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Abstract
Although social networks have expanded the
range of ideas and information accessible to users,
they are also criticized for amplifying the polar-
ization of user opinions. Given the inherent com-
plexity of these phenomena, existing approaches
to counteract these effects typically rely on hand-
crafted algorithms and heuristics. We propose an
elegant solution: we act on the network weights
that model user interactions on social networks
(e.g., ranking of users’ shared content in feeds),
to optimize a performance metric (e.g., minimize
polarization), while users’ opinions follow the
classical Friedkin-Johnsen model. Our formula-
tion gives rise to a challenging, large-scale op-
timization problem with non-convex constraints,
for which we develop a gradient-based algorithm.
Our scheme is simple, scalable, and versatile, as
it can readily integrate different, potentially non-
convex, objectives. We demonstrate its merit by:
(i) rapidly solving complex social network inter-
vention problems with 4.8 million variables based
on the Reddit, LiveJournal, and DBLP datasets;
(ii) outperforming competing approaches in terms
of both computation time and disagreement reduc-
tion.

1. Introduction
Problem description and motivation: Social media plat-
forms brought many societal benefits but they have also
been associated with the spread of fake news and the polar-
ization of opinions (Allcott & Gentzkow, 2017; Bail et al.,
2018; Bakshy et al., 2015; González-Bailón et al., 2023;
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Allcott et al., 2020; Levy, 2021; Guess et al., 2023a;b). The
algorithms employed by social media companies to maintain
user engagement are thought to contribute to the isolation
of the users into echo chambers, where opinions are segre-
gated by party lines and ties to opposing views are severed
(Pariser, 2011). Even though the literature suggests that the
algorithms of major social media companies may decrease
the share of cross-cutting content in users’ feeds (Bakshy
et al., 2015; González-Bailón et al., 2023), thereby limit-
ing diverse content exposure, the user’s choice of engaging
with opinion-confirming material tends to be a comparable
cause of this isolation (Garrett, 2009; González-Bailón et al.,
2023; Wojcieszak et al., 2022).

The field of opinion dynamics studies how the content pro-
vided by social media shapes user opinions and how opin-
ions propagate in a social network (Noorazar, 2020). Users
in the social networks are modeled as nodes in a directed,
weighted graph, where the edge orientation represents the
direction of influence between users and the edge weights
represent the intensity of the social influence. Here we
consider the well-established Friedkin-Johnsen (FJ) model
(Friedkin & Johnsen, 1990), which has been successfully
employed in the study of polarization and disagreement
in social networks (Chitra & Musco, 2020; Musco et al.,
2018; Chen et al., 2018). In the FJ model, users have both a
constant internal opinion (prejudice) and a time-varying ex-
ternal, declared opinion. The external opinion of each user
evolves by repeated averaging of the internal opinion with
the external opinions of interacting users, while the preju-
dice remains constant. We propose a unified framework to
address a broad class of problems involving the influence of
user opinions on social platforms, such as polarization miti-
gation, through modifications to users’ connections when
opinions evolve according to the FJ dynamics.

Literature review: The literature on network interventions
under the FJ dynamics is vast (Bindel et al., 2015; Wang &
Kleinberg, 2023; Gionis et al., 2013; Gaitonde et al., 2020;
Ancona et al., 2022; Chen et al., 2018; Musco et al., 2018;
Matakos et al., 2017; Zhu et al., 2021; Chitra & Musco,
2020; Cinus et al., 2025). Most of these works seek to
achieve various objectives by designing interventions on the
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social network topology or on the internal opinions of users.
The most common approach is based on adding or deleting
edges from the network, where the following objectives
are considered: minimization of average- and worst-case
opinion dynamics metrics (Chen et al., 2018), social cost
minimization (Bindel et al., 2015), and polarization and
disagreement minimization (Zhu et al., 2021). Differently,
(Chitra & Musco, 2020) minimizes disagreement by alter-
ing the edge weights, and (Cinus et al., 2025) minimizes
various objectives by altering the edge weights without prior
knowledge of internal opinions. (Wang & Kleinberg, 2023)
investigates the effects of link formation on polarization and
disagreement. More closely related to our work, (Cinus
et al., 2023) minimizes polarization and disagreement using
a projected gradient scheme. While similar in approach, our
algorithm can seamlessly handle more general objectives
and constraints on the weight modification. A second, less
common approach focuses on changing the opinions of spe-
cific users (Gionis et al., 2013; Matakos et al., 2017; Musco
et al., 2018). To achieve a generally favourable opinion
about a product, (Gionis et al., 2013) sets the opinions of
a fixed number of users to a specific value. On the other
hand, (Matakos et al., 2017) sets the opinions of a fixed
number of users to zero to minimize polarization. Finally,
(Musco et al., 2018) modifies opinions to minimize the sum
of polarization and disagreement.

If we view the weights1 of the network as hyperparameters
of a model, then choosing the optimal ones becomes a hy-
perparameter tuning problem. This defines the upper level
of a bilevel optimization problem. In turn, the equilibrium
resulting from the repeated averaging of the FJ dynamics
can be interpreted as the Nash equilibrium of a game defined
by a separate optimization problem (Bindel et al., 2015),
forming the lower level. These bilevel optimization prob-
lems are difficult to solve – for example, some formulations
in (Bindel et al., 2015) and (Matakos et al., 2017), are shown
to be NP-hard. A few special problems with tailor-made
objectives are shown to be convex, such as (Gaitonde et al.,
2020, Section 4) or (Musco et al., 2018). However, this is
not the case in general and the problems are solved with
problem-specific algorithms or heuristics such as in (Gionis
et al., 2013) or (Matakos et al., 2017).

For both large-scale convex and non-convex problems, first-
order methods have proven highly effective, as demonstrated
in works like (Bottou et al., 2018; Bottou, 2010; Kingma &
Ba, 2015). These methods are particularly appealing due
to their computational efficiency and scalability. Recent
advancements have extended these approaches to hypergra-
dients (Maclaurin et al., 2015) (the gradient of the objective
with respect to hyperparameters), while also analyzing the

1The same principle holds if internal opinions are considered
as hyperparameters, but it is not covered in this work.

computational complexity of such methods (Grazzi et al.,
2020). A widely-used technique for obtaining hypergradi-
ents involves differentiating through implicit mappings, as
explored in (Grontas et al., 2024).

Contributions: We consider the FJ model of opinion dy-
namics. We seek to drive the equilibrium user opinions to a
desired configuration by modifying network weights. Our
contribution is three-fold:

1. We formulate an optimal intervention task as an op-
timization problem with non-convex constraints that
describe the equilibria of the FJ dynamics. Our formu-
lation can accommodate any (differentiable) objective,
e.g., polarization or disagreement reduction, as well
as convex constraints modelling intervention limits.
Further, we can address both directed and undirected
graphs, by appropriately defining the constraints.

2. We propose a first-order algorithm that alternates be-
tween modifying the network weights and comput-
ing both the equilibrium opinions and their gradient
with respect to weights, by efficiently backpropagating
through the FJ dynamics. Crucially, both steps are sim-
ple and scalable: they consist of a projected gradient
update and the solution of two linear systems.

3. We provide a modular, and well-documented imple-
mentation of our algorithm in JAX (Bradbury et al.,
2018), facilitating the usage of hardware accelerators2.
We then test our algorithm on real-world datasets, with
up to 4.8 millions modifiable weights, and obtain a
solution in a matter of minutes on a GPU. Additionally,
we compare our approach against the nonlinear pro-
gramming solver IPOPT, demonstrating up to three
orders of magnitude faster runtime while achieving
superior solution quality. Finally, compared to an exist-
ing heuristic, which is tailored to a subclass within our
problem formulation, our scheme obtains significantly
better solutions.

Notation Let R≥0 (R>0) denote the set of non-negative
(positive) real numbers. We denote the (i, j) element of
matrix W by wij . Let ∥·∥F and ∥·∥2 denote the Frobe-
nius and the ℓ2 norm, respectively. The projection of a
vector w onto a convex set W is denoted by ΠW [w] =
argminz∈W∥z−w∥22. Let F : Rm×Rn → Rp be a vector-
valued differentiable mapping. We denote the partial Jaco-
bians of F with respect to the first and second arguments as
J1F (w, y) ∈ Rp×m and J2F (w, y) ∈ Rp×n, respectively.
If p = 1, we use ∇1F , ∇2F to denote the partial gradients.

2Our code is available online at https://github.com/
m-kuehne/BeeRS
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2. Problem Formulation
We consider social networks consisting of interacting users,
where a recommendation system (referred to as leader)
seeks to influence the users’ opinions by controlling the
interactions between them. This problem can be framed
as a bilevel optimization problem, where the upper level
involves the leader’s interventions, and the lower level mod-
els the users, whose opinions are affected by the leader’s
decisions. Specifically, the leader aims to shift users’ opin-
ions toward a desired configuration by modifying network
weights. In practice, these weights can represent various
metrics—such as the ranking of users’ shared content in
feeds, where boosts or penalties influence visibility. This
is similar to how algorithms like EdgeRank or Weighted
PageRank (Wenpu & Ghorbani, 2004) adjust ranking scores
based on relevance signals. Recommender systems may
also weaken connection strength by reducing the frequency
or prominence of shared content in users’ feeds.

2.1. Lower Level – Opinion Dynamics

We consider a network G, represented by a directed
weighted graph G = (V,W ) where V := {1, . . . , n} is
the set of nodes, and W ∈ Rn×n is the (weighted) ad-
jacency matrix. For notational convenience, we will re-
shape W as a vector w ∈ Rn2

. We assume that G con-
tains no self-loops and has non-negative weights, formally,
w ∈ B := {w ∈ Rn2 |wii = 0, wij ≥ 0, ∀i, j ∈ V }. An
edge between nodes i, j ∈ V exists if and only if wij > 0,
and we say that i and j are neighbors. Interpreting G as a
social network, each of the n nodes corresponds to a user
(e.g., individuals, companies, news outlets, etc.), and the
edges represent connections between them. For each edge
(i, j), the user on the tail i is influenced by the user on the
head j. The edge is assigned a weight proportional to the
influence j exerts on i and could, for example, represent the
time i spends consuming content shared over this connec-
tion, the frequency of interaction, or any other engagement
metric. It is natural to assume that a longer exposure re-
sults in a greater influence. According to the FJ opinion
dynamics (Friedkin & Johnsen, 1990), the opinion of user i
consists of two parts: the constant internal opinion, or preju-
dice, si ∈ R and the time-varying external opinion yi ∈ R.
We consider opinions to be in the interval [−1, 1], where
−1 indicates complete opposition and 1 complete approval.
The internal opinion si is kept private, while the external
opinion yi is shared with others. Owing to the interactions
between users, the external opinion of user i changes over
time according to the FJ update rule

y
(t+1)
i =

si +
∑

j∈V wijy
(t)
j

1 +
∑

j∈V wij
, (1)

and we note that the sums are implicitly restricted to the
neighbors of i, since wij = 0 if j is not a neighbor of i.
The update (1) can be understood as a repeated weighted
averaging between the internal opinion si and the neighbors’
opinions yj , where the weights wij indicate how susceptible
user i is to user j’s opinion. We can compute the equilibrium
of (1) as the solution of the linear system of equations1 +

∑
j∈V w1j · · · −w1n

...
. . .

...
−wn1 · · · 1 +

∑
j∈V wnj


︸ ︷︷ ︸

:=A(w)

y = s, (2)

with s = [s1, · · · , sn]⊤ ∈ Rn, y = [y1, · · · , yn]⊤ ∈ Rn,
and3 A(w) ∈ Rn×n. Note that A(w) depends on the net-
work weights w, i.e., the vectorized form of the adjacency
matrix W . Next, we show that whenever the weights are
appropriately chosen, there exists a unique vector of equi-
librium opinions.

Proposition 2.1. For all w ∈ B, the matrix A(w) is invert-
ible and the FJ dynamics (1) admits a unique equilibrium
that solves (2).

The proposition holds since A(w) is strictly row diagonally
dominant and therefore invertible (Taussky, 1949, Th. IV).

2.2. Upper Level – Network Intervention

The goal of the leader is to find weights w ∈ Rn2

that mini-
mize a cost function φ : Rn2 × Rn → R, mapping w and
the resulting solution of (2) to some upper-level objective.

Assumption 2.2. The function φ(w, y) is continuously dif-
ferentiable in both arguments.

A possible choice is given by φ(w, y) :=
∑n

i=1(yi −
1
n

∑n
j=1 yj)

2, a classical measure of polarization, previ-
ously used by (Chitra & Musco, 2020). In practice, the
leader cannot modify the network weights arbitrarily, as
such interventions directly impact the users’ experience
(e.g., consider the case where a connection between two
close friends is removed). We model permissible inter-
ventions as a constraint w ∈ W , obeying the following
assumption.

Assumption 2.3. The set of constraintsW is non-empty,
closed, and convex, andW ⊆ B.

The set W can be used to add constraints that encode re-
quirements such as: (i) some connections cannot be formed
or altered, by fixing wij to zero or to its initial value, respec-
tively; (ii) ensuring that some connections are maintained by

3The matrix A(w) is often represented in the literature as
A(w) = L(w) + I , where L is the Laplacian matrix of the graph,
and I the identity matrix (Cinus et al., 2023).
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imposing lower bounds on some wij . Further,W ensures
that weights are compatible with our assumption w ∈ B.

Note that many of these constraints decrease the number of
degrees of freedom in the optimization problem, for exam-
ple, by fixing some weights to a given value. In principle,
one can maintain all the degrees of freedom and enforce this
requirement through the setW . Computationally, however,
it is more efficient to drop the corresponding decision vari-
ables from w from the beginning, giving rise to a decision
vector of dimension lower than n2. We always drop the
weights wii from w, as self-loops are absent, reducing the
number of decision variables to m = n(n− 1). Throughout
the remainder of this paper, m denotes the effective number
of decision variables.

This property of our algorithmic approach allows to further
optimize for performance by deploying it on a subset of the
network. One meaningful way to choose which weights
to optimize for (or which areas of the networks to affect)
would be to use heuristics to quantify the importance of
nodes, and then optimize the weights of edges connected
to these nodes. For instance, we could use the degree of a
node or, more generally, other centrality measures (Bloch
et al., 2023).

Combining the upper-level objective φ with the equilibrium
of the lower level (2) and permissible interventions inW ,
we formulate the following optimization problem:

minimize
w, y

φ(w, y) (3a)

subject to A(w)y = s, (3b)
w ∈ W. (3c)

The bilinear constraint (3b) renders the feasible set non-
convex. We rewrite (3) as

minimize
w

φ(w, y⋆(w)) (4a)

subject to w ∈ W, (4b)

where y⋆(w) denotes the solution to the system A(w)y = s.
We refer to y⋆(·) : Rm → Rn as the equilibrium mapping,
which is well-posed under Assumption 2.3. Formulation (4)
is favorable since y⋆(·) is continuously differentiable (see
Proposition 3.1), hence motivating us to deploy a first-order
solution method.

Although (4) involves convex constraints, it is still challeng-
ing to solve, as y⋆(·) is an implicit mapping, for which a
closed-form expression is, in general, not available. More-
over, the objective is non-convex.

Note that, in (4a) we optimize solely over the weights w
and not the innate opinions s. Our algorithm can readily be
extended to jointly optimize for w and s, which we consider
as an interesting future work.

3. Algorithm Design
To solve (4), we propose a gradient-based algorithm. The
main challenge lies in obtaining the hypergradient, i.e., the
gradient of the objective φ(w, y⋆(w)) with respect to w.
This can be achieved by using the chain rule as follows:

∇wφ(w, y
⋆(w)) =∇1φ(w, y

⋆(w))

+ Jy⋆(w)⊤∇2φ(w, y
⋆(w)).

(5)

Under Assumption 2.2, the partial gradients ∇1φ and ∇2φ
are well-defined. However, ensuring the existence of the
Jacobian of the equilibrium mapping, Jy⋆(w), also called
the sensitivity, and computing it is a non-trivial task.

To compute Jy⋆(w), we introduce the auxiliary expression
F (w, y) := A(w)y − s. In the following we provide an
explicit expression for the sensitivity.

Proposition 3.1. Under Assumption 2.3, the function y⋆(·)
is continuously differentiable and its Jacobian Jy⋆(w) is
well-defined. Moreover, Jy⋆(w) is given by

Jy⋆(w) = −J2F (w, y⋆(w))−1J1F (w, y⋆(w)). (6)

Proof. From the definition F (w, y) := A(w)y − s, it im-
mediately follows that J2F (w, y) = A(w), which is contin-
uous in both arguments. Furthermore, J1F (w, y) is continu-
ous in both arguments by Lemma A.1 in Appendix A.1.
Thus, F (w, y) is continuously differentiable. Addition-
ally, by Proposition 2.1, A(w) and therefore J2F (w, y) are
nonsingular. By invoking the implicit function theorem
(Dontchev & Rockafellar, 2009, Th. 1B.1), the sensitivity
exists, is continuous, and given by (6).

Given Jy⋆(w), we can evaluate the hypergradient and solve
(4) using our preferred first-order method. In this work, we
deploy projected gradient descent with momentum (Bolduc
et al., 2017) given by

m(k+1) = γm(k) +∇wφ
(
w(k), y⋆

(
w(k)

))
w(k+1) = ΠW

[
w(k) − α(k)m(k+1)

]
,

(7)

where α(k) ∈ [0, 1] is a possibly iteration-dependent step-
size and γ ≥ 0 is a momentum parameter. This formulation
contains a short-term memory for the descent direction of
the previous iteration k in the form of m(k), and it can often
significantly decrease the runtime for an appropriate choice
of γ (Goh, 2017). The projection is employed to ensure
feasibility of the iterates w(k).

3.1. Backpropagation through Equilibrium Opinions

Computing Jy⋆(w) by solving the matrix equation (6) can
be computationally challenging for large-scale problems
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Algorithm 1 BeeRS

1: Input: Tolerance ε, step size α(k), momentum param. γ
2: w(0) ← Set initial network weights
3: while True do
4: Compute J2F

(
w(k)

)
5: y⋆

(
w(k)

)
← Solve (2)

6: if ζ(k) ≤ ε then Break
7: Compute J1F

(
w(k), y⋆

(
w(k)

))
8: Compute gradients∇1,2φ

(
w(k), y⋆

(
w(k)

))
9: v(k) ← Solve (9)

10: ∇wφ
(
w, y⋆(w)

)
← Compute (8)

11: w(k+1) ← Using (7)
12: end while
13: Output: w⋆, φ

(
w⋆, y⋆

(
w⋆

))
(Parise & Ozdaglar, 2021). Concretely, we need to solve

J2F (w, y⋆(w))︸ ︷︷ ︸
Rn×n

Jy⋆(w)︸ ︷︷ ︸
Rn×m

= − J1F (w, y⋆(w))︸ ︷︷ ︸
Rn×m

,

for a given w, and therefore fixed y⋆(w), with matrix
sizes as indicated. To reduce the computational bur-
den, note that we do not need the sensitivity Jy⋆(w)
by itself in (5) but rather the vector-Jacobian product
Jy⋆(w)⊤∇2φ(w, y

⋆(w)), see e.g., (Grazzi et al., 2020).
Substituting (6) in (5), yields:

∇wφ(w,y
⋆(w)) = ∇1φ(w, y

⋆(w))− J1F (w, y⋆(w))⊤(
J2F (w, y⋆(w))⊤

)−1∇2φ(w, y
⋆(w))

=∇1φ(w, y
⋆(w))− J1F (w, y⋆(w))⊤v, (8)

where v ∈ Rn solves the linear system of equations

J2F (w, y⋆(w))⊤v = ∇2φ(w, y
⋆(w)). (9)

Hence, we can compute the hypergradient by solving (9)
instead of (6), i.e., we solve one linear system instead of m.

Combining the equilibrium backpropagation (9) with the
chain rule (8) yields Algorithm 1, which we refer to as
BeeRS (Best Intervention for Recommender Systems). As
a termination criterion, we use

ζ(k) := |φ(w(k−1),y⋆(w(k−1)))−φ(w(k),y⋆(w(k)))|
|φ(w(k−1),y⋆(w(k−1)))| ≤ ε

for some small tolerance ε > 0. Implementation details are
given in Appendix A.2.

4. Numerical Simulations & Comparisons
In this section, we demonstrate the effectiveness of our
algorithm by deploying it on real-world and artificially-
generated datasets. In Section 4.1, we study the scalability

of BeeRS on both a CPU and a GPU and the evolution of
φ across iterations. In Section 4.2, we compare BeeRS
to IPOPT, a state-of-the-art nonlinear programming solver
that can directly solve the non-convex program (3), while in
Section 4.3 we compare against the algorithm proposed in
(Chitra & Musco, 2020). Hardware specifications are given
in Appendix A.3, and the choices for the step size α and
momentum parameter γ are justified in Appendix A.4.

4.1. Scalability Study

4.1.1. PROBLEM SETUP

We consider a social network with directed connections.
Let us consider the problem where a newly founded news
agency, labelled as ζ , wants to establish itself in the network
by sharing content such as news articles. The news agency
is neutral, which is encoded by the internal opinion sζ = 0,
while all other users (readers) might be biased with internal
opinions si ∈ [−1, 1]. The network operator (the leader)
has to decide how to deliver the additional content to the
existing users, with the goal of minimizing polarization in
the network. Additionally, the operator charges a fee to the
news agency for distributing its content, which is propor-
tional to the amount of content shared over the network.
This expense can be viewed as an advertisement fee, reflect-
ing the fact that getting space on the platform is costly. The
agency’s advertising budget is bounded by b ∈ R>0.

To model this, we introduce a new connection from every
existing user i in the network to the news agency ζ. Since
the network is directed and the news agency does not have
any outgoing connections, it remains neutral, hence yζ =
sζ = 0. The connections from users to the news agency
carry a weight wiζ ≥ 0, which is proportional to the share
of ζ’s content in user i’s feed. The goal of the leader is to
compute weights that minimize polarization, measured as∑n

i=1(yi −
1
n

∑n
j=1 yj)

2, under the news agency’s budget
constraint

∑n
i=1 wiζ ≤ b.

We can formalize this problem as

minimize
y∈Rn,w∈B

n∑
i=1

(yi −
1

n

n∑
j=1

yj)
2 (10a)

subject to A(w)y = s, (10b)

wij = w
(0)
ij , ∀i, j ∈ V \ ζ, (10c)

wζj = 0, ∀j ∈ V, (10d)∑n
i=1 wiζ ≤ b, (10e)

where the variance objective is a standard polarization met-
ric (Chitra & Musco, 2020), (10b) ensures that opinions
are in equilibrium and conform to the FJ dynamics, (10c)
fixes the weights that are unrelated to the news agency to
their original values w(0), (10d) ensures ζ has no outgoing
connections, and (10e) imposes the budget limit of ζ.
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We stress that weights that are fixed by constraints, as in
(10c) and (10d), are shown for clarity of exposition. In
our numerical implementation, we remove these weights to
reduce the dimensionality of the problem. Therefore, (10)
ends up with m = n− 1 decision variables for the weights.

4.1.2. NUMERICAL RESULTS

We solve problem (10) on two datasets: the DBLP dataset
(Tang et al., 2008) and the LiveJournal social network
dataset (Backstrom et al., 2006; Leskovec et al., 2008;
Leskovec & Krevl, 2014), one of the largest directed so-
cial networks on the SNAP platform (Leskovec & Sosič,
2016). The DBLP dataset describes citation relationships
between scientific articles: Nodes represent articles, and
edges indicate citations between them, where the weight
on the edge from node i to node j is defined as wij = 1
if article i cites article j, and wij = 0 otherwise. By the
nature of the dataset, there are no self-loops (a paper does
not cite itself). We utilize the dataset topology by giving it
a social network interpretation. Specifically, we reinterpret
the nodes as users and the edges as a “following“ relation:
user i follows user j if and only if wij > 0. In this con-
text, content shared by user j appears in user i’s feed. The
LiveJournal dataset already contains the topology of a so-
cial network. We assign to both datasets internal opinions
uniformly at random from the set {−1, 1}.

We consider (10) for a varying number of users n to study
the computational cost of evaluating the hypergradient. To
do so, we take the first n nodes and the corresponding in-
ternal opinions. We set b = n

10 , α = 0.05, and γ = 0.6.
We execute 1 iteration of BeeRS for every problem size 10
times on the CPU and on the GPU. We report mean runtime
± 1 standard deviation over 10 runs in Figure 1.
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Figure 1. The mean runtime and ± 1 standard deviation over 10
runs of 1 iteration of BeeRS on both a GPU and a CPU.

We observe that for small numbers of users, the CPU im-
plementation has a lower per-iteration runtime. This is not

surprising, given the additional overhead produced by mov-
ing computations to the GPU and by JAX’s just-in-time
compilation, among other reasons. However, the GPU im-
plementation becomes faster for more than 100,000 users.

4.1.3. SOLVING ON THE ENTIRE DATASET

Given the remarkable scalability of BeeRS on the GPU,
we deploy it on the entire DBLP dataset consisting of
n = 3, 079, 007 nodes and 25, 166, 994 edges and on the
entire LiveJournal dataset consisting of n = 4, 847, 571
nodes and 68, 993, 773 edges. We solve (10) ten times
with b = n

10 , α = 0.05, γ = 0.6, and ε = 1e-2 on the
GPU. BeeRS achieves a polarization reduction of 39.5%
and 40.0% on the DBLP and LiveJournal dataset, respec-
tively. The respective mean runtime until convergence for
DBLP and LiveJournal is 195.4 s and 766.8 s with standard
deviation of 9.6 s and 5.4 s.

4.1.4. ANALYSIS OF THE COST EVOLUTION

We study the evolution of opinion polarization, i.e., the value
of the objective function φ in problem (10), across algorithm
iterations. We simulate problem (10) 5 times for each of
the DBLP, LiveJournal, and Reddit datasets (introduced in
Section 4.3) with 5 different initializations. We run each
simulation for 25 iterations and display the average cost as
well as ± 1 standard deviation as a function of the iteration
k in Figure 2. We set α = 20, γ = 0.6 for the Reddit dataset
and α = 0.05, γ = 0.6 for DBLP and LiveJournal. For all
datasets we set b = n

10 .

We observe that the cost consistently decreases across all
three datasets, with the largest reduction occurring within
the first few iterations. Further, we note that BeeRS con-
verges in all cases in roughly 20 iterations.
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Figure 2. The average cost φ ± 1 standard deviation as a function
of the iteration k. The cost is averaged over 5 different initializa-
tions of the edge weights wiζ .

6



Optimizing Social Network Interventions via Hypergradient-Based Recommender System Design

4.2. Comparison with IPOPT

We now consider the problem setup from Section 4.1 and
solve problem (10) using the same datasets with IPOPT.

4.2.1. NUMERICAL RESULTS

We compare the CPU implementation of BeeRS to the non-
linear solver IPOPT (Wächter & Biegler, 2006), using the
cyipopt (cyipopt) wrapper for Python. For IPOPT, we use a
tolerance of 1e-3 and constraint-violation tolerance of 1e-4.
For BeeRS, we use ε = 1e-3, γ = 0.6, and α = 0.05. We
solve (10) with both methods for a varying number of users
n, and repeat each simulation 10 times. We set b = n

10 .

We report the average runtime± 1 standard deviation for dif-
ferent problem sizes for both approaches in Figure 3. Note
that the number of nodes considered here is significantly
smaller than in Figure 1 due to the computational limitations
of IPOPT. We observe that BeeRS outperforms IPOPT for
all simulated n on both datasets, and by a larger margin for
larger n. The runtime difference ranges between roughly 1
and 3 orders of magnitude for the largest problems.

In terms of solution quality, BeeRS attains the lowest cost in
all cases, whereas the IPOPT implementation exhibits rela-
tive suboptimality4 of more than 5e-3 on the DBLP dataset
and of at least 6e-2 on the LiveJournal dataset. Detailed
results are reported in Appendix A.5.
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Figure 3. The mean runtime and ± 1 standard deviation over 10
runs of BeeRS and IPOPT (until convergence) on a CPU.

4.3. Comparison with the Literature

Next, we compare BeeRS to the algorithm in (Chitra &
Musco, 2020). There, the authors propose an extension
to the FJ dynamics, called NAD (Network Administrator
Dynamics), to highlight the potential pitfalls of recom-

4We define the relative suboptimality as |φ−φ⋆|
|φ⋆| , where φ⋆ is

the best solution achieved by any of the two approaches.

mender systems that naively minimize disagreement, de-
fined as D(w, y) := 1

2

∑n
i=1

∑n
j=1 wij(yi − yj)

2. In par-
ticular, they investigate the change in polarization in the
network before and after modifying the weights to minimize
disagreement using NAD. In (Chitra & Musco, 2020), the
authors raise the concern that attempting to minimize dis-
agreement, e.g., through NAD, can have adverse effects on
polarization (and even disagreement itself). In our following
studies, we provide some insights on this issue, and show
how BeeRS circumvents it.

4.3.1. PROBLEM SETUP

The NAD follows an iterative approach, as summarized
in Algorithm 2 in Appendix A.6. In a first step, equi-
librium opinions y⋆(w(k)) are computed based on the
current weights w(k). In a second step, disagreement
D(w, y⋆(w(k))) is minimized by tweaking the weights w
under the assumption that the opinions remain unaffected by
the new weights and under convex constraints. In particular,
the modified network should be similar to the original one,
and the out-degree of each node should be preserved. The
second step is formalized as the convex program

minimize
w(k+1)∈B

D(w(k+1), y⋆(w(k))) (11a)

subject to
∑n

j=1(w
(k+1)
ij − w

(0)
ij ) = 0,∀i ∈ V, (11b)

∥W (k+1) −W (0)∥F ≤ δ∥W (0)∥F , (11c)

where δ > 0 is a parameter and W (0) denotes the adjacency
matrix of the original network with weights w(0)

ij . Intuitively,
constraint (11c) ensures that users of the social network do
not perceive major differences in shared content and (11b)
guarantees that they spend constant time on the network.
The iterations continue until w(k) converges.

(Chitra & Musco, 2020) note that in certain cases
NAD fails to reduce disagreement and polarization
P (y) :=

∑n
i=1(yi −

1
n

∑n
j=1 yj)

2 increases. To miti-
gate the problem, they propose adding a regularization term
λ∥W∥2F with a parameter λ > 0 to the objective (11a), but
the method still struggles to reduce disagreement. We aim
to improve upon these results.

We observe that BeeRS can be deployed on (11), without
the need to assume opinions are fixed during the optimiza-
tion iterations. With BeeRS, we can directly estimate the
effects of a weight change on the equilibrium opinions (and
therefore the effect on the objective) through the sensitivity
Jy⋆(w). We readapt the original problem as

minimize
y∈Rn,w∈B

1

2

∑n
i=1

∑n
j=1 wij(yi − yj)

2 (12a)

subject to (11b) and (11c), (12b)
A(w)y = s. (12c)
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We add constraint (12c) to take into account the dynamic
opinions y. We use δ = 0.2 for all subsequent results.

4.3.2. CASE STUDY: TOY EXAMPLE

To better understand how the two optimization strategies
compare with each other, we use a minimal network that al-
lows for disagreement. It consists of two nodes with internal
opinions s0 = 1 and s1 = 0, connected by an undirected5

edge with initial weight w(0) = 1. In this network, we aim
to solve (12) without constraint (11b) (as enforcing this con-
straint would restrict the allowed weight to w = w(0) = 1).
To evaluate the behavior of NAD we first compute the re-
sulting equilibrium opinions by solving (2) for appropriate
A(w) (line 2). We find y⋆0(w) = 2

3 and y⋆1(w) = 1
3 . Dis-

agreement is given by D(w, y⋆(w)) = 0.11. In a second
step, NAD minimizes disagreement by keeping the opinions
constant (line 3). Recalling the definition of disagreement,
we see that D(w, y) decreases for fixed y if and only if w
is decreased. Therefore, NAD decreases w, in order to min-
imize disagreement. Then, NAD proceeds by computing
the equilibrium opinions under the updated weight w(k+1),
followed by a reduction of the edge weight w to minimize
disagreement for fixed opinions in a second step. It follows
that the edge weight is decreased until constraint (11c) is
tight, which, for δ = 0.2, occurs when w = 0.8.

On the other hand, BeeRS updates the weight in the direc-
tion of steepest descent, taking into account the effect on
opinions. By deploying it on such a simple problem, we ob-
serve that, as opposed to NAD, BeeRS increases the weight
to w = 1.2. To compare the performance of BeeRS and
NAD in terms of disagreement, we compute equilibrium
opinions for all w ∈ [0, 2] by solving (2), and we illustrate
the resulting disagreement in Figure 4. We mark the solution
of both algorithms, and we observe that BeeRS outperforms
NAD. We argue that the reason for this discrepancy comes
from the fact that our algorithm is able to anticipate the
effect of changing weights on the equilibrium opinions and,
hence, move in a direction that minimizes disagreement. By
contrast, NAD myopically optimizes weights, neglecting the
dynamics of opinions, and thus exacerbates disagreement.

4.3.3. NUMERICAL RESULTS: ADDRESSING A
REAL-WORLD PROBLEM

Next, we deploy both algorithms on real-world data. We
use the undirected Reddit dataset (De et al., 2014), where
external opinions y were extracted by sentiment analysis.
Analogously to (Chitra & Musco, 2020), we set the internal
opinions6 s ∈ [0, 1] by computing s = A(w)y. The dataset

5We model the undirected edge weight w with the two variables
w01 and w10, and the constraint w01 = w10.

6(Chitra & Musco, 2020) use s ∈ [−1, 1] in their formulation.
However, consistent with their implementation (Chitra, 2019), we

0.0 0.5 1.0 1.5 2.0
Edge Weight w

0.000

0.025

0.050

0.075

0.100

0.125

D
is

ag
re

em
en

t

Initial Weight w
BeeRS
NAD

Figure 4. Behavior of BeeRS and NAD (without regularization)
in a toy example network. We plot disagreement as a function of
weights w for internal opinions s0 = 1 and s1 = 0. The feasible
region is shown in white.

Table 1. Comparison between BeeRS, NAD, and NAD⋆ with
λ = 0.2. The runtime is averaged over 10 executions.

BEERS NAD NAD⋆

MEAN RUNTIME, S 141.6 35.9 27.3
MIN. RUNTIME, S 137.7 34.2 25.8
MAX. RUNTIME, S 150.4 38.5 28.3
CHANGE IN POL. P −40.2% +128.7% −0.7%
CHANGE IN DISAG. D −21.5% +41.4% +0.3%

consists of 556 nodes and 8969 edges. We remove 3 discon-
nected users, leading to a total of 553 users. The resulting
problem has m = n(n − 1) = 305, 256 upper-level vari-
ables. Since the edges are undirected, we set half of the
variables through a constraint, as shown in the toy example.

We deploy BeeRS on a CPU7 with ε = 1e-2, γ = 0.6,
and α = 1000, (see Appendix A.4.1). We use the default
implementation of NAD from (Chitra, 2019), making minor
modifications to adapt the code to our specific problem.
We run both the default NAD and NAD with regularization
λ = 0.2, referred to as NAD⋆. We summarize the runtime as
well as the change in polarization and disagreement of each
algorithm in Table 1. We observe substantial differences in
performance among the three algorithms.

Contrary to (Chitra & Musco, 2020), BeeRS achieves a
decrease in disagreement: the objective of NAD and prob-
lem (12). Further, the effect on polarization is different,
as BeeRS leads to a significant decrease of polarization,
whereas NAD without regularization increases polarization.
Although NAD⋆ improves on this aspect, it is still outper-
formed by BeeRS in both disagreement and polarization
reduction. However, the superior performance of BeeRS

adopt s ∈ [0, 1].
7The current implementation of BeeRS does not support the

Frobenius-norm constraint on the GPU.
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(a) BeeRS (b) NAD without regularization (c) NAD with regularization

Figure 5. Optimal edge weight modification in relation to external opinions connected by edge computed by three approaches. The
horizontal and vertical axes show the external opinion before intervention at the tail and head of an edge, respectively. The color encodes
the change of edge weight during the intervention, i.e., wij − w

(0)
ij .

comes at the price of an increased runtime.

Next, we study the performance mismatch between BeeRS
and NAD. To do so, we visualize the intervention mecha-
nism, i.e., the change of weights wij − w

(0)
ij , in Figures 5a,

5b, and 5c for BeeRS, NAD, and NAD⋆, respectively.

All figures show the external opinion of users before the
intervention on the horizontal and vertical axis. The x- and
y-coordinates of each point represent the opinion of the user
on the tail and head of the edge, respectively. The colour of
each point encodes the intervention, i.e., the weight change
of the corresponding edge. Since we consider an undirected
network, the influence over edges is bidirectional and the
plots are symmetric. As we can modify the weight of all
edges (even the ones not present in the initial configuration),
there are roughly 300,000 points to be plotted. To enhance
the interpretability of the figures, we order all interventions
by increasing absolute value and plot them increasingly on
top of each other, i.e., the largest weight changes are drawn
on top and are therefore visible. Note that, a large number of
edges are not visible as they undergo no change in weight.

In contrast to Figure 5a and 5b, we cannot identify any ob-
vious intervention for NAD⋆ in Figure 5c. The intervention
seems to lack a specific pattern, although we note that many
edges experience a large decrease in weight (dark blue dots)
and none experience a large increase. Hence, we subse-
quently focus on BeeRS and NAD without regularization.

Notably, BeeRS and NAD seem to behave exactly opposite.
BeeRS mainly reinforces connections between above- and
below-average opinions and weakens edges connecting opin-
ions of the same bias. Conversely, NAD strengthens edges
between similar opinions and weakens the ones between
opposing views.

This behavior aligns with the observations in Section 4.3.2
and explains the superior performance of BeeRS in minimiz-
ing disagreement and polarization. The intervention mecha-

nism followed by NAD does not encapsulate the fact that,
when we connect opposing opinions under the FJ dynamics,
more moderate opinions are formed through averaging, a
favorable phenomenon in terms of minimizing disagreement
and polarization. This is in line with the weight update rule
of NAD (line 3) that ignores the dynamics. Instead, the back-
propagation through equilibrium opinions step of BeeRS is
able to explicitly incorporate and exploit this effect.

5. Conclusion and Future Work
We formulated the task of finding the best network inter-
vention given any differentiable objective function under
FJ dynamics as an optimization problem with non-convex
constraints, and we solved it with a gradient-based algo-
rithm. We demonstrated the flexibility and scalability of our
method by successfully deploying it on various optimiza-
tion problems of different sizes. Our algorithm significantly
outperforms a state-of-the-art solver in terms of runtime,
while achieving the same solution quality.

As future work, we would like to make our approach more
practical by connecting the weight modifications to action-
able interventions in network, such as boost or penalty fac-
tors in a weighted PageRank fashion (Wenpu & Ghorbani,
2004). Further, we envision increasing the scalability of
our method in two ways: (i) updating only a (potentially
randomly-chosen) subset of the modifiable weights at each
iteration, similar to coordinate descent methods (Wright,
2015), and (ii) solving the linear systems (2) and (9) in a
distributed fashion across multiple devices (CPUs or GPUs).

One limitation of our algorithm is the convexity assumption
onW , which precludes the use of binary decision variables:
is an edge present or not? Our framework could incorpo-
rate binary decisions by relaxing the binary constraints or
employing heuristics. Preliminary numerical experiments
indicate this to be a promising future research direction.
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A. Appendix
A.1. Computation of J1F (w, y)

Combining the definition of A(w) in (2) with the definition F (w, y) := A(w)y − s, we arrive at

F (w, y) =

1 +
∑

j∈V wij −w12 · · · −w1n

...
. . .

...
−wn1 −wn2 · · · 1 +

∑
j∈V wij


︸ ︷︷ ︸

A(w)

y − s. (13)

Now we can compute J1F (w, y), the partial Jacobian of F (w, y) with respect to w, and show that it is continuous in both
arguments. Recall the definition w := [w12, . . . , w1n, w21, . . . , w2n, . . . , wn1, . . . wn(n−1)]

⊤ ∈ Rm with m = n(n − 1)
(there are no self-loops, thus we drop the entries wii for computational efficiency).
Lemma A.1. The partial Jacobian of F (w, y) with respect to w, i.e., J1F (w, y), is continuous in both arguments.

Proof. Considering (13), it is easy to see that J1F (w, y) is given by

J1F (w, y) =

y1 − y2 y1 − y3 · · · y1 − yn 0 · · · 0 0 0 · · · 0
...

0 0 · · · 0 0 · · · 0 yn − y1 yn − y2 · · · yn − yn−1

 ∈ Rn×m, (14)

which is continuous.

A.2. Implementation Details

We implement the algorithm in Python 3.12. We provide both a GPU- and a CPU-compatible implementation. The
GPU version performs most computations with JAX (Bradbury et al., 2018) and has some NumPy (Harris et al., 2020)
dependencies. We solve the linear systems (2) and (9) with a jax.scipy implementation of the GMRES algorithm (Saad &
Schultz, 1986). For the projection, we use the jaxopt (Blondel et al., 2022) BoxOSQP solver. JAX functions are just-in-time
compiled if applicable. We represent the adjacency matrix of the network and the Jacobians as sparse csr array, which
allows efficient handling of large datasets. The upper-level gradients ∇1,2φ are computed with the automatic differentiation
(autodiff) functionalities of JAX.

The CPU version is based on NumPy. Unlike the GPU implementation, we allow both sparse and dense representations of
the network’s adjacency matrix and the Jacobians. For dense matrices, we rely on NumPy to solve the linear systems (2) and
(9), for sparse matrices, we use a SciPy (Virtanen et al., 2020) implementation of the GMRES algorithm. In both cases, we
use CVXpy (Diamond & Boyd, 2016; Agrawal et al., 2018) to perform the projections with the following solvers: Clarabel
(Goulart & Chen, 2024) for quadratic programs, and SCS (O’Donoghue et al., 2016) for second-order cone programs. The
upper-level gradients ∇1,2φ are computed with the automatic differentiation (autodiff) functionalities of PyTorch (Paszke
et al., 2019).

A.3. Hardware Specifications

Experiments were conducted on a Windows 11 machine using Windows Subsystem for Linux (WSL) version 2, either on an
Intel® Core™i7-11700F CPU at 2.50 GHz with 8 cores and 16 logical processors and 32 GB of RAM or on a NVIDIA
GeForce RTX 3060 Ti GPU, with 8 GB of GDDR6 video memory, running CUDA 12.6 and cuDNN 9.5.1.

A.4. Choosing the Hyperparameters – Ablation Study

As discussed in Section 3, BeeRS employs projected gradient descent with momentum (7). This method uses two
hyperparameters, namely step size α and momentum parameter γ. We conduct an ablation study to find parameters leading
to satisfying results in terms of runtime and minimum cost.

We consider the same setup as in Section 4.1, i.e., problem (10) on the DBLP dataset version 10 (Tang et al., 2008). We
consider the first n = 1000 users and set b = 100. We initialize all variables, i.e., all connections to the news agency, with
the value 0. We use a tolerance of ε = 1e-3.
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We now solve this problem with BeeRS. We grid the hyperparameters for values of α ∈ (0, 500] and γ ∈
[0, 0.95]. To enhance visibility, we display only some of the grid points in Figure 6, in particular α ∈
{0.001, 0.002, . . . , 0.05, 0.06, . . . , 0.1, 0.2, . . . , 1} and γ ∈ {0.0, 0.3, 0.6, 0.9}. In the left subplot, we show the num-
ber of iterations until convergence on the vertical axis as a function of α on the horizontal axis. According to the legend,
we plot a distinct line for every choice of γ. In the right subplot, we show analogously the minimum achieved cost on the
vertical axis. Due to the deterministic nature of BeeRS, we run the simulation with every set of distinct α and γ exactly once.
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Figure 6. We vary the step size α and display the resulting number of iterations (left) and the achieved minimum cost (right) for some
momentum parameters γ.

We observe that, for small values of α, we achieve convergence with fewer iterations for larger values of γ than for smaller
values of γ. For larger values of α, the number of iteration until convergence first gets closer for different values of γ, and
some oscillations begin to appear for γ = 0.9, and later, the number of iterations until convergence starts to increase again.

Regarding the minimum cost achieved, we observe that for small values of α, γ = 0.9 clearly outperforms all other choices.
When α is increased, the performance for other values of γ improves quickly, and at a medium value of α, γ = 0.6 achieve
a lower cost than γ = 0.9. For large values of α, the minimum achieved cost abruptly rises for some values of γ, and
gradually increases for other values of γ.

Considering these results, a medium value of α, e.g., α = 0.05, together with γ = 0.6 provides a good compromise between
the number of iterations until convergence and the achieved minimum cost, and effectively avoids numerical instabilities
causing convergence issues for larger values of α.

A.4.1. CHOOSING α AND γ FOR DIFFERENT NUMBER OF USERS n

While the ablation study in Section A.4 was only carried out for the first n = 1000 users of the DBLP dataset, we observed
that the resulting hyperparameters α = 0.05 and γ = 0.6 work well for both other problem dimensions n and for the
LiveJournal dataset, as long as we consider problem (10). Differently, due to the change of objective in Section 4.3 and
the smaller number of variables m, the previously used step size yielded insufficient progress. We performed a grid search
over the step size and selected the best value, α = 1000, while keeping γ = 0.6 fixed, as determined in the aforementioned
ablation study.

A.5. Further Results of Section 4.2

In addition to the results provided in Section 4.2, we provide in Table 2 the relative suboptimality for the compared
approaches. We define the relative suboptimality as

|φ− φ⋆|
|φ⋆|

,

where φ⋆ is the best solution achieved by any of the two approaches.
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Table 2. Comparison between BeeRS and IPOPT in terms of relative suboptimality.

NUMBER OF USERS n 100 200 300 400 500 1000 2000

DBLP
REL. SUBOPT. OF IPOPT 3.04e-2 1.53e-2 1.35e-2 1.02e-2 1.06e-2 2.30e-2 5.59e-3
REL. SUBOPT. OF BEERS 0 0 0 0 0 0 0

LIVEJOURNAL
REL. SUBOPT. OF IPOPT 6.96e-2 7.89e-2 8.31e-2 9.09e-2 9.31e-2 8.74e-2 1.15e-1
REL. SUBOPT. OF BEERS 0 0 0 0 0 0 0

A.6. Network Administrator Dynamics - Alg. 2

In the following, we repeat the algorithm of (Chitra & Musco, 2020).

Algorithm 2 NAD (Network Administrator Dynamics)

1: while not converged do
2: yk ← For given network weights w, compute the equilibrium opinions with (2)
3: wk ← For fixed opinions y, solve (11)
4: k ← k + 1
5: end while
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