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ABSTRACT

Large-scale vision-language models have achieved remarkable performance on
various downstream tasks. Nevertheless, how to efficiently adapt vision-language
models to new data distributions without re-training, i.e., domain incremental
learning (DIL) of vision-language models, is still under-explored. Existing DIL
methods for single modality are either not applicable to multi-modal settings
or need exemplar buffers to store previous samples to avoid catastrophic forget-
ting, which is not memory-efficient. To address these limitations, we propose
an exemplar-free paradigm to improve DIL of vision-language models based on
prompt-tuning. We theoretically analyze and decompose the problem into two
optimization objectives. Guided by the theoretical insights, we propose a novel
framework named Multimodal Continual Domain Adaptation (MCDA), which
incorporates two strategies: Multimodal Domain Alignment (MDA) and Maximum
Softmax Gating (MSG). MDA enhances cross-domain performance by aligning
visual and language representation spaces, while MSG improves the accuracy of
domain identification by gating through Softmax probability. Extensivev experi-
mental results demonstrate that our method outperforms current state-of-the-art
approaches.

1 INTRODUCTION

Large vision-language models have achieved remarkable performance on various downstream
tasks (Zhang et al., 2022; Adel et al., 2019; Agarwal et al., 2022; Arani et al., 2021). After large-scale
pretraining, these powerful models can make zero-shot predictions without requiring any task-specific
training examples. This advantage of large vision-language models is promising for the development
of more general-purpose models without further tuning. However, the zero-shot performance on
certain tasks suffers from a lack of sufficient relevant image-text pairs in the pre-training corpus. For
example, images containing domain shift (Aygün et al., 2022; Bhat et al., 2023; Cao et al., 2021)
from one domain (e.g.sketch) to another (e.g.cartoon) with certain textural descriptions are difficult
to collect, even though it’s crucial for models’ open-domain learning adaptability.

Unfortunately, expanding the knowledge of the vision-language model through re-training from
scratch would incur prohibitively high computational costs. One effective way to alleviate the issue
is to continually fine-tune or prompt-tune the vision-language model on various domains of data,
which is known as domain incremental learning (DIL) (Ardywibowo et al., 2022; Benzing, 2022;
Boschini et al., 2022b;a;c). In the DIL setting, the set of classes remains constant, but the domains
(data distributions) involved commonly vary a lot in sequence while domain indices are not provided
at inference time. The continually learned model can handle any image-text input and can be further
used for downstream tasks. Nevertheless, domain incremental learning remains challenging for
vision-language models. We find that when learning is performed sequentially on multiple domains,
pre-trained vision-language models tend to forget most of the knowledge related to previously learned
tasks (a task refers to learning on one domain). The phenomenon is commonly known as catastrophic
forgetting.

Despite considerable efforts to apply DIL in single-modality settings, these methods either do not
apply to multi-modal settings or require exemplar buffers to store previous samples to prevent
catastrophic forgetting, which is not memory-efficient. Different from traditional methods that modify
all or a subset of the network parameters or store examples in a buffer, a new paradigm arises for
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continual learning by optimizing a limited number of learnable prompts. As a pioneer working under
such a paradigm, S-prompt (Wang et al., 2022a) treats the learning of the prompts independently,
which leads to the best performance per domain. It replaces the use of expensive buffers by optimizing
per-domain prompts. During training time, they calculate centroids for each domain by applying
k-means on the training image features, which are generated with the fixed pre-trained transformer
without any prompts. During inference, KNN is used to identify the nearest centroid to the test
image and then add the associated domain prompt to the image tokens for classification. Despite the
empirical performance gains observed by S-prompting, there is still a gap between empirical success
and theoretical analysis.

In this paper, we theoretically analyze the paradigm of S-prompting and argue that the design of its
component is sub-optimal. The theoretical analysis also shows that its performance is largely limited
by wrong-domain prediction and out-of-domain prediction. Motivated by the limitation, we propose
a novel framework called Multimodal Continual Domain Adaptation (MCDA) with two strategies:
Multimodal Domain Alignment (MDA) and Maximum Softmax Gating (MSG) to tackle the issue.
MSG transforms the problem of domain selection into out-of-domain detection. MDA alleviates the
problem of catastrophic forgetting of the vision-language model by forcing the alignment matrix to
be similar to that of the previous domain.

Extensive experimental results shows that our approach outperforms state-of-the-art methods. Specif-
ically, MCDA outperforms existing advanced methods of L2P and S-liPrompts with the highest
average accuracy score of 89.17% and the lowest average forgetting score of -0.17%. This suggests
that MCDA is more adept at learning new information without significantly forgetting previously
learned knowledge.

In summary, our contributions are as follows:

• From a theoretical perspective, we analyze the boundedness of a continual learning process
of vision-language models, and a clear theorem is presented in Theorem 1.

• From a framework perspective, we propose the MCDA as a novel framework using both
vision and language adaptation for enhancing continual learning of vision-language models.

• From an experimental perspective, our proposed MCDA archives new state-of-the-art
performances on the CDDB-Hard, DomainNet and CORe50 datasets.

2 RELATED WORK

Continual learning refers to learning scenarios that require models to adapt to a sequence of
tasks with varying data distributions. One of the major challenges of continual learning is known
as catastrophic forgetting, where models tend to forget most of the knowledge they previously
learned after adapting to new data. To tackle catastrophic forgetting, numerous methods have been
proposed. Regularization-based methods (Kirkpatrick et al., 2017; Zenke et al., 2017; Aljundi et al.,
2018; Chaudhry et al., 2018; Zenke et al., 2017) alleviate catastrophic forgetting by adding explicit
regularization terms to balance the old and new tasks. Replay-based methods(Vitter, 1985; Chaudhry
et al., 2019; Riemer et al., 2018; Borsos et al., 2020; Caccia et al., 2020) try to approximate and
recover previous data distributions. Optimization-based methods(Lopez-Paz & Ranzato, 2017; Zeng
et al., 2019; Guo et al., 2022; Kong et al., 2022; Liu & Liu, 2021) focus on designing specific
optimization procedures and programs. Architecture-based methods(Xue et al., 2022; Serra et al.,
2018; Golkar et al., 2019; Jung et al., 2020; Gurbuz & Dovrolis, 2022) focus on constructing
task-specific parameters.

Domain-incremental learning is one of the most commonly seen scenarios of continual learning. In
the setting of DIL, each task (domain) has the same data label space but different distributions. Task
(domain) identities are not available at inference time. DIL is involved in many real-world problems
such as autonomous driving, where the vehicle meets varying weather conditions in the wild (Mirza
et al., 2022).

Prompt tuning methods are different from traditional methods that modify all or a subset of the
network parameters or store examples in a buffer, L2P (Wang et al., 2022d) begins a new paradigm
for continual learning by optimizing a limited number of learnable prompts. After that, several work
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Figure 1: Training Pipeline of MCDA. During the training stage, Multimodal Domain Alignment
(MDA) is used to align the image and text representation space between two domains.

(Lester et al., 2021; Li & Liang, 2021; Zhou et al., 2021; 2022; Bahng et al., 2022; Wang et al., 2022c;
Douillard et al., 2022a) follow the paradigm and achieve great success.

Continual learning for vision–Language models is still under-explored. In (Srinivasan et al., 2022),
the focus is on robust fine-tuning of VL. In (Wang et al., 2022b), the change between image and
text representation space during the pretraining stage of VL is explored. Recently, ZSCL (Zheng
et al., 2023) is proposed to solve the problem of zero-shot degradation during the fine-tuning process
of VL. However, little research has been done to explore the potential of prompt-tuning to solve
DIL. S-Prompts (Wang et al., 2022a) is the pioneering work to apply prompt-tuning to DIL. It trains
different prompts for each domain and dynamically selects the appropriate set during testing using
a fixed key/value dictionary. Recently, Hide-Prompt (Wang et al., 2023) decomposes the problem
of continual learning into several parts that can be optimized, and derives theoretical analysis of
performance. Despite its great success, it focuses on class incremental learning scenarios and could
not be directly applied to DIL.

3 METHOD

3.1 PROBLEM FORMULATION

Denote as S = {Ds}Ns=1 as the sequence of datasets presented to the model in our incremental
learning scenario. Denote each dataset as Ds = {xs

i ,y
s
i }

|Ds|
i=1 , where xi represents an image, and

yi ∈ {0, 1}K is its corresponding one-hot label for K target classes. By convention, in the setting of
DIL, we are only allowed to one domain Ds at a time. Each time a new domain Ds arrives, the goal
of DIL is to improve the model’s performance on Ds and alleviate the catastrophic forgetting for past
domains Ds−1,Ds−2, . . . ,D1.

3.2 THEORETICAL ANALYSIS

For domain-incremental learning (DIL), let Xt =
⋃

j Xt,j and Yt = {Yt,j}, where j ∈ {1, . . . , |Yt|}
denotes the j-th class in task t. Now assume we have a ground event denoted as D = {D1, . . . ,Dt}
and a pre-trained model fθ. For any sample x ∈

⋃t
k=1 Xk, a general goal of the DIL problem is to

learn P (x ∈ X∗,j | D, θ), where X∗,j represents the j-th class domain in any task. Of note, Yt = Yt′ ,
∀t ̸= t′ for DIL.

Denote domain identification (DI), within-domain prediction (WDP) and out-of-domain-prediction
(ODP) as P (x ∈ Xi | D, θ), P (x ∈ Xi,j | x ∈ Xi,D, θ) and P (x ∈ Xk,j | x ∈ Xk, k ̸= i,D, θ)
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respectively. Based on Bayes’ theorem, we have

P (x ∈ X∗,j | D, θ) = P (x ∈ Xi,j | x ∈ Xi,D, θ)P (x ∈ Xi | D, θ)

+
∑
k ̸=i

P (x ∈ Xk,j | x ∈ Xk,D, θ)P (x ∈ Xk | D, θ) , (1)

where {∗, j} represents the j-th class in each domain. Thus, the problem of DIL can be written as

P (x ∈ X∗,j | D, θ) = PDI · PWDP + (1− PDI) · PODP . (2)

From the formula above, it is clear to see that DIL is constrained by within-domain-prediction,
domain identification, and out-of-domain prediction. In other words, the performance of DIL could
be improved by enhancing these three objectives.

Within-domain-prediction is related to domain generalization of vision-language models, and there
have already been many works trying to improve it. One thing to mention is that our decomposition
is similar to HiDe-prompt (Wang et al., 2023) which decomposes the problem of class incremental
learning into three objectives. However, in this paper, we focus on domain incremental learning and
the decomposition of Hide-prompt does not include ODP. Inspired by HiDe-prompt (Wang et al.,
2023), we define

HWDP(x) = H(1j̄ , {P (x ∈ Xī,j |x ∈ Xī,D, θ)}j), (3)
HDI(x) = H(1ī, {P (x ∈ Xi|D, θ)}i), (4)

HODP(x) = H(1c̄, P (x ∈ Xk,j | x ∈ Xk, k ̸= i,D, θ)), (5)

where HWDP, HDI, and HODP are the cross-entropy values of WDP, DI, and ODP, respectively.
The operation H(p, q) ≜ −Ep[log q] stands for one-hot encoding function. We now present Theorem
1.

Theorem 1 If Ex[HWDP(x)] ≤ ϵ, Ex[HDI(x)] ≤ γ, and Ex[HODP(x)] ≤ η, we have the loss
error L ∈ [0, δ + ϵ+ log(1 + eϵ−δ(eγ − 1))]

A detailed proof of the theorem is in Appendix. Theorem 1 shows that optimizing WDP, DI, and
ODP can help improve the performance of DIL. In this paper, we focus on improving the last two
objectives, namely out-of-domain prediction (ODP) and domain identification, and propose two
strategies: Multimodal Domain Alignment (MDA) and Maximum Softmax Gating (MSG). The
overall training pipeline is shown in Figure 1.

3.3 MULTIMODAL DOMAIN ALIGNMENT

At training time, an independent set of prompts is trained for each domain and is frozen when training
on subsequent domain data. At inference time, the sample needs to identify which domain it comes
and select the corresponding set of prompts for that domain. If the sample successfully identify the
domain it belongs to, then forgetting will not happen. However, if the sample fail to identify the
correct domain, then it will select a wrong set of prompts. Therefore, the sample will be tested on
a model trained on domain data that are different from its original domain. In other words, if the
domain identification process goes wrong, then the model will be tested on out-of-distribution (OOD)
data. Intuitively, the performance is expected to drop when a model is tested with OOD data. To
validate the statement, we use models prompt-tuned with different domain sources to test on data
from different domains and the results are in Figure 2 (a).

From the figure, we can see that no matter which source domain the model is trained on, it will suffer
performance drop when tested on OOD data. We hypothesis that the performance drop is caused by
the misalignment between the text representation space and image representation space. Formally,
define f(x) as the image feature generated by the image encoder f , and {g (tj)}Cj is a set of weight
vectors produced by the text encoder g(.) with each g (tj) representing the text feature of j-class.
The prediction probability of vision-language model is computed as

p (yj | x) =
exp (⟨f(x), g (tj)⟩)∑C
k=1 exp (⟨f(x), g (tk)⟩)

, (6)
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GauGAN BigGAN Wild Which
FaceReal SAN

GauGAN 97.54 91.23 73.56 82.76 56.23

BigGAN 94.12 96.81 68.54 87.55 49.98

Wild 78.97 72.43 81.32 81.25 56.87

Which
FaceReal 83.43 88.65 75.78 94.30 62.41

SAN 61.55 68.76 57.23 70.28 83.25

Testing

Training
GauGAN BigGAN Wild Which

FaceReal SAN

GauGAN 0.81 0.76 0.52 0.34 0.14

BigGAN 0.66 0.86 0.55 0.47 0.28

Wild 0.36 0.54 0.83 0.35 0.23

Which
FaceReal 0.39 0.62 0.52 0.72 0.31

SAN 0.24 0.21 0.26 0.38 0.75

Target

Source

(a) (b)

Figure 2: (a) Performance of models prompt-tuned with different domain sources to test on data from
different domains; (b) Average cosine similarity of 100 positive image-text pairs from five different
domains

where ⟨.,.⟩ is the cosine similarity, and ⟨x, y⟩ = x·y
|x||y| .

From the formula, we see that the prediction process relies on the mutual interaction between image
representation space and text representation space. For models prompt-tuned on different domain
sources, since both the image and text are prompt-tuned with separate the sets of prompts, it is possible
that their image representation space and text representation space are changed synchronously.

To validate the hypothesis, we select 100 positive image-text pairs from five different domains,
feed them into models trained on different domain data and get their corresponding image and text
representations. Then we calculate their average cosine similarity and the result is shown in Figure 2
(b). We can see from the figure when using encoders trained on different domain data to generate
representations for these image-text pairs, the average cosine similarity indeed drops. Therefore, the
performance drop is caused by the misalignment between the text representation space and image
representation space.

To tackle the issue, we proposed a strategy called Multimodal Domain Alignment (MDA), which can
effectively alleviate the misalignment between image and text representation space during training.
Specifically, at training time, suppose that we are training on domain data Dt. Given the input
image-text batch, we first calculate the contrastive matrix Mt using the current set of domain-specific
prompts. Then, we calculate the contrastive matrix Ot generated by the original vision-language
model without any prompts. Then we force the alignment between these two contrastive matrices
using KL Divergence.

Lt
KL (Mt, Ot) = −

∑
Ot ln

(
Mt

Ot

)
. (7)

The overall training loss is:
L = Lcontras + αLt

KL, (8)

where Lcontras is the contrastive loss used in regular CLIP training and α is a constant.

3.4 MAXIMUM SOFTMAX GATING

At inference time, the test sample needs to identify which domain it comes from and then select the
corresponding set of domain-specific prompts. If the sample fails to identify the correct domains
it belongs to, then as discussed above, a performance drop will happen. Therefore, improving
the domain identification accuracy is another key factor in improving DIL performance under the
proposed paradigm. Previous work, such as S-prompt, takes a naive approach by storing prototype
centroids at training time and calculating the similarity of testing sample and prototype centroids to
select domain at inference time. We argue that this is sub-optimal and that the problem of domain
identification can be transformed into the problem of OOD detection.

5
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Figure 3: Testing Pipeline of MCDA. During inference stage, Maximum Softmax Gating (MSG) is
used to do OOD test of given test image on each domain. Then KNN selection will be performed on
domains that survive the OOD tests.

Maximum Softmax Score (MSS) (Ming et al., 2022) is first proposed as a metric for zero-shot OOD
detection. We find that MSS is also effective for prompt-tuned vision-language models, thus benefiting
the procedure of domain identification. For a given domain with label set Yin = {y1, y2, . . . , yK},
the text prototypes are set as T (ti) , i ∈ {1, 2, . . . ,K}, where ti is the text prompt. Then, image and
text features are generated by models with a corresponding set of domain-specific prompts. For any
test input image x′, we can calculate the label-wise matching score based on the cosine similarity

between the image feature I (x′) and the text vector T (ti) : si (x
′) =

I(x′)·T (ti)

∥I(x′)∥·∥T (ti)∥ . Formally, the
Maximum Softmax Score (MSS) is defined as:

SMSS (x
′;Yin , T , I) = max

i

esi(x
′)/τ∑K

j=1 e
sj(x′)/τ

, (9)

where τ is the temperature. For in-domain data, it will be matched to one of the text features with a
high score. The OOD detection function can be formulated as:

G (x′;Yin , T , I) =
{

1 SMSS (x
′;Yin, T , I) ≥ λ

0 SMSS (x
′;Yin, T , I) < λ

, (10)

where by convention 1 represents the positive class (ID) and 0 indicates OOD. λ is chosen so that a
high fraction of ID data (e.g., 95%) is above the threshold. At inference time, given test data, we
conduct an OOD test on all the domains using the OOD detection above. Ideally, only one domain
will accept and the other will reject. If that is the case, then the domain that accepts is the one that
the test data belongs to. However, we find that in fact, several domains accept, and others reject.
Therefore, we propose Maximum Softmax Gating (MSG) to filter out all the domains that fail the
OOD test. For domains that survive the OOD test, we will select among them using the same metric
as the S-prompt. The overall procedure is shown in Figure 3.

4 EXPERIMENT

4.1 DATASETS

We perform experiments on three standard DIL benchmark datasets: CDDB (Li et al., 2023), CORe50
(Lomonaco & Maltoni, 2017), and DomainNet (Peng et al., 2019).

CDDB is a dataset for continual deepfake detection, which designs easy, long, and hard tracks.
Particularly, we choose the most challenging track (i.e., the Hard track) that requests learning on 5 se-
quential deepfake detection domains, which are GauGAN, BigGAN, WildDeepfake, WhichFaceReal,
and SAN respectively.

6
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Table 1: Results on CDDB-Hard. Evaluation of existing state-of-the-art DIL methods in the standard
DIL setting. The best results are highlighted in bold.

Method Prompts Buffer size AA (↑) AF (↓)

LRCIL (Pellegrini et al., 2020) ✗ 76.39 -4.39
iCaRL (Marra et al., 2019) ✗ 100ex/class 79.76 -8.73
LUCIR (Hou et al., 2019) ✗ 82.53 -5.34

LRCIL (Pellegrini et al., 2020) ✗ 74.01 -8.62
iCaRL (Marra et al., 2019) ✗ 50ex/class 73.98 -14.50
LUCIR (Hou et al., 2019) ✗ 80.77 -7.85
DyTox (Douillard et al., 2022b) ✓ 86.21 -1.55

EWC (Kirkpatrick et al., 2017) ✗ 50.59 -42.62
LwF (Li & Hoiem, 2017) ✗ 60.94 -13.53
DyTox (Douillard et al., 2022b) ✓ No buffer 51.27 -45.85
L2P (Wang et al., 2022d) ✓ No buffer 61.28 -9.23
S-liPrompts (Wang et al., 2022a) ✓ No buffer 88.65 -0.69

MCDA (Ours) ✓ No buffer 89.27 -0.07

CORe50 is a widely used dataset for continual object recognition that has 50 categories from 11
distinct domains. The continual learning setting uses 8 domains for incremental training and the rest
domains as the test set.

DomainNet is a dataset for domain adaptation and domain incremental learning, which has 345
categories and roughly 600,000 images. The images in this dataset are split into 6 domains. The
DIL setup on DomainNet is the same as that of S-liprompt. We report the average forward detection
accuracy and the average forgetting degree on CDDB-Hard. For CORe50 and DomainNet, we report
the average forward classification accuracy.

4.2 COMPARISON METHODS

Following S-prompt (Wang et al., 2022a), we benchmark our proposed methods against state-of-
the-art DIL methods. These include non-prompting methods: EWC (Kirkpatrick et al., 2017), LwF
(Li & Hoiem, 2017), ER (Chaudhry et al., 2019), GDumb (Prabhu et al., 2020), BiC (Wu et al.,
2019), DER++ (Buzzega et al., 2020) and Co2L (Cha et al., 2021), prompting-based methods: L2P
(Wang et al., 2022d), DyTox (Douillard et al., 2022b) and S-liPrompts (Wang et al., 2022a)and a
self-supervised learning method: CaSSLe (Fini et al., 2022).

4.3 RESULTS

We evaluate our proposed approach in the standard DIL scenario. Table 1 shows the performance of
our method on the challenging CDDB-Hard dataset: Referring to Table 1, we can see that MCDA
outperforms all previous state-of-the-art methods. Compared with methods without using prompts,
MCDA has clear superiority with an average relative improvement of 17%. Besides, these prompt-
free methods normally require exemplar buffers, whereas our method does not. Our method is also
superior to prompt-based DyTox by a large margin.

MCDA achieves better performance than DyTox without the use of a buffer, which is more memory-
efficient. Compared with recent prompt-based approaches such as L2P and S-liPrompts, our method
is still superior. This is largely due to our design of MDA and MSG, which effectively alleviates the
forgetting issue of continual domain incremental training of vision-language models and improves
the domain selection accuracy.

Table 2 (a) shows the performance of our method on the DomainNet dataset. Compared with
the CDDB-hard dataset, DomainNet contains more heterogeneous domains and thus is more
challenging to handle domain shift. Due to memory efficiency concerns, we see exemplar-
free methods as our real competitors. CaSSLe is an exemplar method that can be used jointly
with other self-supervised learning methods and MCDA has nearly 20% performance gain over

7
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Table 3: Results of ablating MDA on CDDB-Hard
for exemplar-free deepfake DIL. For a fair compari-
son, MSG is not applied. α = 0: MDA is not used.

Method Average Acc (↑) Forgetting (↑)

MCDA (α = 0) 88.65 -0.69
MCDA (α = 0.1) 88.71 -0.63
MCDA (α = 0.5) 88.95 -0.39
MCDA (α = 1) 88.93 -0.41
MCDA (α = 5) 79.15 -10.19

Table 4: Performance under different domain
selection strategies on CDDB-hard. We show
that MSG is effective even when it is applied
to random domain selection.

Method KNN/Random MSG AA (↑)

MCDA KNN ✗ 72.43
MCDA Random ✗ 68.57
MCDA KNN ✓ 89.17
MCDA Random ✓ 79.58

Table 5: Average domain identification accuracy on CDDB-Hard. We show the domain identification
accuracy improvement after applying MSG.

GauGAN BigGAN WildDeepfake WhichFaceReal SAN Average Acc (↑)

KNN w/o MSG 0.67 0.78 0.94 0.95 0.56 0.63

KNN w/ MSG 0.83 0.89 0.97 0.97 0.79 0.88

CaSSLe. We hypothesize that although CaSSLe achieves memory-efficient domain-incremental
learning by using prompts, its performance is restricted by the nature of self-supervised learning.

Table 2: Results on DomainNet. The results are reported as the
Accuracy (Acc) metric, where the best values are highlighted in
bold.

Method Prompt Buffer size AA (↑)

DyTox (Douillard et al., 2022b) ✓ 50ex/class 62.94

LwF ’te’pli2017learning ✓ 49.2
CaSSLe (Fini et al., 2022) w/ SimCLR (Chen et al., 2020) ✗ 44.2
CaSSLe w/ BYOL (Grill et al., 2020) ✗ 49.7
CaSSLe w/ Barlow Twins (Zbontar et al., 2021) ✗ No buffer 48.9
CaSSLe w/ SupCon (Khosla et al., 2020) ✗ 50.9
L2P (Wang et al., 2022d) ✓ No buffer 40.1
S-liPrompts (Wang et al., 2022a) ✓ No buffer 67.7

MCDA (Ours) ✓ No buffer 70.3

Compared with L2P, MCDA also
achieves a superior performance
gain of around 28%. This
is because L2P was initially
proposed for class-incremental
learning. Although the paradigm
of L2P can be applied to domain-
incremental learning, it cannot
handle the domain shift well
among different tasks. Con-
trarily, S-liPrompts, and MCDA
both handle the domain shift
problem by maintaining a set of separately trained prompts for each domain, which effectively
solves the problem of domain shift. MCDA also achieves better performance than S-liPrompts, which
is largely due to the design of MDA which regularizes the alignment between visual and language
space, and MSG which improves the accuracy of domain selection.

Table 7 (b) shows the performance of our method on the CORe50 dataset.

Table 7: Results on CORe50. The results are reported
as the Accuracy (Acc) metric, where the best values are
highlighted in bold.

Method Prompt Buffer size AA (↑)
GDumb (Prabhu et al., 2020) ✗ 74.92
DER++ (Buzzega et al., 2020) ✗ 50ex/class 79.70
DyTox (Douillard et al., 2022b) ✓ 79.21
L2P (Wang et al., 2022d) ✓ 81.07

EWC (Kirkpatrick et al., 2017) ✓ 74.82
LwF (Li & Hoiem, 2017) ✓ 75.45
L2P (Wang et al., 2022d) ✓ No buffer 78.33
S-liPrompts (Wang et al., 2022a) ✓ No buffer 89.06

MCDA (Ours) ✓ No buffer 92.37

Different from the previous two datasets,
CORe50 contains unseen tested domains
that do not appear in the incremental train-
ing stage. This requires the method to be
capable of generalizing to unseen domains
well. Previous methods, no matter using
prompts or buffers or not, fail to take OOD
generalization into their design concern.
However, MDA in our methods naturally
allows for better OOD generalization abil-
ity, which is the reason why it outperforms
all previous methods on OOD testing do-
mains.

4.4 ABLATION STUDY

Effect of Multimodal Domain Alignment (MDA). To validate the effectiveness of our methods,
we first conduct an ablation study on the two proposed strategies in MCDA. Table 3 shows the result
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Table 6: Average accuracy on OOD domains on CDDB-hard. We show that MCDA enjoys superior
domain generalization ability compared with previous methods.

S1 S2 S3 OOD1 OOD2 OOD3 AA

S1 (ours) 99.78 87.72 47.63 51.09 63.46 72.38 66.41
S2 (ours) 99.92 99.21 52.31 73.56 74.38 81.50 73.26
S3 (ours) 99.90 98.75 82.16 73.29 66.83 78.15 75.31

S3 (S-liPrompts) 97.83 73.21 69.21 62.43 61.87 71.42 71.53

of changing the value of hyperparameter α in the training loss on the CDDB-hard dataset. From
the results, we can see that when applying MDA and setting α to be in a proper range, our method
outperforms the baseline method. When α is set to 0, this means that we do not apply MDA in the
training process. α stands for the balance between learning the distribution of the current domain and
forcing the model to align the model with a previous domain. From the results, we can see that if α is
too large, then performance will drop. We hypothesize that this is because if the weight assigned to
the alignment matrix is too large, then it will affect the original adaptation performance.

Effect of Maximum Softmax Gating (MSG). MSG is proposed to improve the domain iden-
tification accuracy. Table 5 shows the accuracy of domain selection when applying MSG on the
CDDB-hard dataset. From the results, we can see that after applying MSG, the average domain
identification accuracy is improved from 63% to 88%. We find that without applying MSG, the model
tends to misidentify the test samples between the GauGAN domain and the BigGAN domain. As
shown in Table 5, the domain identification accuracy of these two domains both do not reach 80%.
However, after applying MSG, the model will first do an OOD test of each domain before selecting it.
Therefore, part of the testing samples that would be misclassified will be filtered out during the OOD
test. Consequently, the accuracy of domain selection will be improved.

Exploration of different domain identification strategies. MCDA adopts KNN as the domain
selection strategy. At the inference stage, the extracted features of the testing image are used to query
the domain using the KNN algorithm. Experiments have shown that MSG can help improve the
domain selection accuracy when using KNN as the identification strategy. To explore whether MSG
is still effective when using other identification strategies, we conduct experiments when domains are
randomly selected during inference. Table 4 shows the between using KNN and random selection.
We can see that even under the setting of random selection, MSG can still improve the performance.

Exploration of generalization capability of the model. Following Wang et al. (2022a), we apply
the trained MCDA prompts on S1-S3 to out-of-domain OOD1-OOD3 which are 3 unseen domains in
the CDDB-hard dataset. We choose S1-S3 to be: GauGAN, BigGAN, WildDeepfake; and choose
OOD1-OOD3 to be: FaceForensic++, Glow, StarGAN. From the results in Table 6, we can see that
our method can achieve good performance on OOD domains, with an average accuracy gain of 4%
compared with Sli-Prompts (which achieves the second-best generalization performance among
all methods). This indicates that our method is capable of handling cases when there are unseen
domains in the testing stage.

5 DISCUSSION AND CONCLUSION

In this paper, we theoretically analyze and decompose the problem of DIL into two optimization
objectives. Guided by the theoretical insights, we propose two strategies: Multimodal Domain
Alignment (MDA) and Maximum Softmax Gating (MSG). MDA improves the model’s cross-domain
performance by forcing the alignment between visual and language representation spaces. MSG
improves the accuracy of domain identification by gating through softmax probability. Experiments
show that our method outperforms existing state-of-the-art methods.

The limitation of the proposed MCDA is mainly in two aspects. On the one hand, MSG could still be
improved to enhance the domain selection accuracy. On the other hand, our method is restricted for
the setting of DIL. Making MCDA adaptable for all CL setting remains to be explored.
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Appendix

A PROOF OF THEOREM 1

HDIL(x) = H
(
y, {P (x ∈ Xk,j | D)}k,j

)
= −

∑
k,j

yk,j logP (x ∈ Xk,j | D)

= − logP (x ∈ Xk0,j0 | D) ,

(11)

where HDIL(x) represents the entropy of the distribution over the sets Xk,j , given the data D and
the probabilities of x being in these sets. The summation simplifies to a single term based on the
highest likelihood for a specific set Xk0,j0 .

HWDP (x) = H
(
ỹ, {P (x ∈ Xk0,j | x ∈ Xk0 , D)}j

)
= −

∑
j

yk0,j logP (x ∈ Xk0,j | x ∈ Xk0
, D)

= − logP (x ∈ Xk0,j0 | x ∈ Xk0
, D) ,

(12)

Here, HWDP (x) describes the conditional entropy given that x is in Xk0
, evaluating the likelihood

across subsets Xk0,j .

HDI(x) = H (ȳ, {P (x ∈ Xk | D)}k)

= −
∑
k

ȳk logP (x ∈ Xk | D)

= − logP (x ∈ Xk0
| D) ,

(13)

In this case, HDI(x) is the entropy over the sets Xk, which gives the likelihood of x belonging to
any set k. This again reduces to the most probable set Xk0

.

HODP (x) = H
(
ỹ, {P (x ∈ Xki,j | x ∈ Xki

, D, ki ̸= k0)}j
)

= −
∑
j

yki,j logP (x ∈ Xki,j | x ∈ Xki , D)

= − logP (x ∈ Xki,j0 | x ∈ Xki , D) ,

(14)

This describes the entropy HODP (x) for the case where x belongs to a different set ki (with ki ̸= k0),
and it evaluates the probability within the subsets Xki,j .

HDIL(x) = H
(
y, {P (x ∈ Xk,j | D)}k,j

)
= −

∑
k,j

yk,j logP (x ∈ Xk,j | D)

≤ − log (PWDPPDI + PODP (1− PDI))

= − log
(
e−ϵe−δ + e−γ(1− e−δ)

)
= δ + ϵ+ log

(
1 + eϵ−δ(eγ − 1)

)
.

(15)

Finally, this inequality shows the bound on HDIL(x) by combining the weighted probabilities of x
belonging to either Xk0,j0 (with probability PWDPPDI ) or Xki,j0 (with probability PODP (1−PDI)).
The resulting expression involves the exponents ϵ, δ, and γ, providing a closed-form solution.
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B IMPLEMENTATION DETAILS

We implement the proposed MCDA framework in PyTorch with NVIDIA RTX 4090 GPU. The
image encoder is implemented with the architecture of ViT-B/16 and the text encoder is the same
as the text encoder in CLIP. The embedding dimension is 768 for both image and text encoder. We
adopt SGD optimizer with a momentum of 0.9, an initial learning rate of 0.1, a batch size of 128, and
a cosine scheduler. The learning epoches for CDDB dataset is 50, and for DomainNet and CORe5
are 10.

C ABLATION ON MORE DATASETS

C.1 DOMAINNET

Table 8 presents the results of ablating the Multimodal Domain Alignment (MDA) strategy on the
DomainNet dataset for exemplar-free deepfake domain incremental learning (DIL). To ensure a fair
comparison, the Maximum Softmax Gating (MSG) strategy was not applied in these experiments.
The table shows the average accuracy and forgetting metric under different values of the α parameter,
which controls the strength of the MDA alignment.

The results reveal that introducing MDA with α = 0.5 achieves the best overall performance, with an
average accuracy of 69.5% and the lowest forgetting value of -0.39. This indicates that a moderate
level of MDA alignment significantly improves cross-domain performance while effectively reducing
forgetting. Notably, the performance degrades when α is set to extremes: for α = 0, which means
no MDA alignment is applied, the average accuracy drops to 67.1%, and the forgetting increases
to -0.69. Similarly, setting α = 5 leads to a substantial decline in both accuracy (63.9%) and
forgetting (-10.19), suggesting that overemphasizing MDA can negatively impact the model’s ability
to generalize across domains.

In summary, the results demonstrate that MDA is crucial for improving the performance of MCDA
in domain incremental learning. The optimal balance is achieved at α = 0.5, where the trade-off
between accuracy and forgetting is the most favorable.

Table 9 compares the performance of different domain selection strategies on DomainNet, with and
without the application of MSG. The two domain selection methods under evaluation are K-NN and
random domain selection.

The results show that the KNN domain selection strategy consistently outperforms random domain
selection. When no MSG is applied, the KNN-based MCDA achieves an accuracy of 69.8%, while
the random domain selection results in a significantly lower accuracy of 65.4%. This suggests that
KNN is more effective in identifying domains that can benefit from domain incremental learning.

When MSG is applied, the performance of both strategies improves. Specifically, random domain
selection with MSG achieves an accuracy of 66.2%, while KNN with MSG achieves 67.1%. These
results indicate that MSG is effective in improving domain selection, even when the selection process
is randomized.

Table 8: Results of ablating MDA on DomainNet for
exemplar-free deepfake DIL. For a fair comparison,
MSG is not applied. α = 0: MDA is not used.

Method Average Acc (↑) Forgetting (↑)

MCDA (α = 0) 67.1 -0.69
MCDA (α = 0.1) 68.4 -0.63
MCDA (α = 0.5) 69.5 -0.39
MCDA (α = 1) 66.1 -0.41
MCDA (α = 5) 63.9 -10.19

Table 9: Performance under different domain
selection strategies on DomainNet. We show
that MSG is effective even when it is applied
to random domain selection.

Method KNN/Random MSG AA (↑)

MCDA KNN ✗ 69.8
MCDA Random ✗ 65.4
MCDA KNN ✓ 67.1
MCDA Random ✓ 66.2
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C.2 CORE50

Table 10 shows the results of ablation studies on the CORe50 dataset, focusing on the impact of
the Multimodal Domain Alignment (MDA) strategy in exemplar-free deepfake domain incremental
learning (DIL). For these experiments, Maximum Softmax Gating (MSG) was not applied to ensure a
controlled comparison. The table reports average accuracy and forgetting metrics for different values
of the α parameter, which controls the strength of the MDA alignment.

The results indicate that introducing MDA with α = 0.5 achieves the best performance, with an
average accuracy of 91.33% and the lowest forgetting value of -0.39. This shows that moderate MDA
alignment significantly enhances cross-domain performance while reducing forgetting. Interestingly,
increasing α to 1 does not lead to further improvement, with a slight drop in average accuracy to
91.32% and forgetting remaining at -0.41. Furthermore, setting α to an extreme value of 5 leads to a
drastic performance degradation, with an accuracy of 88.54% and forgetting of -10.19, indicating that
excessive MDA alignment hampers the model’s ability to generalize across domains. In summary,
the ablation study demonstrates that MDA is critical for improving the performance of MCDA in
domain incremental learning, with the optimal alignment strength being α = 0.5, striking the best
balance between accuracy and forgetting.

Table 11 compares the performance of different domain selection strategies on the CORe50 dataset,
both with and without the application of MSG. The two domain selection methods evaluated are
K-Nearest Neighbors (KNN) and random selection.

When MSG is not applied, the KNN-based domain selection yields the highest accuracy of 91.65%,
while random selection results in a lower accuracy of 89.76%. This illustrates the effectiveness
of KNN in selecting relevant domains for domain incremental learning. However, when MSG is
applied, both strategies see a slight performance decrease, with KNN achieving 89.72% and random
selection 88.79%. These results indicate that while MSG is generally beneficial, its interaction with
different domain selection methods may vary, and in this case, KNN alone proves more effective than
combining it with MSG. The result shows that selecting appropriate domain strategies is crucial, and
KNN consistently outperforms random selection. The results also suggest that the additional use of
MSG should be considered carefully based on the specific domain selection method being employed.

Table 10: Results of ablating MDA on CORe50 for
exemplar-free deepfake DIL. For a fair comparison,
MSG is not applied. α = 0: MDA is not used.

Method Average Acc (↑) Forgetting (↑)

MCDA (α = 0) 89.02 -0.69
MCDA (α = 0.1) 89.97 -0.63
MCDA (α = 0.5) 91.33 -0.39
MCDA (α = 1) 91.32 -0.41
MCDA (α = 5) 88.54 -10.19

Table 11: Performance under different domain
selection strategies on CORe50. We show that
MSG is effective even when it is applied to
random domain selection.

Method KNN/Random MSG AA (↑)

MCDA KNN ✗ 91.65
MCDA Random ✗ 89.76
MCDA KNN ✓ 89.72
MCDA Random ✓ 88.79
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A APPENDIX

You may include other additional sections here.
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