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Abstract
Social predictions do not passively describe the
future; they actively shape it. They inform actions
and change individual expectations in ways that
influence the likelihood of the predicted outcome.
Given these dynamics, to what extent can social
events be predicted? This question was discussed
throughout the 20th century by authors like Mer-
ton, Morgenstern, Simon, and others who consid-
ered it a central issue in social science methodol-
ogy. In this work, we provide a modern answer
to this old problem. Using recent ideas from per-
formative prediction and outcome indistinguisha-
bility, we establish that one can always efficiently
predict social events accurately, regardless of how
predictions influence data. While achievable, we
also show that these predictions are often unde-
sirable, highlighting the limitations of previous
desiderata. We end with a discussion of various
avenues forward.

1. Introduction
Social predictions do not passively describe the future; they
actively shape it. They inform actions and change expec-
tations in ways that influence the likelihood of predicted
events. For instance, economic forecasts influence market
prices, election predictions influence voter turnout, and cli-
mate forecasts shape policies that impact weather patterns.

This dynamic, where predictions are performative and shape
data distributions, is pervasive throughout social prediction.
It is also a feature, not a bug. The overarching goal of
building systems that make predictions about people is to
inform actions that drive positive changes in the world. For
example, we predict health outcomes to cure disease and
poverty to alleviate it. While desirable, this dynamic also
introduces methodological challenges and casts doubt on
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the predictability of social events. Motivated by these issues,
we revisit the following question:

Is it possible to efficiently find a predictor that actively
influences the likelihood of observed events, yet still

produces valid predictions?

During the 20th century, multiple researchers recognized
that social predictions shape social patterns and posed this
question in their work. To give a few examples, in his 1928
thesis, Oskar Morgenstern argued that accurate economic
forecasts are generally impossible since public predictions
can be self-negating (Morgenstern, 1928). Later, Simon
(1954), as well as Grunberg & Modigliani (1954), used
recently popularized fixed point theorems from topology to
make progress on this problem and proved the existence of
predictions that influence outcomes and are simultaneously
calibrated. However, they did not address the algorithmic
question of how one might actually find these predictors
efficiently (both computationally and statistically speaking).

In this work, we revisit this question using modern math-
ematical tools. Framing our analysis in the language of
performative prediction – a recent learning-theoretic frame-
work introduced by Perdomo et al. (2020) that formalizes
the causal aspects of social prediction – we establish the
following result. One can always efficiently find predic-
tions that actively shape the data distribution over outcomes
and simultaneously satisfy rigorous validity guarantees like
multi-calibration (Hébert-Johnson et al., 2018) or outcome
indistinguishability (Dwork et al., 2021). Moreover, the
statistical and computational complexity of finding these
predictors is, in many cases, just as easy as in supervised
learning, where the distribution is static.

However, while these rigorously calibrated predictions are
always achievable, they are not always desirable. The fact
that predictions are performative and influence the likeli-
hood of future events invalidates traditional solution con-
cepts inherited from supervised learning like calibration.
Through simple examples, we show that these prediction
rules can lead to poor equilibria where predictions exactly
match the conditional distribution over outcomes – and
hence are perfectly multicalibrated – while simultaneously
explaining none of the variance in outcomes.
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1.1. Overview of Technical Results

In this work, we study the problem of finding prediction
rules f that actively shape the distribution of observed out-
comes y, yet still produce a valid forecast.

We cast this problem in the language of performative pre-
diction (Perdomo et al., 2020), a recent learning theoretic
framework that formalizes how data in social contexts is
not static, but rather a function of the published predictor f .
The key conceptual device of the framework is the notion of
the distribution map D(·), a function which maps predictors
f to distributions over feature, outcome pairs (x, y). It cap-
tures how deploying different predictors induces different
distributions.

In this work, we focus on the outcome performative case,
in which predictions shape the distribution over outcomes
y but not features x. In particular, given a randomized
predictor f , we write (x, p, y) ∼ D(f) as shorthand for
x ∼ Dx, p ∼ f(x), and y ∼ Dy(x, p). The distribution Dx

over x is static, a prediction p is sampled from f(x), and the
conditional distribution over outcomes y is any function of
x and the forecaster’s revealed prediction p ∈ R. This setup
exactly captures the prediction dynamics present in domains
like health or education (see e.g. Perdomo et al. (2023)
for a real world example). The learner makes a prediction
p regarding someone’s individual outcome (future heart
disease) using historical features (age, smoking history).
The prediction influences treatments and individual behavior
in ways that shape the likelihood of the predicted outcome
(disease), but not the historical realization of features.

We assert that a forecast is valid if it is performatively multi-
calibrated, or synonymously, indistinguishable. Intuitively,
a predictor is multicalibrated if f(x) equals y (in expecta-
tion), not just overall, but also when we condition on infor-
mation about the individual x and the prediction p ∼ f(x).
A predictor is outcome indistinguishable if its correctness
cannot be efficiently falsified, on the basis of the observed
data and a pre-specified collection of computational tests.
We use the terms multicalibration and (outcome) indistin-
guishability interchangeably since, interestingly, both con-
ditions are formally equivalent (Dwork et al., 2021). We
formally define these concepts for our performative setting
below:
Definition 1.1. A randomized predictor f mapping fea-
tures x to predictions p is ε performatively multicalibrated
(indistinguishable) with respect to C ⊆ {X × R → R} if∣∣Ex∼Dx,p∼f(x)

y∼Dy(x,p)

[c(x, p)(y − p)]
∣∣ ≤ ε for all c ∈ C.

Here, C parametrizes the degree to which predictions match
outcomes. If C consists of just the constant 1 function, we
recover the guarantee considered in Simon (1954) and Grun-
berg & Modigliani (1954) that ED(f)[y] = ED(f)[f(x)]

overall. If C consists of all bounded, measurable functions,
then f(x) must be equal to the conditional distribution over
outcomes, f(x) = ED(f)[y|x] for all x. We can interpolate
between these two extremes by varying C.

While the guarantee in Definition 1.1 is known to be achiev-
able in supervised learning where D(f) = D(f ′) for all f
and f ′, the situation is substantially more complicated in
this performative setting. Predictions can, in general, be self-
negating, and outcomes can move away from the published
prediction p ∼ f(x). Given this possibility, it is not imme-
diately obvious that performatively calibrated f even exist
(that is f such that ED(f)[f(x)] = ED(f)[y]) without mak-
ing strong regularity assumptions on D(·). The situation
is further complicated because the distribution map D(·) is
unknown to the learner. They can only deploy a predictor f
and observe the induced samples (x, p, y) ∼ D(f).

Our first result shows that this guarantee Definition 1.1 is,
in fact, efficiently achievable both statistically and compu-
tationally, thereby providing a modern learning-theoretic
answer to the question posed by Morgenstern, Simon, and
others. Unlike the bulk of work in performative prediction
(Perdomo et al., 2020; Mendler-Dünner et al., 2020), this
result requires no smoothness or continuity assumptions on
the outcome performative distribution map D(·) other than
the condition that outcomes y lie in a bounded range.
Theorem (Informal). Let A be any online algorithm which
is guaranteed to produce predictions pt such that for any
adversarially chosen sequence {(xt, yt)}Tt=1,

∣∣ T∑
i=t

c(xt, pt)(yt − pt)
∣∣ ≤ Regret(T ) for all c ∈ C. (1)

Then, given n draws from D(·), the outputs of A can be con-
verted into a randomized predictor fA s.t. with probability
1− δ over the randomness of the draws from D(·),∣∣E(x,y,p)∼D(f)[c(x, p)(y − p)]

∣∣
≤ Regret(n)

n
+

√
log(|C|) + log(1/δ)

n
for all c ∈ C.

Furthermore, if A runs in time(t) at round t, then fA can
be computed in time O(n · time(n)).1

The result establishes an efficient reduction from our main
problem to an online multicalibration problem for which nu-
merous algorithms now exist (Vovk, 2007; Foster & Kakade,
2006; Dwork et al., 2025; Gupta et al., 2022; Okoroafor
et al., 2025). In particular, these algorithms can efficiently

1Recall that (x, p, y) ∼ D(f) is shorthand for the sampling
process x ∼ Dx, p ∼ f(x), y ∼ Dy(x, p). We abuse notation
and write (x, y) ∼ D(f) if the forecast p does not appear in
the expectation, but data (x, y) is still that induced by f . For
deterministic functions h, we write (x, y) ∼ D(h) as shorthand
for x ∼ Dx, y ∼ Dy(x, h(x)).
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achieve the online guarantee in Equation (1) for various
rich classes of functions C such as low-degree polynomials,
decision trees, or, more generally, any C that is (weak ag-
nostically) learnable or that belongs to a reproducing kernel
Hilbert space. Moreover, these algorithms have

√
T regret,

implying that f achieves the optimal O(n−1/2) rate for this
problem. The reduction is conceptually simple, yields tight
bounds on the generalization error, and requires no Lips-
chitzness conditions on the distribution map D(·). That is,
the conditional distribution over outcomes Dy(x, p) can be
any discontinuous, non-smooth function of the forecast p.
We only need to assume that outcomes are bounded.

Taking a step back, the theorem states that there are learning
algorithms that can efficiently cope with social feedback.
They make predictions that actively shape future events
while still providing an honest, calibrated signal of the out-
come. The fact that these prediction rules exist is fascinating
and motivates us to ask further questions. Are these pre-
diction rules truly desirable? What does it mean to make a
good prediction if the prediction itself influences outcomes?
Part of the answer to this question involves rethinking what
the goals of prediction should be and how these goals are re-
flected in our choice of loss function. See (Kim & Perdomo,
2023) and (Miller et al., 2021) for further discussion.

However, leaving the choice of loss function aside and re-
stricting ourselves to predictive accuracy as the main cri-
terion, prediction rules satisfying the historical desiderata
formalized in Definition 1.1 can be arbitrarily poor. We
show that it is possible for a predictor f to be performatively
multicalibrated with respect to all (continuous) functions
c(x, p) while simultaneously explaining none of the vari-
ance in outcomes. We state the following result in terms
of the core solution concepts from the performative predic-
tion framework —performative stability and performative
optimality — whose definitions we review below.2

Theorem (Informal). Assume that y is binary and let H ⊆
{X → [0, 1]} be a benchmark class. Any predictor f that is
performatively multicalibrated with respect to H (satisfies
Definition 1.1 with C = H) is also performatively stable
with respect to H and hence satisfies:

E(x,p,y)∼D(f)(y − p)2 ≤ min
h∈H

E(x,y)∼D(f)(y − h(x))2.

(2)

2The solution concepts of performative stability and optimality
are defined with respect to general loss functions ℓ(x, y;h) that
can capture a wide variety of higher level objectives. For instance,
we can choose to have losses which encourage forecasts to match
outcomes, ℓ(x, y;h) = (h(x) − y)2, or losses which encour-
age the induced distributions D(f) towards a particular outcome
ℓ(x, y;h) = −y. See (Kim & Perdomo, 2023). Since the goal
here is to understand the relationship between from Definition 1.1
and predictive accuracy in performative contexts, we specialize the
definitions to the case of squared loss for simplicity.

However, there exist a distribution map D(·) such that f
can be performatively multicalibrated with respect to all
bounded functions c(x, p), yet simultaneously maximize
the performative risk for any H,

E(x,p,y)∼D(f)(y − f(x))2 ≥ max
h∈H

E(x,y)∼D(h)(y − h(x))2.

(3)

The theorem states that any predictor that is performatively
multicalibrated with respect to H is also performatively sta-
ble with respect to H. A predictor f is performatively stable
if it induces a distribution D(f) such that no model h ∈ H
has a lower loss over D(f). This is Equation (2). If we
judge the performance of a performatively stable predictor
f (and the alternatives h) purely based on the distribution
D(f), there is no reason to switch to an alternative model
in H since these have higher loss over D(f).

However, stability ignores the fact that different predictors
induce different distributions. Note that the expectation in
the right hand side of the stability condition, Equation (2),
is taken over D(f) not D(h). Yet, the true measure of
performance for a predictor h in performative contexts is its
performative risk – the expected loss over its own induced
distribution – formally defined as ED(h)(y − h(x))2. Note
that the predictor inside the loss function and the predictor
in the distribution map D(·) are now the same. A model
f is performatively optimal with respect to a class H if
it has lower performative risk than any model in h ∈ H.
Equation (3) states that it is possible for a predictor to be
performatively multicalibrated with respect to all functions
c(x, p) while simultaneously maximizing the performative
risk.3

Note that our intuition from supervised learning is exactly
reversed. In supervised learning, where (x, y) ∼ D, if
f(x) = E[y | x] for all x, then ED(y − f(x))2 ≤ ED(y −
h(x))2 for any function h. In performative prediction, where
f influences the distribution over (x, y), the result shows
it is possible for f(x) = ED(f)[y | x] for every x, yet
ED(f)(y − f(x))2 ≥ ED(h)(y − h(x))2. The inequality is
now flipped because of performativity.

As a whole, our results advance the mechanics and algorith-
mic foundations of social prediction, explaining how and
why one can find predictors that dynamically shape yet also
rigorously predict social outcomes. In doing so, we shed
new light on old questions previously considered by leading
researchers of the 20th century. Lastly, by re-evaluating
historical desiderata using a modern lens, we highlight ways
in which previous debates fall short and inspire new debate
regarding what the broader goals of prediction in the social
world should be.

3There is a non-trivial gap for this problem, minh ED(h)(y −
h(x))2 ≪ maxh ED(h)(y − h(x))2. See Section 5.
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1.2. Related Work

Social Science. As discussed in the introduction, several
authors across the social sciences have studied the ques-
tion at the heart of our work regarding the predictability of
social events. In addition to Morgenstern (1928), Simon
(1954) states this exact problem in the introduction to his
paper, where he remarks that he learned about the issue
from Hayek (1944). The existence, but not computation,
of a predictor solving this problem is also considered in
Grunberg & Modigliani (1954). Their paper inspired our
choice of title.

Our problem also lies at the heart of the famous Lucas
critique (Lucas, 1976), which marked a turning point in
macroeconomic theory. Outside of economics, this problem
has been extensively studied in sociology dating back to
work by Merton (1948) and more recently by MacKenzie
(2008). In philosophy, it is studied in Buck (1963). Our
results complement prior work by advancing our algorith-
mic understanding of the problem and establishing how
these prediction problems can be efficiently solved both
statistically and computationally.

Performative Prediction. The area of performative predic-
tion was initiated by Perdomo et al. (2020), who proposed
a formal framework to study predictions that shape data
distributions. We cannot cover all the work in this grow-
ing field, but we point the reader to the excellent survey by
Hardt & Mendler-Dünner (2025) for a broader overview.
Within this literature, our results are most closely related
to the literature on finding performatively stable points
(Mendler-Dünner et al., 2020; Drusvyatskiy & Xiao, 2023;
Mofakhami et al., 2023; Oesterheld et al., 2023; Mofakhami,
2024; Taori & Hashimoto, 2023; Khorsandi et al., 2024).
Relative to these analyses, our results differ since we make
no smoothness assumptions on the way forecasts influence
outcomes and restrict ourselves to the outcome performa-
tive setting where predictions only influence the distribution
over the outcomes, but not features.

Multicalibration & Outcome Indistinguishability. Our
results build on the recent lines of work on multicalibration
(Hébert-Johnson et al., 2018) and outcome indistinguishabil-
ity (Dwork et al., 2021), further extending the foundations of
these ideas to non-supervised learning settings. Our proofs
heavily rely on new algorithmic insights from online cali-
bration, pioneered by Foster & Vohra (1998), and extended
by (Foster & Kakade, 2006; Kakade & Foster, 2008; Vovk,
2007; Gupta et al., 2022) and others. Within this broad liter-
ature, our work is most closely related to Kim & Perdomo
(2023), who used these tools developed in Gopalan et al.
(2023) to compute performatively optimal (not stable) pre-
dictors for a restricted version of the outcome performativity
setting. In their setup, outcomes are binary and their condi-
tional distribution is a function of x and a discrete decision

ŷ belonging to a finite set. Our setup generalizes theirs since
both outcomes y and forecasts p can be real-valued.

2. Preliminaries
Before presenting our main results, we review some techni-
cal preliminaries and provide some background and motiva-
tion behind our core solution concepts.

The Distribution Map. We assume throughout that data
(x, p, y) ∼ D(f) is generated according to the following
process. The learner publishes a predictor f : X →
∆([0, 1]) mapping features x to a distribution f(x) over
the unit interval [0, 1]. Features x are drawn i.i.d from a
fixed distribution Dx over an arbitrary set X , predictions
p ∈ [0, 1] are sampled from f , p ∼ f(x). Outcomes y
are sampled from Dy(x, p) where Dy(x, p) is any distribu-
tion over the unit interval [0, 1]. Our results apply to any
Dy(x, p) supported on a bounded interval by rescaling.

Performative Multicalibration. Calibration is the sine
qua non definition of validity for a probabilistic forecast
(Dawid, 1985). For binary y, a predictor is calibrated if con-
ditional on f(x) = v for v ∈ [0, 1], the outcome y occurs
a v fraction of the time, Pr[y = 1 | f(x) = v] = v. Multi-
calibration (Hébert-Johnson et al., 2018) is a strengthening
of calibration, requiring that f(x) = y, not just overall, but
also once we condition on x belonging to any set G in a col-
lection G: Pr[y = 1 | f(x) = v, x ∈ G] = v for all G ∈ G.
This condition is equivalent, up to a normalization factor of
Pr[f(x) = v, x ∈ G], to the one we wrote in Definition 1.1
since letting cG,v(x, p) = 1{x ∈ G, p = v}, we can write:

E(x,p,y)∼D(f),p∼f(x)[cG,v(x, p)(y − p)] =

(Pr[y = 1 | f(x) = p, x ∈ G]− v) Pr[f(x) = v, x ∈ G].

Conversely, a predictor f is outcome indistinguishable
(or OI) (Dwork et al., 2021) if it establishes a genera-
tive model that cannot be falsified on the basis of a pre-
specified collection of tests or distinguishers A ∈ F ⊆
{X × [0, 1]× [0, 1] → R}. Simplifying our discussion to the
case of a binary outcome, each distinguisher takes features
x, predictions p, and an outcome y and outputs 1 or 0 (i.e.
is this a real outcome/prediction for x). A predictor is OI if
all the distinguishers in the collection F behave the same
when given the true outcome y ∼ D(f) versus an outcome
sampled from the model ỹ ∼ Ber(p), p ∼ f(x). Extended
to the performative context, f is outcome indistinguishable
with respect to F if for all A ∈ F

E(x,p,y)∼D(f)A(x, p, y) = Ex∼Dxp∼f(x),ỹ∼Ber(p)A(x, p, ỹ)
(4)

For binary y, this guarantee is, in fact, equivalent to
our performative multicalibration guarantee from Defini-
tion 1.1 since this above equation is true if and only
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if E(x,p,y)∼D(f)[c(x, p)(y − p)] = 0 for cA(x, p) =
A(x, p, 1)− A(x, p, 0), as seen in Dwork et al. (2021) for
the supervised learning case.

We feel that this rewriting is particularly insightful. Note
that outcomes on the left of Equation (4) are performative:
They are sampled from D(f). However, outcomes on the
right hand side are sampled according to f . The predictor
f is actively influencing the distribution in such a way that
outcomes behave as if they were sampled according to its
own predicted distribution. By observing samples (x, y) ∼
D(f), we might seemingly believe that f is not influencing
the data at all! It’s just a great predictor.

However, this intuition is false. A predictor f can pass all
bounded tests F and be multicalibrated with respect to any
collection C while simultaneously explaining none of the
variance in y. We present this construction in Section 5.

3. Algorithmic Results
This section presents our core algorithmic results, illustrat-
ing how one can find prediction rules that influence data
and are indistinguishable from the true outcomes. These
algorithmic procedures are conceptually simple, computa-
tionally efficient, and near statistically optimal.

Technical Overview. Recall that the goal is to find a pre-
diction rule f satisfying the following indistinguishability
guarantee from Definition 1.1. For all c ∈ C,∣∣E(x,p,y)∼D(f)[(y − p)c(x, p)]

∣∣ ≤ ε. (5)

Rather than solving this problem directly, we reduce it to
a seemingly harder, online problem and then perform an
online-to-batch conversion. That is, we show that any online
algorithm A that (deterministically) produces predictions
pt = ft(xt) such that |

∑T
t=1 c(xt, pt)(yt − pt)| ≤ o(T ),

for any adversarial sequence of {(xt, yt)}Tt=1 can be con-
verted to a batch predictor f satisfying the indistiguishability
guarantee from Equation (5). We begin by formally defining
the online protocol used in our reduction.

Definition 3.1 (Online Prediction). Online prediction is a
sequential, two-player game between a Learner and Nature.
At every round t, the Learner moves first and selects a
function ft : X → [0, 1], deterministically mapping x ∈ X
to predictions pt in [0, 1], as a function of the history up until
time t. Nature moves second and selects (xt, yt) ∈ X × Y
with knowledge of xt and pt = ft(xt). We refer to the
sequence {(xt, yt, ft, pt)}Tt=1 as the transcript of the game.

Online prediction is a classical problem in statistics, game
theory, and machine learning for which numerous algo-
rithms have been developed (Cesa-Bianchi & Lugosi, 2006;
Foster & Vohra, 1998; Kakade & Foster, 2008). Our defi-
nition differs slightly from traditional presentations since

we assume that the learner moves first and commits to a
function ft at every round before seeing xt (instead of mov-
ing second and producing a prediction pt after seeing the
features xt). However, this is just a difference in style, not
substance. Most online algorithms in the literature also
commit to a prediction rule ft : X → [0, 1] at every round
before seeing the features xt. Because ft is revealed, Nature
knows pt = ft(xt) for every xt and can use this informa-
tion (potentially adversarially) when choosing xt and yt.
Moving on, our results rely on algorithms that achieve the
following guarantee in online prediction.

Definition 3.2 (Online Multicalibration). Let C ⊆ {X ×
[0, 1] → R} be a class of functions. An algorithm A guaran-
tees online multicalibration with respect to a set C at a rate
bounded by RegretA(·) if it always generates a sequence of
functions ft for the Learner that, no matter Nature’s strategy
in the online protocol (Definition 3.1), will yield a transcript
{(xt, yt, ft, pt)}Tt=1 satisfying,

|
T∑

t=1

c(xt, pt)(pt − yt)| ≤ RegretA(T ),

for all c ∈ C where RegretA(T ) : N → R≥0 is o(T ).

Algorithms that achieve this guarantee date back to the work
Vovk (2007); Vovk et al. (2005a) and Foster & Kakade
(2006) (they refer to it under different names like resolution
or just calibration). Following the work of Hébert-Johnson
et al. (2018) introducing multicalibration, there has been a
flurry of recent papers introducing new algorithms for this
problem (Dwork et al., 2025; Gupta et al., 2022; Garg et al.,
2024; Okoroafor et al., 2025). We will make use of these
procedures when instantiating our general results. As a final
preliminary step, we define the online-to-batch procedure
we use in our analysis:

Definition 3.3 (Batch Converstion). Fix an outcome per-
formative distribution map D(·). Let {(xt, yt, ft, pt)}Tt=1

be the transcript generated in the online prediction proto-
col (Definition 3.1) where at every time step t, the Learner
chooses ft according to A, and Nature selects features xt

and outcomes yt, by sampling them from the distribution
map: xt ∼ Dx, yt ∼ D(xt, pt) where pt = ft(xt).

Define the T -round batch version of A, fA : X → ∆([0, 1])
to be the randomized predictor that given x, selects fi ∈
{f1, . . . , fT } from the transcript uniformly at random, and
then predicts p = fi(x).

This style of online-to-batch conversion, where one uni-
formly randomizes over all previous predictors, is standard
in the online learning literature and is the typical starting
point when converting online algorithms to batch learners
(see, e.g., Gupta et al. (2022); Okoroafor et al. (2025)). The
main difference in this construction is that samples (xt, yt)
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are not drawn i.i.d from a fixed distribution D, but rather
from the distribution (xt, yt) ∼ D(ft) induced by the pre-
dictions. Note that while each of the individual functions
ft ∈ {f1, . . . , ft} in the transcript are deterministic, the
batch predictor is randomized since it first mixes over the
choice of ft. With these definitions out of the way, we can
now state the main theorem for this section:

Theorem 3.4. Let C ⊆ {X × [0, 1] → [−1, 1]} be a class
of functions and let A be an algorithm that guarantees on-
line multicalibration with respect to C at a rate bounded
by RegretA(·) (Definition 3.2). Define fA to be the batch
predictor of A trained on n rounds of interaction (see Defi-
nition 3.3). Then, with probability 1− δ over the samples
drawn from D(·), for all c ∈ C,∣∣E(x,p,y)∼D(fA)c(x, p)(p− y)

∣∣
≤ RegretA(n)

n
+ 4

√
log(|C|) + log(1/δ)

n
.

Proof Sketch. The proof follows the standard template for
online-to-batch conversions. Since outcomes are a function
of x and specific prediction p we can use the definition of
fA to decompose the left hand side as:

Ex∼Dx,p∼fA(x)
y∼Dy(x,p)

c(x, p)(p− y) =

1

n

n∑
i=1

E x∼Dx

y∼Dy(x,fi(xi))
[c(x, p)(p− y) | fA = fi],

Then, viewing the transcript {(xt, yt, ft, pt)}Tt=1 as a
stochastic process, we use a Martingale argument and ap-
ply the Azuma-Hoeffding inequality to establish a high-
probability upper bound on the RHS.

As we mentioned, Theorem 3.4 is a general reduction. It
states that any algorithm that is online multicalibrated with
respect to a class of functions C yields a (batch) prediction
rule fA that is performatively multicalibrated with respect
to C. The reduction, moreover, is statistically efficient: the
error decreases at the optimal O(n−1/2) rate and the de-
pendence on the failure probability δ is logarithmic.4 The
log(|C|) dependence comes from a standard union bound
argument and can be sharpened using well-known tech-
niques.5 The reduction is also computationally efficient. If
the runtime of the online algorithm A is bounded by time(t)

4The dependence on n cannot be improved without further
assumptions. In particular, take the case where C only contains the
constant one function, y is binary, and D(·) is not performative
so that (x, y) ∼ D∗ where D∗ is a fixed distribution. In this case,
the problem becomes mean estimation for a Bernoulli random
variable, which has a well-known Ω(n−1/2) lower bound (see e.g.
Anthony & Bartlett (2009))

5One can, under further assumptions, replace log(|C|) with a
norm-based bound (Cesa-Bianchi et al., 2004).

at time step t, then the online-to-batch conversion takes time
O(n · time(n)). Therefore, if A runs in polynomial time, so
does the batch version fA.

Example Instantiations. Having introduced the main result,
we now illustrate how it can be instantiated using existing
algorithms to guarantee multicalibration with respect to rich
classes of functions C. Since there are by now many dif-
ferent online algorithms that satisfy Definition 3.2, these
examples are by no means meant to be exhaustive. We
simply wish to illustrate some interesting cases with the
understanding that there are numerous alternatives. Our
end-to-end results can be improved as the community devel-
ops online algorithms with sharper regret bounds or better
runtimes that can be plugged into Theorem 3.4.

In particular, we instantiate our general reduction using the
K29 algorithm from (Vovk et al., 2005a;b). This algorithm
is a simple, kernel-based procedure which can efficiently
guarantee calibration with respect to functions in a Repro-
ducing Kernel Hilbert Space. We present a self-contained
description and analysis of the algorithm in Appendix A.
The following corollary summarizes some of its implica-
tions.

Corollary 3.5. The following statements are true.

(a) Any Finite Collection. Let C ⊆ {X × [0, 1] → [−1, 1]}
be any finite set of functions c(x, p) that are continuous in
the forecast p. Then, there exists a choice of kernel, such
that the K29 algorithm is online multicalibrated with respect
to C at a rate bounded by

√
T |C|. Consequently, the batch

version f trained on n rounds of interaction satisfies:∣∣E(x,y)∼D(f),p∼f(x)c(x, p)(p− y)
∣∣ ≤√

|C|
n

+ 4

√
log(|C|) + log(1/δ)

n
for all c ∈ C.

Furthermore, the per-round run-time is Õ(t · |C|). Hence, f
runs in time O(n2|C|).

(b) Linear Functions. Define X = {x ∈ Rd : ∥x∥2 ≤ 1},
Clin = {θ⊤x+ p : ∥θ∥2 ≤ 1}, and let C be a finite subset of
Clin. Then, there exists a choice of kernel such that the K29
algorithm is online multicalibrated with respect to Clin at a
rate bounded by

√
2T . Consequently, the batch version f of

this procedure trained on n rounds of interaction satisfies:∣∣E(x,y)∼D(f),p∼f(x)c(x, p)(p− y)
∣∣ ≤√

2

n
+ 4

√
log(|C|) + log(1/δ)

n
for all c ∈ C.

Furthermore, the per-round run-time is bounded by Õ(d).
Hence, f runs in time Õ(n · d).

(c) Low-Degree Boolean Functions. Define X = {0, 1}d,
and CLowDeg ⊆ {X → [−1, 1]} to be the set of Boolean
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functions of degree s. That is, those that can be written as,

c(x) =
∑

S⊆[d],|S|≤s

αS

∏
i∈S

xi

for some coefficients {αS}S⊂[n] ∈ R. Let C be any finite
subset of CLowDeg ∪ {c(x, p) = p}. Then, there exists a
choice of kernel such that the K29 algorithm is online multi-
calibrated with respect to CLowDeg ∪ {c(x, p) = p} at rate
bounded by 10

√
ds · T .

Consequently, the batch version f of this procedure trained
on n rounds of interaction satisfies:∣∣E(x,y)∼D(f),p∼f(x)c(x, p)(p− y)

∣∣ ≤
10

√
ds

n
+ 4

√
log(|C|) + log(1/δ)

n
for all c ∈ C

Lastly, the per-round run-time of the algorithm is Õ(t · ds).
Hence, f runs in time O(ds · n2).

The corollary illustrates how one can efficiently find pre-
diction rules f that are performatively multicalibrated with
respect to common classes of functions, for instance, linear
functions or low-degree polynomials. One can even effi-
ciently guarantee indistinguishability with respect to any
polynomially sized collection C (as long as the functions
c ∈ C are each efficiently computable). This, in particu-
lar, implies performative indistinguishability with respect to
rich classes of functions, like deep neural networks. These
hold without making any Lipschitzness assumptions on the
distribution map D(·). Furthermore, the runtime of the pro-
cedures is, up to small polynomial factors, no different than
that of algorithms achieving solving the analogous guaran-
tee in supervised learning settings.

4. Structural Results
In the previous section, we illustrated how one can find
predictors f that actively shape the data (x, y) ∼ D(f),
yet still make predictions that are computationally indistin-
guishable from the true outcomes. Here, we take a step
further and ask: are these computationally indistinguishable
predictors useful (in a risk minimization sense)? What is
the relationship between calibration and loss minimization
in this outcome performative context?

To answer these, we analyze the relationship between the
previous historical desiderata (Definition 1.1) and the core
solutions in performative prediction. We review these below.
Definition 4.1 (Performative Stability and Optimality). Let
ℓ be a loss function an H ⊆ {X → [0, 1]} a benchmark
class. A predictor fps is performatively stable with respect
to the class H if,

E(x,p,y)∼D(fps)ℓ(p, y) ≤ min
h∈H

E(x,y)∼D(fps)ℓ(h(x), y).

On the other hand, a predictor fpo is performatively optimal
with respect the class H if,

E(x,p,y)∼D(fpo)ℓ(p, y) ≤ min
h∈H

E(x,y)∼D(h)ℓ(h(x), y).

Lastly, we refer to E(x,y)∼D(h)ℓ(h(x), y) as the performa-
tive risk of a predictor h.

Intuitively, a predictor f is performatively stable if its op-
timality cannot be refuted on the basis of the data that it
induces. If we evaluate the loss of any alternative predictor
h over the distribution D(f), we find it will have a higher
loss than f itself. However, this ignores the fact that differ-
ent models induce distributions. Performatively optimality
embraces this observation. A model f is performatively
optimal if it minimizes the performative risk.

As stated, our definitions are slight generalizations of those
initially proposed by Perdomo et al. (2020) since we allow
f to be randomized and do not require that it be a member
of the class H. Furthermore, our definition holds for any
possibly non-parametric class H. However, if H = FΘ is a
parametric class and we impose that fps ∈ FΘ, we recover
the previous definition,

θps ∈ argmin
θ∈Θ

E(x,y)∼D(θps)ℓ(fθ(x), y) ⇐⇒

E(x,y)∼D(θps)ℓ(fθps(x), y) ≤ min
θ∈Θ

E(x,y)∼D(θps)ℓ(fθ(x), y).

The following theorem is the main result of this section,
showing how performatively multicalibrated predictors as
per Definition 1.1 are also performatively stable with respect
to standard losses like squared error. To simplify our pre-
sentation, we make the further assumption that y is binary.

Theorem 4.2. Assume that outcomes y are binary. Let
H : X → [0, 1] be a benchmark class and let ℓ be the
squared loss, ℓ(p, y) = 1

2 (p− y)2. If f is ε-performatively
multicalibrated with respect to the functions C, defined as,
C = {c(x, p) = p−1/2}∪{c(x, p) = h(x)−1/2 : h ∈ H},
then f is 2ε-performatively stable with respect to H.

The proof of this result follows from two lemmas. These
make use of recent tools pioneered by Gopalan et al. (2023)
for the supervised learning setting, showing how outcome
indistinguishable predictors are loss-minimizing.

Lemma 4.3. Assume that outcomes y are binary and let
ℓ : [0, 1] × {0, 1} → R be a proper scoring rule. Fix a
parameter ε > 0. If a function f : X → [0, 1] satisfies the
following inequalities for all h ∈ H,

E(x,p,y)∼D(f)ℓ(p, y) ≤ Ex∼Dx,p∼f(x)
y∼Ber(p)

ℓ(p, y) + ε (6)

Ex∼Dx,p∼f(x)
y∼Ber(p)

ℓ(h(x), y) ≤ E(x,y)∼D(f)ℓ(h(x), y) + ε

then, f is 2ε-performatively stable with respect to H.

7
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Proof. The proof follows immediately from the indistin-
guishability conditions and the assumption that ℓ is a proper
loss. In particular, from the first condition we have that:

E(x,p,y)∼D(f)ℓ(p, y) ≤ Ex∼Dx,p∼f(x),y∼Ber(p)ℓ(p, y) + ε.

Next, the definition of a proper loss is that if y ∼ Ber(p),
every other h : X → [0, 1] must have at least as high a loss,

Ex∼Dx,p∼f(x),y∼Ber(p)ℓ(p, y) ≤
min
h∈H

Ex∼Dx,p∼f(x),y∼Ber(p)ℓ(h(x), y).

The result then follows from using the second assumption
which guarantees that for any h ∈ H,

Ex∼Dx,p∼f(x),y∼Ber(p)ℓ(h(x), y) ≤ (7)
E(x,y)∼D(f)ℓ(h(x), y) + ε.

Chaining all inequalities together, we get the 2ϵ bound.

The inequalities in the assumptions of the lemma are best
understood as a particular kind of loss outcome indistin-
guishability conditions (Gopalan et al., 2023). Recalling
our discussion from Section 2, one can think of the losses
ℓ(h(x), y) as a type of distinguisher Aℓ(x, h(x)). The
lemma shows that if f is a generative model of outcomes
that passes a class of tests defined by ℓ and H, then f is
performatively stable.

A similar condition had also been considered in the per-
formative prediction literature by Kim & Perdomo (2023).
The key conceptual difference is that (Kim & Perdomo,
2023) consider learning a model D̃y(x, p) that is indistin-
guishable from the true distribution map Dy(x, p) from the
perspective of a set of tests Aℓ,h (that depend on the set
of benchmark functions h and loss function ℓ). Informally,
D̃y(x, h(x)) ≈Aℓ,h

Dy(x, h(x)) for all (h, ℓ) in some set.

However, the indistinguishability conditions in Lemma 4.3
are with respect to a predictor f : X → ∆([0, 1]), not a
model of the distribution map Dy : X × [0, 1] → ∆([0, 1]).
They relate the performative risk to the expected risk where
outcomes are self-confirming and sampled from the model
proposed by f . Note that p ∼ f(x) and y ∼ Ber(p) on the
LHS of Equation (7). Stated again informally, these con-
ditions require that D̃y(x, f(x)) ≈Aℓ,h

f(x). Whereas the
indistinguishability criteria from (Kim & Perdomo, 2023)
yield performative optimality, ours yield performative sta-
bility. Hence, the takeaway message from this discussion is
that stability (not optimality) is the natural limit of deploying
online calibration algorithms in performative contexts.

The next result finishes the proof of Theorem 4.2. It es-
tablishes that the loss OI condition from Lemma 4.3 is
equivalent to performative multicalibration if we fix ℓ to be
the squared loss.

Lemma 4.4. If ℓ is the squared loss ℓ(p, y) = 1
2 (y − p)2,

then ∣∣E(x,p,y)∼D(f)ℓ(p, y)− Ex∼Dx,p∼f(x)
y∼Ber(p)

ℓ(p, y)
∣∣ ≤ ε∣∣Ex∼Dx,p∼f(x)

y∼Ber(p)

ℓ(h(x), y)− E(x,y)∼D(f)ℓ(h(x), y)
∣∣ ≤ ε

for all h ∈ H if and only if f is ε-performatively multi-
calibrated with respect to the functions, C = {c(x, p) =
p− 1/2} ∪ {c(x, p) = h(x)− 1/2 : h ∈ H}.

Theorem 4.2 follows directly from the last two lemmas.
Moreover, it also follows from Corollary 3.5 that one can
statistically and computationally efficiently find predictors
f that are performatively stable for important classes of
benchmark classes H by via an online-to-batch conversion.

These results strengthen our previous understanding of per-
formative stability. In the initial work on performative
prediction, stable predictors were only known to be effi-
ciently computable under strong regularity conditions on
the distribution map D(·) (Perdomo et al., 2020; Mendler-
Dünner et al., 2020; Drusvyatskiy & Xiao, 2023). Specifi-
cally, Dy(x, p) is assumed to be sufficiently Lipschitz in the
forecast p. This restriction rules out common settings where
decision makers choose actions that influence outcomes if
the forecast p is above or below some threshold. In educa-
tion, for instance, counselors at a school often assign extra
attention to students by examining whether their predicted
probabilities are below some fixed threshold (Perdomo et al.,
2023). This thresholding implies that the distribution map
is not Lipschitz.

To the best of our knowledge, all subsequent work in this
area also imposed some continuity restriction on D(·) to
prove that algorithms converged to stable points (e.g. (Khor-
sandi et al., 2024; Taori & Hashimoto, 2023)).6 Except for
the fact that y is binary, we establish convergence to stabil-
ity under essentially the weakest possible conditions for the
outcome performative setting since Dy(x, p) is unrestricted.

5. Suboptimality of Perfectly Calibrated
Performative Predictions

We end our work by showing how validity desiderata devel-
oped in supervised learning contexts (like calibration) fall
short in performative settings. For a predictor to be good,
it’s not enough for it to forecast outcomes accurately; it
needs to actively steer the data and make use of the fact that
f shapes D(f). In more detail, we establish the following
result.

6An exception to this is the recent paper by (Wang et al., 2025).
They show convergence to performative stability for a specific
multi-agent performative prediction problem.
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p

Pr[y = 1 | f(x) = p]

1

1

0

Figure 1. The distribution map in Theorem 5.1. The solid black
lines describe the probability that y = 1 given that the prediction is
equal to p. The blue dotted line indicates the probability that y = 1
if one deploys the randomized predictor fr that mixes between
1/2 with probability λ and 1/2 + ε with probability 1− λ for the
whole range of λ ∈ [0, 1]. Fixed points, ED(f)[y] = ED(f)[f(x)]
are those that cross the dotted, y = x, diagonal line.

Theorem 5.1. There exists a distribution map D(·), such
that for any ε > 0. There exists a randomized f such that
for all bounded functions c(x, p) that are continuous in p,∣∣E(x,p,y)∼D(f)[c(x, p)(y − p)]

∣∣ ≤ ε.

Furthermore, for any function, h : X → [0, 1],

E(x,p,y)∼D(f)(p− y)2 ≥ E(x,y)∼D(h)(y − h(x))2 −O(ε).

Hence, for any class of functions H ⊆ {X → [0, 1]}:

E(x,p,y)∼D(f)(p− y)2 ≥
max
h∈H

E(x,y)∼D(h)(y − h(x))2 −O(ε).

Proof. Consider the case where there are no features, and
the outcome y is binary. Since there are no features, we
define the distribution map to be Dy(x, p) = Pr[y = 1 |
p] = g(p) where g(p) = p + .01 if p ≤ .5 and p − .01 if
p > .5. We depict the distribution map visually in Figure 1.

Note that there is no determistic predictor fp = p such that
ED(fp)[y] = ED(fp)[fp] since ED(fp)[y] = g(p) and there
does not exist p ∈ [0, 1] such that g(p) = p. However, the
predictor fr that uniformly mixes between p1 = 1/2 and
p2 = 1/2 + α for some small α satisfies Ey∼D(fr)[y] =
Ep∼fr [p] for any α < .5. Hence, if we don’t impose continu-
ity assumptions on D, we need predictors to be randomized
to find solutions such that ED(f)[y − f(x)] = 0.Moreover,
given any continuous c : [0, 1] → [−1, 1],

Ey∼D(fr),p∼fr [c(p)(y − p)] =
.01

2

(
c(1/2)− c(1/2 + α)

)

By letting α go to 0, E(x,y)∼D(fr)[c(p)(y − p)] → 0 since
limα→0 c(1/2 + α) = c(1/2). This predictor fr which
uniformly mixes between 1/2 and 1/2 + ε also satisfies

Ey∼D(f),p∼f (y − p)2 = 1/4 +O(α)

since y is either 1 or 0 and p is always nearly 1/2. The
performative risk for this problem is a quadratic function
in p that is maximized at p = 1/2. Yet the performatively
optimal solutions are to predict either 0 or 1. For these, we
would have the best possible performative risk of .01.

This construction complements insights from a previous
result by Miller et al. (2021), who also showed how perfor-
matively stable models can maximize the performative risk.
Our result provides a different perspective by connecting
these notions of loss minimization (stability and optimality)
with notions of computational indistinguishability. Lastly,
we presented this construction where there are no features
for the sake of simplicity. However, one could extend it to
include features by redoing a similar conditional distribution
pointwise for every x ∈ X .

6. Discussion and Future Work
Prediction algorithms are now commonplace in important
social domains and performativity abounds. By shaping our
decision-making, these prediction algorithms influence the
outcomes we see. Drawing on a long intellectual history,
our work revisits core methodological questions regarding
the design and evaluation of predictors in these domains.

On the design side, we introduced new algorithms that can
overcome social feedback and produce rigorously calibrated
predictions of social events. These results resolve algorith-
mic questions left open by (Simon, 1954) and (Grunberg &
Modigliani, 1954). On the evaluation side, our contributions
are mostly conceptual. We illustrate how traditional desider-
ata imported from supervised learning— calibration and its
different variants — mean something quite different in these
performative contexts. These insights call into question the
utility and significance of public forecasts of social events
that stake their validity on calibration (Silver, 2019).

There are a number of interesting directions for future work
in this area. For one, we prove our results for the simplest
case of performative prediction: (stateless) outcome per-
formativity. It would be interesting to consider whether
these results carry over to richer, stateful domains where the
outcomes we see don’t just depend on the predictions we
make today, but also on the predictions we’ve made in the
past (Brown et al., 2022). It would also be valuable to fully
understand whethere these results carry over to the setting
where both feature and outcomes are performative.
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Hébert-Johnson, U., Kim, M., Reingold, O., and Rothblum,
G. Multicalibration: Calibration for the (computationally-
identifiable) masses. In International Conference on Ma-
chine Learning, 2018.

Kakade, S. M. and Foster, D. P. Deterministic calibration
and nash equilibrium. Journal of Computer and System
Sciences, 2008.

Khorsandi, P., Gupta, R., Mofakhami, M., Lacoste-Julien,
S., and Gidel, G. Tight lower bounds and improved
convergence in performative prediction. arXiv preprint,
2024.

Kim, M. P. and Perdomo, J. C. Making decisions under
outcome performativity. Innovations in Theoretical Com-
puter Science, 2023.

Lucas, R. E. Econometric policy evaluation: A critique. In
Carnegie-Rochester conference series on public policy,
1976.

MacKenzie, D. An engine, not a camera: How financial
models shape markets. MIT Press, 2008.

Mendler-Dünner, C., Perdomo, J., Zrnic, T., and Hardt, M.
Stochastic optimization for performative prediction. Ad-
vances in Neural Information Processing Systems, 2020.

Merton, R. K. The self-fulfilling prophecy. The Antioch
Review, 1948.

Miller, J. P., Perdomo, J. C., and Zrnic, T. Outside the
echo chamber: Optimizing the performative risk. In
International Conference on Machine Learning, 2021.

10



Revisiting the Predictability of Performative, Social Events

Mofakhami, M. Performative prediction: expanding theo-
retical horizons. 2024.

Mofakhami, M., Mitliagkas, I., and Gidel, G. Performa-
tive prediction with neural networks. In International
Conference on Artificial Intelligence and Statistics, 2023.

Morgenstern, O. Wirtschaftsprognose: Eine Untersuchung
ihrer Voraussetzungen und Möglichkeiten. Springer,
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A. The K29 Algorithm

The K29 Algorithm

Input: A kernel k : (X × [0, 1])2 → R

For t = 1, 2, . . .

1. Given history {(xi, pi, yi)}t−1
i=1 and current features xt define St : [0, 1] → R as

St(p) =

t−1∑
i=1

k((xt, p), (xi, pi))(yi − pi).

2. If St(1) ≥ 0 predict pt = 1. Else if St(0) ≤ 0 predict pt = 0.

3. Else, run binary search to return pt ∈ [0, 1] such that St(pt) = 0

Figure 2. At every round, the algorithm implicitly publishes a function ft : X → [0, 1] where predictions pt = f(xt) are chosen by
solving a simple optimization problem defined with respect to the history {(xi, pi, yi)}t−1

i=1 . For simplicity, we state the algorithm with
exact root finding. The main regret bound is still true, however, if one finds an approximate root |St(p)| ≤ 1/poly(t). It degrades by an
additive constant. The per round run time in Õ(t · time(k)) where time(k) is an upper bound on kernel evaluation.

For the sake of completeness, we provide a short overview of the K29 algorithm from (Vovk et al., 2005a;b). It is a simple,
kernel-based procedure that is hyperparameter free. It guarantees online multicalibration with respect to functions f in a
Reproducing Kernel Hilbert Space F . We summarize its main guarantee below:

Proposition A.1 ((Vovk et al., 2005a)). Let k((x, p), (x′, p′)) be a kernel that is continuous in p and let F be its associated
RKHS F with norm ∥ · ∥F . With probability 1, the predictions pt produced by the K29 algorithm in the online protocol
(Definition 3.1) result in a transcript {(xt, pt, yt)}Tt=1 satisfying,

∣∣ T∑
t=1

f(xt, pt)(yt − pt)
∣∣ ≤ ∥f∥F

√√√√ T∑
t=1

k((xt, pt)(xt, pt))(yt − pt)2

Proof. The proof uses basic facts about RKHS. By the reproducing property, function evaluation in the RKHS can be
written as an inner product, f(x, p) = ⟨f,Φ(x, p)⟩F , where Φ : X × [0, 1] → F is the feature map for the RKHS and f is
an element in F . Using linearity of inner products and Cauchy-Schwarz,

∣∣ T∑
t=1

f(xt, pt)(yt − pt)
∣∣ = ∣∣ T∑

t=1

⟨f,Φ(xt, pt)⟩F (yt − pt)
∣∣

=
∣∣⟨f, T∑

t=1

Φ(xt, pt)(yt − pt)⟩F
∣∣ ≤ ∥f∥F∥

T∑
t=1

Φ(xt, pt)(yt − pt)∥F . (8)

We now focus on bounding ∥
∑T

t=1 Φ(xt, pt)(yt − pt)∥F . By construction, the K29 algorithm always chooses a prediction
pt such that:

sup
y∈[0,1]

⟨(y − pt)Φ(xt, pt),

t−1∑
i=1

Φ(xi, pi)(yi − pi)⟩F = sup
y∈[0,1]

(y − pt)St(pt) ≤ 0 (9)

Here, we used the fact that kernels represent inner products, k((x, p), (x′, p′)) = ⟨Φ(x, p),Φ(x′, p′)⟩ to do the rewriting. To
see why Equation (9) holds, note that if St(1) ≥ 0 then (y − 1)St(1) ≤ 0 for all y ∈ [0, 1]. An analogous fact holds for the
case where St(0) ≤ 0. If neither of these is true, then St(1) and St(0) have opposite signs, and binary search returns a pt

12
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such that St(pt) = 0 (which exists by continuity of the kernel). Next, we show that,

∥
T∑

t=1

Φ(xt, pt)(yt − pt)∥2F ≤
∑
t=1

∥Φ(xt, pt)(yt − pt)∥2F = k((xt, pt), (xt, pt))(yt − pt)
2 (10)

This follows by induction on the partial sums Vt = ∥
∑t

i=1 vi∥2F , for vi = Φ(xi, pi)(yi − pi),

Vt+1 = ∥
t∑

i=1

vi + vt+1∥2F = ∥
t∑

i=1

vi∥2F + ∥vt+1∥2F + 2⟨
t∑

i=1

vi, vt+1⟩F ≤ Vt + ∥vt+1∥2F .

Here, we used Equation (9) to upper bound the cross term above. The result follows by taking square roots on either side of
Equation (10) and plugging the upper bound into Equation (8).

To apply the algorithm to specific function classes H, the only remaining todo is to show how to construct kernels k with
corresponding RKHS F such that H ⊆ F and to show that both kernel evaluations k((x, p), (x, p)) and function norms
∥h∥F are uniformly bounded. This yields the O(

√
T ) regret bound. See (Dwork et al., 2025) for examples on how to do

this for common function classes.

B. Deferred Proofs
B.1. Proof of Theorem 3.4

Proof. The proof follows the typical template of online to batch conversions, with the modification that we now draw
samples from D(·) rather than a static distribution D.

Let {xi, yi, fi, pi}ni=1 be the sequence of random variables generated in the n-round interaction (online to batch conversion)
where fi is chosen by the online algorithm A as a function of {xs, ys, fs, ps}i−1

s=1, and the data at round i is generated from
sampling process xi ∼ Dx, pi = fi(xi), yi ∼ Dy(xi, pi). By definition of fA and the outcome performavity assumption on
D(·),

E(x,p,y)∼D(fA)c(x, p)(p− y) =

n∑
i=1

E(x,pi,y)∼D(fi)[c(x, pi)(pi − y) | fA = fi] · Pr[fA = fi]

=
1

n

n∑
i=1

E x∼Dx,
y∼Dy(x,fi(x))

[c(x, fi(x))(fi(x)− y) | fA = fi], (11)

where fi is again the predictor chosen by the online learning algorithm at round i (which is measurable with respect to
πi−1 = {(xj , yj , pj , fj)}i−1

j=1) and pi = fi(x). Now, consider the following stochastic process (Vi)
n
i=0,

Vi = Vi−1 + E(x,pi,y)∼D(fi)[c(x, p)(p− y) | fA = fi, πi−1]− c(xi, pi)(pi − yi).

This is a martingale since Vi is a function of πi and

E[c(xi, pi)(pi − yi) | πi−1] = E(x,pi,y)∼D(fi)[c(x, p)(p− y) | fA = fi, πi−1].

By assumption, |c(x, p)(p − y)| ≤ 1 for any (x, y, p). Hence, the increments lie in [-2,2]. Using the Azuma-Hoeffding
inequality, with probability 1− δ:

|Vn| =
∣∣ n∑
i=1

E(x,y)∼D(fi),p∼fi(x)[c(x, p)(p− y) | fA = fi, πi−1]− c(xi, pi)(pi − yi)
∣∣ ≤ √

8n log(2/δ).

The above holds for a specific c and we can have it hold for all c ∈ C via a union bound. Now using the triangle inequality
and our identity from Equation (11) we get that:∣∣E(x,y)∼D(fA),p∼fA(x)c(x, p)(p− y)

∣∣ ≤ ∣∣ 1
n

n∑
i=1

c(xi, pi)(pi − yi)
∣∣+ 4

√
log(|C|) + log(1/δ)

n

for all c ∈ C. The result follows by upper bounding the first term on the right hand side by the regret bound on the online
algorithm.

13
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B.2. Proof of Corollary 3.5

Proof of a) Consider the kernel,

k((x, p), (x′, p′)) =
∑
c∈C

c(x, p)c(x′, p′).

For any (x, p), k((x, p), (x, p)) ≤ |C| since c(x, p) ∈ [−1, 1]. Furthermore, the kernel is continuous in p since all the
functions c are assumed to be continuous in p. By the Moore–Aronszajn theorem, k has an RKHS F such that c ∈ F for all
c ∈ C. Furthermore, ∥c∥ ≤ 1. Therefore, by Proposition A.1, the K29 algorithm guarantees online multicalibration with
respect to all c ∈ C with regret bounded by

√
T · |C|. Note that the kernel can be evaluated in time O(|C|).

Proof of b) It is a well-known fact that the linear kernel k((x, p), (x′, p′)) = ⟨x, x′⟩+ pp′ has an reproducing kernel Hilbert
space Fk ⊆ {X × [0, 1] → R} containing all linear functions c(x, p) = ⟨x, θ⟩+ b · p. Moreover, the squared norm of these
functions in the RKHS is equal to ∥θ∥22 + p.

Therefore, Proposition A.1 guarantees that the K29 algorithm instantiated with this linear kernel is online multicalibrated
with respect to C ⊆ Fk at rate

√
2T . Since the kernel takes O(d) time to evaluate, the per-round runtime of the algorithm is

at most O(t · d).

Proof of c) The regret bound follows from the analysis in Corollary 3.3 from (Dwork et al., 2025) which provides an explicit
choice of kernel such that the AnyKernel or K29 algorithms are guarantee online outcome indistinguishable with respect
to all degree s polynomial functions C at rate bounded by 10

√
ds · T . The (ANOVA) kernel in this construction can be

computed in time at most O(d · s) (Shawe-Taylor & Cristianini, 2004), hence the bound on the runtime.

B.3. Proof of Lemma 4.4

Proof. Expanding out the first term on the left-hand side,

E(x,p,y)∼D(f)ℓ(p, y) = Ex∼Dx,p∼f(x),y∼Dy(x,p)(ℓ(p, 1)− ℓ(p, 0))y + ℓ(p, 0).

Furthermore,

Ex∼Dx,p∼f(x)
y∼Ber(p)

ℓ(p, y) = Ex∼Dx,p∼f(x)[(ℓ(p, 1)− ℓ(p, 0))Ey∼Ber(p)[y | p] + ℓ(p, 0)]

= Ex∼Dx,p∼f(x)[(ℓ(p, 1)− ℓ(p, 0))p+ ℓ(p, 0)].

Combining these two equations with the observation that for squared loss, ℓ(p, 1)− ℓ(p, 0) = 1/2− p, we get that:

Ex∼Dx,p∼f(x),y∼Dy(x,p)ℓ(p, y)− Ex∼D(f),p∼f(x)
y∼Ber(p)

ℓ(p, y) = Ex∼Dx,p∼f(x),y∼Dy(x,p)[(ℓ(p, 1)− ℓ(p, 0))(y − p)]

= Ex∼Dx,p∼f(x),y∼Dy(x,p)[(−p+ 1/2)(y − p)].

An identical argument shows that, given any h : X → [0, 1],

Ex∼Dx,p∼f(x)
y∼Ber(p)

ℓ(h(x), y)− E(x,y)∼D(f)ℓ(h(x), y) = Ex∼Dx,p∼f(x),y∼Dy(x,p)[(−h(x) + 1/2)(y − p)].

Taking absolute values, we see that these conditions are exactly equal to the requirement that f is performatively multi-
calibrated with respect to the functions c(x, p) = p− 1/2 and ch(x, p) = h(x)− 1/2.
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