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Abstract— As robotic navigation techniques in perception and
planning advance, mobile robots increasingly venture into off-
road environments involving complex traversability. However,
selecting suitable planning methods remains a challenge due to
their algorithmic diversity, as each offers unique benefits. To
aid in algorithm design, we introduce BenchNav, an open-source
PyTorch-based simulation platform for benchmarking off-road
navigation with uncertain traversability. Built upon Gymna-
sium, BenchNav provides three key features: 1) a data gener-
ation pipeline for preparing synthetic natural environments, 2)
built-in machine learning models for traversability prediction,
and 3) consistent execution of path and motion planning across
different algorithms. We show BenchNav’s versatility through
simulation examples in off-road environments, employing three
representative planning algorithms from different domains.
https://github.com/masafumiendo/benchnav

I. INTRODUCTION

Mobile robots unchain us from labor-intensive, hazardous
activities in the field, ranging from environmental monitor-
ing [1], search and rescue [2], to planetary exploration [3].
Autonomous navigation is critical for reliable decision-
making, enabling safe and efficient mission operations with-
out consistent human intervention. However, off-road navi-
gation is fraught with risks in unstructured terrains, such as
robots getting stuck in deformable terrain, tipping over on
steep slopes, or colliding with both positive and negative
obstacles. Traversability is thus an essential criterion to
quantify the level of robot ability to traverse, ranging from
safe to hazardous, in unstructured off-road environments.

Off-road navigation has evolved with path and motion
planning algorithms that incorporate traversability either
through theoretical or machine learning (ML)-based mod-
eling. Search-based path planning, valid in discretized graph
environments, is notable for its resolution optimality. It can
generate global paths for navigation in extreme environ-
ments, such as planetary surfaces [3]–[7] and subterranean
domains [8], making it suitable for real-world applications,
including NASA’s AutoNav [4] and Enav [3] systems.
Nevertheless, search-based methods often miss robot dy-
namics, leading to challenges in translating global paths
to local motions. Sampling-based motion planning has be-
come another common approach, capable of handling high-

*This work was partially supported by JSPS KAKENHI Grant Number
JP22J22731.

1M. Endo and G. Ishigami are with the Space Robotics
Group, Department of Mechanical Engineering, Keio University,
Kanagawa 223-8522, Japan masafumi.endo@keio.jp,
ishigami@mech.keio.ac.jp

2K. Honda is with the Mobility System Group, Department of Me-
chanical Systems Engineering, Nagoya University, Aichi 464-8603, Japan
honda.kohei.f4@a.mail.nagoya-u.ac.jp

dimensional spaces through random environmental sampling
to construct feasible robot states. Its flexible representation
in configuration space allows us to apply complex dynamical
models in motion planning, such as closed-loop rapidly-
exploring random trees (CL-RRT) [9] and its variants in
off-road navigation [10], [11]. Still, they often indirectly
include dynamical models and require substantial compu-
tational effort to reach asymptotic optimality. Optimization-
based algorithms, in contrast, enable the direct integration of
dynamical models into motion planning, resulting in optimal
state and control sequences. Model predictive path inte-
gral control (MPPI) [12], a sampling-based optimal control
solver, is favored for aggressive off-road navigation [13]–
[19], offering rapid trajectory optimization and the ability to
handle non-differentiable objectives. These techniques focus
on generating sequential, short-horizon solutions while often
failing to achieve global optimality.

We here argue that off-road autonomy requires a well-
aligned integration of planning algorithms and traversability
modeling for robot dynamics. Along with the advances in
ML models and growing dataset availability [20]–[23], many
studies push forward data-driven traversability prediction and
its application to motion planning. However, the lack of
standardized benchmarking for planning raises the question:
How can we select the suitable algorithm for designing an
off-road navigation system, given their unique differences?
This is often empirically tailored to specific scenarios, though
quantitative comparison across different domains is a tedious
yet necessary process.

To address the above challenge, we present BenchNav,
an open-source, PyTorch-based [24] simulation platform,
designed for Benchmarking off-road Navigation algorithms.
Leveraging Gymnasium [25], BenchNav equips three key
features to tackle off-road navigation problems as follows:

• Synthetic data generation replicates natural terrain, em-
bedding the challenges of traversability prediction,

• Built-in ML models for probabilistic traversability pre-
diction from given environmental data,

• Path and motion planning algorithm executions unified
with robot models factoring in uncertain traversability.

The synthesized process, encompassing data preparation,
traversability modeling, and planning, ensures easy and
consistent navigation simulations across various algorithms.
We perform simulation experiments in deformable off-road
environments, focusing on vehicle slip as a typical metric for
traversability modeling. The use of different path and motion
planning algorithms demonstrates BenchNav’s versatility.
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Fig. 1. BenchNav, a platform designed to solve off-road navigation problems, consists of A) synthetic terrain data generation, B) probabilistic traversability
prediction based on the classify-then-regress method, and C) path and motion planning execution with given problem formulations and solvers.

II. PROBLEM STATEMENT

We state the off-road navigation problem for mobile robots
as one embracing traversability prediction and motion plan-
ning. Unstructured environments present complex physical
interactions with robots, leading to deviations between com-
manded and actual velocities. Under significant disturbances,
the discrete-time system is given as st+1 = F (st,at,λ),
where t denotes discrete time steps. Here, st ∈ Rn represents
the state vector, at ∈ Rm the action vector serving as the
control input to the robot, and λ ∈ [0, 1]p the traversability
coefficient vector, scales at. The state transition function F
integrates these inputs to update the state vector, determining
the system’s response accounting for terrain interactions.

The traversability prediction objective is to create a
model M, mapping environmental observations o ∈ O to
traversability coefficients λ ∈ Λ, where O and Λ are sets
of all environmental observations and traversability coeffi-
cients, respectively. ML is a powerful tool for discovering
latent models by learning general correlations from training
data. Recent studies also reveal the value of quantifying
uncertainty in traversability learning [26]–[28], arising from
inherent observation noise and limited training data. We thus
adopt probabilistic ML models as the basis for traversability
prediction used across planning algorithms.

Besides, the motion planning objective is to find a se-
quence of feasible actions at = π(st, λ̂) towards its des-
tination, with a policy π that translates current states and
traversability coefficients into the state transition dynamics.
The motion planning problem is formulated to optimize
user-specified objectives, such as time efficiency, subject to
certain constraints. Despite the various solvers available, we
emphasize the need to exploit uncertainty in traversability
prediction. Following earlier studies [7], [17]–[19], we em-
ploy statistical methods for risk inference, such as condi-
tional value at risk (CVaR) [29], to transform probability
distributions into deterministic inputs. This approach bridges
traversability prediction and motion planning, ensuring con-
sistent execution in solving the off-road navigation problem.

III. BENCHNAV

This section details BenchNav, a simulation platform tai-
lored for off-road navigation. We developed BenchNav on
top of Gymnasium (formerly OpenAI Gym), leveraging its
capabilities for sequential decision-making and scalable sim-
ulation of diverse environments. BenchNav’s implementation
in PyTorch further enables GPU acceleration, ensuring effi-
cient computation for ML models and planning algorithms
throughout the platform. The overall simulator pipeline,
depicted in Fig. 1, unfolds as follows: It first generates
controlled datasets containing O and their respective Λ,
engineered to catch the difficulties present in traversability
prediction. Then, a set of all probability distributions for
traversability coefficients, denoted as P(λ̂|o), is formed by
initially categorizing symbolic terrain classes from appear-
ance features, followed by predicting class-dependent latent
traversability (LT) functions from geometric features. The
final stage involves running planning algorithms to find at =
π(st, λ̂), with given problem formulations and solvers that
incorporate risk inference metrics for uncertain traversability.

A. Synthetic Terrain Data Generation

We synthesize a top-down 2.5D terrain map instance, repli-
cating pixel-wise appearance and geometric features, along-
side their latent traversability coefficients. In off-road sce-
narios, appearance features indicate surface properties, de-
termining distinct traversability trends among terrain classes.
Geometric features also dominate the variation in traversabil-
ity within each class. The data is thereby paired: RGB color
data with their corresponding terrain classes c ∈ C, where
C is the set of all terrain classes, and elevation data coupled
with class-dependent LT functions fc(ψ), where ψ is the
inclination derived by the Horn method [30].

For each map instance, occupancy ratios dictate terrain
class distribution; we create such a distribution with Perlin
noise to assign color and terrain classes based on the clusters.
We then simulate rough terrain elevation with fractal terrain
modeling [31] to compute λ = fc(ψ)+ϵc, where ϵ represents



additive zero-mean Gaussian noise, and to apply shading to
the color data due to elevation changes. We consequently get
a map of colors, elevations, and traversability coefficients,
depicted in Fig. 1A1. Environmental features are readily
adjusted to simulate challenges in traversability prediction,
such as ambiguous appearance from intense shading and
irregular geometry in crater-like terrains, shown in Fig. 1A2.

B. Probabilistic Traversability Prediction

BenchNav employs two types of pre-trained ML models:
1) a terrain classifier for predicting pixel-wise terrain classes
and 2) Gaussian processes (GPs) [32] for estimating class-
dependent LT functions with uncertainties. These distinctive
ML models are integrated into a single probability distri-
bution via mixtures of GPs [33], representing probabilistic
traversability at s as follows:

Ps(λ̂) =
∑
c∈C

Ps (c)Pc(λ̂ | ψs), (1)

where Pc(λ̂ | ψs) denotes class-dependent GPs, weighted
by a categorical distribution Ps(c) from the classifier. This
probabilistic fusion constructs P(λ̂|o), as shown in Fig. 1B.

While any model capable of predicting pixel-wise categor-
ical distributions is suitable for terrain classification, we opt
for the U-Net model [34] with a ResNet-18 backbone [35].
Users also have the option of selecting a single GP that
corresponds to the most likely class c∗ = argmaxc Ps(c)
in eq. (1), rather than summing over multiple GPs.

C. Path and Motion Planning Execution

The last stage simulates off-road robot navigation from a
start state sstart to a goal state sgoal within the allotted finite
positive time budget T . The motion planning problem in off-
road environments is given as follows:

Find: {at}T−1
t=0 , {st}Tt=0 (2a)

Minimize: J
(
{at}T−1

t=0 , {st}Tt=0

)
(2b)

subject to: s0 = sstart, sT = sgoal (2c)

st ∈ Sfree,
∀t ∈ {0, . . . , T} (2d)

st+1 = F (st,at, λ̂),
∀t ∈ {0, . . . , T − 1} (2e)

J is the cost function quantifying trajectory optimality to be
minimized. Sfree denotes the set of all free states, indicating
navigable space free from hazards. Solving the above prob-
lem yields the optimal action vector a∗t at each t, controlling
the robot to its destination. We design BenchNav to solve the
given optimization problem in an iterative fashion, allowing
for real-time feedback that compensates for modeling errors
in F . Users can define F , J , and Sfree to formulate the
problem according to their respective objectives. BenchNav
simulates navigation with deployed planning algorithms as
solvers, including both global and local combinations. Here,
risk inference metrics convert P(λ̂|o) to λ̂, incorporating
uncertainty in traversability prediction. BenchNav continu-
ously monitors the robot’s state, including its experience with
traversability, to observe how it safely reaches its destination
within T , which is then marked as successful navigation.

IV. SIMULATION EXPERIMENTS

A. Implementation Details
We test BenchNav’s versatility through simulations aimed

at deformable off-road environments. We assume that robot
motion is constrained to the terrain surface, thus defining
sstart and sgoal within a 2.5D spatial space. F is then given
as a unicycle model as follows: xt+1

yt+1

θt+1

 =

 xt
yt
θt

+∆t ·

 λlin · vt · cos (θt)
λlin · vt · sin (θt)

λang · ωt

 , (3)

where st = [xt, yt, θt]
⊤, at = [vt, ωt]

⊤, and λ =
[λlin, λang]

⊤, simplified as λ = λlin = λang, link linear and
angular velocities with changes in position and orientation,
capturing the dynamics of robot motion. When formulating
the problem, F replaces λ̂ with λ to form eq. (2e). We
define J as the function that evaluates states and actions
along the trajectory based on their distance to the endpoint
for an efficient transition without getting stuck according to
the given constraints. We here exploit Λ̂ to mark Sfree as
states where λ̂ > λstuck, defining λstuck as the threshold below
which a state becomes stuck due to insufficient traversability.
CVaR at level α = 0.9 quantifies the distribution to assess
uncertainty incorporation in motion planning.

As problem solvers, we deploy three planning methods
from distinct domains, each designed for off-road navigation.

1) Search-based method: Following [8], we implement a
hierarchical method divided into global path planning with
A* search [36] and local motion planning using the dynamic
window approach (DWA) [37]. For each transition, A* finds
the shortest path over long horizons in a 2.5D geometric
search space, while DWA takes the resulting waypoints as
subgoals to plan feasible actions over short horizons.

2) Sampling-based method: We use CL-RRT [9] for
global motion planning that incrementally expands a tree
via feedback control simulation, allowing the computation
of dynamically feasible trajectories. Pure-pursuit and PID
controllers manage the steering and velocities of the dynamic
model, respectively. Replanning is triggered when substantial
deviations occur between the actual and expected states.

3) Optimization-based method: We adopt MPPI [12] for
navigation without the use of global path planning. While a
reference path remains beneficial for long-horizon decisions,
recent studies favor such waypoint-free navigation to take
full advantage of planning in control space. Terminal cost is
given in J to ensure long-term stability and goal alignment
over an infinite horizon.

To quantify the performance of these algorithms on given
problem instances, we use three key metrics.

• Success rate (Succ.) [%] expresses the ratio of in-
stances for which successful trajectories are found.

• Total time (Ttotal) [sec] measures navigation efficiency
as the total time taken to traverse a trajectory.

• Average traversability (λ̄) [%] evaluates navigation
safety by averaging all the observed traversability coef-
ficients along a trajectory, with higher values indicating
a safer traverse.



(a) Search-based: A*+DWA (b) Sampling-based: CL-RRT (c) Optimization-based: MPPI

Fig. 2. Off-road navigation snapshots with different planning algorithms at t = 25 [sec]. Red circles, magenta crosses, and green circles mark the start,
goal, and current robot positions, respectively. Trajectories are color-coded according to traversability, with cooler colors for safer paths. (a) A* reference
paths are blue dashed lines; DWA results are shown with a dark blue solid line and light blue lines. (b) Black dashed lines show edges; light blue dashed
lines are for closed-loop simulations, with solid blue lines for planned trajectories. (c) MPPI outcomes are a dark blue solid line with light blue top samples.

B. Experimental Setups

We prepare three environmental scenarios: standard (Std),
harsh geometry (HG), and harsh shading (HS). The Std
scenario adopts a simple setting mirroring the geometry
and appearance trends from ML model training. The HG
scenario introduces unique geometric conditions resulting
in low traversability, with crater-like terrain in addition to
random elevation changes. The HS scenario offers unique
appearance conditions complicating traversability prediction
due to ambiguous visual cues from variable shading. Each
problem instance takes a 32 × 32m map with a 0.5m
resolution. Off-road navigation starts at sstart = (8m, 8m)
and continues until sgoal = (24m, 24m).

C. Results

We highlight representative simulation examples in the Std
scenario by displaying snapshots of ongoing navigation at
t = 25 [sec] using distinct planning methods, as illustrated
in Fig. 2. The nature of these planning algorithms is evident
in their trajectories: Fig. 2a shows a safe and fairly efficient
trajectory under A* guidance; Fig. 2b a suboptimal trajectory
due to its sampling nature; and Fig. 2c an efficient but slightly
hazardous trajectory, a consequence of its short-horizon
solutions. We emphasize BenchNav’s ability to apply various
planning algorithms, focusing on synthetic data generation
and probabilistic traversability prediction with built-in ML
models, as fundamental steps prior to motion planning. This
feature allows users to easily simulate off-road navigation,
facilitating problem formulation and implementation of plan-
ning algorithms while accounting for uncertain traversability.

We also present a quantitative summary of MPPI planning
to see how different environmental scenarios impact off-road
navigation performance. Table I summarizes the results from
simulation experiments across 20 problem instances for each
of the Std, HG, and HS scenarios, with T = 100 [sec]. MPPI
performs best in the Std scenario, where ML models provide
accurate traversability predictions due to training on in-
domain data. The HG and HS scenarios introduce challenges
resulting in lower success rates and longer traverse times

TABLE I
MPPI PLANNING RESULTS ON DIFFERENT SCENARIOS

Scenario Succ. Ttotal λ̄

Std 90 52.7 ± 22.5 76.3 ± 8.8
HG 80 60.2 ± 26.1 76.5 ± 4.5
HS 85 58.6 ± 25.7 74.2 ± 11.4

as ML models struggle with out-of-domain features such as
steep inclines and shaded visuals. In off-road environments,
robots often face novel situations that lead to epistemic
uncertainty, stemming from insufficient training data. Thus,
incorporating uncertainty is critical in assessing the risk
inherent in erroneous traversability prediction. BenchNav
allows us to implement various planning algorithms and ex-
plore risk inference metrics for resilient off-road navigation.
It equips well-controlled environmental feature generation
to replicate challenging scenarios, providing insight into the
factors contributing to uncertain traversability predictions.

D. Limitations and Possible Extensions

We clarify BenchNav’s limitations as 1) the lack of local
observability using onboard sensors and 2) insufficient 3D
representations in both perception for handling overhanging
objects and motion for representing dynamic robot behaviors.
We will implement these capabilities to simulate navigation
algorithms designed for more dynamic, aggressive maneu-
vers in unknown environments [16], [38].

V. CONCLUSION

We have developed BenchNav, a simulator that tests plan-
ning algorithms alongside ML-based traversability modeling
for off-road navigation. Simulation experiments verified that
BenchNav consistently executes different off-road navigation
algorithms and provides well-controlled datasets replicating
difficulties present in traversability prediction. Future work
will address the limitations described in IV-D to make the
simulator more realistic. We also aim to extend navigation
components by adopting end-to-end learning [17]–[19], [39]
and reinforcement learning techniques [28], [40], [41].
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