
Published in Transactions on Machine Learning Research (08/2022)

Causal Feature Selection via Orthogonal Search

Ashkan Soleymani* ashkanso@mit.edu
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology, Cambridge, US

Anant Raj* anant.raj@inria.fr
Inria, Ecole Normale Supérieure
PSL Research University, Paris, France

Stefan Bauer baue@kth.se
KTH, Stockholm, Sweden

Bernhard Schölkopf bs@tuebingen.mpg.de
Max Planck Institute for Intelligent Systems
Tübingen, Germany

Michel Besserve michel.besserve@tuebingen.mpg.de
Max Planck Institute for Intelligent Systems
Tübingen, Germany

Reviewed on OpenReview: https://openreview.net/forum?id=Q54jBjc896

Abstract

The problem of inferring the direct causal parents of a response variable among a large set of ex-
planatory variables is of high practical importance in many disciplines. However, established ap-
proaches often scale at least exponentially with the number of explanatory variables, are difficult
to extend to nonlinear relationships and are difficult to extend to cyclic data. Inspired by Debiased
machine learning methods, we study a one-vs.-the-rest feature selection approach to discover the
direct causal parent of the response. We propose an algorithm that works for purely observational
data while also offering theoretical guarantees, including the case of partially nonlinear relationships
possibly under the presence of cycles. As it requires only one estimation for each variable, our ap-
proach is applicable even to large graphs. We demonstrate significant improvements compared to
established approaches.

1 Introduction

Identifying causal relationships is a profound and hard problem pervading experimental sciences such as biology
(Sachs et al., 2005), medicine (Castro et al., 2020), earth system sciences (Runge et al., 2019), or robotics (Ahmed
et al., 2020). While randomized controlled interventional studies are considered the gold standard, they are in many
cases ruled out by financial or ethical concerns (Pearl, 2009; Spirtes et al., 2000). In order to improve the understanding
of a system and help design relevant interventions, the subset of causes that have a direct effect (direct causes/direct
causal parents) often needs to be identified based on observations only. This paper assumes a structural equation
model (SEM) comprising (1) a set of d covariates represented by random vector X ∈ Rd whose values are determined
by a uniquely solvable set of d structural equations, possibly non-linear and possibly including cycles and confounding
(2) a response variable Y ∈ R, who is not a parent of any X and whose value is determined by a linear structural
equation of the form,

Y := ⟨θ,X⟩+ U , with θ ∈ Rd, (1)
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where U is an exogenous variable with zero mean, independent from any other exogenous variables of the SEM and
⟨·, ·⟩ denotes the inner product. Such a SEM is exemplified in Figure 1. Uniquely solvability of SEMs amounts to
not having self-cycles in the causal structure, but any other arbitrary non-linear cyclic structure between covariates
is allowed (Bongers et al., 2021), possibly including hidden confounders, as long as there is no hidden confounder
for the response variable (this would violate the assumption of independence of U ). Practically speaking, almost all
causal discovery applications lie under the umbrella of simple SCMs (Bollen, 1989; Sanchez-Romero et al., 2019).
Besides, the assumption of not having self-cycles is usually assumed not-limiting in the literature (Lacerda et al., 2012;
Rothenhäusler et al., 2015; Bongers et al., 2016).

In this paper, we investigate how to find the direct causes of Y among a high-dimensional vector of covariates X .
From our formulation, a given entry of θ should be non-zero if and only if the variable corresponding to that particular
coefficient is a direct causal parent (Peters et al., 2017), e.g., X1 and X2 in Figure 1. We restrict ourselves to the
setting of linear direct causal effects of Y (LDC, as specified in Equation 1) and no feature descending from Y (NFD).
LDC is justified as an approximation when the effects of each causal feature are weak such that the possibly non-
linear effects can be linearized; NFD is justified in some applications where we can exclude any influence of Y on a
covariate. This is, for example, the case whenX are genetic factors, and Y is a particular trait/phenotype. Our method,
in particular, comes handy in this case due to the relatively complex non-linear cyclic structure of these genetic factors
in high-dimensional regimes (Yao et al., 2015; Meinshausen et al., 2016; Warrell & Gerstein, 2020).

While applicable to full graph discovery rather than the simplified problem of finding causal parents, state-of-the-
art methods for causal discovery often rely on strong assumptions or the availability of interventional data or have
prohibitive computational costs explained in section 1.1. In addition to and despite their strong assumptions, causal
discovery methods may perform worse than simple regression baselines (Heinze-Deml et al., 2018; Janzing, 2019;
Zheng et al., 2018). However, estimating θ in high dimensional settings (i.e. # observations << d ) using unregular-
ized least squares regression, will lead to identifiability problems since there can be infinitely many possible choices
for θ recovered with equivalent prediction accuracy for regressing Y (Bühlmann & Van De Geer, 2011). On the other
hand, when using a regularized method such as Lasso, a critical issue is the bias induced by regularization (Javanmard
& Montanari, 2018). While regularized and unregularized Least Squares as well as debiased Lasso are applicable to
the same problem, they have different statistical characteristics and we will explore their empirical performance in
extensive experiments.

Figure 1: Graphical representation of Causal
Feature Selection in our setting, for the case
of two direct causal parents of Y , X1 and X2,
out of variables {X1, · · · , X6}, such that Y =
θ1X1 + θ2X2 + U , U being an independent
zero-mean noise. We propose an approach to
findX1 andX2 under assumptions discussed in
the text. An example of this setup in the real-
world is finding genes which directly cause a
phenotype.

Double ML approaches (Chernozhukov et al., 2018a) have shown
promising bias compensation results in the context of high dimen-
sional observed confounding of a single variable. In the present pa-
per, we use this approach to find direct causes among a large number
of covariates. Our key contributions are:

• We show that under the assumption that no feature of X is
a child of Y , the Double ML (Chernozhukov et al., 2018)
principle can be applied in an iterative and parallel way to
find the subset of direct causes with observational data.

• Our approach has a computational complexity requirement
polynomial (fast) time in dimension d.

• Our method provides asymptotic guarantees that the set can
be recovered from observational data. Importantly, this re-
sult neither requires linear interactions among the covari-
ates, faithfulness, nor acyclic structure.

• Extensive experimental results demonstrate the state-of-
the-art performance of our method. Our approach signif-
icantly outperforms all other methods (even though under-
lying data generation conditions favor them), especially in
the case of non-linear interactions between covariates, de-
spite relying only on linear projection.
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1.1 Related work

The question of finding direct causal parents is also addressed in the
literature as mediation analysis (Baron & Kenny, 1986; Hayes, 2017; Shrout & Bolger, 2002). Several principled
approaches have been proposed (relying, for instance, on Instrumental Variables (IVs)) (Angrist & Imbens, 1995;
Angrist et al., 1996; Bowden & Turkington, 1990) to test for a single direct effect in the context of specific causal
graphs. Extensions of the IV-based approach to generalized IVs-based approaches (Brito & Pearl, 2012; Van der
Zander & Liskiewicz, 2016) are the closest known result to discovering direct causal parents. However, no algorithm
is provided in Brito & Pearl (2012) to identify the instrumental set. Subsequently, an algorithm is provided in Van der
Zander & Liskiewicz (2016) for discovering the instrumental set in the simple setting where all the interactions are
linear and the graph is acyclic. In contrast, our method allows non-linear cyclic interaction amongst the variables.

Several other works have also tried to address the problem of discovering causal features. The authors review work
on causal feature selection in Guyon & Aliferis (2007). More recent papers on causal feature selection have appeared
since (Cawley, 2008; Paul, 2017; Yu et al., 2018), but none of those claims to recover all the direct causal parents
asymptotically or non-asymptotically as we do in our case. There has been another line of works on inferring causal
relationships from observational data based on conditional independences, such as the PC-algorithm, which can be
used for more general causal inference purposes, at the expense of extra assumptions, such as faithfulness, allowing
inference of the Markov equivalence class through testing iterative testing of d-separation statements (Mastakouri et al.,
2019; Pearl, 2009; Spirtes et al., 2000). In contrast, under our LDC, NFD and totally independent U assumptions, only
a small subset of d-separation relationships are relevant, and further, these assumptions imply that the observed relevant
conditional independences and associated d-separation are equivalent, so that a full set of faithfulness assumptions
about conditioning sets besides X−j are not necessary.

Another approach is to restrict the class of interactions among the covariates and the functional form of the signal-noise
mixing (typically considered additive) or the distribution (e.g., non-Gaussianity) to achieve identifiability (see (Hoyer
et al., 2009; Peters et al., 2014)); this includes linear approaches like LiNGAM (Shimizu et al., 2006) and nonlinear
generalizations with additive noise (Peters et al., 2011). For a recent review of the empirical performance of structure
learning algorithms and a detailed description of causal discovery methods, we refer to (Heinze-Deml et al., 2018).
Recently, there have been several attempts at solving the problem of causal inference by exploiting the invariance of a
prediction under a causal model given different experimental settings (Ghassami et al., 2017; Peters et al., 2016). The
computational cost to run both algorithms is exponential in the number of variables when aiming to discover the full
causal graph.

Our method mainly takes inspiration from Debiased/Double ML method (Chernozhukov et al., 2018a) which utilizes
the concept of orthogonalization to overcome the bias introduced due to regularization. We will discuss this in detail
in the next section. Considering a specific example, the Lasso suffers from the fact that the estimated coefficients are
shrunk towards zero, which is undesirable (Tibshirani & Wasserman, 2017). To overcome this limitation, a debiasing
approach was proposed for the Lasso in several papers (Javanmard & Montanari, 2014; 2018; Zhang & Zhang, 2014).
However, unlike our approach, Debiased Lasso methods do not recover all the non-zero coefficients of the parameter
vector θ under the generic assumptions of the present work. To be more specific, (Javanmard & Montanari, 2018) is
built upon the Equation (1) with the following differences to our setting: Noise U is Gaussian; X has independent
zero-mean Gaussian rows with covariance matrix Σ satisfying specific bounding conditions; sparsity conditions s0 =
o(n/(log p)2)1 and min(sΩ, s0) = o(

√
n/ log p) where s0 and sΩ are sparsity levels of the true coefficients θ and the

precision matrix Ω = Σ−1 of X respectively.

2 Methodology

Before describing the proposed method, we discuss our general strategy as well as Double ML and Neyman orthogo-
nality in the next sections, which will be helpful in building the theoretical framework for our method.

1p = d − 1 is the covariate dimension.
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2.1 Reduction to a nonparametric estimation problem

According to Equation (1), determining whether Xj is a parent of Y in our setting amounts to testing whether θj ̸= 0.
Let X−j = X \Xj , this can be reduced to testing whether the following estimand vanishes:

χj ≜ E [(Y − E(Y | X−j)) (Xj − E(Xj | X−j))] (2)

Indeed, U independent of X entails Y − E(Y | X−j) = θj (Xj − E(Xj | X−j)) + U . This leads to

χj = θjE
[
(Xj − E(Xj | X−j))2

]
= θjE [Xj (Xj − E(Xj | X−j))] . (3)

Under mild assumptions, testing whether θj ̸= 0 thus reduces to testing whether χj ̸= 0. Equation (2) shows that χj

constitutes a non-parametric estimand, i.e. a model-free functional of the observed data distribution. Nonparametric
estimation results (Robins et al., 2008; Van der Laan et al., 2011; Chernozhukov et al., 2018a) make use of the efficient
influence function of such estimand (see e.g. Hines et al. (2022)) to derive valid estimates and confidence bounds,
while allowing the use of data adaptive estimation strategies, such as machine learning algorithms. The resulting
strategies are known as target learning and debiased/double machine learning, and are suitable in challenging settings
such as ours when X is high dimensional with possibly non-linear dependencies among components.

2.2 Double Machine Learning (Double ML)

Double ML constitutes one possible way to derive efficient nonparametric estimates. We introduce it with the partial
linear regression setting introduced in Chernozhukov et al. (2018a, Example 1.1). Given a fixed set of policy vari-
ables D and control variables X acting as common causes of D and Y , we consider the partial regression model
of Equation (4),

Y = Dθ0 + g0(X) + U, E [U |X,D] = 0
D = m0(X) + V, E [V |X] = 0,

(4)

where Y is the outcome variable, U, V are disturbances and g0,m0 : Rd → R are (possibly non-linear) measurable
functions. An unbiased estimator of the causal effect parameter θ0 can be obtained via the orthogonalization approach
as in Chernozhukov et al. (2018a), which is obtained via the use of the “Neyman Orthogonality Condition" described
below.

Neyman Orthogonality Condition: LetW denote the collection of all observed variables. The traditional estimator
of θ0 in Equation (4) can be simply obtained by finding the zero of the empirical average of a score function ϕ such
that ϕ(W ; θ, g) = D⊤(Y − Dθ − g(X)). However, the estimation of θ0 is sensitive to the bias in the estimation
of the function g. Neyman (Neyman, 1979) proposed an orthogonalization approach to get an estimate for θ0 that
is more robust to the bias in the estimation of nuisance parameter (m0, g0). Assume for a moment that the true
nuisance parameter is η0 (which represents m0 and g0 in Equation (4)) then the orthogonalized “score” function ψ
should satisfy the property that the Gateaux derivative operator with respect to η vanishes when evaluated at the true
parameter values:

∂ηEψ(W ; θ0, η0)[η − η0] = 0 . (5)

One way to build such a score, following Chernozhukov et al. (2018a) [eq. (2.7)], is to start from a biased score associ-
ated to maximum likelihood-like estimate. Let ℓ(W ; (θ,η)) be the log likelihood function or another smooth objective
for which the true parameter is the unique maximizer. The true parameter then satisfies E∂θℓ(W ; (θ0,η0)) = 0,
suggesting to start with ∂θℓ(W ; (θ0,η0)) as a (biased) score. In order to compensate the bias due to the nuisance
parameters, we then subtract a linear function of the derivative of the likelihood with respect it, leading to the orthog-
onalized score

ψ(W ; θ,η) = ∂θℓ(W ; (θ,η))− µ∂ηℓ(W ; (θ,η)) .

where µ is determined by the constraint of Equation (5) (see proof of Proposition 6 in appendix). The correspond-
ing Orthogonalized or Double/Debiased ML estimator θ̌0 solves a constraint of vanishing empirical average of the
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orthogonalized score, based on n-iid samples {Wi}i=1..n of the observed variables.

1
n

n∑
i=1

ψ(Wi; θ̌0, η̂0) = 0, (6)

where η̂0 is the estimator of η0 and ψ satisfies condition in Equation (5). For the partially linear model discussed
in Equation (4), the orthogonalized score function ψ is,

ψ(W ; θ, η) = (Y −Dθ − g(X))(D −m(X)) , (7)

with η = (m, g). This leads to an debiased estimator satisfying

θ̌0
1
n

∑
i

Di(Di − m̌0(Xi)) = 1
n

∑
i

(Yi − ǧ0(Xi))(Di − m̌0(Xi)) . (8)

which relies on the “double” use of machine learning algorithm: once to learn ǧ0(Xi) and once to learn m̌0(Xi),
hence the name Double ML for such estimator. We can further relate this approach to the design an estimator of the
non-parametric estimand of previous section.

Indeed by subtracting θ̌0
1
n

∑
i m̌0(Xi)(Di − m̌0(Xi)) on both sides of eq. (8), we get

θ̌0
1
n

∑
i

(Di − m̌0(Xi))2 = 1
n

∑
i

(Yi − θ̌0m̌0(Xi)− ǧ0(Xi))(Di − m̌0(Xi)) . (9)

Noticing that E[Y |X] = θ0E[D|X]+g0(X) = θ0m0(X)+g0(X), the term θ̌0m̌0(Xi)+ ǧ0(Xi) in eq. (9) appears as
an ML estimator of E[Y |X], such that we recognize on the right hand side of Equation (9) a Double ML estimator of
E[(Y − E[Y |X])(D − E[D|X])], which is a special case of the non-parametric estimand χj defined in Equation (3),
for the setting Xj = D and X = X−j . In practice, we directly learn an ML estimator of E[Y |X] by predicting Y
using X , relying on the double robustness of the χj estimands (Smucler et al., 2019), as described in section 2.5.

From Double ML to Causal Discovery: The distinction between policy variables and confounding variables is not
always known in advance. Fortunately, as described in section 2.1, Double ML relies on estimating a non-parameteric
estimand that does only depend on observational data and not on the causal model. This will allow us to exploit
the same approach iteratively in the setting of causal discovery. To this end, we consider a set of variables X =
{X1, X2, · · ·Xd} which includes direct causal parents of the outcome variable Y as well as other variables. We also
reiterate our assumption that the relationship between the outcome variable and direct causal parents of the outcome
variable is linear. The relationship among other variables can be cyclic and nonlinear. We now provide a general
approach to scanning putative direct causes scaling “polynomially” in their number (see Computational Complexity
paragraph in next section), based on the application of a statistical test and Double ML estimators. We describe first
the algorithm and then provide theoretical support for its performance.

2.3 Informal Search Algorithm Description

Pseudo-code for our proposed method (CORTH Features) is in Algorithm 1. The idea is to do a one-vs-rest split for
each variable in turn and estimate the link between that particular variable and the outcome variable using Double
ML. To do so, we decompose Equation (1) to single out a variable D = Xk as policy variable and take the remaining
variables Z = X−k = X\Xk as multidimensional control variables, and run Double ML estimation assuming the
partial regression model presented in Section 2.2, which now takes the form

Y = Dθk + gk(Z) + U, E [U |Z,D] = 0 ,
D = mk(Z) + V, E [V |Z] = 0 .

(10)

The step-wise description of our estimation algorithm goes as follows:

(a) Select one of the variables Xi to estimate its (hypothetical) linear causal effect θ on Y .

5
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(b) Set all of the other variables X−i as the set of possible confounders.
(c) Use the Double ML approach to estimate the parameter θ i.e. the causal effect of Xi on Y .
(d) If the variable Xi is not a causal parent, the distribution of the conditional covariance χi (Proposition 3) is a

Gaussian centered around zero. We use a simple normality test for χi to select or discard Xi as one of the
direct causal parents of Y .

We iteratively repeat the procedure on each of the variables until completion. Pseudo-code for the entire procedure is
given below in Algorithm 1. Guaranties for this approach to identify the true parents rely on the assumptions stated in
Section 2.5, Equations ( 13-15). They notably allow for hidden confounders between covariates, as long as those are
not direct causes of Y , not descendent of Y . On the contrary, if Y is an ancestor of any covariate, the search algorithm
may fail in both directions (false positive and false negative).

Note that Equation (10) is not necessarily a correct structural equation model to describe the true underlying causal
structure. In general, for instance, when D actually causes Z, it is non-trivial to show that the Double ML estimation
of parameter θk will be unbiased (see Section 2.4).

Algorithm 1 Efficient Causal Orthogonal Structure Search (CORTH Features)

1: Input: response Y ∈ RN , covariates X ∈ RN×d, significance level α, number of partitions K.
2: Split N observations into K random partitions, Ik for k = 1, . . . ,K, each having n = N/K samples.
3: for i = 1, . . . , d do
4: for Subsample k ∈ [K] do
5: Dk ← X

[k]
i and Zk ← X

[k]
\i

6: Fit m[\k]
i (Z\k) to D\k and fit g[\k]

i (Z\k) to Y [\k]

7: V̂
[k]

ij ← Dkj −m[\k]
i (Zkj), for all j ∈ Ik

8: θ̌
[k]
i ←

( 1
n

∑
j∈Ik

V̂
[k]

ij Dkj

)−1 1
n

∑
j∈Ik

V̂
[k]

ij (Y [k]
ij − g

[\k]
ij (Zkj))

9: χ̂
[k]
i ← 1

n

∑
j∈Ik

(
− Y [k]

j m
[\k]
ij (Zkj)−Dkjg

[\k]
ij (Zkj) +m

[\k]
ij (Zkj)g[\k]

ij (Zkj) + Y
[k]

j Dkj

)
10: (σ̂[k]

i )2 ← 1
n

∑
j∈Ik

(
− Y [k]

j m
[\k]
ij (Zkj)−Dkjg

[\k]
ij (Zkj) +m

[\k]
ij (Zkj)g[\k]

ij (Zkj) + Y
[k]

j Dkj − χ̂[k]
i

)2

11: end for
12: θ̂i ← 1

K

∑
k∈K θ̌

[k]
i , χ̂i ← 1

K

∑
k∈K χ̂

[k]
i and σ̂2

i ← 1
K

∑
k∈K(σ̂[k]

i )2

13: end for
14: for i ∈ [d] do
15: Gaussian normality test for χ̂i ≈ N

(
0, σ̂2

i

N

)
with α significance level and select ith feature if null-hypothese is

rejected.
16: end for
17: Return Decision Vector

Remarks on Algorithm 1: X
[k]
i is a vector which corresponds to the samples chosen in the kth subsampling pro-

cedure, X [k]
\i = (X [k]

1 , . . . , X
[k]
i−1, X

[k]
i+1, . . . , X

[k]
d ) for any i ∈ [d]. In general the subscript i represents the estimation

for the ith variable and super-script k represents the kth subsampling procedure. K represents the set obtained after
sample splitting. m[\k]

i are (possibly nonlinear) parametric functions fitted using (1st, . . . , k − 1th, k + 1th, . . . ,Kth)
subsamples.

Computational Complexity: For each subset randomly selected from the data, we fit two lasso estimators. Ac-
celerated coordinate descent (Nesterov, 2012) can be applied to optimize the lasso objective. To achieve ε error,
O

(
d
√
κmax log 1

ε

)
number of iterations are required where κmax is the maximum of the two condition number for both

the problems and each iteration requires O(nd) computation. Hence, the computational complexity of running our
approach is only polynomial in d.
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2.4 Orthogonal Scores

Now we describe the execution of our algorithm for a simple graph with 3 nodes. Let us consider the following linear
structural equation model as an example of our general formulation:

Y := θ1X1 + θ2X2 + ε3, X2 := a12X1 + ε2, and X1 := ε1. (11)

Example 1. Consider the system of structural equation given in Equation (10). If ε1, ε2 and ε3 are independent
uncorrelated noise terms with zero mean, Algorithm 1 will recover the coefficients θ1 and θ2.

A detailed proof is given in Appendix A.1. While the estimation of the parameter θ1 is in line with the assumed partial
regression model of Equation (11), the estimation of θ2 does not follow the same. However, it can be seen from the
proof that θ2 can also be estimated from the orthogonal score in Equation (7).

We now show that this result holds for a more general graph structure given in Figure 2, allowing for non-linear cyclic
interactions among features.
Proposition 2. Assume the structural causal model of Figure 2, with (possibly non-linear and confounded) assign-
ments between elements of X = [Xk, X

⊤
−k]⊤, with X−k = [Z⊤

1 , Z
⊤
2 ]⊤, parameterized by γ = (γ1,γ2,γ12). Assume

the unconfounded linear structural assignment Y := Xkθ+X⊤
−kβ +U , with U zero mean random variable with finite

variance σ2
U > 0, independent of X . Then, the score

ψ(W ; θ,β) = (Y −Xkθ −X⊤
−kβ)(Xk − rXX−k

X−k) , (12)

with rXX−k
= E[XkX−k

⊤]E[X−kX−k
⊤]−1, follows the Neyman orthogonality condition for the estimation of θ with

nuisance parameters η = (β,γ) which reads

E
[
(Y −Xkθ −X−k

⊤β)(Xk − rXX−k
X−k)

]
= 0 .

Y

Z1 Z2

Xk

θ

β1

β2

γ1

γ2

γ12

Figure 2: A generic example of identification of a
causal effect θ in the presence of causal and anti-
causal interactions between the causal predictor and
other putative parents, and possibly arbitrary cyclic
and nonlinear assignments for all nodes except Y (see
Proposition 2). We have X−k = Z1 ∪ Z2.

Please refer to Appendix A.2 for the proof. Applying Equa-
tion (6), this leads to the debiased estimator

θ̌ =
∑

i(Yi −X−ki
⊤β̌)(Xki − řXX−k

X−k)∑
i Xki(Xki − řXX−k

X−ki)
.

which relies on ML estimates β̌ and řXX−k
. Comparing the

score in Equation (21) with the score in Equation (7), there
are two takeaways from Proposition 2: (i) the orthogonality
condition remains invariant irrespective of the causal direction
between Xk and Z, and (ii) the second term in Section 2.4 re-
places functionm by the (unbiased) linear regression estimator
for modelling all the relations; given that the relation between
Z and Y is linear, even if relationships between Z and Xk

are non-linear (See Appendix B for concrete examples). Com-
bining with the Double ML theoretical results (Chernozhukov
et al., 2018a), this suggests that regularized predictors based on
Lasso or ridge regression are tools of choice for fitting func-
tions (m, g).

2.5 Statistical Test

We now provide a theoretically grounded statistical decision criterion for the direct causes after the model has been
fitted. Consider (Y,X), Y ∈ R, X ∈ Rd, satisfying

Y = ⟨θ,X⟩+ U, (13)

E(Y 2) <∞, E(U2) <∞, E(U) = 0,E(U | X) = 0, and E(∥X∥2
2) <∞, (14)

E
[
(Xj − E(Xj | X−j))2

]
̸= 0, for all j ∈ {1, . . . , d} , (15)

7
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where U is an exogenous variable and X−j represents all the variables except Xj . The assumptions made with the
above formulation are standard in the orthogonal machine learning literature (Rotnitzky et al., 2019; Smucler et al.,
2019; Chernozhukov et al., 2018). They allow identifying causal parents based on estimates of conditional covariances
χj defined in Equation (3)

Proposition 3. Let PAY = {j ∈ {1, . . . , d} : θj ̸= 0} . Then under the conditions given in Equations (13) to (15),
for each j ∈ {1, . . . , p}

a) χj = θjE
[
(Xj − E(Xj | X−j))2

]
and j ∈ PAY if and only if χj ̸= 0.

b) We also have (with notations of Prop. 2) χj = E
[
(Y − E(Y | X−j))

(
Xj − rXX−j

X−j)
)]
.

The proof is given in appendix A.3. There are two main implications of the results provided in Proposition 3. (i) χj

is non-zero only for direct causal parents of the outcome variable, and χj has double robustness property as shown in
(Rotnitzky et al., 2019; Smucler et al., 2019; Chernozhukov et al., 2018). Having double robustness property means
that while computing the empirical version of the χj which we denote as χ̂j , one can use regularized methods like
ridge regression or Lasso to estimate the conditional expectation (function m). Afterward, one can perform statistical
tests on top of it to decide between zero or non-zero tests. (ii) In line with the above orthogonal score results, we
see that this quantity can be estimated using linear (unbiased) regression to fit the function m, although interactions
between features may be non-linear. Next, we discuss the variance of our estimator so that a statistical test can be used
to identify causal parents. For the sake of convenience, the case of 2 partitions (K = 2)2 is explained here.

Variance of Empirical Estimates of χj: Suppose we have n i.i.d. observations indicated by Dn =
{(Xi, Yi), i = 1 . . . , n}. Randomly split the data in two halves, say Dn1 and Dn2. Take j ∈ {1, . . . , d}. For k = 1
let k = 2, for k = 2 let k = 1. For k = 1, 2, compute estimates of Êk (Y | X−j) and Êk (Xj | X−j) using the
data in sample k. Following Smucler et al. (2019), we can use estimates of Êk (Y | X−j) and Êk (Xj | X−j) that are
solutions of ℓ1-regularized regression problems to obtain square root N convergence guaranties. We use Lasso as the
estimator for conditional expectation in the experiments. Now, we compute the cross-fitted empirical estimates of χj

and associated empirical variances

χ̂k
j = Pnk

[
−Y Êk (Xj | X−j)−XjÊk (Y | X−j) + Êk (Y | X−j) Êk (Xj | X−j) + Y Xj

]
(16)(

σ̂k
j

)2 = Pnk

[(
−Y Êk (Xj | X−j)−XjÊk (Y | X−j) + Êk (Y | X−j) Êk (Xj | X−j) + Y Xj − χ̂k

j

)2
]
, (17)

where Pnk denotes the empirical average over the k half. Finally, let

χ̂j = 1
2

(
χ̂1

j + χ̂2
j

)
, σ̂2

j = 1
2

((
σ̂1

j

)2 +
(
σ̂2

j

)2
)
. (18)

Consistency of such estimators notably relies on sparsity assumptions for ground truth models in the asymptotic high-
dimensional setting where covariate dimension p(= d− 1) and sparsity is allowed to vary with number of samples n.
In the notations below, we drop this dependency and specialize to our case.

Definition 4 (Approximate Linear-Sparse class (ALS)). Ground truth predictor c(X−j) belongs to the approximately
sparse class whenever there exists θ∗ ∈ Rp and a function r(X−j) satisfying

c(Z) = ⟨θ∗, ϕ(Z)⟩+ r(Z) , where ∥θ∗∥0 ≤ s and E[r(Z)2] ≤ K(s log(p)/n) .

Theorem 1 of (Smucler et al., 2019) provides general conditions under which (see also (Chernozhukov et al., 2018)),
when the estimators Êk (Y | X−j) and Êk (Xj | X−j) are Lasso-type regularized linear regressions.

Proposition 5. Given eqs. (13-15) and j ∈ {1, ..., d}. Assume: (i) For true parameter in (13), ∥θ∥0 ≤ s with
s log(p)/n → 0; (ii) rXX−j

X−j is in the ALS class with s log(p)/n → 0; (iii) All Xk have support bounded by the
same constant; (iv) U is independent of X and has tail decaying at least as fast as an exponential random variable;

2Extension to arbitrary number of data partitions (K ≥ 2) is straightforward. Check Algorithm 1.
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(v) E[X−jX
⊤
−j ] has eigenvalues lower and upper bounded; (vi) E[Y −E[Y |X−j ]|X−j ] and E[Xj−E[Xj |X−j ]|X−j ]

are bounded with variance lower bounded.
Then the pair of estimators (χ̂j , σ̂

2
j ) of eq. (18), using l1 regularization coefficient λ ≈

√
log(p)/n for both Lasso

estimates, satisfies χ̂j
D→ N

(
χj ,

σ̂2
j

n

)
., as n→ +∞.

All stated bounds are uniform across n and strictly positive. Proof is provided in Appendix A.4 with the broader
context on the doubly robust estimation framework. The provided conditions correspond to a concise special case of
the general statements provided in Smucler et al. (2019). It is possible to relax some of these assumptions, notably
to allow some misspecifications of the sparsity assumptions for the Lasso estimates. Overall, the mildness of these
assumptions may explain the empirical success of this approach in the following section.

Under conditions of proposition 5, the test that rejects χj = 0 when |χ̂j | ≥ 1.96 σ̂j√
n

will have approximately 95%
confidence level. The probability of rejecting the null when it is false is

P

(
|χ̂j | ≥ 1.96 σ̂j√

n

)
≥ P

(
|χ̂j − χj | ≤ |χj | − 1.96 σ̂j√

n

)
→ 1.

In order to account for multiple testing, we use Bonferroni correction.

Conditional Independence Tests: Asymptotically, the conditional independence testing between Y and Xj given
X−j is also a possible solution for our proposed approach. Indeed, d-separation rules imply that true causes are condi-
tionally dependent according to this test, while non-causes are conditionally independent (becauseX−j is not a collider
under our NFD assumption). However, conditional independence testing is challenging in high-dimensional/non-linear
settings. Kernel-based conditional independence testing is computationally expensive (Zhang et al., 2012). We used
χj in the paper because it was already known from previous works (Smucler et al., 2019; Chernozhukov et al., 2018b)
that it has double robustness property, which means one can use regularized methods like Lasso to estimate empirical
conditional expectation from a finite number of samples and the empirical estimator is still unbiased with controlled
variance. Our work is related to the recent work of (Shah & Peters, 2020), which proposes a conditional independence
test whose proofs rely heavily on (Chernozhukov et al., 2018a). In this paper, we use for the first time such double
ML-based tests for the search problem.

3 Experiments

3.1 Experimental Setup

To showcase performance of our algorithm, we conducted two sets of experiments: i) Comparison with causal
structure learning methods (Casual and Markov Blanket discovery) using data consisted of DAGs with high num-
ber of observations-to-number of variables ratio (n ≫ d) which is applicable to causal structure learning methods.
Markov Blanket discovery methods are included since under NFD, faithfulness, and no-hidden-confounders assump-
tions, Markov Blanket of the target variable corresponds to the direct parents. Note that, faithfulness and no-hidden-
confounders assumptions are not necessary for our method. These experiments are discussed in details in Section 3.1.1
ii) Comparison with inference by regression methods using data consisted of DAGs with high number of observations-
to-number of variables ratio (n ≈ d and n ≪ d) to illustrate performance in high-dimensional regimes. This part is
explained thoroughly in Section 3.1.2

3.1.1 Causal Structure Learning

For every combination of number of nodes (#nodes), connectivity (ps), noise level (σ2), number of observations (n),
and non-linear probability (pn) (see Table C.1), 100 examples (DAGs) are generated and stored as csv files (altogether
72.000 DAGs are simulated, comprising a dataset of overall >10GB). For each DAG, n samples are generated. We
provide more details about the parameters (#nodes, ps, pn and n) and data generation process in Appendix C.1.1. For
future benchmarking, the generated files with the code will be made available later.

The baselines we compare our method against are categorized in two groups which are suitable for observational
data: i) Causal Structure Learning methods: LINGAM (Shimizu et al., 2006), order - independent PC (Colombo
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Figure 3: Overall performance for a single random DAG with 100 simulations for each setting, having 20 nodes and
500 observations.

& Maathuis, 2014), rankPC, MMHC (Tsamardinos et al., 2006), GES (Chickering, 2003), rankGES, ARGES (adap-
tively restricted GES (Nandy et al., 2016)), rankARGES, FCI+ (Claassen et al., 2013), PCI (Shah & Peters, 2020)
and Lasso3 (Tibshirani, 1996). ii) Markov Blanket discovery methods: Grow-Shrink (GS (Margaritis & Thrun,
1999)), Incremental Association Markov Blanket (IAMB (Tsamardinos et al., 2003b)), Max-Min Parents & Children
(MMPC (Tsamardinos et al., 2003a)), FastIAMB (Yaramakala & Margaritis, 2005). and IAMB with FDR Correc-
tion (Pena, 2008). The "CompareCausalNetworks"4 and "bnlearn: Bayesian Network Structure Learning, Parameter
Learning and Inference"5 R Packages are used to run most of the baselines methods. We use 10-fold cross-validation
to choose the parameters of all approaches. As direction of the possible causes in the defined setting is determined,
the non-directional edges inferred by some baselines, e.g., PC are evaluated as direct causes of the target variable.

3.1.2 Inference by Regression

Similar to the previous section, for every combination of parameters, 50 examples are generated and stored, which
means 15000 DAGs overall. Details are provided in Appendix C.1.2 We compare our algorithm to methods for
inference in regression models: Standard Regression, Lasso with exact post-selection inference (Lee et al., 2016),
Debiased Lasso (Javanmard et al., 2015), Forward Stepwise Regression for active variables (Loftus & Taylor, 2014;
Tibshirani et al., 2016), Forward Stepwise Regression for all variables (Loftus & Taylor, 2014; Tibshirani et al., 2016),
LARS for active variables (Efron et al., 2004; Tibshirani et al., 2016), and LARS for all variables (Efron et al., 2004;
Tibshirani et al., 2016). "selectiveInference: Tools for Post-Selection Inference" R Package 6 is leveraged to run most
of these baselines. We used cross-validation to choose hyperparameters and confidence level for hypothesis testing
considered is 90%.

Regression Technique and Hyper-parameters: We use Lasso as the estimator of conditional expectation for our
method because the variance bound for χj with Lasso type estimator of conditional expectation is provided in equa-

3None-zero coefficients are reported.
4https://cran.r-project.org/web/packages/CompareCausalNetworks/index.html
5https://cran.r-project.org/web/packages/bnlearn/
6https://cran.r-project.org/web/packages/selectiveInference/
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Figure 4: Distribution of the estimated θ values for the true and false causal parents in 100 simulations of the graph
with 20 nodes, 20000 observations and 0.3 as connectivity. The vertical lines indicate the ground truth values for the
linear coefficients corresponding to causal parents.

tion 17. Further, using more splits than 2 splits in the experiment relatively increases the performance of parameter
estimation. See Figure 4 for parameter estimations.

Evaluation: Recall, Fall-out, Critical Success Index, Accuracy, F1 Score, and Matthews correlation coefficient
(Matthews, 1975) are considered as metrics for the evaluation. These metrics are described in Appendix C.2.

3.2 Results

3.2.1 Causal Structure Learning

Results aggregated by the number of observations (corresponding to 24000 simulations per entry in the table) are
illustrated in Table 17. Our method performs better than the competing baselines in terms of accuracy and F1 score,
especially for more connected structures, despite data being generated according to DAG causal structures, which,
dissimilar to our method, is an essential condition for them. To provide a visual comparison, we plot the accuracy of
all methods w.r.t. the connectivity parameter (ps) in Figure 3 for different values of pn and σ2 on 1800 samples.

It can be observed that the accuracies of the competing baselines significantly drop with increasing noise level and
nonlinearity, while our method is more robust to them. We also extensively compare all the metrics (Recall, Fall-
out, Critical Success Index, Accuracy, F1 Score, and Matthews correlation coefficient) for all the methods in Ap-
pendix C.3.1. According to these metrics, our approach performs better than baselines in most cases regardless of the
set of parameters used for generating data. Our method shows in particular stability in performance w.r.t. the number
of nodes (Table C.3), partially non-linear relationships (Table C.4), connectivity (Table C.5), number of observations
(Table C.7), and noise level (Table C.6). We also show the plot of parameter estimation for direct causal parents vs.
non-causal parents in Figure 4. In the plots and tables, we denote our approach as CORTH Features.

3.2.2 Inference by Regression

Analogous to previous part, results are aggregated by nonlinear probability (corresponding to 3750 simulations per
entry in the table), number of observations (3000 simulations per entry in the table), connectivity (5000 simulations
per entry in the table) and beta distribution parameters are provided in Tables C.8 to C.11. Based on these results, our
method suggests more robustness w.r.t. the set of parameters used for generating data and relatively better performance
compared to other methods.

3.3 Scaling Causal Inference to Large Graphs

Figure 5 shows the runtime of the method in secs as a function of the graph’s size. Notice that the runtime of our
algorithm in the log-log plot is roughly linear, supporting our above statement about the computational time being
polynomial in d. As we used 5000 observations, additional overhead comes from cross-validation.

7Please refer to Appendix C.3.1 for thorough tables for all parameters.
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Figure 5: Runtime as a function of the number of
variables for 10 simulations per number of nodes. In
these simulations connectivity, number of observa-
tions, nonlinaer prob., and noise level are set to 0.3,
5000, 0, and 1 respectively.

Number of Observations

Method 100 500 1000
ACC F1 ACC F1 ACC F1

GES 0.80 0.59 0.81 0.65 0.81 0.67
rankGES 0.79 0.56 0.81 0.64 0.81 0.65
ARGES 0.78 0.49 0.80 0.58 0.80 0.59
rankARGES 0.78 0.47 0.79 0.57 0.80 0.58
FCI+ 0.84 0.67 0.86 0.75 0.87 0.78
LINGAM 0.84 0.65 0.91 0.74 0.94 0.88
PC 0.83 0.64 0.86 0.73 0.87 0.75
rankPC 0.82 0.62 0.85 0.71 0.85 0.73
MMPC 0.77 0.37 0.82 0.53 0.83 0.57
MMHC 0.80 0.56 0.82 0.62 0.83 0.64
GS 0.79 0.43 0.84 0.59 0.86 0.62
IAMB 0.74 0.39 0.81 0.57 0.83 0.61
Fast-IAMB 0.80 0.46 0.84 0.59 0.86 0.62
IAMB-FDR 0.78 0.37 0.84 0.58 0.85 0.61
PCI 0.83 0.59 0.91 0.85 0.93 0.89
Lasso 0.87 0.81 0.89 0.85 0.89 0.85
CORTH Features 0.88 0.78 0.93 0.91 0.94 0.92

Table 1: Performance across all the settings for dif-
ferent number of observations (100, 500 and 1000).
Each single entry in the table is averaged over 24000
simulations. Our method is almost state of the art in
every case.

3.4 Real-World Data

We also apply our algorithm to a recent COVID-19 Dataset (Einstein, 2020) where the task is to predict COVID-19
cases (confirmed using RT-PCR) amongst suspected ones. For an existing and extensive analysis of the dataset with
predictive methods, we refer to Schwab et al. (2020). We apply our algorithm to discover the features which directly
cause the diagnosed infection. We found that the following were the most common causes across different runs of
our approach: Patient age quantile, Arterial Lactic Acid, Promyelocytes, and Base excess venous blood gas analysis.
Lacking medical ground truth, we report these not as corroboration of our approach but rather as a potential contribu-
tion to causal discovery in this challenging problem. It is encouraging that some of these variables are consistent with
other studies Schwab et al. (2020). Details on data preprocessing and more results are available in Appendix D.

4 Discussion

A recent empirical evaluation of different causal discovery methods highlighted the desirability of more efficient search
algorithms (Heinze-Deml et al., 2018). In the present work, we provide identifiability results for the set of direct causal
parents, including the case of partially nonlinear cyclic models, as well as a highly efficient algorithm that scales well
w.r.t. the number of variables and exhibits state-of-the-art performance across extensive experiments. Our approach
builds on the Double ML method Chernozhukov et al. (2018a) and properties of conditional covariance estimands,
which can leverage Lasso predictors to obtain consistent estimators in high dimensional settings Smucler et al. (2019).
Theoretical properties of such approaches (Smucler et al., 2019, Section 2), such as rate double robustness, which
accommodates non-strict (approximate) sparsity assumptions, as well as model double robustness, which allows some
degree of model misspecification, may explain the empirically observed performance of our approach. Whilst not
amounting to full causal graph discovery, identification of causal parents is of major interest in real-world applications,
e.g., when assaying the causal influence of genes on the phenotype. A natural direction worth exploring is to extend
this approach for discovering direct causal parents in the case when nonlinear relationships exist between the output
variable and its direct causal parents.
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A Causal Discovery via Orthogonalization

A.1 Example 1

Y

X1 X2

θ1 θ2

a12

Figure A.1: An example with linear structural equations.

Proof of Example 1 . Let us start from the easier case first (See Figure A.1) . Let us first try to estimate the coefficient
of interaction between X2 and Y but it is also very clear that the estimation of θ2 will be unbiased as the given
setting precisely match with the double machine learning setting. However, we will see in this example that given the
population, θ1 can be approximated as well. Let us write down the structural equation model first:

Y := θ1X1 + θ2X2 + ε3

X2 := a12X1 + ε2

X1 := ε1.

(19)

From the set of equations we have:

X1 = a−1
12 X2 − a−1

12 ε2.

Let also denote E[ε2
1] = σ2

1 and E[ε2
2] = σ2

2 . Hence, E[X2
1 ] = σ2

1 , E[X1X2] = a12σ
2
1 and E[X2

2 ] = a12E[X1X2] +
E[ε2X2] = a2

12σ
2
1 + σ2

2 .. Let us first try to find the regression co-efficient of fitting X2 on Y .

Y = θ̂2X2 + η1.

Hence, θ̂2 = E[X2Y ]
E[X2

2 ] if η is independent of X2.

θ̂2 = E[X2Y ]
E[X2

2 ] = E[X2(θ1X1 + θ2X2 + ε3)]
E[X2

2 ] = θ2 + θ1a12
σ2

1
σ2

2 + a2
12σ

2
1
. (20)

Similarly, if we fit X2 on X1 then
X1 = â−1

12 X2 + η2,

then â−1
12 = E[X1X2]

E[X2
2 ] . However E[X1X2] can also be written as following:

E[X1X2] = a−1
12 E[X2

2 ]− a−1
12 E[ε2X2].

Hence,

â−1
12 = a−1

12

(
1− σ2

2
σ2

2 + a2
12σ

2
1

)
= a−1

12

(
a2

12σ
2
1

σ2
2 + a2

12σ
2
1

)
.

Residual V̂ = X1 − â−1
12 X2. Hence we can have

E(V̂ X1) = E[X2
1 ]− â−1

12 E[X1X2] = E[ε2
1]− â−1

12 a12E[ε2
1] = σ2

1σ
2
2

σ2
2 + a2

12σ
2
1
.
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We now calculate,

E
[
V̂ (Y − θ̂2X2)

]
= E

[
(X1 − â−1

12 X2)(Y − θ̂2X2)
]

= E
[
(X1 − â−1

12 X2)
(
(θ2 − θ̂2)X2 + θ1X1 + ε3

)]
= (θ2 − θ̂2)a12σ

2
1 + θ1σ

2
1 − â−1

12 (θ2 − θ̂2)(σ2
2 + a2

12σ
2
1)− â−1

12 θ1a12σ
2
1

= θ1σ
2
1σ

2
2

σ2
2 + a2

12σ
2
1
.

Last equation was written after a step of minor calculation. Since the estimator is

θ̂1 =
[
E(V̂ X1)

]−1
E

[
V̂ (Y − θ̂2X2)

]
= θ1.

A.2 Influence of the interactions between parents

In this section, we use a generic example shown in Figure 2 which we show again in Figure A.2 to illustrate the role
of interactions between the covariates on the proposed causal discovery algorithm.

Y

Z1 Z2

Xk

θ

β1

β2

γ1

γ2

γ12

Figure A.2: A generic example of identification of a causal effect θ in the presence of causal and anti-causal interac-
tions between the causal predictor and other putative parents, and possibly arbitrary cyclic and nonlinear assignments
for all nodes except Y (see Proposition 2). We have X−k = Z1 ∪ Z2.

The estimator discussed can simply be derived from the Neyman orthogonality condition. We now provide the below
the proof for Proposition 2. For the sake of completeness, we also rewrite the statement of the proposition again.

Proposition 6 (Restatement of Proposition 2). Assume the structural causal model of Fig. A.2, with (possibly non-
linear and confounded) assignments between elements of X = [Xk, X

⊤
−k]⊤, with X−k = [Z⊤

1 , Z
⊤
2 ]⊤, parameterized

by γ = (γ1,γ2,γ12). Assume the unconfounded linear structural assignment Y := Xkθ + X⊤
−kβ + U , with U zero

mean random variable with finite variance σ2
U > 0, independent of X . Then, the score

ψ(W ; θ,β) = (Y −Xkθ −X⊤
−kβ)(Xk − rXX−k

X−k) , (21)

with rXX−k
= E[XkX−k

⊤]E[X−kX−k
⊤]−1, follows the Neyman orthogonality condition for the estimation of θ with

nuisance parameters η = (β,γ) which reads

E
[
(Y −Xkθ −X−k

⊤β)(Xk − rXX−k
X−k)

]
= 0 .

Proof of Proposition 2. We first use a likelihood based approach under an additional Gaussianity assumption before
addressing the general setting.
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Special case Let us assume U is Gaussian. Using the global Markov factorization for simple SCMs8 (Forré & Mooij,
2017; Bongers et al., 2021),

P (W ; θ,η) = P (Y |X−k, Xk; θ,β)P (X−k, Xk; γ),

due to linearity and gaussianity of the assignment of Y , we obtain a negative log likelihood of the form (up to additive
constants)

ℓ(W ; θ,η) = 1
2σ2

U

(Y −Xkθ −X−k
⊤β)(Y −Xkθ −X−k

⊤β) + f(Xk, X−k; γ).

where f stands for the negative log likelihood of the second factor and η = [β⊤,γ⊤]⊤ is the nuisance parameter
vector. Following the principle of the approach described in main text, we use Chernozhukov et al. (2018a) [Eq. (2.7)]
to define the Neyman orthogonalized score, leading to :

ψ(W ; θ,η) = ∂θℓ(W ; (θ,η))− µ∂ηℓ(W ; (θ,η)) = − 1
σ2

U

(Y −Xkθ −X−k
⊤β)Xk

− µ

[
− 1

σ2
U

(Y −Xkθ −X−k
⊤β)X−k

∂γf(Xk, X−k; γ)

]
.

The quantity µ should be chosen to satisfy Neyman orthogonality of Equation (5), which leads to9

∂η⊤Eψ(W ; θ,η) = ∂η⊤E∂θℓ(W ; (θ,η))− µ∂η⊤E∂ηℓ(W ; (θ,η)) = 0

leading to the expression of µ given in Chernozhukov et al. (2018a) [eq. (2.8)]:

µ = Jθ,ηJ
−1
η,η,

with

Jη,η = ∂η⊤E [∂ηℓ(W, θ,η)] =
[
σ−2

Y E
[
X−kX

⊤
−k

]
0

0 ∂γ⊤E [∂γf(Xk, X−k; γ)]

]
,

and
Jθ,η = ∂η⊤E [∂θℓ(W, θ,η)] = σ−2

U

[
E

[
XkX

⊤
−k

]
0

]
,

resulting in
µ =

[
E

[
XkX

⊤
−k

]
E

[
X−kX

⊤
−k

]−1 ; 0
]

=
[
rXX−k

; 0
]
.

Reintroducing µ in the expression of the correction term leads to

µ∂ηℓ(W ; (θ,η)) = µ

[
− 1

σ2
U

(Y −Xkθ −X−k
⊤β)X−k

∂γf(Xk, X−k; γ)

]
.

leads to

µ∂ηℓ(W ; (θ,η)) = − 1
σ2

U

(Y −Xkθ −X−k
⊤β)rXX−k

X−k ,

which leads to the final expression of the orthogonalized score ψ :

∂θℓ(W ; (θ,η))− µ∂ηℓ(W ; (θ,η)) = − 1
σ2

U

(Y −Xkθ −X−k
⊤β)(Xk − rXX−k

X−k) .

Since σU is a positive constant of the problem, we can remove it while still having an appropriate orthogonalized score
for this estimation problem, leading to the final expression

ψ(W ; θ,η) = (Y −Xkθ −X−k
⊤β)(Xk − rXX−k

X−k) .
8The necessary condition for this statement to be true is uniquely solvability which is equivalent to not having self-cycles in the causal structure.
9the transpose in ∂η⊤ should be understood as organizing columnwise the partial derivatives with respect to each components of η
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General case We now drop the Gaussianity assumption. Interestingly, the least square objective

L(W ; θ,η) = (Y −Xkθ −X−k
⊤β)(Y −Xkθ −X−k

⊤β).

is still an appropriate (biased) score for the estimation problem, in which the nuisance parameters γ do not play a role.
Indeed, starting from the structural equation of Y

Y := Xkθ +X⊤
−kβ + U,

we get
E[Y Xk] = E[X2

k ]θ + E[X⊤
−kXk]β,

which can be rewritten as
E∂θL(W ; (θ0,η0)) = 0 .

As a consequence, the true parameter is the unique minimizer of the loss, identified by this vanishing paratial derivative.
We can thus apply the previous orthogonalization procedure in the same way as we did for the likelihood, defining

ψ(W ; θ,η) = ∂θL(W ; (θ,η))− µ∂ηL(W ; (θ,η))

and leading to the exact same orthogonalized score (up to irrelevant sign change).

A.3 Proof of proposition 3

Proof. From Equation (13)

E(Y | X−j) = E(⟨θ,X⟩ | X−j) + E(U | X−j) = E(⟨θ−j , X−j⟩ | X−j) + θjE(Xj | X−j)
= ⟨θ−j , X−j⟩+ θjE(Xj | X−j) = ⟨θ,X⟩ − θjXj + θjE(Xj | X−j)
= Y − U − θj(Xj − E(Xj | X−j)).

Thus

χj = E [(U + θj(Xj − E(Xj | X−j))) (Xj − E(Xj | X−j)]
= E [U(Xj − E(Xj | X−j)] + θjE

[
(Xj − E(Xj | X−j)2]

= θjE
[
(Xj − E(Xj | X−j)2]

.

Since E
[
(Xj − E(Xj | X−j)2]

> 0, j ∈ PAY if and only if χk ̸= 0, proving a)-b). For c), we rely on the properties
of the Hilbert space of square integrable RV’s L2(Ω), equiped with the scalare product ⟨X, Y ⟩ = E[XY ]. We rewrite

χj = E
[
(Y − E(Y | X−j))

(
Xj − rXX−k

X−j

)]
+ E

[
(Y − E(Y | X−j))

(
rXX−k

X−j − E(Xj | X−j)
)]
.

Under our assumptions, E(Y |X−j) is the orthogonal projection of Y on the subspace of G-measurable square
integrable RV’s L2(Ω,G), so Y − E(Y |X−j) is orthogonal to any elements of L2(Ω,G). Noticing that(
rXX−k

X−j − E(Xj | X−j)
)

is an element of L2(Ω,G), the second right-hand side term of the above equation van-
ishes and we get the result.

A.4 Background on the Bilinear Influence Function (BIF) class and proof of Proposition 5

We summarize the results in Smucler et al. (2019) that justify the normal convergence of the Lasso-type estimates
that we relying on in Section 2.5 to perform statistical hypothesis tests. This paper investigates the properties of ℓ1-
regularised machine learning estimators for a particular family of non-parametric estimands, called Bilinear Influence
Function (BIF) functionals.

20



Published in Transactions on Machine Learning Research (08/2022)

The estimand is denoted χ(η) where η denotes the model. The bias of the estimator η̂ due to the unperfect estimate
η̂ of η can be quantified using the influence function framework, leading to the following Taylor expansion in the
neighborhood of the true model η,

χ̂ = χ(η̂) + Pnχ
1
η̂ ,

where χ1
η̂ is the influence function, which is a mean zero random variable under distribution Pη of the true model, and

Pn is the empirical distribution of n iid samples of the observation distribution.

Estimands belonging to the BIF class are characterized by an influence function of the following form, for observed
random variables O including a vector Z,

χ1
η̂(O) = Saba(Z)b(Z) +ma(O, a) +mb(O, b) + S0 − χ(η)

where a and b are in L2 and ma and mb are linear in the second argument (Smucler et al., 2019, Definition 1).

Our estimand of Equation (3) belongs to this BIF class as an expected conditional covariance (Smucler et al., 2019,
Example 5), written in the notation of that paper as Lin.L, Lin.E and Lin.V.

E[(Y − E(Y |Z))(D − E(D|Z))] .

For this case, Hines et al. (2022) (among others) provide the influence function:

χ1
η̂(O) = (Y − E(Y |Z))(D − E(D|Z))− χ(η)

which entails the BIF function parameters Sab = 1, a(Z) = E(Y |Z), b(Z) = E(D|Z), ma(O, a) = −Da,
mb(O, b) = −Y b,S0 = DY .

An estimation procedure of BIF functionals based on Lasso-type estimators of conditional expectations is described
in Smucler et al. (2019, Section 3.1), and corresponds to ours described in section 2.5. In short, estimates are chosen
among a family of models of the form φa(⟨θa, ϕ(Z)⟩) and φb(⟨θb, ϕ(Z)⟩), with parameters θc, c ∈ {a, b},that solve
the ℓ1 regularized problem of the general form

θ̂c = arg min
θ∈Rp

Pn [Qc(θ, ϕ, w)] + λ∥θ∥1 , (22)

for c ∈ {a, b} with Pn an n-sample empirical average, λ the regularization parameter and objective function

Qc(θ;ϕ;w) = Sabw(Z)ψc(⟨θ, ϕ(Z)⟩) + ⟨θ,mc̄(w · ϕ)⟩

In our case, we can use linear models which entail an identity link function φ = id and anti-derivative ψ = x2/1.
Moreover the weight can be set to w = 1 Smucler et al. (2019), leading to

Qa(θ;ϕ;w) = (⟨θ, ϕ(Z)⟩)2 − ⟨θ, Y ϕ(Z)⟩ = (Y − ⟨θ, ϕ(Z)⟩)2 − Y 2 ,

and
Qb(θ;ϕ;w) = (⟨θ, ϕ(Z)⟩)2 − ⟨θ,Dϕ(Z)⟩ = (D − ⟨θ, ϕ(Z)⟩)2 −D2 .

which thus both reduce to least square linear regression objectives, and thus turn eq. 22 into the classical Lasso
objective.

Asymptotic properties are established for the true a(Z) and/or b(Z) belonging sequences of models associated to each
sample size n with parameter dimension p and sparsity s, quantified as an upper bound on the number of non-zero
coefficients of a vector, i.e. its ℓ0 norm ∥.∥0, such that

s log(p)/n →
n→+∞

0.

In particular, (Smucler et al., 2019, Section 4) use the approximately generalized linear-sparse class, for some j, such
that there exists θ∗ ∈ Rp and a function r(Z) satisfying (dependence on n is dropped to ease notation)

c(Z) = φ(⟨θ∗, ϕ(Z)⟩) + r(Z)

where ∥θ∗∥0 ≤ s and E[r(Z)2] ≤ K(s log(p)/n)j . In our main text Definition 4, we specialize this class to the linear
case (ϕ = id) and j = 1.
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Sketch of the proof of Proposition 5. Statement (3) of Theorem 1 in Smucler et al. (2019) provides necessary condi-
tions the estimators’ error to converges to a zero mean distribution with an accurate empirical estimate of the the
variance. These conditions are gathered in 3 subsets of assumptions called Lin.L, Lin.E and Lin.V (see conditions 1-3
in (Smucler et al., 2019, Section 5.1.1) together with statements of sufficient conditions to satisfy them. Based on
these statements, we go through justifications for each assumptions.

Lin.L Our assumption (i) entails that this as Lin.L.1 trivially satisfied for E[Y |X−j ] (see (Smucler et al., 2019,
Section 4, Example 9)). Moreover, Lin.L.1 is satisfied for E[Xj |X−j ] explicitly by our assumption (ii).

For Lin.L.2, we use the statement of Smucler et al. (2019) that it can be replaced by an assumption of “tails decays at
least as fast as the tails of an exponential random variable”. This is achieved by the combined effect of our assumptions
(iii) and (iv).

For Lin.L.3-4, we use the statement of Smucler et al. (2019) that our assumptions (iii) and (v) are sufficient.

Lin.L.5, is trivial as in our case Sab = 1.

Lin.E For Lin.E.1 we use the statement by Smucler et al. (2019) that our assumption (vi) is sufficient.

For Lin.E.2, a) results from the (strictly positive) lower bound on the variances in our assumption (vi), combined with
(iii-iv) for the requested upper bounds.

Lin.V For Lin.V.1 is directly stated in our assumption (iii).

For Lin.V.2 is trivial as in our case Sab = 1.

For Lin.V.3 is directly imposed by our assumption (iii), as stated by Smucler et al. (2019) for their Example 9.

B Examples

The result discussed in Proposition 2 is not directly intuitive. In simple words, there are two takeaways from Propo-
sition 2: (i) the orthogonality condition remains invariant irrespective of the causal direction between Xk and Z, and
(ii) the second term in Proposition 6 suggests to use a linear estimator for modeling all the relations, given that the
relation between Z and Y is linear.
To generate more intuition, we provide a few examples. Let us go back again to the three variable interaction assuming
the following structural equation model:

Y := θ1X1 + θ2X2 + ε3

X2 := f(X1) + ε2

X1 := ε1,

(23)

where f is a nonlinear function and ε1, ε2 and ε3 are zero mean Gaussian noises.

• Consider the case when f(x) = x2. The goal is to estimate the parameter θ1 which we call θ̂1. We follow the
standard double ML procedure assuming policy variableX1 and controlX2, although the ground truth causal
dependency X1 → X2 in contradiction with such setting (see Equation (4)). The estimate of θ2 following
the double ML procedure, which we call θ̂2 = E[X2Y ]

E[X2
2 ] = θ2 + θ1

E[X1X2]
E[X2

2 ] . Similarly, we want to estimate

X1 = αX2 + η from which we get, α = E[X1X2]
E[X2]2 . It is easy to see that E[X1X2] = E[X3

1 ] = 0. Hence,

α = 0 and it is easy to see θ̂1 = θ1.

• Consider now the more general case where f is any nonlinear function. As in the previously discussed
example, the goal is to estimate θ1. We have θ̂2 = E[X2Y ]

E[X2
2 ] = θ2 + θ1

E[X1X2]
E[X2

2 ] . Similarly, α = E[X1X2]
E[X2

2 ] . We
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substitute these estimates into the orthogonality condition in Proposition 6:

E
[
(Y −X1θ̂1 −X2θ̂2)(X1 − αX2)

]
= 0 .

⇒ E
[(
Y −X1θ̂1 −X2θ̂2

) (
X1 −

E[X1X2]
E[X2

2 ] X2

)]
= 0 .

⇒ E
[(
X1(θ1 − θ̂1) + (a2 − θ̂2)X2 + ε3

)
(
X1 −

E[X1X2]
E[X2

2 ] X2

)]
= 0 .

⇒ θ̂1 = θ1.

From the above two examples, it is clear that even though the internal relations between the variables are nonlinear,
all we need is an unbiased linear estimate to estimate the causal parameter.

C Data Generation and Evaluation Metric

C.1 Data Generation

C.1.1 Causal Structure Learning Data

For every combination of number of nodes (#nodes), connectivity (ps), noise level (σ2), number of observation
(n), and non-linear probability (pn) (look at Table C.1), 100 examples (DAGs) are generated and stored as csv files
(altogether 72.000 DAGs are simulated, comprising a dataset of overall >10GB). For each DAG, z number of samples
are generated by sampling noise (ϵ in Equation (25)) with variance σ2 starting from root of the DAG. For future
benchmarking, the generated files will be made available with the code later on.

We generate DAGs (Direct Acyclic Graphs) in multiple steps: i) a random permutation of nodes is chosen as a topo-
logical order of a DAG. ii) Based on this order, directed edges are added to this DAG from each node to its followers
with a certain probability ps (connectivity). iii) For each observation, values are assigned to nodes according to the
topological order of the DAG in such a way that each node’s value is determined by summing over transformations
(linear or nonlinear with a certain nonlinear probability pn) of values of its direct causes with the addition of Gaussian
distributed noise. The non-linear transformation used is a tanh(bx)10, with a = 0.5 and b = 1.5. If the set of parents
for the node X ′ is denoted as PAX′ as before then value assignment for a node X ′ is as follow:

X ′ = ε+
∑

X∈P AX′

ιℓ(pn)θX + (1− ιℓ(pn)).a. tanh(bX), (24)

where ε ∼ N(0, σ2) in which σ2 represents noise level. ιℓ(X) is an indicator functions which decides between linear
or non-linear contribution of X in X ′. We decide the value of ιℓ(pn) by generating a binary randon number which is

10The resulting values in the experiments are not concentrated around zero, and they are even up to 10ks for large graphs (∼ 50 nodes). With the
nonlinearity feature of a tanh(bx) for relatively large values taken into account, this is a good representer of nonlinear relationships.

connectivity # nodes
nonlinear

probability # observ.
noise
level

(ps) (pn) n (σ2)

0.1 5 0 100 0.01
0.3 10 0.3 500 0.1
0.5 20 0.5 1.000 0.3

50 1 0.5
1

Table C.1: Experimental Setup: In the experiments we vary the connectivity parameter, the number of nodes in the
graph, the non-linear probability, the number of observations and the noise level and generate 100 graphs for each
setting.
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Figure C.1: Beta distribution with different parameters.

1 with probablity pn and 0 with probability 1 − pn. The value of θ is set to 2 for the small DAGs (number of nodes
equal to 5 or 10) and 0.5 for large DAGs (number of nodes equal to 20 or 50) due to the value exploitation that might
happen in large graphs.

We vary and investigate the effect of non-linear relationships, the number of nodes, number of observations, effect of
connectivity and noise level while simulating the data. We summarize the factors in the data generation in Table C.1.

C.1.2 Inference by Regression Data

Similar to Appendix C.1.1, data generation follows the random topological order but with a slight difference, i.e., with
the following value assignment,

X ′ = ε+
∑

X∈P AX′

ιℓ(pn)θX + (1− ιℓ(pn)).a. tanh(bX), (25)

where ε ∼ B(α, β) in which α and β are parameters of beta distribution. The reason for this is that most of the
inference methods exploit normality tests and this way it is possible to challenge them. A diverse set of parameters are
chosen for the beta distribution to signifies this point (see Figure C.1). The set of parameters of DAGs varies according
to Table C.2. For each setting, 50 examples are generated and stored (15000 DAGs overall) which will be available
for future studies.

connectivity # nodes
nonlinear

probability # observ.
beta distribution

parameter
(ps) (pn) n (α, β)

0.1 100 0 10 (0.5, 0.5)
0.3 0.3 20 (5, 1)
0.5 0.5 50 (1, 3)

1 100 (2, 2)
200 (2, 5)

Table C.2: Experimental Setup: In the experiments we vary the connectivity parameter, the non-linear probability, the
number of observations and beta distribution parameters. We generate 50 graphs for each setting.

Code: The code for the method and data generation is available in this GitHub repository.
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C.2 Evaluation Metric

Correctly and incorrectly inferred direct causes are considered true and false. Let the total number of true positives,
false positives, true negatives ,and false negatives denoted by TP, FP, TN, and FN, we evaluate our method using
following metrics:

• Recall (true positive rate):

TPR = TP

TP + FN

• Fall-out (false positive rate):

FPR = FP

FP + TN

• Critical Success Index (CSI): also known as Threat Score.

CSI = TP

TP + FN + FP

• Accuracy:

ACC = TP + TN

P +N

• F1 Score: harmonic mean of precision and sensitivity.

F1 = 2TP
2TP + FP + FN

• Matthews correlation coefficient (MCC): a metric for evaluating quality of binary classification introduced in
(Matthews, 1975).

MCC = TP × TN − FP × FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

In some rare cases, we encountered zero-divided-by-zero and divided-by-zero cases for some of these metrics. In these
situations, scores are reported 1 and 0 respectively while Fall-out is reported 0 and 1.

C.3 Supplementary Tables for Performance in Inferring Direct Causes

Here, additional tables for the result of the experiments are provided.

C.3.1 Compared to Causal Structure Learning Methods

In this section, supplementary tables supporting superior performance of CORTH Features compared to well-
established Causal and Markov Blanket discovery methods are provided (See Tables C.3 to C.7). This superiority
is consistent w.r.t. connectivity (Table C.5), number of nodes (Table C.3), number of observations (Table C.7), nonlin-
earity (Table C.4), and noise (Table C.6) using different evaluation metrics.

C.3.2 Compared to Inference for Regression Methods

In this part, the superiority of our method in comparison to decent Inference for Regression methods, in different
settings of connectivity (Table C.10), beta distribution parameters (Table C.11), number of observations (Table C.9),
and nonlinearity (Table C.8) is provided.
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Table C.3: Performance across all the settings for different number of nodes. Each single entry in the table is averaged
over 18000 simulations. Our method is almost state of the art in every case.

Number of Nodes

Method 5 10 20 50
ACC CSI F1 ACC CSI F1 ACC CSI F1 ACC CSI F1

GES 0.935 0.890 0.911 0.854 0.730 0.779 0.743 0.442 0.526 0.698 0.245 0.323
rankGES 0.923 0.857 0.883 0.846 0.700 0.753 0.740 0.428 0.514 0.697 0.237 0.316
ARGES 0.922 0.864 0.885 0.797 0.551 0.584 0.752 0.447 0.524 0.705 0.186 0.221
rankARGES 0.914 0.838 0.861 0.793 0.537 0.572 0.750 0.435 0.514 0.705 0.181 0.216
FCI+ 0.963 0.918 0.932 0.873 0.744 0.808 0.830 0.602 0.703 0.766 0.368 0.486
LINGAM 0.991 0.978 0.982 0.953 0.865 0.889 0.891 0.712 0.778 0.750 0.318 0.385
PC 0.957 0.913 0.929 0.864 0.723 0.786 0.823 0.569 0.664 0.763 0.348 0.457
rankPC 0.946 0.891 0.912 0.854 0.701 0.768 0.813 0.541 0.638 0.754 0.324 0.431
MMPC 0.868 0.586 0.597 0.823 0.494 0.535 0.790 0.412 0.489 0.749 0.260 0.350
MMHC 0.929 0.878 0.905 0.841 0.675 0.739 0.767 0.432 0.507 0.725 0.218 0.281
GS 0.883 0.613 0.623 0.855 0.563 0.601 0.824 0.501 0.580 0.759 0.310 0.388
IAMB 0.850 0.571 0.585 0.791 0.508 0.561 0.806 0.500 0.587 0.768 0.337 0.424
FastIAMB 0.883 0.614 0.624 0.858 0.571 0.611 0.828 0.511 0.593 0.770 0.326 0.409
IAMB-FDR 0.869 0.584 0.593 0.831 0.494 0.526 0.825 0.484 0.558 0.770 0.322 0.406
PCI 0.984 0.965 0.972 0.922 0.844 0.875 0.888 0.734 0.782 0.773 0.414 0.491
Lasso 0.965 0.948 0.968 0.905 0.834 0.892 0.894 0.786 0.866 0.773 0.489 0.627
CORTH Features (Ours) 0.988 0.968 0.973 0.949 0.908 0.934 0.949 0.865 0.905 0.795 0.559 0.663

Number of Nodes

Method 5 10 20 50
TPR FPR MCC TPR FPR MCC TPR FPR MCC TPR FPR MCC

GES 0.934 0.056 0.891 0.790 0.090 0.711 0.502 0.088 0.436 0.304 0.083 0.221
rankGES 0.924 0.068 0.877 0.780 0.098 0.695 0.493 0.089 0.425 0.297 0.083 0.215
ARGES 0.903 0.046 0.906 0.590 0.041 0.841 0.500 0.073 0.557 0.220 0.020 0.794
rankARGES 0.897 0.054 0.896 0.584 0.044 0.832 0.495 0.075 0.549 0.216 0.020 0.789
FCI+ 0.969 0.029 0.948 0.797 0.054 0.759 0.642 0.042 0.645 0.389 0.030 0.454
LINGAM 0.991 0.007 0.988 0.886 0.008 0.934 0.770 0.055 0.759 0.391 0.072 0.471
PC 0.950 0.024 0.941 0.759 0.041 0.759 0.600 0.032 0.650 0.363 0.021 0.468
rankPC 0.944 0.039 0.925 0.750 0.053 0.734 0.580 0.034 0.629 0.341 0.024 0.427
MMPC 0.588 0.006 0.965 0.498 0.011 0.852 0.417 0.006 0.684 0.261 0.003 0.528
MMHC 0.895 0.011 0.903 0.691 0.015 0.724 0.444 0.009 0.523 0.219 0.005 0.330
GS 0.615 0.002 0.973 0.566 0.001 0.895 0.506 0.001 0.739 0.311 0.000 0.688
IAMB 0.573 0.003 0.960 0.511 0.002 0.848 0.505 0.001 0.711 0.338 0.001 0.660
FastIAMB 0.616 0.003 0.972 0.575 0.002 0.888 0.518 0.002 0.734 0.327 0.001 0.677
IAMB-FDR 0.585 0.001 0.975 0.494 0.001 0.909 0.485 0.001 0.766 0.322 0.001 0.661
PCI 0.992 0.017 0.981 0.875 0.028 0.890 0.754 0.016 0.839 0.430 0.030 0.638
Lasso 0.999 0.074 0.949 0.944 0.119 0.817 0.954 0.147 0.794 0.681 0.148 0.488
CORTH Features (Ours) 0.999 0.016 0.986 0.952 0.044 0.906 0.884 0.011 0.894 0.609 0.101 0.567
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Table C.4: Performance across all the settings for different number of nonlinear probabilities. Each single entry in the
table is averaged over 18000 simulations. Our method is almost state of the art in every case.

Nonlinear Probability

Method 0 0.3 0.5 1
ACC CSI F1 ACC CSI F1 ACC CSI F1 ACC CSI F1

GES 0.803 0.583 0.646 0.806 0.566 0.622 0.811 0.577 0.632 0.810 0.581 0.641
rankGES 0.796 0.559 0.625 0.801 0.546 0.605 0.805 0.556 0.613 0.805 0.561 0.623
ARGES 0.781 0.476 0.515 0.786 0.486 0.525 0.792 0.506 0.546 0.818 0.581 0.628
rankARGES 0.778 0.461 0.503 0.782 0.474 0.515 0.788 0.490 0.531 0.814 0.564 0.615
FCI+ 0.827 0.599 0.674 0.860 0.663 0.745 0.872 0.685 0.764 0.873 0.685 0.746
LINGAM 0.907 0.738 0.778 0.886 0.689 0.725 0.880 0.684 0.724 0.911 0.762 0.808
PC 0.818 0.574 0.641 0.854 0.641 0.720 0.864 0.665 0.7430 0.869 0.672 0.731
rankPC 0.813 0.560 0.630 0.841 0.614 0.694 0.848 0.627 0.704 0.864 0.656 0.720
MMPC 0.775 0.372 0.416 0.809 0.439 0.503 0.818 0.462 0.528 0.828 0.479 0.523
MMHC 0.797 0.516 0.578 0.815 0.549 0.610 0.823 0.566 0.625 0.826 0.571 0.620
GS 0.806 0.450 0.491 0.828 0.494 0.554 0.835 0.510 0.571 0.851 0.534 0.576
IAMB 0.762 0.389 0.440 0.799 0.463 0.538 0.809 0.488 0.565 0.830 0.520 0.576
FastIAMB 0.807 0.454 0.497 0.835 0.503 0.566 0.842 0.522 0.587 0.855 0.543 0.587
IAMB-FDR 0.796 0.418 0.457 0.818 0.456 0.511 0.827 0.481 0.538 0.853 0.529 0.578
PCI 0.853 0.674 0.720 0.897 0.746 0.789 0.905 0.763 0.806 0.911 0.774 0.805
Lasso 0.847 0.694 0.773 0.891 0.776 0.853 0.902 0.797 0.869 0.896 0.790 0.857
CORTH Features (Ours) 0.871 0.768 0.824 0.934 0.830 0.873 0.943 0.851 0.891 0.933 0.852 0.887

Nonlinear Probability

Method 0 0.3 0.5 1
TPR FPR MCC TPR FPR MCC TPR FPR MCC TPR FPR MCC

GES 0.643 0.093 0.564 0.620 0.074 0.557 0.629 0.071 0.568 0.637 0.079 0.570
rankGES 0.633 0.100 0.550 0.612 0.080 0.546 0.620 0.076 0.557 0.628 0.083 0.559
ARGES 0.514 0.041 0.789 0.526 0.041 0.793 0.547 0.043 0.791 0.626 0.055 0.725
rankARGES 0.509 0.044 0.780 0.522 0.044 0.788 0.540 0.046 0.783 0.620 0.059 0.715
FCI+ 0.638 0.045 0.637 0.704 0.037 0.708 0.728 0.035 0.731 0.728 0.037 0.730
LINGAM 0.775 0.025 0.832 0.723 0.028 0.759 0.722 0.034 0.741 0.819 0.053 0.822
PC 0.605 0.037 0.649 0.672 0.027 0.707 0.695 0.025 0.728 0.702 0.029 0.734
rankPC 0.597 0.043 0.626 0.656 0.040 0.680 0.668 0.036 0.695 0.692 0.031 0.714
MMPC 0.376 0.009 0.754 0.442 0.006 0.738 0.465 0.005 0.749 0.482 0.005 0.787
MMHC 0.528 0.017 0.581 0.561 0.008 0.623 0.578 0.007 0.636 0.582 0.008 0.639
GS 0.452 0.001 0.850 0.496 0.001 0.797 0.513 0.001 0.799 0.538 0.001 0.849
IAMB 0.847 0.003 0.773 0.891 0.002 0.853 0.902 0.001 0.869 0.896 0.001 0.857
FastIAMB 0.457 0.001 0.848 0.506 0.002 0.784 0.526 0.002 0.791 0.548 0.002 0.848
IAMB-FDR 0.418 0.001 0.837 0.457 0.001 0.819 0.481 0.001 0.822 0.530 0.001 0.833
PCI 0.712 0.057 0.792 0.765 0.011 0.848 0.781 0.010 0.845 0.794 0.013 0.864
Lasso 0.823 0.130 0.684 0.907 0.120 0.778 0.926 0.116 0.800 0.921 0.122 0.787
CORTH Features (Ours) 0.840 0.119 0.730 0.849 0.007 0.872 0.870 0.008 0.888 0.885 0.038 0.863
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Table C.5: Performance across all the settings for different connectivities. Each single entry in the table is averaged
over 24000 simulations. Our method is almost state of the art in every case.

Connectivity

Method 0.1 0.3 0.5
ACC CSI F1 MCC ACC CSI F1 MCC ACC CSI F1 MCC

GES 0.961 0.786 0.825 0.857 0.815 0.539 0.598 0.522 0.646 0.405 0.482 0.315
rankGES 0.954 0.746 0.790 0.840 0.809 0.522 0.584 0.511 0.642 0.398 0.475 0.308
ARGES 0.965 0.794 0.828 0.876 0.805 0.456 0.501 0.726 0.612 0.286 0.330 0.720
rankARGES 0.959 0.763 0.801 0.863 0.802 0.447 0.494 0.721 0.611 0.282 0.328 0.716
FCI+ 0.974 0.819 0.853 0.910 0.866 0.631 0.714 0.674 0.734 0.524 0.629 0.521
LINGAM 0.966 0.763 0.796 0.889 0.896 0.710 0.753 0.761 0.827 0.682 0.727 0.715
PC 0.975 0.819 0.849 0.921 0.861 0.609 0.689 0.676 0.718 0.486 0.588 0.516
rankPC 0.971 0.797 0.831 0.912 0.852 0.587 0.670 0.653 0.701 0.458 0.560 0.470
MMPC 0.949 0.606 0.637 0.901 0.815 0.390 0.451 0.722 0.658 0.318 0.389 0.648
MMHC 0.978 0.834 0.867 0.901 0.830 0.497 0.561 0.574 0.639 0.321 0.397 0.385
GS 0.954 0.644 0.669 0.935 0.843 0.467 0.524 0.815 0.693 0.380 0.451 0.722
IAMB 0.969 0.692 0.745 0.864 0.841 0.463 0.522 0.807 0.692 0.377 0.452 0.709
FastIAMB 0.955 0.650 0.676 0.931 0.845 0.474 0.535 0.804 0.705 0.392 0.467 0.718
IAMB-FDR 0.950 0.608 0.626 0.961 0.832 0.436 0.492 0.816 0.689 0.369 0.446 0.707
PCI 0.986 0.902 0.920 0.954 0.906 0.716 0.759 0.838 0.783 0.600 0.661 0.720
Lasso 0.976 0.886 0.925 0.926 0.876 0.725 0.811 0.737 0.800 0.682 0.778 0.622
CORTH Features (Ours) 0.988 0.915 0.934 0.959 0.926 0.813 0.858 0.833 0.847 0.747 0.814 0.724

Table C.6: Performance across all the settings for different noise levels. Each single entry in the table is averaged over
14400 simulations. Our method is almost state of the art in every case.

Noise Level

Method 0.01 0.5 1
ACC CSI F1 MCC ACC CSI F1 MCC ACC CSI F1 MCC

GES 0.804 0.579 0.639 0.559 0.808 0.571 0.629 0.562 0.818 0.586 0.644 0.589
rankGES 0.797 0.557 0.619 0.548 0.802 0.552 0.613 0.551 0.812 0.565 0.625 0.577
ARGES 0.810 0.572 0.625 0.653 0.789 0.496 0.534 0.814 0.774 0.434 0.460 0.897
rankARGES 0.804 0.549 0.605 0.643 0.786 0.483 0.523 0.806 0.774 0.433 0.459 0.895
FCI+ 0.843 0.617 0.691 0.674 0.865 0.678 0.753 0.717 0.874 0.697 0.766 0.740
LINGAM 0.888 0.703 0.744 0.763 0.899 0.723 0.763 0.797 0.903 0.732 0.773 0.803
PC 0.837 0.595 0.664 0.683 0.859 0.659 0.731 0.716 0.870 0.686 0.752 0.745
rankPC 0.831 0.584 0.657 0.653 0.845 0.626 0.699 0.688 0.856 0.655 0.724 0.714
MMPC 0.796 0.405 0.456 0.762 0.812 0.453 0.510 0.756 0.825 0.480 0.533 0.780
MMHC 0.806 0.526 0.585 0.605 0.818 0.557 0.615 0.626 0.829 0.586 0.639 0.652
GS 0.820 0.468 0.518 0.824 0.836 0.513 0.566 0.819 0.846 0.538 0.586 0.833
IAMB 0.784 0.421 0.483 0.779 0.807 0.485 0.552 0.769 0.823 0.523 0.586 0.790
FasIAMB 0.821 0.469 0.520 0.819 0.842 0.526 0.582 0.814 0.852 0.548 0.600 0.828
IAMB-FDR 0.810 0.432 0.478 0.834 0.831 0.492 0.545 0.825 0.841 0.514 0.563 0.841
PCI 0.873 0.690 0.730 0.819 0.901 0.760 0.801 0.846 0.906 0.777 0.815 0.854
Lasso 0.868 0.728 0.807 0.725 0.891 0.780 0.852 0.779 0.898 0.794 0.861 0.793
CORTH Features (Ours) 0.899 0.789 0.839 0.795 0.929 0.842 0.883 0.858 0.934 0.854 0.891 0.866
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Table C.7: Performance across all the settings for different number of observations. Each single entry in the table is
averaged over 24000 simulations. Our method is almost state of the art in every case.

Number of Observations

Method 100 500 1000
ACC CSI F1 MCC ACC CSI F1 MCC ACC CSI F1 MCC

GES 0.797 0.524 0.588 0.539 0.811 0.593 0.650 0.572 0.815 0.612 0.666 0.583
rankGES 0.788 0.495 0.561 0.522 0.806 0.576 0.636 0.564 0.810 0.595 0.652 0.573
ARGES 0.780 0.446 0.489 0.786 0.799 0.535 0.576 0.773 0.803 0.555 0.595 0.764
rankARGES 0.776 0.428 0.473 0.778 0.795 0.523 0.566 0.766 0.800 0.542 0.584 0.757
FCI+ 0.837 0.589 0.671 0.652 0.865 0.684 0.755 0.720 0.871 0.702 0.771 0.732
LINGAM 0.840 0.578 0.650 0.678 0.908 0.719 0.743 0.825 0.941 0.858 0.883 0.862
PC 0.830 0.568 0.642 0.661 0.858 0.662 0.732 0.719 0.866 0.684 0.752 0.733
rankPC 0.821 0.544 0.617 0.632 0.849 0.639 0.711 0.696 0.855 0.660 0.733 0.707
MMPC 0.771 0.323 0.368 0.787 0.819 0.476 0.534 0.739 0.832 0.515 0.575 0.745
MMHC 0.800 0.495 0.557 0.579 0.820 0.570 0.625 0.633 0.826 0.587 0.642 0.647
GS 0.793 0.375 0.427 0.785 0.842 0.540 0.592 0.834 0.856 0.577 0.625 0.852
IAMB 0.745 0.316 0.390 0.705 0.815 0.510 0.574 0.794 0.835 0.556 0.614 0.821
FastIAMB 0.803 0.401 0.461 0.770 0.844 0.541 0.593 0.833 0.857 0.574 0.623 0.850
IAMB-FDR 0.783 0.325 0.372 0.825 0.837 0.523 0.578 0.815 0.850 0.564 0.613 0.843
PCI 0.829 0.551 0.594 0.804 0.914 0.812 0.853 0.842 0.931 0.855 0.893 0.866
Lasso 0.870 0.729 0.812 0.732 0.889 0.778 0.848 0.773 0.893 0.786 0.854 0.780
CORTH Features (Ours) 0.883 0.710 0.780 0.754 0.935 0.874 0.906 0.874 0.942 0.891 0.920 0.887

Table C.8: Performance across all the settings for different nonlinear probabilities. Each single entry in the table is
averaged over 3750 simulations.

Nonlinear Probability

Method 0 0.3 0.5 1
TPR CSI F1 TPR CSI F1 TPR CSI F1 TPR CSI F1

Standard Regression 0.149 0.103 0.139 0.166 0.112 0.141 0.175 0.108 0.136 1.000 0.801 0.801
Lasso 0.237 0.116 0.176 0.285 0.126 0.202 0.360 0.165 0.263 1.000 0.046 0.046
Debiased Lasso 0.238 0.117 0.178 0.267 0.112 0.178 0.300 0.124 0.202 1.000 0.050 0.050
Forward Stepwise Reg_active 0.174 0.112 0.162 0.157 0.110 0.167 0.194 0.129 0.190 1.000 0.329 0.329
Forward Stepwise Reg_all 0.04 0.039 0.060 0.062 0.059 0.085 0.089 0.086 0.116 1.000 0.861 0.861
LARS_active 0.073 0.054 0.094 0.104 0.078 0.131 0.118 0.081 0.134 1.000 0.382 0.382
LARS_all 0.017 0.016 0.028 0.030 0.029 0.048 0.039 0.037 0.057 1.000 0.866 0.866
CORTH Features (Ours) 0.481 0.287 0.407 0.436 0.258 0.366 0.364 0.220 0.313 1.000 0.610 0.610

Table C.9: Performance across all the settings for different number of observation. Each single entry in the table is
averaged over 3000 simulations.

Number of Observations

Method 10 20 50 100 200
CSI F1 CSI F1 CSI F1 CSI F1 CSI F1

Standard Regression 0.250 0.250 0.250 0.250 0.250 0.250 0.263 0.272 0.392 0.499
Lasso 0.075 0.117 0.100 0.155 0.127 0.192 0.131 0.196 0.132 0.198
Debiased Lasso 0.066 0.102 0.086 0.134 0.115 0.173 0.122 0.179 0.114 0.171
Forward Stepwise Reg_active 0.193 0.199 0.161 0.177 0.103 0.134 0.071 0.111 0.322 0.439
Forward Stepwise Reg_all 0.222 0.224 0.222 0.226 0.229 0.236 0.244 0.257 0.389 0.458
LARS_active 0.193 0.200 0.171 0.191 0.143 0.177 0.090 0.128 0.160 0.242
LARS_all 0.218 0.222 0.217 0.221 0.226 0.231 0.230 0.235 0.293 0.342
CORTH Features (Ours) 0.125 0.173 0.250 0.314 0.353 0.445 0.443 0.548 0.550 0.640
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Table C.10: Performance across all the settings for different connectivities. Each single entry in the table is averaged
over 5000 simulations.

Connectivity

Method 0.1 0.3 0.5
TPR CSI F1 TPR CSI F1 TPR CSI F1

Standard Regression 0.395 0.267 0.290 0.372 0.292 0.313 0.350 0.284 0.310
Lasso 0.789 0.211 0.314 0.353 0.094 0.150 0.269 0.035 0.052
Debiased Lasso 0.787 0.211 0.314 0.296 0.054 0.087 0.270 0.037 0.055
Forward Stepwise Reg_active 0.437 0.182 0.231 0.352 0.156 0.198 0.355 0.171 0.208
Forward Stepwise Reg_all 0.356 0.315 0.343 0.275 0.235 0.252 0.263 0.234 0.245
LARS_active 0.360 0.149 0.192 0.312 0.145 0.183 0.340 0.169 0.196
LARS_all 0.289 0.246 0.264 0.267 0.233 0.246 0.259 0.231 0.239
CORTH Features (Ours) 0.494 0.367 0.417 0.540 0.274 0.355 0.677 0.390 0.499

Table C.11: Performance across all the settings for different parameters for the Beta distribution. Each single entry in
the table is averaged over 3000 simulations.

Beta Distribution Parameters (α, β)

Method (0.5, 0.5) (1, 3) (2, 2) (2, 5) (5, 1)
CSI F1 CSI F1 CSI F1 CSI F1 CSI F1

Standard Regression 0.282 0.305 0.280 0.304 0.280 0.303 0.280 0.303 0.283 0.306
Lasso 0.109 0.168 0.106 0.164 0.116 0.174 0.105 0.163 0.129 0.189
Debiased Lasso 0.096 0.148 0.092 0.143 0.101 0.152 0.093 0.144 0.120 0.173
Forward Stepwise Reg_active 0.169 0.211 0.168 0.210 0.169 0.211 0.172 0.214 0.172 0.215
Forward Stepwise Reg_all 0.261 0.279 0.257 0.275 0.265 0.284 0.259 0.278 0.266 0.284
LARS_active 0.161 0.198 0.150 0.184 0.146 0.182 0.155 0.191 0.157 0.193
LARS_all 0.235 0.248 0.236 0.249 0.241 0.254 0.238 0.251 0.234 0.247
CORTH Features (Ours) 0.336 0.417 0.330 0.411 0.354 0.434 0.336 0.417 0.363 0.441

D Real-World Data Experiment-Covid19

D.1 Preprocessing

The preprocessing stage for this dataset is the same as (Schwab et al., 2020) except that, for each target variable
upsampling is used to resolve data imbalance.

D.2 Results

The results obtained by leveraging CORTH Features is suprisingly consistent with (Schwab et al., 2020) which demon-
strates the ability of this method in feature selection. The selected features are indicated in Tables D.1 to D.4
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Table D.1: Ranks of the features based on the times
being predicted as direct causes of SARS-Cov-2
exam result out of 1000 different runs of our propsal
approach. Not mentiond features were not predicted
even once, note that preprocessed dataset has 331 fea-
tures.

Rank Feature Rate of being Predicted as a Direct Cause

1

Patient age quantile

1Arterial Lactic Acid
Promyelocytes
Base excess venous blood gas analysis

5 pH venous blood gas analysis 0.999
6 MISSING Mean platelet volume 0.992
7 MISSING Lactic Dehydrogenase 0.966
8 Segmented 0.934
9 Myelocytes 0.904
10 Eosinophils 0.794
11 Leukocytes 0.784
12 Total CO2 arterial blood gas analysis 0.450
13 Potassium 0.340
14 MISSING International normalized ratio INR 0.289
15 Metapneumovirus not detected 0.234
16 Arteiral Fio2 0.092
17 HCO3 arterial blood gas analysis. 0.046
18 Creatinine 0.035
19 MISSING.Magnesium 0.034
20 pO2 arterial blood gas analysis 0.031
21 MISSING Arteiral Fio2 0.024
22 Direct Bilirubin 0.016

23 MISSING Ferritin 0.014Respiratory Syncytial Virus detected

25 MISSING Albumin 0.010Creatine phosphokinase CPK
27 Strepto A positive 0.008

28

Neutrophils

0.004Red blood cell distribution width RDW
Coronavirus HKU1 detected
Influenza A rapid test positive

32 Hb saturation venous blood gas analysis 0.002

33

Urine pH

0.001
Inf A H1N1 2009 detected
MISSING Serum Glucose
Aspartate transaminase
Urine Esterase nan

Table D.2: Ranks of the features based on the times
being predicted as direct causes of Patient addmited
to regular ward out of 1000 different runs of our
propsal approach. Not mentiond features were not
predicted even once, note that preprocessed dataset
has 331 features.

Rank Feature Rate of being Predicted as a Direct Cause

1

Patient age quantile

1HCO3 venous blood gas analysis
Total CO2 venous blood gas analysis
Gamma glutamyltransferase

5 MISSING Lactic Dehydrogenase 0.987
6 Alanine transaminase 0.845
7 MISSING International normalized ratio INR 0.804
8 Serum Glucose 0.652
9 pH venous blood gas analysis 0.631

10 Base.excess venous blood gas analysis 0.341
11 MISSING Arteiral Fio2 0.334
12 Urine Density 0.334
13 Magnesium 0.323
14 Metapneumovirus not detected 0.261
15 MISSING Mean platelet volume 0.118
16 Creatine phosphokinase CPK 0.086
17 Creatinine 0.058
18 International normalized ratio INR 0.049
19 MISSING Ferritin 0.046
20 Urea 0.044
21 Respiratory Syncytial Virus detected 0.032
22 MISSING Magnesium 0.021
23 MISSING Albumin 0.018
24 MISSING Potassium 0.016
25 Inf A H1N1 2009 detected 0.014
26 Coronavirus HKU1 detected 0.010
27 Strepto A positive 0.008
28 Influenza A rapid test positive 0.007

29 MISSING Sodium 0.002Urine Protein nan

31
ctO2 arterial blood gas analysis

0.001Influenza A detected
Influenza B detected

Table D.3: Ranks of the features based on the times
being predicted as direct causes of Patient addmited
to semi-intensive unit out of 1000 different runs
of our propsal approach. Not mentiond features
were not predicted even once, note that preprocessed
dataset has 331 features.

Rank Feature Rate of being Predicted as a Direct Cause

1

Patient age quantile

1

Creatinine
MISSING Lactic Dehydrogenase
Total CO2 venous blood gas analysis
Magnesium
Gamma glutamyltransferase
Alanine transaminase

8 ctO2 arterial blood gas analysis 0.999HCO3 venous blood gas analysis
10 Relationship Patient Normal 0.786
11 MISSING Arteiral Fio2 0.595
12 Base excess venous blood gas analysis 0.578
13 pO2 venous blood gas analysis 0.449
14 MISSING International normalized ratio INR 0.435
15 Mean platelet volume 0.366
16 Metapneumovirus not detected 0.308
17 Proteina C reativa mg dL 0.235
18 Sodium 0.212
19 Phosphor 0.164
20 Urine Density 0.085
21 Respiratory Syncytial Virus detected 0.068
22 MISSING Mean platelet volume 0.056
23 MISSING Ferritin 0.054
24 pH venous blood gas analysis 0.021
25 Strepto A positive 0.018
26 Inf A H1N1 2009 detected 0.016
27 Influenza A rapid test positive 0.014

28 MISSING Albumin 0.012Coronavirus HKU1 detected
30 MISSING Magnesium 0.008
31 Aspartate transaminase 0.004

32

Urine Ketone Bodies absent

0.001
Red blood cell distribution width RDW
Influenza A detected
Urine Esterase absent
Urine Protein nan

Table D.4: Ranks of the features based on the times
being predicted as direct causes of Patient addmited
to intensive care unit out of 1000 different runs
of our propsal approach. Not mentiond features
were not predicted even once, note that preprocessed
dataset has 331 features.

Rank Feature Rate of being Predicted as a Direct Cause

1

Patient age quantile

1

MISSING Mean platelet volume
Total CO2 venous blood gas analysis
HCO3 venous blood gas analysis
Alanine transaminase
Gamma glutamyltransferase
Magnesium
MISSING Lactic Dehydrogenase
Creatinine

10 pO2 venous blood gas analysis 0.982
11 ctO2 arterial blood gas analysis 0.962
12 pH venous blood gas analysis 0.938
13 MISSING Arteiral Fio2 0.667
14 MISSING International normalized ratio INR 0.586
15 Red blood cell distribution width RDW 0.503
16 Urine Density 0.414
17 Creatine phosphokinase CPK 0.380
18 Base excess venous blood gas analysis 0.352
19 Potassium 0.234
20 Promyelocytes 0.221
21 MISSING Ferritin 0.174
22 Metapneumovirus not detected 0.132
23 Phosphor 0.082
24 Sodium 0.036
25 MISSING Magnesium 0.032
26 Proteina C reativa mg dL 0.016
27 Aspartate transaminase 0.015
28 Respiratory Syncytial Virus detected 0.010
29 Relationship Patient Normal 0.007

30 MISSING Albumin 0.006Arterial Lactic Acid

32 Coronavirus HKU1 detected 0.005Eosinophils
34 Inf A H1N1 2009 detected 0.004

35 Influenza A rapid test positive 0.002International normalized ratio INR

37
Urine Crystals Ausentes

0.001Leukocytes
Strepto A positive
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