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Abstract

We study the emergence of tacit collusion between adaptive trading agents in a
stochastic market with endogenous price formation. Using a two-player repeated
game between a market maker and a market taker, we characterize feasible and
collusive strategy profiles that raise prices beyond competitive levels. We show
that, when agents follow simple learning algorithms (e.g., gradient ascent) to max-
imize their own wealth, the resulting dynamics converge to collusive strategy pro-
files, even in highly liquid markets with small trade sizes. By highlighting how
simple learning strategies naturally lead to tacit collusion, our results offer new
insights into the dynamics of AI-driven markets.

1 Introduction

The growing adoption of Artificial Intelligence (AI) in algorithmic trading is transforming financial
markets, and understanding how learning systems may autonomously develop coordinated behav-
ior is becoming increasingly important. Recent reports by the Bank for International Settlements
and the International Monetary Fund highlight the potential stability risks that may arise from the
widespread use of such systems.1

Among the most pressing regulatory challenges is the possibility that these AI systems achieve tacit
collusion. Collusion is a form of coordination where agents align their strategies in a way that ben-
efits all of them at the expense of other market participants or society as a whole. Tacit collusion
is achieved without any explicit agreement or instruction. Collusion is illegal under U.S. antitrust
law, while tacit collusion falls outside the scope of existing enforcement frameworks, which typi-
cally rely on detecting explicit communication or documentary evidence of shared intent Dou et al.
(2025). Understanding whether and how tacit collusion may emerge without explicit coordination
in AI-driven markets is a first step toward designing effective mitigation strategies. Tacit collusion

1See Chapter III of the 2024 Annual Economic Report by the Bank for International Settlement (https:
//www.bis.org/publ/arpdf/ar2024e.pdf) and Chapter 3 of the 2024 Global Financial Stability Report
by the International Monetary Fund (https://www.imf.org/-/media/Files/Publications/GFSR/20
24/October/English/textrevised.ashx).

39th Conference on Neural Information Processing Systems (NeurIPS 2025)
Workshop on Algorithmic Collective Action (ACA@NeurIPS 2025).

https://www.bis.org/publ/arpdf/ar2024e.pdf
https://www.bis.org/publ/arpdf/ar2024e.pdf
https://www.imf.org/-/media/Files/Publications/GFSR/2024/October/English/textrevised.ashx
https://www.imf.org/-/media/Files/Publications/GFSR/2024/October/English/textrevised.ashx


has been empirically shown to consistently arise in automatic pricing competitions under mild as-
sumptions on the learning dynamics Calvano et al. (2020a). See section 2 for an overview of the
related works.

In this work, we study tacit collusion through a two-player game between a market maker and a
market taker. The market maker represents liquidity providers, such as market-making firms or
designated market makers, who supply liquidity by continuously posting buy and sell quotes. The
market taker represents liquidity consumers, such as hedge funds or pension funds, who demand
liquidity by executing trades against these quotes. This stylized framework captures the essential
strategic interaction between the two sides of modern financial markets.

Each player starts with a certain amount of cash and inventory, and trade with each other repeatedly
seeking to maximize individual wealth, defined as the sum of the player’s cash holdings and inven-
tory valued at the prevailing market price. The market price evolves by incorporating both the price
impact of the players’ trades and exogenous shocks. We pose the following question:

In the absence of communication, what strategies do
simple wealth-maximizing learners converge to?

Our analysis reveals a key insight. Despite the absence of explicit communication, each trajectory
of the gradient ascent dynamic leads to a collusive strategy profile.

2 Related works

Online learning for market making. The problem of optimizing market-making strategies has
been extensively studied through the lens of online learning, Abernethy et al. (2013); Abernethy and
Kale (2013) linked it to online convex optimization, focusing on developing agents with no-regret
learning guarantees, while more recent work Cesa-Bianchi et al. (2025) focused on learning under
partial feedback. Other works address specific challenges, such as adapting to sudden market shocks
Das and Magdon-Ismail (2008) and analyzing the impact of algorithmic pricing on market liquidity
Colliard et al. (2022). Recently, the problem has been extended to the realm decentralized finance,
with studies focusing on the optimal design of constant function market makers and strategies for
liquidity provision in platforms like Uniswap Bar-On and Mansour (2023). An extensive body of
experimental work has successfully applied reinforcement learning techniques to the market-making
problem Spooner et al. (2018); Spooner and Savani (2020), using techniques from deep-learning in
high-frequency trading Kumar (2023), in multi-agent environments Ganesh et al. (2019) or in the
context of limit order books Wei et al. (2019); Coletta et al. (2022).

Online learning for market taking. Online learning for market taking is often framed as the
problem of online portfolio selection. Seminal work in this area introduced the concept of univer-
sal portfolios Cover and Ordentlich (1996b,a), which are algorithms that perform nearly as well
as the best constant-rebalanced portfolio determined in hindsight, without making any statistical as-
sumptions about the market’s behavior. Subsequent research focused on developing computationally
efficient algorithms to implement these portfolio strategies Kalai and Vempala (2000). Further the-
oretical work has explored the connections between stochastic and worst-case models for investing
Hazan and Kale (2009), providing a more comprehensive understanding of performance guarantees
in different market settings.

While these studies primarily focus on the optimization of a single agent’s strategy, our work differs
by investigating the emergent, coordinated behaviors that arise from the strategic interaction between
a market maker and a market taker within a shared market environment.

Multi-Agent Learning Dynamics and algorithmic collusion. Economic problems often involve
multiple adaptive agents—so-called agent economies—where strategies evolve simultaneously. A
natural tool for modeling such environments is multi-agent reinforcement learning (MARL). Unlike
the single-agent case, however, each agent faces a non-stationary environment created by others,
and therefore global convergence guarantees are absent (see Daskalakis et al. (2009)). Convergence
has been shown in special cases: Q-learning Watkins and Dayan (1992) in two-player zero-sum
games Littman (1994a), the iterated Prisoner’s Dilemma Sandholm and Crites (1995), and more
general arbitrary-sum two-player games assuming Nash equilibrium play Hu and Wellman (1998).
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A key strength of Q-learning in these settings is its ability to learn payoffs directly from experience,
without requiring prior knowledge of the rewards.

Subsequent work introduced the notion of foresight — anticipating the long-term consequences of
present actions — to stabilize learning dynamics. Early studies by Tesauro and Kephart (1998, 2000)
extended ideas from minimax search and policy iteration, showing that foresight mitigates undesired
cyclical pricing behavior Sairamesh and Kephart (2000). In the same spirit, Tesauro and Kephart
(2002) investigated adaptive pricing with two competing sellers in electronic marketplaces. Despite
the absence of formal guarantees, they showed empirically that simultaneous Q-learning, without
explicit coordination, leads to monotonically increasing profit as the discount factor increases.

Later studies turned to more realistic market settings. Waltman and Kaymak (2008) demonstrated
that Q-learning agents in repeated Cournot competition reduce output and thereby raise prices rel-
ative to the one-shot Nash equilibrium. Calvano et al. (2020a) showed that in oligopolistic pric-
ing environments, reinforcement learning algorithms routinely discover tacitly collusive strategies:
supra-competitive pricing is sustained by implicit reward–punishment scheme designed to provide
the incentives for firms to consistently price above the competitive level Harrington (2018). Similar
results have been observed in airline pricing with Deep Q-learning Mnih et al. (2015) agents, where
duopolists learn to split monopoly profits Gu (2023). Recently, Dou et al. (2025) provide simulation
evidence that AI-driven speculators autonomously achieve supra-competitive profits, revealing new
mechanisms of collusion even in the absence of explicit agreement. Interestingly, in multi-agent
repeated auctions, Banchio and Skrzypacz (2022); Banchio and Mantegazza (2023) showed that en-
dowing the players with higher amounts of information, which in turn provide more insight on the
long-term dynamics of a strategy, reduces collusion.

3 Model

We consider the following model of price formation:
Assumption 1 (Price formation).

Pt+1 = (Pt + δt)εt+1 , (1)

where Pt is the price at time t, δt is the price impact of the trade at time t, and (εt)t is an i.i.d.
stochastic process such that εt > 0 has finite mean and variance.

We remark that the additivity of the price impact δt follows the standard in market microstruc-
ture Kyle (1985) while the multiplicativity of εt+1 follows the standard in asset pricing Fama (1970).
In the model, εt+1 denotes an exogenous shock, which is typically linked to economic fundamen-
tals Samuelson (1965). Instead, δt is endogenous. Following extensive empirical evidence (see e.g.,
Lillo et al., 2003; Tóth et al., 2011; Mastromatteo et al., 2014; Tóth et al., 2016; Bouchaud et al.,
2018), we assume that the price impact is proportional to the square root of the traded quantity:
Assumption 2 (Price impact).

δt =

{
αt

√
Qt Qt ≥ 0

βt

√
−Qt Qt < 0

(2)

where Qt is the quantity traded at time t, and αt ≥ 0 and βt ≤ 0 are the proportionality coefficients
for buys (Qt ≥ 0) and sells (Qt < 0), respectively.

We note that αt and βt represent the market’s illiquidity, where liquidity is defined in the sense
of Black (1971). When αt = βt = 0, we have a perfectly liquid market where the price impact δt
vanishes, implying that any trade size can be executed without affecting the price. In this limit, the
price evolution is driven solely by the exogenous shock εt+1. When αt or βt are large, we have an
illiquid market where even moderate trade sizes can substantially move the price.

3.1 Two-Player game

We consider a repeated game between two players: a market maker (M) and a market taker (T).
At the beginning of the first round, the price is P1 and the maker (taker) is initialized with a non-
negative amount of cash CM

1 (CT
1 ) and inventory IM1 (IT1 ). On every round t, the maker sets the

(il)liquidity of the market by choosing αt and βt. The taker subsequently decides the quantity Qt to
trade (positive for buys and negative for sells).
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Trading Protocol 1: Two-player game between maker (M) and taker (T).

Data: Starting positions IM1 , CM
1 and IT1 , C

T
1 . Initial price P1.

for round t = 1, 2, . . . do
Maker publishes αt ≥ 0 and βt ≤ 0
Taker picks Qt ∈ R
Permanent impact δt is computed using eq. (2)
Taker inventory ITt+1 ← ITt +Qt and cash CT

t+1 ← CT
t −Qt(Pt + δt) are updated

Maker inventory IMt+1 ← IMt −Qt and cash CM
t+1 ← CM

t +Qt(Pt + δt) are updated
Price Pt+1 computed using eq. (1) is revealed

end

The trade causes a price impact according to eq. (2). The players exchange the quantity Qt for an
amount of cash equal to Qt(Pt + δt). This condition means that Pt + δt is the average trade price,
which is similar to the fair pricing condition of Farmer et al. (2013).

Finally, the price Pt+1 from eq. (1) is revealed. The game is summarized in trading protocol 1.
Notice that, by construction, the total amount of inventory I = IMt + ITt and cash C = CM

t + CT
t

are constant.

Our goal is to study the price dynamics that emerge when the players maximize their own wealth on
each round. More precisely, we define the wealth on round t of any player p ∈ {M,T} as

W p
t = Cp

t + PtI
p
t (3)

and the objective of each player p is to maximize the expected value of W p
t+1 −W p

t .

4 Strategy profiles

The game defined in trading protocol 1 is a general-sum Markov game (MGs, also known as stochas-
tic game, Shapley, 1953; Littman, 1994b) where the payoff is defined by the immediate increase in
wealth. We are interested in Markov strategies for the game, defined for any player p ∈ {M,T} on
round t as a map πp

t : S → P(Ap), where S is the state space, in our case consisting of the amounts
of cash and inventory of both players and the price, and P(Ap) is the set of all distributions over the
actions space of player p. A strategy profile π = (πM, πT) is defined as a pair of strategies, one for
the taker and one for the maker.

A fundamental property of the strategy profiles we are interested in is price positivity, which de-
scribes profiles that keep the market price strictly positive.
Definition 1 (Price positivity). A strategy profile π is price-positive if for all t, it holds that Pt > 0
almost surely with respect to the (possible) internal randomization of π and the noise (εt)t.

We characterize price-positive strategy profiles as follows
Lemma 1. [Price positivity characterization] A strategy profile π is price-positive if and only if for
all t ≥ 1 such that Qt < 0 it holds

βt > −
Pt√
−Qt

. (4)

Proof. The proof proceeds by induction, we have P1 > 0 by construction. Regarding the induction
step, for every t ≥ 1 such that Pt > 0, we have Pt+1 > 0, where Pt+1 = (Pt + δt)εt+1. By
assumption 1, εt > 0 for all t, therefore (Pt + δt)εt+1 > 0 holds as long as Pt + δt > 0. When
Qt > 0, by eq. (2), it holds that δt > 0. When Qt < 0, we have that Pt + βt

√
−Qt > 0 by eq. (4).

Conversely, if eq. (4) is violated on any round t⋆, then Pt⋆ < 0 on such round if Qt⋆ < 0.

Additionally, we are interested in feasible strategy profiles, which do not force the players into a
short position.
Definition 2 (Feasible strategy profile). A strategy profile π is feasible if it is price-positive and for
all t and for both players p ∈ {M,T}, it holds that Cp

t > 0 and Ipt > 0 almost surely with respect
to the (possible) internal randomization of π and the noise (εt)t.
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As for price positivity, we provide a characterization of feasible strategy profiles.

Lemma 2. [Feasibility characterization] A strategy profile is feasible if and only if it is price-
positive and for all t ≥ 1 the following set of inequalities holds:

Qt(Pt + δt) < CT
t for Qt ≥ 0 (5)

Qt < IMt for Qt ≥ 0 (6)

−Qt(Pt + δt) < CM
t for Qt < 0 (7)

−Qt < ITt for Qt < 0 (8)

This set of inequalities ensures that the traded inventory and cash after each trade never exceed the
players’ reserves, therefore the players have no need to borrow assets.

The proof of this result is by induction on t and leverages the structure of the trades from trading
protocol 1. See appendix A for the full proof.

Finally, we define collusion. Collusion is always defined relative to a benchmark, typically of perfect
competition. In our setting, we define collusion as price divergence from a benchmark profile such
that δt = 0 for all t ≥ 1. There are two reasons for this choice. First, with perfect competition on
information, it is known Grossman and Stiglitz (1980) that traded quantities vanish, which in our
model corresponds to Qt = 0 and thus δt = 0. Second, in the classical view of perfect competition
as price-taking Aumann (1964), no individual trade moves prices, which in our model corresponds
to αt = βt = 0 and thus δt = 0. In both interpretations, δt = 0 captures the ideal of a perfectly
competitive market, making it a natural baseline against which to define collusive deviations.

Definition 3 (Collusion). The strategy profile π is collusive if and only if, as t→∞,

Pπ
t

Pt

as→∞ (9)

where as→ denotes almost sure convergence with respect to the (possible) internal randomization of
π and the noise (εt)t. Pπ

t is the price after t rounds of following π and Pt is the price after t rounds
of following any strategy profile that yields δt = 0 for all t ≥ 1.

We define the expected social welfare on round t under any strategy profile π as the total mark-
to-market wealth in the system E [C + PtI], where the expectation is taken with respect to the
(possible) internal randomization of π and the noise (εt)t. The next result shows that social welfare
is maximized by collusive strategies.

Theorem 1. In trading protocol 1, any collusive strategy profile almost surely achieves higher social
welfare than any feasible non-collusive strategy profile.

Proof. Fix any total inventory I and cash C, let π be any collusive strategy profile and assume by
contradiction that π′ is any feasible non-collusive strategy profile such that it exists t0 < ∞ for
which

C + IPπ′

t

C + IPπ
t

≥ 1 (10)

for all t ≥ t0 almost surely, meaning that the non-collusive strategy achieves consistently better
social welfare. The following inequalities are equivalent

C + IPπ′

t

C + IPπ
t

≥ 1 ⇐⇒ C + IPπ′

t ≥ C + IPπ
t ⇐⇒ Pπ′

t ≥ Pπ
t ⇐⇒

Pπ′

t

Pπ
t

≥ 1

Introduce the price P 0
t after t rounds such that δs = 0 for all s ∈ {1, . . . , t− 1} and consider that

Pπ′

t

Pπ
t

=
Pπ′

t

P 0
t

· P
0
t

Pπ
t

,

where the right term goes to zero almost surely by definition 3 and, in order to satisfy eq. (10), it
must hold that Pπ′

t /P 0
t

as→∞ faster π, therefore π′ must be collusive as well.
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5 Parameterization

We parameterize the strategy profiles as follows:

Strategy 1. For any given φ ∈ [0, 1], we consider the strategy profile πφ parameterized by
(kα, kβ , vα, vβ) > 0. At each time step t, the maker sets the illiquidity parameters

αt = vα ·
Pt√
At

βt = −vβ ·
Pt√
Bt

and the taker trades quantity

Qt =

{
+k2αAt with probability φ

−k2βBt with probability 1− φ

where

At = min

{
IMt ,

CT
t

Pt

}
Bt = min

{
CM

t

Pt
, ITt

}
(11)

The positivity condition on the parameters is motivated by the price concavity assumption (assump-
tion 2) for the maker’s parameters (vα, vβ), while on the taker’s parameters it is taken without loss of
generality as the set of representable strategy profiles when (kα, kβ) can be negative is unchanged.
At and Bt represent the maximum ask and bid which the players can trade without being forced into
a short position. The probability φ models the taker’s propensity to buy (φ > 1

2 ) or sell (φ < 1
2 ).

Next, we characterize the region of the parameter space that coincides with the set of feasible strategy
profiles.

Theorem 2. For any φ ∈ [0, 1], Strategy 1 is price-positive and feasible if and only if

vα ≥ 0 vβ ≥ 0 0 ≤ kα < fα(vα) 0 ≤ kβ < fβ(vβ)

where

fα(vα) :=
1

3

√
vα
2 +

√
v2
α

4 −
1
27 +

3

√
vα
2 −

√
v2
α

4 −
1
27

∈ (0, 1]

and fβ(vβ) := 1/vβ ∈ (0,∞).

The proof of theorem 2 is based on the following argument: from lemma 2 and strategy 1, we
can define a set of constraints which define the region of the parameters defining feasible strategy
profiles, special care is needed to ensure that the maker can pick the action first. See appendix A for
the full proof.

For the remainder of the paper, we consider only feasible strategy profiles. Finally, we provide a
necessary and sufficient condition for a feasible strategy profile to be collusive.

Theorem 3. For any φ ∈ [0, 1], let πφ be a feasible strategy profile parameterized by
(kα, kβ , vα, vβ). Introduce

µη := φ log(1 + vαkα) + (1− φ) log(1− vβkβ) (12)

Then strategy profile πφ is collusive if and only if µη > 0.

The proof of this theorem is based on the fact that the stochastic process Pπ
t

Pt
under strategy profile π

converges in distribution to ewt , where wt is a normal distribution with mean tµη . See appendix A
for the full proof of this theorem.

The parameterization from strategy 1 provides the set of all strategy profile Π, we characterized
price-positive Πprice−positive, feasible Πfeasible and collusive Πcollusive strategy profiles, such that

Πcollusive ⊂ Πfeasible ⊂ Πprice−positive ⊂ Π ,

where all subsets are proper and Πcollusive is not empty.
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6 Learning dynamics

We are interested in a pair of strategic taker and maker which on each round update the parameters
of their respective strategies to maximize the immediate expected wealth increase

Et

[
W p

t+1 −W p
t

]
, (13)

for any player p ∈ {M,T} and any round t, where the expectation is taken with respect to the
randomization of the taker’s strategy, the random noise εt+1 and conditioning on the history up to
time t. Call Rp

t the immediate expected wealth increase and note that

Rp
t = Et

[
W p

t+1 −W p
t

]
= Et

[
Cp

t+1 + Pt+1I
p
t+1 − Cp

t − PtI
p
t

]
= Et [(Pt+1 − Pt)I

p
t ]

where we used the update rules from trading protocol 1 and the expectation is taken with respect to
the random draw of φ and conditioning on the state on round t. Now introduce

κ := Et

[
δt
Pt

]
(14)

where δt is from eq. (21). When we want to highlight the dependence on the parameter we write

κ(k,v) := φvαkα − (1− φ)vβkβ (κ-explicit)

for a fixed φ, where we call k := (kα, kβ) the parameters of the taker’s strategy and v := (vα, vβ) the
parameters of the maker’s strategy. Note that κ depends only on the parameters and is independent
of the state. We write the expected price difference on round t as

Et [Pt+1 − Pt] = Et [(Pt + δt)εt+1 − Pt] (eq. (1))
= E [εt+1]Pt + Et [δt]Et [εt+1]− Pt (Independence of εt+1)
= Et [εt+1]Pt + κEt [εt+1]Pt − Pt (eq. (14))
= (µε(1 + κ)− 1)Pt

where µε is the expected value of εt+1 for any t.

For the game defined in trading protocol 1, we consider strategy profiles maximizing the notion of
reward defined in eq. (13). Because the expectation is taken conditioned on the history up to round
t, each round can be viewed as a general-sum game between the players. We write the utility of the
game for any player p ∈ {M,T} at time t as a function of the parameters

Rp
t (k,v) = Et [(Pt+1 − Pt)I

p
t ] = (µε(1 + κ(k,v))− 1)PtI

p
t , (15)

We are now ready to formally define the one-shot game on any round t for a fixed φ as
Game 1 (one-shot). We define the sequential one-shot general-sum game played by taker and maker
on every round t on the stochastic game defined in trading protocol 1. The maker first picks param-
eters v = (vα, vβ) ∈ [0,∞)2 in the feasible region (theorem 2), the taker responds by picking the
parameters k = (kα, kβ) ∈ [0, fα(vα)] × [0, fβ(vβ)] in the feasible region. The maker’s utility is
RM

t (k,v), while the taker’s utility is RT
t (k,v).

Next, we decompose the per-round game (game 1) into a competitive and collaborative component.
Consider the game where the players maximize the following utility

ZT
t := Et

[
(Pt+1 − Pt)(I

T
t − IMt )

]
and ZM

t := Et

[
(Pt+1 − Pt)(I

M
t − ITt )

]
, (16)

note that ZT
t+1 = −ZM

t+1. Introduce the following parameterization of the utilities

ZT
t (k,v) = −ZM

t (k,v) = (µε(1 + κ(k,v))− 1)Pt(I
T
t − IMt )

and define the competitive one-shot game:
Game 2 (Competitive). We define the sequential one-shot zero-sum game played by taker and maker
on every round t on the stochastic game defined in trading protocol 1. The maker first picks param-
eters v = (vα, vβ) ∈ [0,∞)2 in the feasible region (theorem 2), the taker responds by picking the
parameters k = (kα, kβ) ∈ [0, fα(vα)] × [0, fβ(vβ)] in the feasible region. The maker’s utility is
ZM
t (k,v), while the taker’s utility is ZT

t (k,v). The game is zero-sum as ZM
t (k,v) = −ZT

t (k,v).
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Next, we show that the equilibrium point of this game defines a strategy profile such that δt = 0 for
all t, which is the benchmark for collusion as per definition 3.
Theorem 4. Any strategy profile with no asymptotic impact on the price (δt = 0) is stable for the
competitive one-shot game 2.

Proof. Consider the competitive game (game 2) for any t and assume without loss of generality that
ITt > IMt . Fix any v = (vα, vβ) ∈ [0,∞)2, to ensure feasibility it must hold that 0 ≤ kα < fα(vα)
and 0 ≤ kβ < fβ(vβ) by theorem 2. By definition of ZT

t from eq. (16), fix any ε > 0 arbitrarily
small, the best response of the taker to v is kα = fα(vα)− ε and kβ = 0. The maker then needs to
solve the following optimization problem

min
v∈[0,∞)2

ZT
t (v,k) where k = (fα(vα)− ε, 0)

Which is solved when vα = 0 (hence kα = fα(0) − ε = 1 − ε) and for any value of vβ . In
conclusion, the competitive game admits a solution such that vα = 0 and kβ = 0, which correspond
to the parameterization of strategy profiles such that δt = 0 for all t.

Now introduce the game where the players optimize the utility
Up
t := Et [(Pt+1 − Pt)I] ,

as both players have the same utility (p does not appear on the right-hand side), we simply write Ut.
Introduce the following parameterization

Ut(k,v) = (µε(1 + κ(k,v))− 1)PtI (17)
and define the collaborative one-shot game.
Game 3 (Collaborative). We define the sequential one-shot game played by taker and maker on every
round t on the stochastic game defined in trading protocol 1. The maker first picks parameters v =
(vα, vβ) ∈ [0,∞)2 in the feasible region (theorem 2), the taker responds by picking the parameters
k = (kα, kβ) ∈ [0, fα(vα)) × [0, fβ(vβ)) in the feasible region. The utility of both players is
Ut(k,v).

This game is purely potential Monderer and Shapley (1996) and the potential function is the expected
social welfare on every round of trading protocol 1, as

E [C + PtI]− (C + P0I) =

t−1∑
s=0

E [C + Ps+1I]− E [C + PsI] =

t−1∑
s=0

E [(Ps+1 − Ps)I] =

t−1∑
s=0

Us .

Theorem 1 shows that the social welfare is maximized under a collusive strategy.

Note that we can decompose the utilities RT
t and RM

t of the original game 1 into a fully competitive
component (game 2) and fully cooperative component (game 3) as

RT
t (k,v) =

1

2
ZT
t (k,v) +

1

2
Ut(k,v) RM

t (k,v) =
1

2
ZM
t (k,v) +

1

2
Ut(k,v) (18)

for any φ, any round t and any choice of the parameters (k,v). By theorems 1 and 4 and defini-
tion 3, the competitive component of game 1 aligns with the benchmark for collusion, while the
collaborative component aligns with maximizing the social welfare, which is efficiently optimized
for in collusive strategies.

Finally, we show that the one-shot game (game 1) is strategically equivalent to the collaborative
game (which maximizes the social welfare). By theorem 1, this implies that collusive strategies are
Pareto-efficient in game 1 with respect to all feasible non-collusive strategy profiles.

We characterize the connection between game 3 and game 1 in terms of strategical equivalence
Maschler et al. (2013); Monderer and Shapley (1996); Hwang and Rey-Bellet (2020); Morris and
Ui (2004): a pair of two-player games is strategically equivalent if the utility of one game is equal
to the utility of the other scaled by a positive constant. To show that this holds, consider any round t
and player p ∈ {M,T}, then we can write the utility of the one-shot game (game 1) proportionally
to the utility of the collaborative game (game 3) as

Rp
t (k,v) = (µε(1 + κ(k,v))− 1)PtI

p
t =

Ipt
I
· Up

t (k,v) ,

where Ipt /I > 0 by feasibility. Strategical equivalence guarantees that the best responses of the
players for the two games coincide Monderer and Shapley (1996).
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6.1 Learnability of collusive strategy profiles

Next we show that all the learning algorithms in a broad class converge to a collusive strategy in
finitely many steps, almost surely. The class mirrors the parameterization of the strategy profiles
defined in strategy 1: at each round t, the taker T decides to ask with probability φ or bid with
probability 1− φ. We then combine both players in a single learning algorithm that, at every step t,
updates either the ask block (vα, kα) of the parameters, or the bid block (vβ , kβ).
Algorithm Class 1 (randomized block coordinate scheme). Consider any learning algorithm that
updates the strategy profile parameterized by (ktα, k

t
β , v

t
α, v

t
β) at iteration t as follows:

• with probability φ picks the α-block (vα, kα) and performs an update that increases the
product xt = vtαk

t
α by some

∆α(t) ∈
[
δmin
α , δmax

α

]
where δmin

α > 0 ,

• with probability 1 − φ picks the β-block (vβ , kβ) and performs an update that decreases
the product yt = vtβk

t
β by some

∆β(t) ∈
[
δmin
β , δmax

β

]
where δmin

β > 0 .

All iterates are assumed to remain feasible as per theorem 2.

Fix φ ∈ (0, 1) and define:

r(y) := (1− y)−
1−φ
φ − 1 and g(x) := 1− (1 + x)−

φ
1−φ .

Consider any algorithm in the class 1. Let

τ := inf{t ≥ 0: µη(k
t
α, k

t
β , v

t
α, v

t
β) > 0}

denote the random time at which a collusive strategy is reached (or∞ if it is never reached). For an
initial point defined by the pair x0 = (v0α, k

0
α) and y0 = (v0β , v

0
α), define the nonnegative gaps:

Gr
0 := max{0, r(y0)− x0} and Gg

0 := max{0, y0 − g(x0)} .

Theorem 5. [Finite time convergence to a collusive strategy] Consider the alg. class 1. The follow-
ing statements hold.

(A) Equivalence of collusive criteria. For any choice of parameters (kα, kβ , vα, vβ) in the feasible
region,

µη > 0 ⇐⇒ x > r(y) ⇐⇒ y < g(x)

where x = kαvα and y = kβvβ .

(B) Expected-time upper bounds. The expected number of iterations to reach a collusive strategy
satisfies:

E[τ ] ≤ min

{⌈
Gr

0/δ
min
α

⌉
φ

,

⌈
Gg

0/δ
min
β

⌉
1− φ

}
.

The first term in the min is tight when φ is large (as a large φ makes α-updates more
frequent), while the second term is tight for small values of φ.

(C) Forward invariance of the collusive region. Once a collusive strategy profile (xτ , yτ ) is
reached, all subsequent strategies (xτ+i, yτ+i), with i = 1, . . . , remain collusive almost
surely.

Since each block update produces a strictly positive change and the collusive region
(x, y) : x > r(y) is open, the alg. class 1 reaches a collusive strategy in finitely many steps almost
surely.

The equivalence in part (A) follows directly from the definition of µη , and expresses the collusive-
ness condition in terms of the product ratios x = vαkα and y = vβkβ . The properties of the ratios
make it explicit that regardless of which block is sampled—α or β—each update reduces the single
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Figure A: Ask and bid parameters of the two learning agents for non-collusive strategy profiles
(dotted line) and collusive strategy profiles (solid line). The experiment used φ = 1/2 and projected
gradient ascent. The shaded region denoted the feasibility region as defined in theorem 2.

scalar gap r(y)− x, thereby moving the dynamics closer to the collusive region. Once the gap van-
ishes, subsequent updates preserve collusiveness since the gap keeps decreasing. The formulation
via g(x) provides an equivalent but tighter bound when φ is small. Refer to appendix A for the proof
of this theorem.

We next turn to a natural learning dynamics—projected gradient ascent—which is also used in the
simulations in the following section (see fig. A).
Corollary 1. [Projected gradient ascent dynamic] Let x0 = v0αk

0
α, y0 = v0βk

0
β be an initial feasible

strategy profile. Consider the projected gradient ascent dynamic on the reduced objective κ̃(k,v) =
vαkα − vβkβ:[

vt+1
α

kt+1
α

]
= ΠDα

([
vtα
ktα

]
+

[
ηvαk

t
α

ηkα
vtα

])
, Dα = [0,∞)× [0, fα(vα)),

[
vt+1
β

kt+1
β

]
= ΠDβ

([
vtβ
ktβ

]
−
[
ηvβ

ktβ
ηkβ

vtβ

])
, Dβ = [0,∞)× [0, fβ(vβ)).

(PGA-κ̃)

(Euclidean projection) and constant step sizes ηvα , ηkα
, ηvβ , ηkβ

> 0. Then the statements of theo-
rem 5 hold, and the upper bound (B) holds with δmin

α = ηkα
(v0α)

2. Consequently,

E [τ ] ≤ 1

φ

⌈
max{0, r(y0)− x0}

ηkα(v
0
α)

2

⌉
.

Proof sketch of Corollary 1. The gradient ascent learning dynamic (PGA-κ̃) on κ̃ with projection
satisfies the assumptions of theorem 5. The corresponding min increment of x is obtained through
bounding xt+1− xt = (vtα + ηvαk

t
α)(k

t
α + ηkα

vtα)− vtαk
t
α and using that vtα is nondecreasing.

We empirically simulate learning market agents that on every round update the parameters of the
respective strategies as per alg. class 1 using projected gradient ascent, where the projection operator
clips the parameters at the boundary of the feasibility region. Figure A shows that the bid parameters
are driven to zero by the learning dynamics, while the ask parameters remain strictly positive.

7 Simulation

To better understand the model from trading protocol 1 and the strategy profiles proposed in strat-
egy 1, we simulate the long-term effects of two fixed strategies on the price and the inventories and
cash reserves of the players. Each experiment is run for 3000 rounds using a fixed strategy profile.
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At the beginning of each run, each player is given a unit of both cash and inventory, and the initial
price is also set to one:

IM1 = IT1 = CM
1 = CT

1 = P1 = 1 .

For the noise, we use a log-normal distribution with unit mean and standard deviation 1/2, ensuring
that the price divergence is not driven by the noise (µε = 0), but solely on the player’s strategy
profile. Each experiment is run 10 times, and for each round t we plot the average value and standard
deviation of several market features. When appropriate, we also include a running average as a
dotted cyan line.

Both strategies parameterized by kα = kβ = vα = vβ = 1/2, we changed φ to get a strategy profile
π+ for which µη > 0 and a strategy profile π− for which µη < 0. In figs. B and C we show the
results. Note that the figures show the values under the specific strategy profiles π+ and π− where
the noise has not asymptotic impact on the price because µε = 0, while the long-term behaviors we
show hold for any choice of strategy profile such that µη + µε > 0 or µη + µε < 0 respectively.

As defined in trading protocol 1, on every round, the players exchange a quantity Qt and cash
(Pt + δt)Qt. Figure Bb shows that the traded quantity Qt converges to zero under π+, this happens
because Qt ∈ (−Bt, At) and both At and Bt tend to zero almost surely at rate 1/Pt (see fig. Bd on
the right and the definition in eq. (11)). The exchanged cash on the other hand does not converge to
any value (fig. Bb on the right). This is crucial because, even if the traded quantity vanishes, the cash
exchanged during the trade remains stable, ensuring price growth. We can see from fig. Cb that the
opposite happens under π−: the traded quantity does not converge, while the traded cash converges
to zero at rate Pt because (Pt + δt)Qt ∈ (−BtPt, AtPt).

Looking at figs. Bc and Cc, we can see how the behavior of the traded quantity Qt and traded cash
Pt + δt reflects on the inventories IMt , ITt and cash amounts CM

t , CT
t of the players. The inventory is

the sum of the traded quantities, therefore if it has a limit, it must lie between 0 and I by feasibility.
Under π+, we already established that Qt converges to zero at a rate 1/Pt, which is exponential in
time as Pt = ezt where zt

as→∞ (see theorem 3), therefore the inventory converges; the cash on the
other hand does not converge.

As per eq. (14), we can see from figs. Bd and Cd that the relative price impact δt/Pt equals on aver-
age the value of κ computed from the parameters. These plots look quantized due to the averaging
done across the runs, for any fixed run the plot would jump between kαvα and −kβvβ .

To improve our understanding of the market dynamics, we would need to show that the tradable
quantities At and Bt are dominated by the term Cp

t /Pt under any collusive strategy profile. This is
true when the limit of the inventory is not zero or if its rate of convergence is slower than the price’s.
We conjecture that, as t→∞, the inventory remains strictly positive with probability one.

8 Future works and conclusion

This work can be extended in several key directions. As the current agents are myopic (they optimize
for immediate wealth gain), an important next step is to investigate whether collusive equilibria
persist when agents adopt strategies that optimize for long-term rewards. Whether collusive behavior
persists under farsighted strategic play is still an open question. It has been conjectured by Calvano
et al. (2020b) that a higher level of sophistication would increase the collusive tendencies, because of
their profit-enhancing characteristics. More recent empirical evidence by Abada et al. (2024) shows
that higher levels of sophistication lead to higher competition, which hinders the collusive tendency.

We analyze our model using the widely adopted paradigm of risk-neutral players. Nonetheless,
recognizing that real-world market-making agents are generally risk-aware, a compelling future di-
rection is to explicitly incorporate risk-sensitive agents, leveraging established theories like Pratt
(1978). This would rigorously test whether the phenomenon of collusion observed in our base-
line setting persists or is fundamentally altered when agents actively factor in the volatility of their
returns.

In conclusion, we analyzed a stochastic market model with endogenous price formation and charac-
terized the conditions under which learning agents fall into tacitly collusive behaviors. We proved
that when a market maker and a market taker each seek to maximize their immediate wealth, the
learning dynamics naturally steer them toward a collusive equilibrium without any need for explicit
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Figure B: Market impact of a fixed collusive
strategy profile with φ = 0.7 and kα = kβ =
vα = vβ = 1/2.
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coordination. This outcome results in a systematic upward drift in the asset price, exceeding the
influence of market noise.

These findings highlight that implicit collusion can be a natural consequence of rational, wealth-
maximizing learning algorithms, raising significant concerns for the design and regulation of auto-
mated agents in financial markets.
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A Technical Appendix

In this section, we present the remaining proofs of the results presented in the paper.

A.1 Proof of Theorem 3

Theorem 3. For any φ ∈ [0, 1], let πφ be a feasible strategy profile parameterized by
(kα, kβ , vα, vβ). Introduce

µη := φ log(1 + vαkα) + (1− φ) log(1− vβkβ) (12)

Then strategy profile πφ is collusive if and only if µη > 0.

Proof. Fix any starting configuration (P1, IT1 , CT
1 , IM1 , CM

1 ). Call Pπ
t+1 the price after t rounds

following strategy πφ, and Pt+1 the price after t rounds following any strategy such that δt′ = 0
for all t′ ≥ 1 (which can be achieved in strategy 1 by setting, for instance, kα = kβ = 0). By
construction, for all t ≥ 1, it holds that

Pπ
t+1 = (Pπ

t + δt)εt+1 Pt+1 = Ptεt+1

Now consider the ratio

Pπ
t+1

Pπ
t

=
(Pπ

t + δt)εt+1

Pπ
t

=

(
1 +

δt
Pπ
t

)
εt+1

and define

zπt+1 := log
Pπ
t+1

P1
=

t∑
s=1

log
Pπ
s+1

Pπ
s

=

t∑
s=1

log

(
1 +

δs
Pπ
s

)
+

t∑
s=1

log εs+1

and

ηt := 1 +
δt
Pπ
t

=

{
1 + vαkα w.p. φ

1− vβkβ w.p. 1− φ
(19)

Notice that 1− vβkβ > 0 by theorem 2 and therefore ηt > 0. Because both ηt and εt+1 are positive
i.i.d. random variables, call

µη := E [log ηt] σ2
η := Var (log ηt)

µε := E [log εt+1] σ2
ε := Var (log εt+1)

As t→∞, by the central limit theorem we have

t∑
s=1

log ηs
d→ N(tµη, tσ

2
η)

t∑
s=1

log εs
d→ N(tµε, tσ

2
ε)

where N is the normal distribution. Therefore

zπt+1
d→ N(t(µη + µε), t(σ

2
η + σ2

ε))

Regarding the baseline, for any t, we have

Pt+1

Pt
=

Ptεt+1

Pt
= εt+1

and

zt+1 := log
Pt+1

P1
=

t∑
s=1

log
Ps+1

Ps
=

t∑
s=1

log εs+1
d→ N(tµε, tσ

2
ε)

Now define the random variable

wt := log
Pπ
t

Pt
= log

Pπ
t

P1
− log

Pt

P1
= zπt+1 − zt+1

d→ N(tµη, tσ
2
η)
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Next, define the independent events Et := {wt ≤M} for any t and any M , and consider the sum
of their probabilities

∞∑
t=1

P (Et) =

∞∑
t=1

Φ

(
M − tµη

ση

√
t

)
, (20)

where we approximated P (Et) by the central limit theorem using the cumulative distribution func-
tion Φ of the normal distribution. Because the argument of the sum decays exponentially fast as
t → ∞ if µη > 0, the sum is bounded and, by the Borel-Cantelli lemma, Et must occur a finite
number of times almost surely, therefore, choosing M > 0 arbitrarily away from zero, wt

as→∞ and
Pπ

t /Pt = ewt
as→∞.

If µη < 0, then eq. (20) is not bounded as the argument approaches one and, by the second Borel-
Cantelli lemma, the event Et occurs infinitely often. Choosing M < 0 arbitrarily away from zero,
it holds that wt

as→ −∞ and Pπ
t /Pt = ewt

as→ 0.

If µη = 0, then wt has zero mean and no almost sure limit. In conclusion, a strategy profile is
collusive if and only if µη > 0.

A.2 Proof of Lemma 2

Lemma 2. [Feasibility characterization] A strategy profile is feasible if and only if it is price-
positive and for all t ≥ 1 the following set of inequalities holds:

Qt(Pt + δt) < CT
t for Qt ≥ 0 (5)

Qt < IMt for Qt ≥ 0 (6)

−Qt(Pt + δt) < CM
t for Qt < 0 (7)

−Qt < ITt for Qt < 0 (8)

This set of inequalities ensures that the traded inventory and cash after each trade never exceed the
players’ reserves, therefore the players have no need to borrow assets.

Proof. We show that if all the inequalities hold, then any price-positive strategy profile is feasible.
First, by the assumption on price positivity (definition 1), it holds that Pt > 0 for any t almost surely.

The proof is by induction. At time t = 1 we have Cp
1 > 0, Ip1 > 0 by construction. Regarding the

induction step, for every t ≥ 1 such that Cp
t > 0, Ipt > 0, we have Cp

t+1 > 0, Ipt+1 > 0 as shown
below:

• For Qt ≥ 0:

– CM
t+1 = CM

t +Qt(Pt + δt) > 0 as CM
t > 0 and Pt + δt > 0.

– CT
t+1 = CT

t −Qt(Pt + δt) > 0 by (5).

– IMt+1 = IMt −Qt > 0 by (6).

– ITt+1 = ITt +Qt > 0 as ITt > 0.

• For Qt < 0:

– CM
t+1 = CM

t +Qt(Pt + δt) > 0 by (7).

– CT
t+1 = CT

t −Qt(Pt + δt) > 0 as CT
t > 0 and Pt + δt > 0.

– IMt+1 = IMt −Qt > 0 as IMt > 0.

– ITt+1 = ITt +Qt > 0 by (8).

Conversely, we show that if any of the inequalities is violated, then the strategy profile is not feasible.
If (5) is violated for Qt∗ ≥ 0 then CT

t∗+1 < 0. If (6) is violated for Qt∗ ≥ 0 then IMt∗+1 < 0. If
(7) is violated for Qt∗ < 0 then CM

t∗+1 < 0. If (8) is violated for Qt∗ < 0 then ITt∗+1 < 0. If Price
positivity is violated for Qt∗ < 0 then CT

t∗+1 < 0.
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A.3 Proof of Theorem 2

Theorem 2. For any φ ∈ [0, 1], Strategy 1 is price-positive and feasible if and only if
vα ≥ 0 vβ ≥ 0 0 ≤ kα < fα(vα) 0 ≤ kβ < fβ(vβ)

where
fα(vα) :=

1

3

√
vα
2 +

√
v2
α

4 −
1
27 +

3

√
vα
2 −

√
v2
α

4 −
1
27

∈ (0, 1]

and fβ(vβ) := 1/vβ ∈ (0,∞).

Proof. Pick any φ ∈ [0, 1] and let πφ be a strategy profile parameterized by (kα, kβ , vα, vβ) > 0.
By eq. (2) we have:

δt =

{
+vαkαPt w.p. φ

−vβkβPt w.p. 1− φ .
(21)

We require πφ to be feasible. Assume that P1 > 0, IM1 > 0, IT1 > 0, CM
1 > 0 and CT

1 > 0. Consider
any round t.

Price positivity is achieved as per lemma 1 when

β > − Pt√
−Qt

⇐⇒ −vβ ·
Pt√
Bt

> − Pt

kβBt
⇐⇒ vβkβ < 1 (22)

The feasibility characterization from lemma 2 implies that a strategy profile is feasible if and only if
the following set of inequalities is satisfied:

k2αAt(Pt + vαkαPt) < CT
t for Qt ≥ 0 (23)

k2αAt < IMt for Qt ≥ 0 (24)

k2βBt(Pt − vβkβPt) < CM
t for Qt < 0 (25)

k2βBt < ITt for Qt < 0 (26)
From (23) we have:

Ptk
2
αAt(1 + vαkα) ≤ k2αC

T
t (1 + vαkα) < CT

t ⇐⇒ k2α + vαk
3
α < 1 . (27)

From (24) we have:
k2αAt ≤ k2αI

M
t < IMt ⇐⇒ kα < 1 . (28)

From (25) we have:
Ptk

2
βBt(1− vβkβ) ≤ k2βC

M
t (1− vβkβ) < CM

t ⇐⇒ k2β − vβk
3
β < 1 . (29)

From (26) we have:
k2βBt ≤ k2βI

T
t < ITt ⇐⇒ kβ < 1 . (30)

Notice that (29) is redundant because it is satisfied by any vβ ≥ 0 when kβ ≤ 1. The constraints
obtained are

0 ≤ vα <
1− k2α
k3α

0 ≤ vβ <
1

kβ
0 ≤ kα < 1 0 ≤ kβ < 1 (31)

By the definition of trading protocol 1, the maker picks their parameters before the taker, to reflect
that we require a formulation equivalent to eq. (31), but of the form

vα ≥ 0 vβ ≥ 0 0 ≤ kα < fα(vα) 0 ≤ kβ < fβ(vβ)

To find fα, recall eq. (27) and write the constraint as k3αvα + k2α − 1 < 0. For a fixed vα ≥ 0,
the function g(kα) = k3αvα + k2α − 1 is strictly increasing in kα ≥ 0 and therefore there is only
one value fα(vα) ∈ [0, 1] such that g(fα(vα)) = 0. To find fα(vα) we need to solve the equation
g(x) = x3vα + x2 − 1 = 0. Consider the variable swap t = 1

x , thus g(1/t) = t3 − t− vα = 0. We
are interested in the root t(vα) ≥ 1:

t(vα) :=
3

√
vα
2

+

√
v2α
4
− 1

27
+

3

√
vα
2
−
√

v2α
4
− 1

27

Finally, applying the variable swap again we get fα(vα) := 1
t(vα) . To find fβ , simply consider the

region vβ ≥ 0 and from (22) we get fβ(vβ) := 1
vβ

.
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A.4 Proof of Theorem 5

Below, we present an extended version of Theorem 5, which additionally establishes a lower bound
on the number of steps required to reach a collusive strategy profile, in statement (D), and provide
its proof.

Recall the following definitions. Fix φ ∈ (0, 1) and define:

r(y) := (1− y)−
1−φ
φ − 1 and g(x) := 1− (1 + x)−

φ
1−φ .

Consider the class of algorithms as per algorithm class 1. Let

τ := inf{t ≥ 0: µη(v
t
α, k

t
α, v

t
β , k

t
β) > 0}

denote the random time at which a collusive strategy is reached (could be∞), as per Theorem 3.

For an initial point defined by the pair x0 = v0α, k
0
α and y0 = (v0β , v

0
α), define the nonnegative gaps:

Gr
0 := max{0, r(y0)− x0} and Gg

0 := max{0, y0 − g(x0)} .

We next state the extended theorem 5) and provide its proof.
Theorem 6. [(extended theorem 5) finite time convergence to collusive strategy] Consider the alg.
class 1. Then the following statements hold.

(A) Equivalence of collusive criteria. Be (vα, kα, vβ , kβ) a set of parameters in the feasible region
as per theorem 2, the following are equivalent:

µη > 0 ⇐⇒ x > r(y) ⇐⇒ y < g(x) .

where x = kαvα and y = kβvβ .

(B) Expected-time upper bounds. The expected number of iterations to collusive strategies satisfies:

E[τ ] ≤ min

{⌈
Gr

0/δ
min
α

⌉
φ

,

⌈
Gg

0/δ
min
β

⌉
1− φ

}
.

The left term is tight when φ is large (large φ makes α-updates frequent), while the right is tight for
small φ.

(C) Forward invariance of the collusive region. Let

C := {(x, y) : x > r(y)}

(or, equivalently, {(x, y) : y < g(x)}) be the set of parameter products x = kαvα and y = kβvβ
which define collusive strategy profiles. Under the stated update rules and feasibility constraints, C
is forward-invariant: if (xt, yt) ∈ C for some t, then (xt+1, yt+1) ∈ C almost surely. In particular,
once a collusive strategy is reached, all subsequent strategies remain collusive almost surely.

(D) Expected-time lower bounds. Let

∆rmax
0 := r(y0)− r(y0 − δmax

β ) and

∆gmax
0 := g(x0 + δmax

α )− g(x0) .

Then the expected number of iterations to collusive strategies satisfies:

E [τ ] ≥ max

(
Gr

0

φδmax
α + (1− φ)∆rmax

0

,
Gg

0

φ∆gmax
0 + (1− φ)δmax

β

)
.

Proof.

(A) Equivalence of collusive criteria. From theorem 3 we have:

µη := φ log(1 + vαkα) + (1− φ) log(1− vβkβ) > 0 .
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Thus,

φ log(1 + vαkα) > −(1− φ) log(1− vβkβ) ,

log(1 + vαkα) > −
(1− φ)

φ
log(1− vβkβ) ,

log(1 + vαkα) > log(1− vβkβ)
− (1−φ)

φ ,

vαkα > (1− vβkβ)
− (1−φ)

φ − 1 ,

where we used φ ∈ (0, 1). Denoting x := vαkα and y := vβkβ yields the equivalent criteria
x > r(y) with r(y) := (1−y)−

1−φ
φ −1. We notice that as y decreases, r(y) also decreases, making

the condition easier to satisfy. Since the increase of x affects the criteria linearly, when y is closer to
1, the y updates are more effective toward satisfying the criterion; and as y decreases, the x updates
become more effective.

The third equivalent criterion follows by noticing g ≡ r−1.

(B) Expected-time upper bounds. Consider the two blocks that the randomized scheme stochasti-
cally majorizes:

(i) α-only updates (via r). Keep y fixed at y0 and increase x by at least δmin
α on each α-update until

x ≥ r(y0), which takes nα = ⌈Gr
0/δ

min
α ⌉ α-updates. Since an α-update arrives with probability φ

each iteration, the expected number of iterations to accumulate nα successes is nα/φ. The actual
algorithm, which also benefits from occasional β-updates (because r is increasing), cannot be slower
in expectation.

(ii) β-only updates (via g). Keep x fixed at x0 and decrease y by at least δmin
β on each β-update

until y ≤ g(x0), which takes nβ = ⌈Gg
0/δ

min
β ⌉ β-updates. Since a β-update arrives with probability

1 − φ, the expected number of iterations is nβ/(1 − φ). Again, the actual algorithm, which also
benefits from occasional α-updates (because g is increasing), cannot be slower in expectation.

Taking the minimum of these two guarantees gives the stated upper bound.

(C) Forward invariance of the collusive region. Define the slack st := xt − r(yt). If (xt, yt) ∈ C,
then st > 0, and

1. On an α-update, xt+1 = xt +∆α(t) with ∆α(t) ≥ δmin
α > 0 and y unchanged, hence

st+1 = xt +∆α(t)− r(yt) = st +∆α(t) > st > 0 .

2. On a β-update, yt+1 = yt − ∆β(t) with ∆β(t) ≥ δmin
β > 0 and x unchanged; since r is

strictly increasing, r(yt+1) < r(yt), hence

st+1 = xt − r(yt+1) > xt − r(yt) = st > 0 .

Thus in either case st+1 ≥ st +min{δmin
α , r(yt)− r(yt+1)} > 0, so (xt+1, yt+1) ∈ C.

(D) Expected-time lower bounds. Consider the “slacks”:

srt := xt − r(yt) and sgt := g(xt)− yt,

and note srt > 0 ⇐⇒ sgt > 0 by (A). Because r is increasing and convex on [0, 1) and g is
increasing and concave on [0,∞), the per-step gains from a β-update in srt and from an α-update in
sgt are largest at the start and then monotonically decrease as the run progresses:

r(yt)− r(yt −∆β(t)) ≤ r(y0)− r(y0 − δmax
β ) =: ∆rmax

0 ,

g(xt +∆α(t))− g(xt) ≤ g(x0 + δmax
α )− g(x0) =: ∆gmax

0 .

Hence, the expected one-step improvement in srt is at most φδmax
α + (1− φ)∆rmax

0 , and similarly,
the expected one-step improvement in sgt is at most φ∆gmax

0 + (1 − φ)δmax
β . Starting from initial

gaps Gr
0 = max{0, r(y0)−x0} and Gg

0 = max{0, y0−g(x0)}, standard averaging argument yields
the stated lower bound on E [τ ].
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