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FROM INPAINTING TO EDITING:
A SELF-BOOTSTRAPPING PARADIGM FOR CONTEXT-
RICH VISUAL DUBBING

Anonymous authors
Paper under double-blind review

Occlusions & Lighting Dynamics RobustnessDurable Identity Preservation

Mask-Inpainting Dubbing

Versatile Visual Style

Context-Rich Dubbing
(Ours)

Audio-visual Synchronization 

Figure 1: Moving beyond mask-inpainting, X-Dub redefines visual dubbing as context-rich, full-
reference video-to-video editing, which yields precise lip sync and faithful identity preservation,
even in challenging scenarios with occlusions and dynamic lighting.

ABSTRACT

Audio-driven visual dubbing aims to synchronize a video’s lip movements with
new speech, but is fundamentally challenged by the lack of real-world paired
training data. Existing methods circumvent this with a mask-based inpainting
paradigm, where incomplete context forces models to simultaneously halluci-
nate missing content (e.g., occlusions) and sync lips, leading to visual artifacts,
identity drift, and poor synchronization. In this work, we propose a novel self-
bootstrapping paradigm that reframes visual dubbing from an under-specified in-
painting task into a well-conditioned video-to-video editing problem. Our ap-
proach utilizes a Diffusion Transformer to first generate its own ideal training
data: a lip-altered companion video for each sample, forming a context-rich pair
with the original. An editor is then trained on these pairs, leveraging the complete
and aligned video context to focus solely on precise, audio-driven lip modifica-
tions. This context-rich conditioning allows our method to achieve state-of-the-
art performance, yielding highly accurate lip sync, faithful identity preservation,
and exceptional robustness against challenging in-the-wild scenarios like occlu-
sions and dynamic lighting. We further introduce a timestep-adaptive multi-phase
learning strategy that aligns diffusion stages with visual hierarchies, significantly
enhancing contextual learning and dubbing quality. Additionally, we propose
ContextDubBench, a comprehensive benchmark dataset for robust evaluation in
diverse and challenging practical application scenarios. Our visualizations are
available at the anonymous page x-dub-lab.github.io, and code will be released to
benefit the community.
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1 INTRODUCTION

Audio-driven visual dubbing edits pre-recorded talking-head videos to synchronize lip movements
with new speech (KR et al., 2019). Unlike audio-driven animation (Tian et al., 2024; Cui et al.,
2024a), which generates entire videos from scratch, dubbing is fundamentally an editing task: it
modifies only the speech-relevant regions while preserving identity and other visual cues from
the original video. This uniqueness underpins dubbing’s broad applications, from personalized
avatars (Thies et al., 2020) to multilingual film translation (Prajwal et al., 2020). Meanwhile, the
recent rise of Diffusion Transformers (DiTs) (Peebles & Xie, 2023) has demonstrated their remark-
able contextual generation capability in text-to-video (T2V) and image-to-video (I2V) tasks, making
them natural candidates for high-fidelity visual dubbing. Yet dubbing presents a distinctive chal-
lenge. As a video-to-video task, it requires paired training data where lip movements differ while
identity, pose, and environment remain unchanged, which is virtually unattainable in the real world.

To bypass the lack of paired data, existing approaches adopt a self-reconstruction paradigm: they
mask the mouth region in a video and train a model to inpaint it conditioned on the corresponding
audio and sparse reference frames (Prajwal et al., 2020). However, this yields an under-specified and
mismatched context. The model must not only precisely modify lip movements for synchronization,
but also hallucinate missing visual information (e.g., facial occlusions) while extracting identity
features from reference frames that often exhibit misaligned poses or inconsistent scenes. This
divided attention increases learning difficulty and thus commonly leads to lip-sync degradation,
which is also exacerbated by mask-boundary lip-shape leakage and weak audio conditioning (Wang
et al., 2023; Bigata et al., 2025; Chen et al., 2025). Meanwhile, this dual burden typically induces
identity drift and visual artifacts (Zhong et al., 2023; Peng et al., 2025). Ultimately, these failures
reveal a fundamental disconnect: the training paradigm forces the model to work with incomplete
context, preventing it from leveraging the complete video context yet available during inference.
In contrast, DiT excels at I2V animation precisely because training and inference share identical
contextual settings with naturally paired data. Thus, we argue that the bottleneck in dubbing lies not
in the model architecture, but in the training paradigm’s failure to provide suitable contextual data.

We therefore introduce a new perspective: Instead of waiting for ideal data pairs, we let the model
generate them for itself. To this end, we present X-Dub, a framework built upon a novel self-
bootstrapping paradigm for context-rich dubbing. Here, a powerful DiT backbone both produces
and benefits from its own generated, context-rich video pairs: a DiT-based generator first creates a
lip-altered video for each training sample. This synthetic-original pair provides ideal training data
with consistent pose and identity, varying solely in lip movements. A subsequent DiT-based editor
then learns dubbing directly from these paired videos, leveraging the rich context they provide. In
this way, we transform dubbing from an under-specified inpainting task into a well-conditioned
editing problem guided by complete and aligned contextual input.

Concretely, the generator is trained with a reconstruction objective on large-scale audiovisual data,
adopting a conventional masking setup. It functions not as a direct dubbing solver but as a contextual
condition synthesizer, whose outputs serve as conditional inputs rather than supervision targets to
prevent artifact learning. This design allows us to optimize for identity preservation and spatiotem-
poral robustness by sacrificing secondary factors like lip-sync accuracy and generalizability, creating
a more reliable contextual condition provider. These paired conditions, though imperfect, provide
substantially richer contextual information than raw single reference frames. Consequently, the edi-
tor faces a significantly simplified task: it can dedicate its full capacity to precise speech-driven lip
editing while seamlessly inheriting identity and visual details from the contextual input, ultimately
achieving superior lip-sync accuracy, identity preservation, and robustness to visual variations.

This paradigm reframes visual dubbing as targeted editing, i.e., precisely modifying lip movements
while preserving global layouts and fine-grained textures for visual consistency. This naturally ben-
efits from progressive learning with specialized supervision for different information types, rather
than a monolithic approach. We therefore introduce a timestep-adaptive multi-phase learning
strategy with LoRA experts, leveraging the inherent tendency of diffusion models to capture distinct
information levels at different timesteps (Zhang et al., 2025; Wang et al., 2025). By aligning early,
mid, and late diffusion stages with global structure, lip shape, and texture refinement respectively,
the model learns complementary objectives at their most effective phases, thereby strengthening lip
sync while better maintaining visual consistency.
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Finally, we note that existing visual dubbing benchmarks (Afouras et al., 2018; Zhang et al., 2021)
are confined to controlled settings with limited motion and diversity, insufficient for evaluating ro-
bustness in realistic scenarios. We therefore introduce ContextDubBench, a benchmark built from
both real-world footage and advanced generative content, encompassing varied motions, environ-
ments, styles, and subjects to enable comprehensive evaluation under complex dubbing conditions.

In summary, our contributions are: 1) We propose a self-bootstrapping dubbing paradigm that
leverages DiT both as a generator of context-rich paired input and as an editor trained on them,
transforming dubbing from an under-specified inpainting task into a well-conditioned video-to-video
editing problem. 2) We propose a timestep-adaptive multi-phase learning strategy that disentan-
gles visual information learning across diffusion timesteps, facilitating more effective contextual
learning and yielding enhanced lip-sync quality and visual coherence. 3) We construct and release
ContextDubBench, a benchmark for evaluating dubbing models in complex real-world and gen-
erative scenarios. 4) Extensive experiments demonstrate that our method achieves remarkable im-
provements across all metrics, significantly outperforming existing approaches with more accurate
lip sync, superior identity preservation, and exceptional robustness to spatiotemporal variations.

2 RELATED WORK

Visual dubbing. Early visual dubbing methods leverage GANs (Goodfellow et al., 2014) for mask-
based inpainting. LipGAN (KR et al., 2019) pioneers this direction with reference-guided synthesis,
while Wav2Lip (Prajwal et al., 2020) improves lip sync through SyncNet (Chung & Zisserman,
2016). Subsequent works extend this paradigm: VideoReTalking (Cheng et al., 2022) introduces
canonical references to mitigate expression bias, DINet (Zhang et al., 2023) enables high-resolution
synthesis via deformation inpainting, and TalkLip (Wang et al., 2023) enhances lip intelligibility
using AV-HuBERT (Shi et al., 2022). IP-LAP (Zhong et al., 2023) and StyleSync (Guan et al.,
2023) further strengthen identity preservation through landmark- and style-aware optimization.

Recent diffusion-based approaches also exhibit advanced performance. DiffTalk (Shen et al.,
2023) and Diff2Lip (Mukhopadhyay et al., 2024) demonstrate the feasibility of diffusion, while
MuseTalk (Zhang et al., 2024) achieves real-time synthesis by combining latent diffusion with ad-
versarial training. LatentSync (Li et al., 2024) adapts pre-trained diffusion models with temporal
supervision to improve stability. Nevertheless, these methods largely follow a self-reconstruction
paradigm based on masked frames and sparse references, which limits contextual richness. By con-
trast, our approach introduces a contextual conditioning paradigm, where paired videos provide
informative context, allowing the model to focus on accurate lip editing with stronger stability.

Audio-driven portrait animation. Another related line of work is audio-driven portrait animation,
which generates talking videos from still images or text prompts. Recent DiT-based models achieve
expressive talking-head (Tian et al., 2024; Cui et al., 2024a), half-body (Cui et al., 2024b; Meng
et al., 2025), and full-body results (Wang et al., 2025; Lin et al., 2025). These works demonstrate the
power of DiTs for human-centric generation in I2V or T2V paradigms. Visual dubbing instead is a
stricter video-to-video editing task: it requires precise speech-driven modifications while preserving
other visual cues, enabling seamless integration into recorded videos.

3 OUR APPROACH

As illustrated in Fig. 2, we establish a self-bootstrapping dubbing framework where a DiT model
both generates contextual video pairs and learns dubbing from them, thereby reframing dubbing
from an under-specified inpainting problem into a well-conditioned video-to-video editing task. We
first present the DiT-based generator, trained with a mask-based self-reconstruction objective to
synthesize lip-varied companion videos that serve purely as contextual inputs (Sec. 3.1). To ensure
these pairs provide stable and reliable conditions, we introduce principled construction strategies
that prioritize identity preservation and robustness over secondary lip accuracy and generalization
(Sec. 3.1.2). On top of such curated contextual pairs, the DiT-based editor learns mask-free dubbing
as context-driven editing, achieving accurate lip sync, faithful identity retention, and resilience to
pose and occlusion variations (Sec. 3.2). Finally, we propose a timestep-adaptive multi-phase learn-
ing scheme (Sec. 3.3) that aligns diffusion stages with complementary objectives—structure, lips,
and textures—thereby amplifying contextual learning and further enhancing dubbing quality.

3
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3.1 Contextual Data Construction
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Figure 2: Overview of X-Dub, our self-bootstrapping dubbing framework. At its core, our
paradigm employs a DiT generator to create a lip-altered counterpart for each video, forming a
context-rich pair with the original (left). A DiT editor then learns mask-free, video-to-video dub-
bing directly from these ideal pairs, leveraging the complete visual context to ensure accurate lip
sync and identity preservation (middle). This contextual learning is further refined by our timestep-
adaptive multi-phase learning (right), which aligns different diffusion stages with learning distinct
information: global structure, lip movements, and texture details, respectively.

DiT backbone. Our DiT backbone follows the latent diffusion paradigm with a 3D VAE for video
compression and a DiT for token sequence modeling (Peebles & Xie, 2023). Each DiT block com-
bines 2D spatial and 3D spatio-temporal self-attention with cross-attention for external conditions.

3.1 GENERATOR: CONTEXTUAL CONDITION CONSTRUCTOR

3.1.1 NAÏVE MASK DUBBING
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Figure 3: Conditioning mechanisms
for our DiT backbone. Reference con-
ditions (contextual video for editor; sin-
gle frame for generator) and the target
video are concatenated into a unified se-
quence for 3D self-attention. Audio fea-
tures are injected via cross-attention.

We implement the DiT-based generator under a mask-
based self-reconstruction scheme following prior dub-
bing methods. Given a target video Vtgt with audio atgt,
we apply a facial mask M and reconstruct masked re-
gions V̂tgt conditioned on atgt and a reference frame Iref.

Although this setup yields imperfect dubbing outputs,
the generator is not designed to solve dubbing directly,
but solely to synthesize companion videos as contextual
inputs for the editor in our paradigm. By embedding lip
variations into otherwise consistent frames, the gener-
ator transforms sparse inpainting contexts into aligned
video pairs far stronger than static reference frames.

Conditioning mechanisms. As shown in Fig. 3, masked
and target frames are encoded by a VAE into zmask, ztgt ∈
Rb×f×c×h×w, and the reference frame into zref ∈ Rb×c×h×w. We concatenate zmask with noised
ztgt channel-wise, and zero-pad zref for channel alignment. Concatenating across frames yields the
unified DiT input zin =

[
[zmask, ztgt]ch, [0, zref]ch

]
fr, which enables interaction between video and

reference tokens via 3D self-attention. Whisper (Radford et al., 2021b) features are injected through
cross-attention as audio condition. To extend generation to long videos, we use motion frames (Tian
et al., 2024): each segment is conditioned on the last frames of the previous one. During training,
the first m = 2 frames of ztgt remain unnoised as motion guidance. Conditional dropout (50%)
handles the absence of prior frames in initial segments.
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Training objective. We adopt a flow-matching loss LFM (details in Sec. B.1), weighted by face and
lip masks M ,Mlip from DWPose (Yang et al., 2023) via element-wise multiplication (⊙):

LwFM = (1 + λM + λlipMlip)⊙ LFM. (1)

Trained in this manner, the generator produces a synthetic companion video V ′ for each real clip
V by replacing its original audio a with an alternative a′, yielding contextual pairs (V ′,V ). Here,
V ′ serves solely as the conditional input for the editor.

3.1.2 PRINCIPLED PAIR CONSTRUCTION STRATEGIES

Plain mask-based dubbing inevitably yields imperfect results. We therefore design explicit trade-off
strategies to ensure that synthetic companions, while not flawless, provide reliable contextual inputs,
turning the generator transform from a Naı̈ve dubbber to a reliable contextual condition provider.

To this end, we establish three guiding principles: 1) In-domain quality over generalization. The
generator should focus on fidelity within the training distribution rather than broad generalization.
2) Visual consistency under variation. Companion videos must maintain identity and remain
robust to pose, occlusion, and illumination changes. 3) Lip variation over accuracy. Lip shapes in
V ′ should differ from V to avoid leakage, while tolerating moderate lip-sync inaccuracies.

Accordingly, we implement several strategies. First, we leverage short-term visual stationarity by
processing videos in brief segments where pose and scene remain relatively stable. Intra-segment
reference frames at inference then provide roughly aligned visual context, with motion frames con-
necting segments into complete videos. While lip accuracy may degrade across segment boundaries,
this trade-off favors visual consistency as intended. We also sample alternative audio a′ from the
same speaker as V to reduce cross-identity conflicts and apply extended training beyond nominal
convergence to improve identity preservation and lip sync.

To enhance robustness to diverse variations, we incorporate complementary techniques. We handle
occlusions by annotating and excluding facial occluders from inpainting areas, enabling the gen-
erator to be more robust to occlusion scenarios. For lighting augmentation, we apply identical
relighting to both V and V ′ in uniformly-lit videos to construct pairs with consistent lighting dy-
namics. We also perform quality filtering using landmark distance and identity similarity metrics to
ensure sufficient lip divergence while preserving identity, and supplement with 3D-rendered data
for perfectly aligned pairs. Implementation details are in Sec. B.3.

Together, these principles ensure the generator produces contextual pairs that, though not perfect,
consistently provide strong and reliable conditions for the editor.

3.2 EDITOR: CONTEXT-DRIVEN VIDEO-TO-VIDEO DUBBER

Given curated pairs (V ′,V ), we train a DiT-based editor for mask-free dubbing. Unlike the gen-
erator, the editor tackles dubbing directly: given audio a and the companion video V ′, it learns
to produce V as the target, thereby transforming dubbing from a sparse inpainting problem into
context-driven editing. In practice, the editor surpasses the generator across lip accuracy, identity
preservation, and robustness, benefiting from the rich contextual input provided by the paired videos.

Contextual conditioning mechanisms. As shown in Fig. 3, the paired reference and target videos
are encoded as latents zref, ztgt ∈ Rb×f×c×h×w. The diffused ztgt is then concatenated with clean
zref across frames, forming zin ∈ Rb×2f×c×h×w. Patchifying this sequence enables contextual in-
teraction via 3D self-attention, minimally altering the DiT backbone while fully exploiting its con-
textual modeling capacity. Audio features and motion frames are integrated identically to Sec. 3.1.

3.3 TIMESTEP-ADAPTIVE MULTI-PHASE LEARNING WITH LORA EXPERTS

While contextual pairs significantly simplify dubbing, training the editor must still balance global
structure, precise lip sync, and fine-grained identity. Diffusion models exhibit stage-wise specializa-
tion across timesteps (Zhang et al., 2025; Wang et al., 2025), motivating us to introduce a timestep-
adaptive multi-phase scheme, where different noise regions target complementary objectives.

5
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Phase partitioning. Following Esser et al. (2024), we shift the timestep sampling distribution to
concentrate on different noise levels for each training phase:

tshift =
αtorig

1 + (α− 1)torig
, (2)

where torig is logit-normal and α sets the shift strength. This yields: 1) high-noise steps for global
structure and motion, including background layout, head pose, and coarse identity; 2) mid-noise
steps for lip movements; 3) low-noise steps for texture refinement concerning identity details.

High-noise full training. We first train the editor under the high-noise distribution with full-
parameter optimization. This setting not only facilitates convergence and improves generation qual-
ity (Esser et al., 2024), but also encourages the model to learn global structures effectively, thus
seamlessly transferring background, head pose, overall identity, and other spatiotemporal dynamics
from reference contexts while achieving preliminary lip sync. The objective is the same mask-
weighted flow-matching loss LwFM as in Eq. 1.

Mid- and low-noise tuning with LoRA experts. We then attach lightweight LoRA modules for
mid- and low-noise phases. Since pixel-level constraints are needed, we design a single-step denois-
ing strategy to avoid computational overhead during training:

x̂0 = D(z0 + (v − v̂) ·min{t, tthres}), (3)

where tthres ensures stable denoising at high noise levels (see Sec. B.5 for detailed derivation).

The lip expert operates at mid-noise, supervised by an additional lip-sync loss Lsync using Sync-
Net (Chung & Zisserman, 2016) for audio-visual alignment. The texture expert works at low-noise
with identity loss Lid computed against references using ArcFace (Deng et al., 2019) and CLIP (Rad-
ford et al., 2021a) features. To avoid hurting sync, we randomly disable audio cross-attention (prob-
ability 0.5) during texture tuning, computing texture supervision only under silent conditions.

During inference, we manually activate each LoRA within its optimal timestep range: texture expert
for t ∈ (0, 0.3) and lip expert for t ∈ (0.4, 0.6), ensuring each contributes where most effective.

4 EXPERIMENTS

Benchmark. To evaluate visual dubbing in practical settings, we construct ContextDubBench, a
challenging benchmark of 440 video-audio pairs combining real-world and AI-generated content.
Videos feature challenging scenarios like profile views, pose shifts, occlusions, and stylized appear-
ances, while audio includes speech and singing across six languages. Unlike existing controlled-
environment datasets, it enables evaluation under complex, realistic conditions, as detailed in Sec. D.

Evaluation metrics. We evaluate generation quality using PSNR, SSIM, Fréchet Inception Distance
(FID) for spatial quality, and Fréchet Video Distance (FVD) for temporal consistency. Lip-sync
quality is measured by landmark distance (LMD) and SyncNet confidence (Sync-C). Identity preser-
vation is assessed through cosine similarity of ArcFace embeddings (CSIM), CLIP score (CLIPS)
for semantic features, and LPIPS for perceptual similarity.

For the more challenging ContextDubBench, we additionally report no-reference perceptual qual-
ity metrics, including Natural Image Quality Evaluator (NIQE), Blind/Referenceless Image Spatial
Quality Evaluator (BRISQUE), and HyperIQA (Su et al., 2020). We also report the overall suc-
cess rate across all 440 video samples, with failed or entirely unsynchronized generations manually
excluded. This metric is crucial for practical dubbing scenarios, as traditional methods often fail
completely under visual challenges like stylized characters, occlusions, or extreme poses.

4.1 QUANTITATIVE EVALUATION

We evaluate our editor on both HDTF (Zhang et al., 2021) and ContextDubBench, comparing
against state-of-the-art methods including Wav2Lip (Prajwal et al., 2020), VideoReTalking (Cheng
et al., 2022), TalkLip (Wang et al., 2023), IP-LAP (Zhong et al., 2023), Diff2Lip (Mukhopadhyay
et al., 2024), MuseTalk (Zhang et al., 2024), and LatentSync (Li et al., 2024). We also re-implement
a generalizable variant of our generator, denoted as generator∗, by removing data-creation-specific

6
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Table 1: Quantitative results on HDTF. Top three are highlighted as first , second , and third .
HDTF Dataset

Visual Quality Lip Sync Identity
Method PSNR ↑ SSIM ↑ FID ↓ FVD ↓ Sync-C ↑ LMD ↓ LPIPS ↓ CSIM ↑ CLIPS ↑
Wav2Lip 27.412 0.851 15.475 530.905 7.663 0.896 0.078 0.807 0.842
VideoReTalking 25.189 0.844 11.303 327.886 7.482 1.170 0.056 0.745 0.808
TalkLip 27.024 0.850 17.315 564.307 5.887 0.858 0.060 0.804 0.855
IP-LAP 28.571 0.860 9.026 352.403 5.199 0.934 0.041 0.840 0.899
Diff2Lip 28.716 0.860 12.251 348.290 7.897 0.911 0.036 0.790 0.876
MuseTalk 29.542 0.866 8.123 258.236 6.409 0.741 0.029 0.824 0.884
LatentSync 31.325 0.903 8.042 235.524 8.163 0.821 0.024 0.847 0.902

Ours-generator∗ 34.253 0.914 7.873 172.520 8.045 0.670 0.018 0.855 0.917
Ours-editor 34.425 0.934 7.031 176.630 8.562 0.630 0.014 0.883 0.923

Table 2: Quantitative results on ContextDubBench. “Ref.” is short for reference.
FreeSyncBench

Visual Quality (Ref.) Visual Quality (No Ref.) Lip Sync Identity Generation
Method FID ↓ FVD ↓ NIQE ↓ BRISQUE ↓ HyperIQA ↑ Sync-C ↑ CSIM ↑ CLIPS ↑ Sucess Rate ↑
Wav2Lip 19.330 631.589 6.908 48.397 35.667 5.087 0.738 0.805 62.95%
VideoReTalking 17.535 341.951 6.392 43.112 44.826 5.126 0.684 0.793 59.09%
TalkLip 21.262 550.658 6.284 38.990 34.311 3.213 0.739 0.724 70.45%
IP-LAP 14.891 328.728 6.576 44.879 38.059 2.292 0.797 0.809 57.73%
Diff2Lip 17.126 378.527 6.554 44.059 36.872 4.702 0.705 0.799 71.82%
MuseTalk 17.519 294.312 6.552 43.778 42.335 2.205 0.672 0.753 60.00%
LatentSync 13.602 265.057 6.113 39.154 41.654 6.282 0.801 0.812 59.77%

Ours-generator∗ 10.824 224.893 5.920 36.840 48.120 6.514 0.814 0.818 66.05%
Ours-editor 9.351 214.298 5.782 29.870 51.960 7.282 0.850 0.839 96.36%

constraints and aligning its setup with the editor. This allows a fair comparison between traditional
inpainting and our context-rich editing dubbing, isolating paradigm gains from backbone capacity.

Quantitative results in Tab. 1 and 2 show that our editor sets a new state of the art. On HDTF, it
achieves superior visual quality (FID –12.6%, FVD –25.0%), stronger lip sync (Sync-C +4.9%),
and improved identity retention (CSIM +4.3%) over the best prior method. On the more challenging
ContextDubBench, the advantages are even more pronounced: our model delivers better visual qual-
ity (NIQE 5.78 vs 6.11, BRISQUE 29.9 vs 39.2), higher lip–audio consistency (Sync-C +16.0%),
and stronger identity preservation (CSIM +6.1%). Remarkably, it attains a success rate of 96.4%,
exceeding the strongest baseline by over 24 points, while most prior methods remain around only
60–70%. This large margin underscores the robustness and practical reliability of our approach in
diverse and unconstrained scenarios, as the paired contextual inputs supply complete identity and
spatiotemporal cues that allow the model to generalize beyond controlled settings.

Interestingly, our generator∗ already surpasses prior methods on HDTF, with clear gains in identity
preservation (CLIPS +1.7%) and visual quality (FVD –26.8%). This highlights the strong gen-
erative capacity of the DiT backbone and its potential as a contextual synthesizer under tailored
principles. More importantly, when trained on synthetic contextual pairs, our editor achieves further
improvements (CSIM +3.3%, Sync-C +6.4%, and LPIPS –22.2%) while maintaining comparable
FVD. These results demonstrate the effectiveness of our self-bootstrapping paradigm: the backbone
not only generates paired data but also benefits from it, enabling stronger mask-free dubbing.

To further examine the self-bootstrapping effect, we evaluate the generator tailored for data con-
struction. We sampled 20 synthetic pairs unseen during editor training, compared with the editor’s
outputs from the same inputs. As shown in Tab. 4, the editor consistently outperforms the con-
structed pairs in lip sync and visual quality. Notably, it even achieves stronger identity consistency
than the training pairs. We attribute this to the fact that slight mismatches in synthetic companions,
especially in fine-grained identity details, behave as speech-irrelevant noise that is suppressed dur-
ing training. Meanwhile, the editor benefits far more from the rich, frame-aligned contextual signals
than it is harmed by such noise, resulting in higher identity fidelity and stronger robustness.
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Figure 4: Qualitative comparisons across diverse scenarios. Lip-sync errors are marked with yel-
low, visual artifacts with blue, and lip leakage during silence with red. “ERROR” indicates runtime
failure from missing 3DMM or landmarks despite best efforts. Our method exhibits robust perfor-
mance with superior lip accuracy and identity consistency. Please üzoom in for details.

Table 3: User study results of MOS with 95% confi-
dence intervals.
Method Realism ↑ Lip Sync ↑ Identity ↑ Overall ↑
Wav2Lip 2.56±0.11 2.80±0.13 3.07±0.14 2.35±0.10
VideoReTalking 3.00±0.09 3.09±0.11 3.58±0.09 3.22±0.11
TalkLip 2.59±0.13 2.08±0.11 3.06±0.11 2.73±0.11
IP-LAP 2.74±0.09 2.49±0.11 3.62±0.11 3.09±0.11
Diff2Lip 2.63±0.11 2.91±0.13 3.22±0.13 2.62±0.12
MuseTalk 2.45±0.10 2.35±0.11 2.98±0.14 2.49±0.11
LatentSync 2.91±0.11 2.81±0.12 3.62±0.11 3.16±0.13
Ours-generator∗ 4.28±0.07 3.87±0.09 4.02±0.12 4.48±0.08
Ours-editor 4.40±0.06 4.50±0.06 4.40±0.07 4.66±0.05

Table 4: Our editor vs. constructed data.
Method FID ↓ Sync-C ↑ CSIM ↑
Ours-generator (constructed data) 7.00 7.88 0.905
Ours-editor 6.98 8.97 0.912

Table 5: Ablation results on HDTF dataset.
Method FID ↓ Sync-C ↑ LPIPS ↓ CSIM ↑
Ours-editor (full) 7.03 8.56 0.014 0.883
w/ channel concat 6.89 7.49 0.014 0.873
w/ uniform t 18.52 3.85 0.125 0.592
w/o lip tuning 7.00 7.68 0.013 0.875
w/o texture tuning 8.26 8.56 0.018 0.847

4.2 QUALITATIVE EVALUATION

Fig. 4 shows qualitative comparisons, where our method consistently produces realistic, lip-synced
results across challenging scenarios. Traditional baselines often yield inaccurate lip shapes (Col. 1),
visual artifacts (Col. 2), weak robustness to occlusion (Col. 5), and side-view distortions with iden-
tity drift (Col. 2&9). Even our generator∗, though using segmentation to handle occlusions, shows
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Figure 5: Ablation results on video injection and multi-phase learning. Please üzoom in for
details.

blur along mask boundaries and remains highly sensitive to mask accuracy. The rightmost column
further reveals severe lip-shape leakage in all mask-based methods, where silent frames are cor-
rupted by open-mouth artifacts. In contrast, our editor precisely edits lip movements while preserv-
ing identity, remaining robust to spatiotemporal dynamics and even generalizing to non-human char-
acters. Moreover, unlike mask-based pipelines that depend on landmarks or 3DMMs and often fail
(marked as “ERROR”) on stylized cases, our approach leverages contextual cues to autonomously
locate speech-relevant regions, ensuring stable performance across character types and occlusions.

User study. We further conduct a user study with 30 participants on 24 dubbing videos generated by
different methods, collecting Mean Opinion Scores (MOS). Each video is rated on a 5-point Likert
scale for video realism, lip sync, identity preservation, and overall quality. As shown in Tab. 3, our
method achieves clear margins over existing baselines across all aspects. Moreover, our editor sur-
passes generator∗, particularly in identity consistency (4.40 vs. 4.02) and lip sync (4.50 vs. 3.87),
validating the self-bootstrapping paradigm and showing that the editor delivers perceptually con-
vincing, high-quality dubbing.

4.3 ABLATION STUDY

We conduct ablations on two key components: 1) reference video injection mechanism, and 2)
timestep-adaptive multi-phase learning strategy, with results in Tab. 5 and visualization in Fig. 5.

For reference conditioning, replacing our frame-level token concatenation with channel concatena-
tion causes a clear drop in lip sync (Sync-C –12.5%), which is also visible as lip-shape error in
Fig. 5. Channel concatenation enforces rigid spatial fusion that conflicts with lip editing, while our
token-based design uses self-attention to transfer identity without disturbing lips.

For training, replacing progressive multi-phase sampling with uniform timestep sampling, i.e., learn-
ing all noise levels at once, causes severe degradation and even divergence. Stage-wise comparisons
further show that removing the lip phase reduces lip sync (–10.3%), with negligible gains in FID
and LPIPS, while removing the texture phase weakens fidelity and identity (CSIM –4.1%). These
results confirm that the three phases are complementary: high-noise pretraining secures global struc-
ture, mid-noise sharpens articulation, and low-noise restores textures and identity. Moreover, the
progressive design eases contextual learning by allowing the model to address different information
sequentially, rather than struggling with all aspects at once.

5 CONCLUSION

In this paper, we introduce a novel self-bootstrapping paradigm to address the core challenge in
visual dubbing: the absence of paired real-world training data. We argue that instead of relying on
masked inpainting, visual dubbing should be reframed as a well-conditioned video-to-video editing
task. Built upon this paradigm, we present X-Dub, a context-rich dubbing framework, where a DiT
model that first acts as a generator to create its own ideal training pairs with complete visual context,
and then as an editor that learns from this curated data. This process is further refined by a timestep-
adaptive multi-phase learning strategy that disentangles the learning of structure, lips, and texture,
enhancing final output quality. Extensive experiments on standard datasets and our new challenging
benchmark, ContextDubBench, demonstrate that our method achieves state-of-the-art results. X-
Dub shows exceptional robustness in complex, in-the-wild scenarios, significantly outperforming
prior works. We believe this work not only sets a new standard for visual dubbing but also offers a
valuable insight for other conditional video editing tasks where paired data is scarce.
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ETHICS STATEMENT

This work presents a self-bootstrapping paradigm for visual dubbing, enabling more accurate and
identity-preserving lip synchronization. While such technology can benefit applications in accessi-
bility, education, and multilingual content production, it also raises ethical concerns. In particular,
the ability to realistically alter speech and lip movements may facilitate misuse, including the gen-
eration of non-consensual content, impersonation, or misinformation. To mitigate these risks, we
stress the importance of informed consent, respect for individual privacy, and transparent disclosure
of synthetic media. Responsible deployment and adherence to ethical standards are crucial to ensure
that advances in visual dubbing contribute positively to society.
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A LLM USAGE STATEMENT.

We used large language models (LLMs) solely for linguistic assistance, such as grammar correction
and style refinement. No part of the technical content, experimental design, analysis, or conclusions
is generated by LLMs. The authors take full responsibility for the content of this paper.

B METHOD AND EXPERIMENT DETAILS

B.1 PRELIMINARY OF FLOW-MATCHING-BASED DIT MODELS.

We adopt a pre-trained T2V DiT model as the backbone for both stages. It follows a latent diffusion
paradigm with a 3D causal Variational Auto-Encoder (VAE) (Kingma & Welling, 2013) for video
compression and a DiT (Peebles & Xie, 2023) for sequence modeling. Each DiT block interleaves
2D (spatial) self-attention, 3D (spatio-temporal) self-attention, text cross-attention, and feed-forward
networks (FFN). Training follows standard flow matching (Esser et al., 2024; Lipman et al., 2022)
with the forward process:

zt = (1− t) z0 + t ϵ, ϵ ∼ N (0, I), (4)

and a v-prediction objective to predict v = ϵ− z0 conditioned on c:

LFM(θ) = Ez0,ϵ,t

[∥∥vθ(zt, t, c)− v
∥∥2
2

]
. (5)

B.2 DETAILS OF OUR MASK-BASED GENERATOR

Mask setting. Previous mask-based dubbing methods typically employ either smoothly-varying
bounding box half-face rectangular masks Prajwal et al. (2020); Cheng et al. (2022); Wang et al.
(2023); Zhang et al. (2023) or fixed irregular-shaped masks on affine-transformed facial crops Guan
et al. (2023); Li et al. (2024). However, the former’s size variations often lead to lip motion infor-
mation leakage, causing models to learn lip movements from visual occlusion changes rather than
the conditional speech, resulting in shortcut learning. The latter constrains jaw position, disrupting
pronounced mouth shapes such as wide-open expressions.

Instead, we utilize frame-wise estimated 3D Morphable Model (3DMM) (Retsinas et al., 2024) to
obtain full-face masks. Specifically, we maintain each frame’s pose, shape, and expression coeffi-
cients unchanged except for the jaw opening parameter, which is fixed at a maximum opening value
of 0.4. We then project the facial mesh to generate masks. This approach minimizes mask size leak-
age caused by inter-frame lip variations while providing sufficient editable regions for unrestricted
lip control. This strategy facilitates creating synthetic data with lip shapes distinct from the original
video, aligning with our data construction principles.

Audio conditioning. Audio features are extracted using the Whisper (Radford et al., 2021b) encoder
and then injected via an audio cross-attention layer placed after text cross-attention. Since visual
tokens and audio features have different temporal resolutions, for each video frame, we select the
corresponding audio feature frames according to the timestamp, together with neighboring frames,
forming a temporal window of size n = 16. This yields audio tokens ha ∈ R(b×f)×n×c, while
video tokens are reshaped into hV ∈ R(b×f)×(h′×w′)×c, where h′ × w′ denotes the visual spatial
size after patchfication. Frame-wise cross-attention is then performed between the two modalities.

Reference conditioning. The reference frame Iref is sampled from a different segment of the same
video during training to prevent lip-shape leakage, while at inference from the target segment to
provide visual cues under a similar head pose.

B.3 DETAILS OF DATA CONSTRUCTION

Short-segment inference. During generator inference with a single reference frame, we observe
that denoising a long clip of 77 frames (matching the setting used by the backbone and the editor)
in one pass causes noticeable texture and color drift in the tail frames relative to the first; the drift
resets at the first frame of the next clip (see Fig. 6). Therefore, under a single-reference regime,
we conclude that single-pass denoising over long clips is detrimental to identity preservation.
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We hypothesize two contributing factors: 1) the reference frame is anchored at the first position,
so later frames become distant in the RoPE index space, amplifying identity drift; and 2) long clips
naturally accumulate larger head motion and spatiotemporal changes, which a single reference frame
cannot fully constrain.

Frame 77
(Last frame in segmentation 1)

Frame 1
(First frame in segmentation 1)

Frame 78
(First Frame in segmentation 2)

😁 Good Identity 😭 Bad Identity 😁 Good Identity

Figure 6: Intra-segment identity drift.

To mitigate this, when constructing contextual pairs with the generator, we adopt short-segment
training and inference: we generate clips of 25 frames and bridge adjacent clips with 5 motion
frames, then concatenate them to form videos longer than 77 frames for supervising the editor,
which is trained on 77-frame windows. This short-segment strategy enhances ID preservation, while
any slight sacrifice in lip sync accuracy remains within our design guidelines, as shown in Tab. 6.

Table 6: Quantitative results between long-term and short-term processing.
Method Sync-C (Lip Sync) ↑ CSIM (Identity Preservation) ↑
Long-clip (77 frames) 7.983 0.842
Short-segment (25 frames, +5 overlap) 7.841 0.867

Mask processing with occlusion handling. To enhance the robustness of our generator against
occlusions, namely, to maintain consistency with the original video’s occlusion patterns and thereby
facilitate the editor’s ability to naturally inherit them, we introduce an occlusion-handling pipeline
First, a vision–language model (VLM) (Bai et al., 2025) is prompted per video with: “Does any
object occlude the person’s face? If yes, output only a concise description of the object(s). If no,
output nothing.” The returned object phrase(s) are then passed to SAM 2 (Ravi et al., 2024) to
segment candidate occluders, yielding an occlusion mask Mocc. We apply a light manual screening
step to remove severely erroneous segmentations.

Finally, we compose the occlusion-aware mask with the original inpainting mask. Let Mface be the
face mask (foreground 1, background 0), and Mocc the occluder mask (1 on occluding objects). The
visible-face mask is

Mvis = Mface ∧ ¬Mocc,

and the inpainting mask (where 0 indicates regions to inpaint in our implementation) is

Minp = ¬Mvis = ¬Mface ∨ Mocc,

where ∧, ∨, and ¬ denote logical AND, OR, and NOT, respectively.
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While our occlusion annotations can be incomplete or noisy, and using occlusion masks may intro-
duce slight blur near mask boundaries and occasional lip degradation, as shown in the main text, the
pipeline still supplies paired and coherent references that preserve the scene’s occlusion patterns.
This supervision encourages the editor to model occlusion–face interactions in context, enabling
robust handling of occlusions without labor-intensive manual intervention.

Post-processing. Similar to Zhong et al. (2023), we use a Gaussian-smoothed face mask in post-
processing to composite the generator’s facial region back onto the original frames, mitigating minor
background and boundary artifacts. Concretely, we blur the binary face mask Mface with a Gaussian
kernel to obtain M̃face ∈ [0, 1], and perform per-frame alpha blending:

Vpost = M̃face ⊙ Vgen +
(
1− M̃face

)
⊙ Vorig ,

where ⊙ denotes element-wise multiplication. This feathered composition keeps backgrounds con-
sistent while preserving sharp facial edits, yielding training pairs with background-aligned context
and helping the editor learn background-consistent editing behavior.

Quality filtering. To maintain identity consistency while enforcing distinct lip shapes, we apply
two complementary filters to each synthetic-original pair: 1) Identity similarity filter. We use
ArcFace (Deng et al., 2019) to compute cosine similarity between the synthetic and original videos.
As a reference, the mean within-speaker similarity across different real segments is 0.812, which is
conservative given their differing head motions. Since our paired videos share identical head motion,
we adopt a stricter threshold of 0.85 and discard pairs below this value to prevent identity drift.
2) Lip-shape distinction filter. After aligning faces to a canonical template using the Umeyama
algorithm following Deng et al. (2019), we measure the landmark distance over the mouth region
between the original and synthetic videos. To ensure sufficient lip-shape variation, we reject pairs
with a mouth-region landmark distance below 1.0.

3D talking head rendering data. We leverage Unreal Engine to generate high-quality dubbing
pairs. Initially, we acquire the 3D motion representation, which comprises ARKit-based facial ex-
pressions and 3D degree-of-freedom (3DOF) head poses. For each dataset entry containing speech
audio and 3D motion representation (A,M), we randomly select another entry (A′,M ′), and re-
place the speech-correlated coefficients in M with those from M ′ to form Mdub. Both the original
dataset entry and its corresponding dubbed version are rendered as follows:

V = R(A,M, I)

Vdub = R(A′,Mdub, I)
, (6)

where R denotes the Unreal Engine rendering pipeline (following Chen et al. (2025)) and I rep-
resents the Unreal Engine Metahuman avatar. To ensure data diversity, we create multiple avatars;
however, it is important to note that the same avatar is used for each individual dubbing pair. Ulti-
mately, we collect approximately 10 hours of dubbing pairs, as illustrated in Fig. 7.
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Figure 7: Example of aligned rendered video pairs.

B.4 DETAILS OF OUR CONTEXT-DRIVEN EDITOR

3D Rotary Position Embedding (RoPE). 3D RoPE is adopted in 3D self-attention of the DiT
backbone to distinguish spatial-temporal positions, which we keep unchanged for target tokens. For
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reference tokens, inspired by Tan et al. (2024), we adapt RoPE to be temporally-aligned but spatially-
shifted. Specifically, a reference token located at (i, j, k), where i, j, and k denote the height, width,
and temporal indices, is mapped to (i + h′, j + w′, k), with (h′, w′, f ′) the spatial–temporal sizes
after patchification. This design provides two benefits: (1) Temporal alignment enables frame-
wise consistency preservation of dynamic attributes such as background and head poses; (2) Spatial
shifting avoids direct overlap that could distort lip movements, and instead encourages the model to
capture spatially misaligned yet correlated features like identity information.

B.5 DETAILS OF TIMESTEP-ADAPTIVE MULTI-PHASE TRAINING

Derivation of Eq. (3): Timestep-Constrained Single-Step Denoising. Given the forward diffusion
process as in equation 4 and the v-prediction objective v = ϵ − z0, we derive the single-step
denoising formula.

From Eq. 4, we can rearrange to obtain:

z0 =
zt − t ϵ

1− t
. (7)

Since v = ϵ− z0, we have ϵ = v + z0. Substituting and solving for z0:

z0 =
zt − t(v + z0)

1− t
=

zt − tv − tz0
1− t

(1− t)z0 = zt − tv − tz0

z0 = zt − tv.

(8)

During inference, we use the predicted velocity v̂ instead of the true v, yielding:

ẑ0 = zt − tv̂. (9)

Alternatively, we can express this as:

ẑ0 = z0 + t(v − v̂), (10)

which shows the reconstruction error depends on the velocity prediction error scaled by t.

However, when t approaches 1, the velocity prediction error (v − v̂) can be amplified, leading to
poor reconstructions that result in inaccurate lip sync loss and identity loss computations. To address
this, we introduce a timestep constraint:

x̂0 = D(z0 + (v − v̂) ·min{t, tthres}), (11)

where D denotes the VAE decoder. Importantly, this clipping is applied only in the denoising com-
putation, not to the actual timestep t used in the model’s forward pass. The model still operates with
the original t value, enabling it to learn important structural and lip movement information in high-
and mid-noise regions. We set tthres = 0.6 in our experiments.

SyncNet supervision. For lip-sync tuning, we adopt a SyncNet (Chung & Zisserman, 2016) com-
prising a visual encoder SV and an audio encoder Sa to discriminate temporal alignment between
video and audio clips. The lip-sync loss is defined as:

Lsync = CosSim
(
SV (x̂

[f :f+8]
0 ), Sa(a

[f :f+8])
)
. (12)

This loss is combined with LmFM defined in Eq. 1 in a weighted sum to train the lip-sync LoRA:

Ltotal = (1 + w ·M + wlip ·Mlip)⊙ LFM + wsync · Lsync. (13)

B.6 OTHER IMPLEMENTATION DETAILS

We conduct experiments using an internal 1B-parameter T2V model on 32 A100 GPUs, with face-
centered videos at 512×512 resolution and 25 fps. For the generator, we conduct extended training
for 10 epochs on 600 hours of internet audio-video data, sampling 25 frames with lr=1e-5 and batch
size 256. After inference and curation, we obtain 400 hours of video pairs, totaling 800 hours/
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Figure 8: Screenshots of the rating interface of the user study.

For the editor, we begin with full-parameter training for 2 epochs on 77-frame samples with lr=1e-
5, batch size 256, and timestep shift α = 4, followed by LoRA expert training for 0.5 epochs with
lr=5e-6 and batch size 64. To reduce computational cost, we decode 4 tokens into 13-frame segments
for pixel-level loss computation. Timestep shifts are set to α = 1.5 for the lip expert and α = 0.25
for the texture expert. Loss weights are set as w = wlip = 0.3 for masks, and 0.05 for SyncNet,
CLIP, and ArcFace loss.

C DETAILS OF USER STUDY

The user study involved 30 participants. Each participant received compensation of approximately
15 USD for completing a session that lasted 40–50 minutes, which aligns with the average hourly
wage. For reference, Fig. 8 provides screenshots of the rating interface used in the study.

D CONTEXTDUBBENCH

To thoroughly evaluate our framework, we construct ContextDubBench benchmark, a challenging
benchmark comprising 440 video-audio pairs. The dataset is carefully designed with the following
composition:

Audio data. The audio component includes both speech and singing. For speech, we randomly
sampled 350 clips from Common Voice (Ardila et al., 2019), spanning six languages and dialects:
170 in English, 60 in Mandarin, 30 in Cantonese, 30 in Japanese, 30 in Russian, and 30 in French.
For singing, we incorporated 60 English clips from NUS-48E (Duan et al., 2013) and 30 Mandarin
clips from Opencpop (Wang et al., 2022). Each segment lasts between 7 and 14 seconds and captures
a wide range of speaking rates, pitch levels, accents, and vocal styles, ensuring rich phonetic and
linguistic diversity.

Video data. The video set combines real-world recordings and AI-generated content from publicly
available sources with proper copyright clearance (e.g., Civitai, Mixkit, Pexels). It contains 291 clips
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Figure 9: ContextDubBench benchmark Examples (I): Showcasing non-human characters with di-
verse morphological variations.

of natural human subjects, 108 clips of stylized characters with distinct artistic features, and 41 clips
of non-human or humanoid entities with durations ranging from 2 to 9 seconds. Representative
samples are shown in Fig. 9, Fig. 10, and Fig. 11. Unlike conventional datasets, which are typi-
cally captured under controlled conditions, ContextDubBench is explicitly designed to reflect real-
world challenges. The dataset incorporates dynamic lighting, partial occlusions, identity-preserving
transformations, and substantial variations in pose and motion. By embedding these factors, Con-
textDubBench more faithfully captures the diversity and unpredictability of real-world scenarios,
providing a rigorous testbed for evaluating lip-synchronization models. Illustrative examples are
shown in Fig. 12.
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Figure 10: ContextDubBench benchmark Examples (II): Showcasing stylized characters with dis-
tinctive visual designs.

Figure 11: ContextDubBench benchmark Examples (III): Showcasing real-world human appear-
ances in practical conditions.
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Figure 12: Samples from ContextDubBench benchmark showing lighting variations, identity-
preserving changes, and occlusions, highlighting complex real-world scenarios.
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