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ABSTRACT

In-context learning (ICL) has emerged as an effective approach to enhance the
performance of large language models (LLMs). However, its effectiveness varies
significantly across models and tasks, posing challenges for practitioners to deter-
mine when ICL reliably improves performance. Current evaluation approaches,
reliant on performance change after applying ICL, suffer from low reliability,
poor attribution, and impracticality in data-insufficient scenarios. We propose
the Learning-to-Context Slope (LCS), a novel metric that quantifies ICL ef-
fectiveness by modeling the slope between learning gain (loss decrease from
demonstrations) and contextual relevance (demonstration-input relevance). LCS
addresses key limitations of performance-based metrics: (i) it captures continuous
loss changes even when outputs are incorrect, improving reliability; (ii) its for-
mulation attributes ICL failures to weak contextual alignment (inability to adapt
inputs to demonstrations) or strong output calibration (self-verification of correct-
ness); and (iii) it minimizes reliance on labeled data via synthetic evaluation. Ex-
tensive experiments demonstrate that LCS strongly correlates with performance
improvements in labeled settings and reliably reflects true effectiveness in biased
or data-scarce scenarios. Further analysis reveals actionable thresholds for LCS
and identifies model capabilities critical to ICL success1.

1 INTRODUCTION

In-context learning (ICL) has emerged as a popular and effective paradigm for enhancing large lan-
guage model (LLM) performance across diverse tasks, as it eliminates the need to retrain the LLMs
(Brown et al., 2020; Dong et al., 2024). By incorporating task-specific demonstrations into the input,
ICL enables LLMs to adapt to specific tasks and generate more accurate outputs without parameter
updates. Recently, several efforts have been made on unveiling the underlying mechanisms of ICL
(Zhou et al., 2024; Edelman et al., 2024a; Park et al., 2025) and exploring methods to further boost
the ICL performance (Wang et al., 2023b; Rubin et al., 2022; Agarwal et al., 2024).

However, as illustrated in Figure 1a, even on the models with strong ICL capability like Llama3.1
(Grattafiori et al., 2024), ICL fails to enhance, and in some cases even harms, the performance
(DeepSeek-AI et al., 2025; Huang & Wang, 2025; Zheng et al., 2025), showing different ICL effec-
tiveness cross different models. This observation raises a critical question: How can practitioners
reliably determine whether ICL is effective for a given model on a specific task? This uncer-
tainty poses practical challenges in the real-world deployment of ICL:

• For tasks with labeled data, practitioners often attempt to evaluate ICL effectiveness by observing
performance changes after applying the selected demonstrations. However, this approach suffers
from two critical limitations. (i) Low Reliability: Performance fluctuations may stem from various
factors like the quality of the instruction and selected demonstrations, making it difficult to isolate
whether ICL itself is ineffective. (ii) Poor Attribution: Disentangling the impact of individual
factors requires costly repeated evaluations, hindering actionable analysis and insights.

• For tasks without labeled data, there is no direct way to assess whether adding demonstrations for
ICL actually improves outcomes, leaving practitioners without clues for improvements.

1Our code and data will be released upon acceptance.
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Figure 1: (a) Performance change of different models before and after applying ICL, where ICL
exhibits varying effectiveness across different models on the same dataset. (b) Comparisons between
metrics based on exact match and loss decrease. Each dot denotes an example data of MATH using
Llama3.1-8b with different demonstrations. Performance-based metrics with only binary values
fail to quantify the varying contributions of different demonstrations to achieving correct results.
In contrast, metrics based on loss decrease yield continuous values, enabling better reliability on
measuring ICL effectiveness. (c) The impact of the contextual alignment and output calibration
capabilities of the model on the LCS metric.

In light of these challenges, we propose a novel metric, named Learning-to-Context Slope (LCS),
which quantifies the ICL effectiveness by capturing the slope between the loss decrease by demon-
strations (learning gain) and the demonstration relevance to the user input (contextual relevance).
Specifically, LCS is grounded in the perspective of the loss decrease in ICL (Wang et al., 2024b;
Yang et al., 2024). For a given model and task, it evaluates how the learning gain varies with demon-
strations of different contextual relevance. This metric explicitly captures the two most important
elements in in-context learning: learning and context (Dong et al., 2024). When ICL effectiveness
is high, even demonstrations with low relevance can yield a significant loss decrease. Conversely,
when ICL effectiveness is low, the change of learning gain with demonstration relevance is marginal.

Compared to performance-based measurement, LCS offers the following advantages: (i) Higher
Reliability: As shown in Figure 1b, even when ICL fails to produce correct answers for user inputs,
LCS can still capture continuous changes in model loss, providing a more reliable reflection of ICL
effectiveness. (ii) Better Attribution: LCS is grounded in an intuitive mathematical formulation, en-
abling clearer analysis of how different factors influence ICL effectiveness. As shown in Figure 1c,
ICL tends to be ineffective when 1) the model fails to recognize the relevance of the demonstration
to the input (i.e., the contextual alignment capability), or 2) the model can independently verify the
correctness of the output to the user input without adding demonstrations (i.e., the output calibration
capability). (iii) Reduced Reliance on Labeled Evaluation Data: We theoretically show that LCS
derived from synthetic data is consistently lower than that obtained from real data, and empirically
identify a threshold value of LCS indicative of effective ICL. Even in data-insufficient scenarios,
LCS can still offer actionable insights into ICL effectiveness.

Our contributions can be summarized as follows:

• We propose a novel metric, namely Learning-to-Context Slope (LCS), to measure the ICL effec-
tiveness by capturing the two most important elements in ICL, including the learning gain and the
contextual relevance of the demonstrations.

• To validate the effectiveness of LCS, we conduct extensive experiments on eight mainstream
datasets covering mathematics, code, reasoning, and domain-specific tasks (e.g., finance and e-
commerce). The results validate a strong positive correlation between LCS and task performance
improvements in scenarios where abundant labeled data enables reliable performance-based eval-
uation. When labeled data exhibits inherent biases that distort performance-based metrics, LCS
consistently reflects true ICL effectiveness, underscoring its reliability. Even without labeled data,
LCS provides actionable insights into ICL effectiveness by leveraging synthetic data.

• Further analysis identifies two key factors in LLMs that hinder ICL effectiveness: 1) weak con-
textual alignment capability to adapt inputs to task-specific demonstrations, and 2) strong output
calibration capability to independently verify the correctness of outputs.
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2 PROPOSED METRIC: LEARN-TO-CONTEXT SLOPE

We introduce a novel metric, named Learn-to-Context Slope (LCS), to measure the ICL effective-
ness. First, we interpret the ICL effectiveness by measuring the loss decrease brought by using
demonstrations based on the Bayesian model (§2.1). Then, we present our LCS metric to measure
the ICL effectiveness, based on which we discuss two main factors that influence the ICL effective-
ness (§2.2). Further, we discuss the relationship between the metric using synthetic data and real
data, aiding the application under the data-insufficient scenario (§2.3).

2.1 INTERPRETING ICL EFFECTIVENESS VIA LOSS DECREASE

Motivated by previous studies (Wang et al., 2024b; Yang et al., 2024), the ICL effectiveness of a
given predictive distribution p with the parameter θ on a specific task with the task C = (Q,X,D)
can be measured by the generation loss, i.e., negative log-likelihood:

Lθ(X|Q;D) = − log p(X|Q;D), (1)
where Q denotes the user input, X represents the labeled output corresponding to Q, and D denotes
the demonstration, which are the random variables in the sampling spaces X , Y , and D, respectively.
Based on the Bayesian model (Zhang et al., 2025; Jesson et al., 2025), this loss can be obtained by:

Lθ(X|Q;D) = Lθ(X|Q)− (log p(D|Q;X)− log p(D|Q)), (2)
where Lθ(X|Q) represents the loss of zero-shot generation, which is fixed given the model and
task. The proof of Equation 2 is presented in Appendix C.1. It can be observed that only the second
term, i.e., log p(D|Q;X)− log p(D|Q), is relevant to the demonstrations, which is the loss decrease
brought by the demonstrations. Intuitively, this term also measures the information of the user output
X that helps decide the demonstration D.

2.2 METRIC OF ICL EFFECTIVENESS: LCS

For simplicity, we denote the Learning Gain brought by the demonstrations as Ip(X → D|Q) =
p(D|Q;X) − p(D|Q) to reflect the loss decrease. To evaluate the overall ICL effectiveness of
the given specific model and task, we propose to measure the effectiveness by evaluating how the
learning gain varies with the demonstrations of different relevance. The motivation is that even
demonstrations with low relevance to the user question can still lead to significant learning gain for
tasks and models where ICL is highly effective. Conversely, when the ICL effectiveness is low,
the change of learning gain with demonstration relevance is marginal. We measure the Contextual
Relevance of the demonstration to the user question as Ip(D → X|Q) = p(X|Q;D) − p(X|Q).
The contextual relevance is quantified by how much information for inferring the output X can be
learned from the demonstration D in the context. We also compare the contextual relevance with
other methods that measure the relevance to the user question of the demonstration in Appendix F.2.

We have that the learning gain Ip(X → D|Q) and the contextual relevance Ip(D → X|Q) satisfy:
Theorem 1.

Ip(X → D|Q) =
p(D|Q)

p(X|Q)
Ip(D → X|Q)

The proof of Theorem 1 is presented in Appendix C.2. According to the theorem, learning gain and
contextual relevance are positively correlated with a certain slope. A larger slope indicates a greater
decrease in loss when increasing the information relevant to the user question of the demonstrations,
thereby making ICL more effective.

In practice, let p̂ represent the empirical probability distribution and C = {(qi, xi, di)}n be the
sampling on C, we calculate the slope of Theorem 1 (rp̂) on C with the least squares method (Wang
et al., 2018):

rp̂ =

∑n
i=1(ti − t̄)(si − s̄)∑n

i=1(ti − t̄)2
,where

si = Ip̂(di → xi|qi), ti = Ip̂(xi → di|qi)

s̄ =
1

n

n∑
i=1

si, t̄ =
1

n

n∑
i=1

ti.

(3)
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We use rp̂ as the metric to measure the ICL effectiveness, which we call the Learning-to-Relevance
Ratio (LCS). Although rp = p(D|Q)

p(X|Q) , considering that p̂ has the error compared with p, rp̂ ̸=
p̂(D|Q)
p̂(X|Q) . In Appendix C.3, we discuss the impact of error and prove that the impact of the error on

rp̂ is less than p̂(D|Q)
p̂(X|Q) . We discuss how to calculate our metric in detail in Appendix D.2.

Based on Theorem 1, it can be observed that there are two main factors influencing the ICL ef-
fectiveness: the contextual alignment capability that learn the question-relevant information from
the demonstrations (p̂(D|Q)), and the output calibration capability that verify the correctness of
the output to the given input (p̂(X|Q)). Therefore, given a specific model and task, the reasons for
poor ICL effectiveness can be attributed to two aspects: (i) Low Contextual Alignment Ability: The
model fails to adequately comprehend the task-relevant information in provided demonstrations. (ii)
High Output Calibration Capability: The model possesses a strong inherent ability to verify the
input consistency to the given output. We further discuss the meaning of the contextual alignment
capability and the output calibration ability in detail in Appendix E.1.

2.3 ICL EFFECTIVENESS WITHOUT LABELING

Since the calculation of LCS in § 2.2 relies on labeled data, its application to new tasks in data-
insufficient scenarios is limited. Prior works have shown that the resource requirements for obtaining
task questions are lower than those for obtaining the labels (Shen et al., 2019; Tan et al., 2024).
Therefore, in this section, we discuss the relationship of LCS with the synthetic data and real data
only with the labeled input, which satisfies that:

Theorem 2. Let D̂ = argmaxD∼D p̂(D | Q) be the synthetic demonstration generated without
access to the ground-truth answer X , and let D∗ denote the real demonstration satisfying that, for
all X ∼ X and Q ∼ Q:

p̂(D̂ | Q;X) ≤ p̂(D∗ | Q;X).

Then, we can derive that:
p̂(D̂ | Q) ≤ p̂(D∗ | Q).

The assumption of Theorem 2 is reasonable because the synthetic demonstration is generated with-
out providing the ground-truth answer X . When the ground-truth answer X is provided, the ex-
pected probability of predicting should be smaller than that of the real demonstration. Based on
Theorem 2, we can observe that the rp̂ fitted with synthetic data is consistently smaller than using
real data. Consequently, while fitting synthetic data can reflect the ICL effectiveness to some extent,
the magnitude of the effectiveness derived is lower than the real effectiveness.

3 EXPERIMENT

In this section, we empirically investigate three research questions about the ICL effectiveness:
RQ1. How to reliably evaluate the ICL effectiveness? RQ2. How do different factors influence the
ICL effectiveness? RQ3. Can synthetic data accurately reflect the ICL effectiveness?

3.1 EXPERIMENT SETUP

Dataset We conduct experiments on four mainstream tasks: math (GSM8K (Cobbe et al., 2021),
MATH (Hendrycks et al., 2021)), code (HumanEval (Chen et al., 2021a), MBPP (Austin et al.,
2021)), reason (ARC-Challenge (Yadav et al., 2019), MMLU-Pro (Wang et al., 2024d)), and
domain-specific (FinQA (Chen et al., 2021b), Amazon Review (Ni et al., 2019)). We introduce
the above dataset, as well as the split of the demonstrations and the test data, in Appendix D.1. For
datasets of math, reasoning, and domain-specific, we use Exact Match (EM) (Cobbe et al., 2021) as
the evaluation metric. For the datasets of code, we use Pass@1 (Chen et al., 2021a) as the metric. We
suppose that the demonstrations of the aforementioned datasets can genuinely reflect the ICL effec-
tiveness through performance improvements, thereby validating the effectiveness of LCS. In §3.2.2,
we present that LCS can still reflect the ICL effectiveness even when the provided demonstrations
do not lead to performance improvements.
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Dataset Llama2-7b Llama3.1-8b Llama-R1-8b
∆ LCS ∆ LCS ∆ LCS

GSM8K +10.0 0.32 −1.8 0.07 −6.0 0.05
MATH +9.6 1.03 +2.4 0.34 −1.2 0.09
HumanEval −0.6 0.07 −2.5 0.10 −3.0 −0.11
MBPP −0.5 0.05 +0.8 0.15 −6.4 0.07
ARC-C +11.6 0.74 −1.9 −0.54 −0.3 0.08
MMLU-Pro +5.5 0.64 +2.6 0.52 −5.5 −0.04
FinQA +7.3 0.63 +4.9 0.82 −1.8 0.04
Amazon +0.5 0.07 +5.0 0.94 +11.8 0.37

Table 1: Performance and LCS across different mod-
els and datasets. ∆ denotes the performance change
of 1-shot compared to 0-shot. Results in green indi-
cate a significant improvement with ICL, while those
in red indicate no improvement or performance drop.
Detailed performance is presented in Appendix F.1.

−0.5 0 0.5 1
−5

0

5

10

LCS

∆

Figure 2: The performance improvement
∆ brought by ICL (y-axis) with differ-
ent LCS (x-axis) on different models and
datasets. The solid line in the graph repre-
sents the fitted line for all data points. The
Pearson correlation coefficient is 0.737.

Model We conduct our experiments on three mainstream LLMs: Llama2-7b (Touvron et al.,
2023), Llama3.1-8b (Grattafiori et al., 2024), and DeepSeek-R1-Distill-Llama-8b (Llama-R1-8b)
(DeepSeek-AI et al., 2025), which cover different ICL capabilities to fully evaluate whether our
metric can reflect the ICL effectiveness. We also conduct experiments on models of other scales and
series in Appendix F.3, further validating the effectiveness of LCS.

Implementation Details We evaluate the performance on all datasets under 0-shot and 1-shot set-
tings, using BM25 to select the demonstrations for each user input. We also discuss the performance
and ICL effectiveness under different shots in §3.3.3. Following DeepSeek-AI et al. (2025), we set
the maximum generation length to 32,768. Our experiments are conducted on a single A100-80G,
with an average computation time of approximately 20 minutes on each dataset and model.

3.2 RQ1. HOW TO RELIABLY EVALUATE THE EFFECTIVENESS OF ICL?

First, we discuss that LCS can accurately reflect the effectiveness of ICL. Subsequently, we provide
experimental evidence demonstrating that performance improvement is insufficient for accurately
reflecting the ICL effectiveness. In addition, we present that LCS can reflect the performance im-
provement brought by ICL to a certain extent.

3.2.1 LCS RELIABLY REFLECTS THE ICL EFFECTIVENESS

According to the main experimental results shown in Table 1, there are several notable observations:

The ICL effectiveness is independent of dataset difficulty. For Llama2-7b, ICL is effective
on the MATH dataset but fails on the easier Amazon Review dataset. Conversely, for Llama-R1-
8b, ICL is ineffective on MATH but performs well on Amazon Review. This discrepancy arises
because, for more difficult datasets, the model struggles to comprehend the relationships between
demonstrations, answers, and user questions, leading to a decline in both the ICL ability and the
answer verification ability. Consequently, it is uncertain whether LCS increases or decreases on
more difficult datasets, supporting that ICL effectiveness is irrelevant to the difficulty of the dataset.

The ICL effectiveness is independent of model capability. In Amazon Review, Llama-R1-8b
demonstrates a significant improvement with ICL, whereas the less capable Llama2-7b does not
exhibit a noticeable performance improvement. This discrepancy arises because, as the model ca-
pability increases, both the contextual alignment capability and the output calibration capability
increase simultaneously, making it uncertain whether LCS rises or falls.

The performance improvement brought by ICL is positively related to LCS. To evaluate
whether LCS effectively reflects the efficacy of ICL, we analyze the performance improvement
with different LCS, as illustrated in Figure 2. A high LCS suggests that the model achieves higher
learning gain as the contextual relevance increases, demonstrating that LLMs learn how to solve the

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

(a) All Cases, ∆ = −1.8, LCS = 0.07. (b) Bad Cases, ∆ = +0.0, LCS = 0.06.

(c) All Cases, ∆ = +5.0, LCS = 0.94. (d) Bad Cases, ∆ = +0.0, LCS = 1.06.

Figure 3: The experimental results of using Llama3.1-8b on GSM8K and Amazon under the full set
and the bad cases of ICL. ∆ denotes the performance change of ICL compared with zero-shot.

task from the demonstrations, thereby improving performance. In contrast, a low LCS indicates that
the learning gain from the demonstrations remains relatively constant regardless of the contextual
relevance, implying limited learning from the demonstrations. Notably, the relationship between the
change in EM and LCS is not strictly linear. Since the factors influencing EM are complex and dif-
ficult to formalize, in this paper, we only conclude that LCS is positively correlated with the change
in EM. We discuss the empirical threshold of the ICL effectiveness using LCS in Appendix E.2.

3.2.2 THE PERFORMANCE CHANGE CANNOT REFLECT THE ICL EFFECTIVENESS

In §3.1, we assume that whether performance improves or not can genuinely reflect the ICL effec-
tiveness. However, in practical applications, the quality of demonstrations or instructions can impact
performance, causing no performance improvement even for models and tasks where ICL is effec-
tive. To demonstrate that LCS can still reflect the ICL effectiveness even when performance does
not improve, we plot rp̂ on the bad cases after using ICL, as shown in Figure 3. It can be observed
that: (i) Even on data where ICL does not improve performance, LCS still reveals the ICL effec-
tiveness, proving the higher reliability of our metric compared with the performance-based metric.
(ii) LCS is higher reliability, unlike performance which is susceptible to factors like the instruction,
as it directly evaluates p(X|Y ) by using Y as input and X as output without relying on instructions
(Appendix D.2), thus providing a more faithful reflection of the ICL effectiveness.

3.2.3 THE LEARNING GAIN IS A GOOD METRIC FOR DEMONSTRATION SELECTION

Enhancing ICL performance has been a topic of significant interest. Although this paper does not
primarily focus on improving ICL performance, the discussions in §3.2.1 reveal several potential
avenues for improvement. We observe that while there is a general positive correlation between
the loss decrease and the information learned from demonstrations, there also exist cases where
demonstrations with rich information yield low loss decrease. To address this, we propose a method
that first generates a preliminary answer X̂ for the user question and then selects the demonstrations
with high learning gain. To validate the effectiveness of this method, we conduct experiments using
Llama3.1-8b on the MATH and Amazon datasets. As shown in Table 2, our method outperforms
other baselines, demonstrating the effectiveness of the method based on learning gain.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: The performance of ICL with different demonstration selection methods using Llama3.1-
8b. The best performance of each setting is marked in bold.

Method MATH MMLU-Pro FinQA Amazon

Zero-Shot 48.4 50.4 49.7 63.5
BM25 (Robertson & Zaragoza, 2009) 50.8 53.0 54.6 68.5
GTR (Luo et al., 2023) 50.8 53.5 55.0 68.5
IDS (Qin et al., 2024) 50.4 52.4 54.6 68.0
Ours 51.2 54.3 55.1 70.0

Contextual Alignment Output Calibration LCS
0

0.2
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0.6
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1

0.44
0.35 0.32

0.13
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0.94

GSM8K, Llama2 GSM8K, Llama3.1
Amazon, Llama2 Amazon, Llama3.1

Figure 4: The results of the contextual alignment capabil-
ity (p̂(D|Q)), the output calibration capability (p̂(X|Q))
and LCS of Llama2-7b and Llama3.1-8b on GSM8K and
Amazon Review. p̂(D|Q) and p̂(X|Q) are calculated as
the average value on all test data.

GSM8K

MATH

HumanEval

MBPP

ARC-C

MMLU-Pro

FinQA

Amazon

Llama2

Llama3.1Llama-R1

Figure 5: The intercept of the fitted
line on each dataset and each model.
We also compare the intercepts of
Llama3.1 under different scales in
Appendix F.4.

3.3 RQ2. HOW DOES DIFFERENT FACTORS INFLUENCE THE ICL EFFECTIVENESS?

3.3.1 THE MAIN FACTORS THAT INFLUENCE THE ICL EFFECTIVENESS

In §2.2, we discuss the main factors influencing the ICL effectiveness, including the contextual align-
ment capability (p̂(D|Q)) and the output calibration capability (p̂(X|Q)). In this section, we conduct
experiments to analyze these conclusions further. We calculate the average values of p̂(D|Q) and
p̂(X|Q) with Llama2-7b and Llama3.1-8b on GSM8K and Amazon Review, as shown in Figure 4.
From the figure, we can observe the following: (i) The results of Llama2-7b on Amazon Review
indicate that the model is unable to effectively learn the information relevant to the user input from
the provided demonstration D, i.e., the contextual alignment capability is low, which leads to poor
ICL effectiveness; (ii) The results of Llama3.1-8b on GSM8K show that although the ICL ability of
the model is high, the model can accurately assess the relationship between input and output, i.e., the
output calibration capability also diminishes the ICL effectiveness; (iii) LCS is not equal to p̂(D|Q)

p̂(X|Q) ,
due to the error between p and p̂, as discussed in detail in Appendix C.3.

3.3.2 IT IS HARDER FOR ICL TO IMPROVE THE LEARNING GAIN ON STRONGER MODEL

Apart from the slope, the intercept of the fitted line also reflects the effectiveness of ICL under dif-
ferent settings. We examine the intercept under different datasets and models, which is shown in
Figure 5. From the figure, we observe that as model capacity increases, the corresponding intercepts
decrease, indicating that: (i) From the perspective of the learning gain, the intercept reflects the
overall magnitude of learning gain attributed to demonstrations for a given model and task, where
a smaller intercept suggests less learning gain. (ii) From the perspective of error estimation (Ap-
pendix C.3), a smaller intercept implies a smaller discrepancy between p and p̂, meaning that the
empirical predictor more closely approximates the oracle predictor. In summary, as model capacity
increases, model predictions become more aligned with the oracle predictor, but the overall learning
gain from demonstrations also diminishes.
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Figure 6: The performance change (Y-axis, left figure) and LCS (Y-axis, right figure) on MATH,
MMLU-Pro, and Amazon Review with different shots (X-axis). The lines of the same color denote
the results under the same setting.

Table 3: Performance change (∆) and LCS using labeled and synthetic demonstrations.

Dataset Type Llama2-7b Llama3.1-8b Llama-R1-8b
∆ LCS ∆ LCS ∆ LCS

MATH Labeled +9.6 1.03 +2.4 0.34 −1.2 0.09
Synthetic +6.0 0.75 +1.3 0.16 −1.8 0.05

ARC-C Labeled +11.6 0.74 −1.9 −0.54 −0.3 0.08
Synthetic +8.2 0.53 −1.5 −0.56 −0.2 0.06

MMLU-Pro Labeled +5.5 0.64 +2.6 0.52 −5.5 −0.04
Synthetic +3.6 0.33 +2.0 0.32 −4.0 −0.12

Amazon Labeled +0.5 0.07 +5.0 0.94 +11.8 0.37
Synthetic +0.0 0.0 +4.0 0.42 +9.0 0.25

3.3.3 MORE SHOTS IMPROVE THE ICL PERFORMANCE BUT NOT EFFECTIVENESS

To observe the differences in the ICL effectiveness under different shot numbers, we conduct exper-
iments under different shot numbers. Since Theorem 1 can only calculate the influence of a single
demonstration, we divide the k-shot into k data points to calculate LCS. The experimental results
are shown in Figure 6. From the figure, we can observe that: (i) As the number of shots increases,
the overall performance change shows an upward trend. However, LCS does not generally increase
or decrease with the number of shots but rather exhibits some degree of fluctuation. This is because
the value of LCS is related to the inherent ICL effectiveness on a given model and dataset, while
increasing shot number cannot affect the ICL effectiveness. (ii) Relatively, the fluctuation of LCS
gradually decreases as the number of shots increases. As discussed in Appendix C.3, increasing the
number of shots can reduce computational errors, making the calculated result of LCS more stable
and a more accurate reflection of the ICL effectiveness.

3.4 RQ3. CAN SYNTHETIC DATA ACCURATELY REFLECT THE ICL EFFECTIVENESS?

To verify the conclusions regarding the computation of LCS for synthetic data presented in §2.3,
we conduct experiments to calculate LCS with synthetic data. During synthesis, we follow the
procedure in Wang et al. (2025b) by inputting the task definition to generate corresponding demon-
strations. We set the temperature to 0.9 and top p to 0.9, sampling 8 demonstrations per iteration. A
multi-round iterative process is used to ensure the diversity and quality of the synthesized demon-
strations. Considering the computation resource limit, we only adapt experiments on four datasets,
which are shown in Table 3. From the table, we observe the following: (i) The trend of LCS using
synthetic data is consistent with that derived from labeled data, demonstrating that synthetic data can
effectively reflect the ICL effectiveness. (ii) Compared to labeled data, the values of LCS obtained
from synthetic data are relatively smaller, which supports the conclusion of Theorem 2.
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4 RELATED WORK

In-Context Learning In-context learning guides the LLM reasoning process by providing several
task-relevant demonstrations in the input, thereby improving performance (Brown et al., 2020; Dong
et al., 2024; Zhao et al., 2025). Existing ICL research can be broadly categorized into two main ar-
eas: constructing high-quality demonstrations and improving demonstration selection performance.
For demonstration construction, many works focus on the offline enhancement of demonstration
quality. This includes methods aimed at increasing demonstration diversity, for instance, by gen-
erating synthetic data tailored to a given task or by selecting diverse demonstrations to improve
compositional generalization (Wang et al., 2024a; 2025a; Chen et al., 2023a; Su et al., 2024; Levy
et al., 2022). Another key aspect of offline construction is synthesizing or augmenting reasoning
steps within existing demonstrations to better guide the inference process (Li et al., 2024; Zelikman
et al., 2022; ZHAO et al., 2023). Other methods focus on the online synthesis of demonstrations,
where demonstrations are generated or rewritten dynamically based on the user input to enhance
reasoning performance, sometimes even leveraging the LLM itself to create these demonstrations
(He et al., 2024; Chang & Fosler-Lussier, 2023; Kim et al., 2022). In the domain of demonstration
selection, research primarily explores how to choose demonstrations most relevant to the user query,
with some approaches also incorporating active learning principles to identify the most informative
demonstration (Luo et al., 2024; Vu et al., 2023). Selection strategies include those based on n-
grams (Li et al., 2023), semantic similarity using embeddings (Yang et al., 2023; Luo et al., 2023),
or hybrid methods that combine multiple diverse strategies for retrieval and ranking (Wan et al.,
2025; Wang et al., 2024c; Hao et al., 2022).

Mechanism Analysis of In-Context Learning Many studies have investigated the mechanisms
underlying ICL for improving reasoning performance (Zhou et al., 2024; Dong et al., 2024). One
line of research explores the mechanism of ICL by controlling the types of tasks used during pre-
training (Edelman et al., 2024b; Han et al., 2023). Current mainstream work suggests that ICL
ability arises from task diversity rather than data scale, with models gradually generalizing from
solving in-domain tasks to solving out-of-domain tasks (Raventos et al., 2023). Additionally, some
studies find that the modules responsible for knowledge acquisition and ICL ability are function-
ally independent (Nguyen & Reddy, 2025). Increasing the amount of data primarily enhances the
knowledge-related components, while improvements in ICL depend more on the diversity of tasks
encountered during training. Another line of work focuses on ICL reasoning, aiming to discover
the ICL mechanism by examining the relationship between provided demonstrations and the user
question (Park et al., 2025; Li et al., 2025; Min et al., 2022; Wang et al., 2023a). Some studies argue
that models perform ICL by learning the mapping between inputs and labels in the demonstrations,
thereby improving task-solving performance (Kossen et al., 2024). Other research suggests that
models learn the reasoning process embedded in the demonstrations and enhance reasoning perfor-
mance by understanding and mimicking these processes (Lampinen et al., 2022).

However, the aforementioned studies mainly focus on improving the ICL performance or explain-
ing the mechanism of ICL, often presuming that ICL is inherently effective. In contrast, recent
studies have shown that ICL does not lead to performance improvement on certain tasks and models
(DeepSeek-AI et al., 2025; Huang & Wang, 2025; Zheng et al., 2025). In this work, we investi-
gate the main factors influencing the ICL effectiveness and propose the metric to evaluate the ICL
effectiveness, to inform and inspire future research.

5 CONCLUSION

In this paper, we propose a novel metric LCS, to evaluate the ICL effectiveness. LCS overcomes the
low reliability and poor attribution issues of performance-based metrics by measuring the variation
in the learning gain with the contextual relevance. Based on LCS, we first discuss two primary
factors that contribute to poor ICL effectiveness: poor contextual alignment capability and strong
output calibration capability, demonstrating the strong attribution of LCS. Analytical experiments
show that LCS can effectively reflect the effectiveness of ICL even on demonstrations where ICL
does not lead to performance improvements, indicating high reliability. Furthermore, we present
that the results of LCS on synthetic data are lower than those on real data, to inspire the application
of LCS in data-insufficient scenarios.
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6 REPRODUCIBILITY

We have provided all proofs of this paper in Appendix C.1, Appendix C.2 and Appendix C.4. We
will release the experimental and pre-processed data and code upon the paper being accepted.
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A LIMITATIONS AND ETHICS

A.1 LIMITATIONS

(i) The current experimental datasets and models are limited, where future work will validate LCS
on a broader range of models and datasets. (ii) Although we discuss that contextual alignment
and output calibration capabilities are key factors influencing the ICL effectiveness, the underlying
factors that affect these two capabilities warrant further investigation.

A.2 ETHICS

All datasets and models used in this paper are publicly available, and our usage follows their licenses
and terms. We employ AI tools for coding and writing polishing.

B LLM USAGE

We have employed the AI tool for coding and writing polishing.

C PROVE

C.1 EQUATION 2

Proof. Suppose X = (x1, ..., x|X|), where xi is the token of X , we can derive that:
Lp(X|K;D;Q) = − log p(X|K;D;Q)

=

T∑
t=0

(− log p(xt|D;Q;x1:t−1))

=

T∑
t=0

(
− log

(
p(xt|Q;x1:t−1)p(D|Q;x1:t)

p(D|Q;x1:t−1)

))

= Lp(X|K;Q)−
T∑

t=0

(
log

(
p(D|Q;x1:t)

p(D|Q;x1:t−1)

))
= Lp(X|Q)− (log p(D|Q;X)− log p(D|Q))

C.2 THEOREM 1

Proof.

p(X|Q;D)− p(X|Q) =
p(X,Q,D)

p(Q,D)
− p(X,Q)

p(Q)

=
p(X,Q,D)p(Q)− p(X,Q)p(Q,D)

p(Q,D)p(Q)

=
p(D|Q,X)p(Q,X)p(Q)− p(X,Q)p(D|Q)p(Q)

p(Q,D)p(Q)

=
p(X|Q)

p(D|Q)
(p(D|Q,X)− p(D|Q))

=
p(X|Q)

p(D|Q)
I(X → D|Q)

Therefore, we can conclude that:

I(X → D|Q) =
p(D|Q)

p(X|Q)
I(D → X|Q)
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C.3 ERROR OF THEOREM 1

Assuming the error of the empirical predictor relative to the true predictor is p̂(A|B) = p(A|B) +

ε(A|B), where A,B are any random variables. We suppose that rp ≥ ε(D|Q)
ε(X|Q) ≥ ε(D|Q;X)

ε(X|Q;D) , i.e., the
error growth rate with introduced demonstrations is smaller than that without demonstrations, which
is further smaller than the ICL effectiveness. According to Theorem 1, the slope of the fitted line
can be approximated as:

Ip̂(D|Q;X)

Ip̂(X|Q;D)
=

(p(D|Q;X)− p(D|Q)) + (ε(D|Q;X)− ε(D|Q))

(p(X|Q;D)− p(X|Q)) + (ε(X|Q;D)− ε(X|Q))

Direct computation yields:

p̂(D|Q)

p̂(X|Q)
=

p(D|Q) + ε(D|Q)

p(X|Q) + ε(X|Q)

Thus, we have:

∆I :=
Ip̂(D|Q;X)

Ip̂(X|Q;D)
− Ip(D|Q;X)

Ip(X|Q;D)
=

ε(D|Q;X)− ε(X|Q;D)rp
Ip(X|D;Q) (Ip(X|D;Q) + ε(X|Q;D))

∆p :=
p̂(D|Q)

p̂(X|Q)
− p(D|Q)

p(X|Q)
=

ε(D|Q;X)− ε(X|Q;D)rp
p(X|D;Q) (p(X|D;Q) + ε(X|Q;D))

Assuming Ip(X|D;Q) ≤ p(X|D;Q), i.e., the information the model learns about D from X is less
than the information inherently contained in the model, we have:

∆I ≤ ∆p

This implies that using the slope as a metric for ICL effectiveness has a smaller error compared to
using p̂(D|Q)

p̂(X|Q) .

C.4 THEOREM 2

Proof. Since X̂ = argmaxX∼X p̂(X|Q), we can conclude that p̂(X̂|Q) ≥ p̂(X∗|Q). Based on the
total probability theorem, we can draw that:

p̂(D̂|Q) =
∑
X∼X

p̂(D̂|Q;X)

p̂(D∗|Q) =
∑
X∼X

p̂(D∗|Q;X)

Considering that p̂(D̂|Q;X) ≤ p̂(D∗|Q;X),∀X ∼ X , Q ∼ Q, it can be concluded that p̂(D̂|Q) ≤
p̂(D∗|Q). Therefore, we can draw the conclusion that:

p̂(D̂|Q)

p̂(X̂|Q)
≤ p̂(D∗|Q)

p̂(X∗|Q)

D ADDITIONAL INFORMATION

D.1 DETAIL OF BENCHMARKS

In this section, we discuss the datasets we used in this paper in detail. The scale of the test set and
the demonstrations of each dataset are shown in Table 4.
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Table 4: The scales of test set and demonstrations of each dataset.

Dataset Test Set Demonstration

GSM8K 1319 7473
MATH 500 7496
HumanEval 164 596
MBPP 378 596
ARC-Challenge 1172 1119
MMLU-Pro 1000 70
FinQA 1147 6251
Amazon Review 200 1800

GSM8K GSM8K (Cobbe et al., 2021) is a high-quality dataset consisting of grade school level
math problems. We directly use the training set as the demonstration pool.

MATH MATH (Hendrycks et al., 2021) is a dataset of high school competition-level math prob-
lems covering various domains, such as algebra, probability, and geometry. Following (Lightman
et al., 2024), we use a sampled subset of 500 examples for evaluation. We use the training set as the
demonstration pool.

HumanEval HumanEval (Chen et al., 2021a) is a Python-based code generation benchmark. We
follow the evaluation protocol of (Liu et al., 2023). Since the dataset does not provide a labeled
training set, we use demonstrations from MBPP as the demonstration pool.

MBPP MBPP (Austin et al., 2021) is another Python-based code generation benchmark. Com-
pared to HumanEval, it is larger in scale and includes a split between validation and test sets. In this
paper, we adapt the evaluation on the test set and use the remaining data as the demonstration pool,
following the evaluation protocol of (Liu et al., 2023).

ARC-Challenge ARC-Challenge (Yadav et al., 2019) is a difficult question-answering dataset
focusing on scientific knowledge. We directly use the training set as the demonstration pool.

MMLU-Pro MMLU-Pro (Wang et al., 2024d) is a multitask benchmark designed to comprehen-
sively evaluate LLMs on professional domain knowledge and complex reasoning capabilities. As
the dataset only provides validation and test sets, we use the validation set as the demonstration pool
and evaluate on the test set.

FinQA FinQA (Chen et al., 2021b) is a question-answering dataset in the financial domain. It
requires models to perform numerical reasoning and calculations based on given financial tables
and textual information. We use the training set as the demonstration pool.

Amazon Review The Amazon Review (Ni et al., 2019) dataset consists of numerous user ratings
and textual reviews on products from the Amazon platform, and it is widely used in sentiment
analysis and recommendation system research. Due to the large scale of the dataset, we select the
Health and Personal Care category as the test set and use All Beauty, Digital Music, and Software
as the demonstration pool.

D.2 CALCULATION OF LCS

In this section, we present how to calculate LCS, which primarily involves two sequential steps:
reasoning process paraphrasing and likelihood calculation. The prompts employed for these com-
putations are detailed in Appendix D.3.

The reasoning process paraphrasing step requires models to restructure human-labeled reasoning
processes according to their preferred reasoning style when provided with a given reasoning pro-
cess. This adaptation is crucial because discrepancies between human-labeled reasoning formats
and model-preferred reasoning patterns (e.g., “¡think¿” tag of Llama-R1 (DeepSeek-AI et al., 2025))
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could lead to inflated information gain measurements that reflect stylistic variations rather than
knowledge acquisition. To mitigate this confounding factor, we implement reasoning process para-
phrasing to eliminate format-induced biases, thereby ensuring that computational results authenti-
cally reflect knowledge-derived information learned from demonstrations. Specifically, for each data
instance and demonstration, we input the question, answer, and human-labeled reasoning process (if
provided), instructing the model to rephrase the output using its preferred reasoning style.

Following the paraphrasing, we calculate the likelihood with paraphrased results. For conditional
probabilities expressed as p̂(A|B), we treat B as user input and A as model output, encapsulating
them into a formatted string using the model chat template. This composite string is then pro-
cessed through the model to obtain token-level likelihoods. The joint likelihood of a sequence A is
computed by multiplying the probabilities of all constituent tokens. To minimize the confounding
effects of sequence length on probability comparisons, we apply length normalization to all com-
puted likelihood values (Dai et al., 2019). This standardized approach ensures a fair comparison
across outputs of varying lengths while preserving the probabilistic relationships between different
reasoning processes.

D.3 PROMPTS

In this section, we introduce the prompts used in this paper. The reasoning prompts of §3 can be
seen in (Chen et al., 2023b; Grattafiori et al., 2024; DeepSeek-AI et al., 2025). The prompts used
for the paraphrasing and the synthesis are shown in Table 5 and Table 6.

Table 5: The prompt of the paraphrase.

Prompt of Paraphrasing

¡Begin of Task Definition¿
{definition}
¡End of Task Definition¿
¡Begin of Input¿
{question}
¡End of Input¿
¡Begin of Hint¿
{hint}
¡End of Hint¿
¡Begin of Answer¿
{answer}
¡End of Answer¿

Considering the above task definition, generate the reasoning process of the given input and answer
with the hint (could be empty).

Table 6: The prompt of the demonstration synthesis.

Prompt of Synthesis

```md
{task definition}
```
Given Question: {question}

Based on the above task definition and the given question, synthesize a question and the correspond-
ing answer that is similar to the given question of the task.
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E ADDITIONAL DISCUSSION

E.1 THE FACTORS THAT AFFECT ICL EFFECTIVENESS

Following the discussion of §2.2, in this section, we delve deeper into the factors that influ-
ence the ICL effectiveness, specifically the meaning of p̂(D|Q) and p̂(X|Q). Our primary fo-
cus is on different predictors p̂1 and p̂2 applied to the same data, assuming that the answer
X = argmaxX∈X p(X|Q) is the correct answer, and the demonstration D = argmaxD∈D p(D|Q)
is the most relevant demonstration to the question Q.

Contextual Alignment Capability p̂(D|Q) If p̂1(D|Q) ≥ p̂2(D|Q), it indicates that p̂1 has a
stronger ability to judge the relevance of demonstrations to the question compared to p̂2, showing
that p̂1 is a better demonstration selector. From the perspective of demonstrations, this means that
p̂1 is better at understanding the information in the demonstration and determining its relationship
with the user question Q, reflecting that p̂1 has a stronger ICL ability than p̂2.

It is worth noting that while both p̂(D|Q) and I(D → X|Q) measure the consistency be-
tween the demonstration and the user input to some extent, their fundamental perspectives differ.
I(D → X|Q) primarily focuses on the data perspective, measuring the relevance between the input
and the demonstration under the assumption that the model is an oracle. In contrast, p̂(D|Q) pri-
marily focuses on the model perspective, observing whether the model has the capability to gauge
the relevance between the input and the demonstration, assuming that the demonstration is highly
relevant to the user input.

Output Calibration Capability p̂(X|Q) If p̂1(X|Q) ≥ p̂2(X|Q), it implies that p̂1 has a
stronger ability to judge the correct answer compared to p̂2, meaning that p̂1 is a better answer
scorer. It should be noticed that p̂(X|Q) does not directly reflect the model ability to solve the given
question. This is because the model generates answers using greedy decoding, which means the
generated answer could not be the answer with the highest likelihood. Rather, p̂(X|Q) represents
the score the model assigns to a given answer, reflecting the model ability to assess the consistency
between the answer and the question.

E.2 EMPIRICAL THRESHOLD OF LCS

Specifically, based on Figure 2, we can use LCS = 0.2 as an empirical threshold, since when
LCS ≤ 0.2, the corresponding performance gain is minimal or negative, suggesting that ICL is less
effective in the given task and model. This threshold is largely empirical. In practice, users can raise
or lower it according to the desired sensitivity to ICL effectiveness.

E.3 EFFICIENCY OF LCS CALCULATION

LCS requires calculating four related likelihoods for each data point. Therefore, if we assume the
time cost for a model to run one pass of ICL inference on a given dataset is T , the time cost of our
method is 4T . Although our time cost is greater than that of a single inference pass, our primary
motivation is to propose an effective method for measuring ICL effectiveness to guide subsequent
demonstration annotation and ICL usage, rather than to perform efficient inference. Therefore, we
consider the additional time cost to be acceptable.

F ADDITIONAL EXPERIMENTS

F.1 MAIN EXPERIMENT RESULTS

Overall Performance In this part, we present the performance of 0-shot and 1-shot on different
models and datasets, as shown in Table 7.

Figurative Illustrations of Learn-to-Context Slope In this section, we present the variation of
Ip̂(X → D|Q) with respect to Ip̂(D → X|Q) under different settings, as illustrated in Figure 7, Fig-
ure 8, and Figure 9. Considering that the number of data points could vary slightly across different
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Table 7: The performance of different models on different datasets using 0-shot and 1-shot. ∆ is the
performance change of 1-shot compared with 0-shot. HumanE denotes HumanEval, A-C denotes
ARC-Challenge, M-P denotes MMLU-Pro, and Amazon denotes Amazon Review.

Model Shot Math Code Reason Domain

GSM8K MATH HumanE MBPP A-C M-P FinQA Amazon

Llama2-7b
0 12.7 5.0 14.0 23.0 34.6 14.1 10.5 28.5
1 27.7 14.6 13.4 22.5 46.2 19.6 17.8 29.0

∆ +10.0 +9.6 −0.6 −0.5 +11.6 +5.5 +7.3 +0.5

Llama3.1-8b
0 86.4 48.4 65.9 54.8 82.1 50.4 49.7 63.5
1 84.2 50.8 63.4 55.6 80.2 53.0 54.6 68.5

∆ −1.8 +2.4 −2.5 +0.8 −1.9 +2.6 +4.9 +5.0

Llama-R1-8b
0 86.1 75.4 70.7 67.2 84.8 58.2 45.2 53.5
1 80.1 74.2 67.7 60.8 84.5 52.7 43.4 65.0

∆ −6.0 −1.2 −3.0 −6.4 −0.3 −5.5 −1.8 +11.5

models due to the potential for excessively long responses from certain models (e.g., Llama-R1-8b
could persist in “thinking”).

F.2 DIFFERENT SIMILARITY MEASUREMENT

In this section, we discuss the impact of replacing the contextual relevance Ip̂(D → X|Q) with
other metrics. We conduct experiments on Llama3.1-8b using the Amazon Review dataset, where
we replace the similarity measure with n-gram (Broder et al., 1997), BM25 (Robertson & Zaragoza,
2009), and cosine similarity (Singhal & Google, 2001) to evaluate the similarity between the pro-
vided demonstration and user input. The experimental results are shown in Figure 10. From the
figure, we observe the following: (i) For effective similarity measures (e.g., BM25, cosine similar-
ity), the observed ICL effectiveness is consistent with using the contextual relevance; (ii) However,
for metrics with poorer performance (e.g., n-gram), the ICL effectiveness is not accurately reflected,
demonstrating that n-gram fails to properly capture the similarity between demonstrations and user
inputs.

F.3 DIFFERENT MODEL

Table 8: Performance and fitted lines across different models and datasets. ARC-C denotes ARC-
Challenge, and Amazon denotes Amazon Review. ∆ denotes the performance change of 1-shot
relative to 0-shot, where performance gains < 1.0 are marked in red. rp̂x + b represents the fitted
line with Ip̂(X → D|Q) as the x-axis and Ip̂(D → X|Q) as the y-axis, where rp̂ values < 0.2 are
highlighted in red.

Model MATH FinQA Amazon
∆ rp̂x+ b ∆ rp̂x+ b ∆ rp̂x+ b

Llama3.1-8b 2.4 0.34x− 0.00 4.9 0.82x− 0.06 5.0 0.94x− 0.09
Qwen2.5-7b 2.2 0.81x− 0.16 4.9 0.29x− 0.09 27.0 0.42x+ 0.00
Llama3.1-70b −3.6 −0.13x− 0.04 7.6 0.77x− 0.07 16.0 0.79x− 0.18

To evaluate the effectiveness of LCS on the models with different scales and series, we adapt the
experiments on Qwen2.5-7b (Qwen et al., 2025) and Llama3.1-70b (Grattafiori et al., 2024). The
experiment results are shown in Table 8. It can be seen that LCS still reflects the ICL effectiveness
on the models with different scales and series, proving the generalization of our metric.
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(a) GSM8K, Llama2-7b. (b) MATH, Llama2-7b.

(c) HumanEval, Llama2-7b. (d) MBPP, Llama2-7b.

(e) ARC-Challenge, Llama2-7b. (f) MMLU-Pro, Llama2-7b.

(g) FinQA, Llama2-7b. (h) Amazon, Llama2-7b.

Figure 7: The variation of Ip̂(X → D|Q) (y-axis) with Ip̂(D → X|Q) (x-axis) on different datasets
using Llama2-7b. The title of each plot displays the corresponding dataset and fitted line. Each blue
dot in the plot represents a data point, and the red line indicates the fitted line of the data points.
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(a) GSM8K, Llama3.1-8b. (b) MATH, Llama3.1-8b.

(c) HumanEval, Llama3.1-8b. (d) MBPP, Llama3.1-8b.

(e) ARC-Challenge, Llama3.1-8b. (f) MMLU-Pro, Llama3.1-8b.

(g) FinQA, Llama3.1-8b. (h) Amazon, Llama3.1-8b.

Figure 8: The variation of Ip̂(X → D|Q) (y-axis) with Ip̂(D → X|Q) (x-axis) on different datasets
using Llama3.1-8b. The legend is the same as Figure 7.
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(a) GSM8K, Llama-R1-8b. (b) MATH, Llama-R1-8b.

(c) HumanEval, Llama-R1-8b. (d) MBPP, Llama-R1-8b.

(e) ARC-Challenge, Llama-R1-8b. (f) MMLU-Pro, Llama-R1-8b.

(g) FinQA, Llama-R1-8b. (h) Amazon, Llama-R1-8b.

Figure 9: The variation of Ip̂(X → D|Q) (y-axis) with Ip̂(D → X|Q) (x-axis) on different datasets
using Llama-R1-8b. The legend is the same as Figure 7.
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(a) N-Gram. (b) BM25.

(c) Cosine Similarity. (d) Contextual Relevance.

Figure 10: The variation of the learning gain (y-axis) with different similarity metrics (x-axis) on
Amazon using Llama3.1-8b.

GSM8K

MATH

HumanEval

MBPP

ARC-C

MMLU-Pro

FinQA

Amazon

Llama3.1-8b

Llama3.1-70b

Figure 11: The intercepts of the fitted lines of Llama3.1-8b and Llama3.1-70b.
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F.4 INTERCEPT UNDER DIFFERENT MODEL SCALES

To more thoroughly compare the differences in the effective information learned from demonstra-
tions by LLMs of varying capabilities, we conduct experiments on LLMs of different scales within
the same series. The experimental results are shown in Figure 11. From the figure, it can be ob-
served that the intercept of Llama3.1-70b is generally smaller than that of Llama3.1-8b, as discussed
in Section §3.3.2, indicating that Llama3.1-70b learns less effective information.
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