

To verify that this choice is not artificially restrictive, we run an ablation over k ∈ {1, 3, 5, 10} on
Gemma-2-2B and Qwen-2.5-3B. Table 8 reports the resulting steering scores (higher is better) after
applying ∆ token confidence selection.
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Table 8: Ablation over the top-k parameter in ∆ token confidence selection.

k (top-k) Gemma-2-2B Qwen-2.5-3B

1 0.328 0.399
3 0.264 0.370
5 0.314 0.302
10 0.245 0.343

All tested values of k yield substantial gains over the SAE baseline (not shown), and k = 1 is in fact
the best-performing setting on both models. We therefore adopt k = 1 as an empirically validated
default in all main experiments.

M EXAMPLES OF INTERPRETABLE-BUT-UNHELPFUL VS.
HELPFUL-BUT-HARD-TO-EXPLAIN FEATURES

To complement our quantitative analysis, we provide qualitative examples of features where inter-
pretability and steering utility diverge. Type A features are highly interpretable but not steerable
(high interpretability score, near-zero steering score), while Type B features are moderately inter-
pretable but strongly steerable. All generations in Table 9 are produced with temperature 0 using
the fixed prefix ‘‘I heard that’’ and intervening on a single feature.

Table 9: Qualitative examples of features where interpretability and steering diverge. Type A: inter-
pretable but not steerable (interpretability ≈ 1.0, steering ≈ 0). Type B: moderately interpretable
but clearly steerable. All generations use temperature 0 with the prefix “I heard that”.
Field Gemma 2 2B (A) Qwen 2.5 3B (A) Gemma 2 2B (B) Qwen 2.5 3B (B)

Type A A B B
Latent id 6168 12527 589 2392
Architecture BatchTopK, L0=320 BatchTopK, L0=160 ReLU, L0=156 JumpReLU, L0=166

Interpretability 1.00 1.00 0.57 0.50
Steering score 0.00 0.00 1.32 1.02
Explanation the symbol ‘pi’ in mathematical expressions terms related to differentiation in mathematical contexts words related to actions or processes in various contexts numerical values related to comparisons

After steering I heard that there are a lot of
people who live with their own
thoughts in their heads.

I heard that it is Math and Sci-
ence, did you hear that it is
Math and Science?

I heard that The Body Shop is
planning to open in Central
World, I used to go to Bangna
branch.

I heard that a little bit larger
than twice the actual, 2000
feet (2,500 meters) worth of
this, which is a mile of it, three
times it’s actual.
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