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ABSTRACT

Reliable estimation of treatment effects from observational data is important in
many disciplines such as medicine. However, estimation is challenging when
unconfoundedness as a standard assumption in the causal inference literature
is violated. In this work, we leverage arbitrary (potentially high-dimensional)
instruments to estimate bounds on the conditional average treatment effect (CATE).
Our contributions are three-fold: (1) We propose a novel approach for partial
identification through a mapping of instruments to a discrete representation space
so that we yield valid bounds on the CATE. This is crucial for reliable decision-
making in real-world applications. (2) We derive a two-step procedure that learns
tight bounds using a tailored neural partitioning of the latent instrument space. As
a result, we avoid instability issues due to numerical approximations or adversarial
training. Furthermore, our procedure aims to reduce the estimation variance in
finite-sample settings to yield more reliable estimates. (3) We show theoretically
that our procedure obtains valid bounds while reducing estimation variance. We
further perform extensive experiments to demonstrate the effectiveness across
various settings. Overall, our procedure offers a novel path for practitioners
to make use of potentially high-dimensional instruments (e.g., as in Mendelian
randomization).

1 INTRODUCTION

Estimating the conditional average treatment effect (CATE) from observational is an important task
for personalized decision-making in medicine (Feuerriegel et al., 2024). For example, a common
question in medicine is to estimate the effect of alcohol consumption on the onset of cardiovascular
diseases (Holmes et al., 2014). There are many reasons, including costs and ethical concerns, why
CATE estimation is often based on observational data (such as, e.g., electronic health records, clinical
registries).

Figure 1: Overview of the IV set-
ting. We consider complex instru-
ments Z (e.g., gene data, text, im-
ages), observed confounders X , un-
observed confounders U , a binary
treatment A, and an outcome Y .

However, identifying the CATE from observational data is chal-
lenging as it typically requires strong assumptions in the form of
unconfoundedness (Rubin, 1974). Unconfoundedness assumes
there exist no additional unobserved confounders U between
treatment A and outcome Y . If the unconfoundedness assump-
tion is violated, a common strategy is to leverage instrumental
variables (IVs) Z. IVs affect only the treatment A but exclude
unobserved confounding between Z and Y , which often can
be ensured by design such as for randomized studies with non-
compliance (Imbens & Angrist, 1994). The causal graph for
the IV setting is shown in Fig. 1.

Motivational example: Mendelian randomization. Mendelian
randomization (Pierce et al., 2018) refers to the use of genetic
information as instruments Z to estimate the effect of a treat-
ment or exposure A (e.g., alcohol consumption) on some medical outcome Y (e.g., cardiovascular
diseases). In this setting, there are further patient characteristics that are observed (X) but also
unobserved (U ), which one accounts for through the instrument. Yet, common challenges are that (i)
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instruments with genetic information are often high-dimensional and (ii) involve complex, non-linear
relationships between instruments and treatment intake or exposure.

However, existing IV methods using machine learning for point estimation of the CATE rely on
strong simplifying assumptions (→ violating (ii) from above). For example, some methods assume
linearity in some feature space in the CATE and make other, strict parametric assumptions on the
unobserved confounders such as additivity or homogeneity (Hartford et al., 2017; Singh et al., 2019;
Xu et al., 2021). Yet, such simplifying assumptions are often not realistic and can even lead to
unreliable and false conclusions by the mis-specification of the CATE.

A potential remedy is to use IVs for partial identification of the CATE where one circumvents any
hard parametric assumptions by estimating upper and lower bounds of the CATE (Manski, 1990).
This is usually sufficient in medical practice when one is merely interested in whether a treatment
variable (e.g., exposure as in Mendelian randomization) has a positive or a negative effect. So far,
methods for partial identification of the CATE in IV settings are rare. There exist closed-form bounds
(i.e., via a fixed target estimand that can be learned), yet only for the setting with both discrete
instruments and discrete treatments (Balke & Pearl, 1997).

Existing machine learning methods for partial identification are typically designed for simple in-
struments that are binary or discrete (→ violating (i) from above). Alternatively, methods that
extend partial identification for continuous instruments require unstable training paradigms such as
adversarial learning (Kilbertus et al., 2020; Padh et al., 2023) which becomes even more unstable
for more complex instruments. In contrast, there is a scarcity of methods that can deal robustly with
continuous, as well as complex and potentially high-dimensional instruments such as, e.g., gene
expressions as in Mendelian randomization but also text, images, or graphs.1

Our paper: In this work, we leverage complex instruments for partial identification of the CATE.
Specifically, we allow for instruments that can be continuous and potentially high-dimensional (such
as gene information) and, on top of that, we explicitly allow for complex, non-linear relationships
between instruments and treatment intake or exposure. In the rest of this paper, we refer to this setting
as “complex” instruments.

To this end, we proceed as follows. (1) We propose a novel approach for partial identification through
a mapping of complex instruments to a discrete representation space so that we yield valid bounds on
the CATE. We motivate our approach in Fig. 2. (2) We derive a two-step procedure that learns tight
bounds using a neural partitioning of the latent instrument space. As a result, we avoid instability
issues due to numerical approximations or adversarial training, which is a key limitation of prior
works. We further improve the performance of our procedure by explicitly reducing the estimation
variance in finite-sample settings to yield more reliable estimates. (3) We provide a theoretical
analysis of our procedure and perform extensive experiments to demonstrate the effectiveness across
various settings.

Contributions:2 (1) To the best of our knowledge, this is the first IV method for partial identification
of the CATE based on complex instruments. (2) We derive a two-step procedure to learn tight bounds.
(3) We demonstrate the effectiveness of our method both theoretically and numerically.

2 RELATED WORK

Machine learning for CATE estimation with IV: Existing works have different objectives. One
literature stream leverages IVs for CATE estimation but focuses on settings where the treatment effect
can be identified from the data. This includes work that extends the classical two-stage least-squares
estimation to non-linear settings by learning non-linear feature spaces (Singh et al., 2019; Xu et al.,
2021), deep conditional density estimation in the first stage (Hartford et al., 2017), or using moment
conditions (Bennett et al., 2019). Another literature stream aims at new machine learning methods
with favorable properties such as being doubly robust (Kennedy et al., 2019; Ogburn et al., 2015;
Semenova & Chernozhukov, 2021; Syrgkanis et al., 2019) or multiply robust (Frauen & Feuerriegel,
2023).

1In Appendix B, we provide an extended discussion about the real-world relevance of our method.
2Both codes and data are available via https://anonymous.4open.science/r/

ComplexPartialIdentification-2500/.
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Figure 2: Leveraging complex instruments for partial identi-
fication of the CATE through discrete representations of Z.
Naïve discretization on the IV input space leads to wide, and
thus non-informative, bounds. Our method learns a latent
representation ϕ(Z) to yield tight bounds.

Recently, researchers started applying
machine learning methods to IVs from
Mendelian randomization (Legault
et al., 2024; Malina et al., 2022),
which is our motivational example
from above. However, these works
aim at point-identified CATE estima-
tion with IVs. As a result, these
rely on hard and generally untestable
assumptions on some effects in the
causal graph, such as linearity, mono-
tonicity, additivity, or homogeneity
(Wang & Tchetgen Tchetgen, 2018).
This is unlike our method for par-
tial identification that does not require
such hard assumptions and that is non-
parametric.

Partial identification: Partial identification aims to identify and learn upper and lower bounds of
some causal quantity (e.g., the CATE) when the causal quantity itself cannot be point identified from
the data and assumptions. In a general setting with binary treatments, Robins (1989) and Manski
(1990) derived closed-form bounds on the ATE for bounded outcomes Y . Further work extended
these ideas to settings with binary instrumental variables, binary treatments, and binary outcomes
(Balke & Pearl, 1994; 1997) to derive tighter bounds. Newer approaches for discrete variables include
the works of Duarte et al. (2023) and Guo et al. (2022). Swanson et al. (2018) provide an extensive
overview of partial identification in this setting. Other works focus on how to leverage additional
observed confounders to further tighten bounds on the ATE (see, e.g., Levis et al., 2023). However,
these works do not focus on efficiently leveraging continuous or even high-dimensional instruments
for learning tight bounds, unlike our work that is tailored to such complex instruments.

Another literature stream focuses on partial identification under general causal graphs (Balazadeh
et al., 2022), including IV settings with continuous variables such as continuous treatments (Gunsilius,
2020; Hu et al., 2021; Kilbertus et al., 2020; Padh et al., 2023). However, these methods either
make strong assumptions about the treatment response functions or require unstable optimization
via adversarial training and/or generative modeling such as through using GANs. This can easily
result in unreliable estimates of bounds for finite data, especially with high-dimensional instruments.
Further, these methods are not directly tailored for binary treatments, unlike our method.

Research gap: To the best of our knowledge, reliable machine learning methods for partial identifi-
cation of the CATE with complex instruments are missing. To draw conclusions about CATEs (as in,
e.g., Mendelian randomization), our method is the first to: (i) make use of the complex instrument
information (e.g., continuous or high-dimensional), (ii) avoid making strong parametric assumptions
by focusing on partial identification, and (iii) avoid unstable training procedures such as adversarial
learning.

3 PROBLEM SETUP

Setting: We focus on the standard IV setting (Angrist et al., 1996; Wooldridge, 2013). Hence, we con-
sider instruments (e.g., gene data, text, images) given by Z ∈ Z ⊆ Rd but, unlike previous research,
allow the instruments to be complex. As such, we allow the instruments to be continuous and poten-
tially high-dimensional. We further have access to an observational dataset D = {zi, xi, ai, yi}ni=1
of size n. The data is sampled i.i.d. from a population (Z,X,A, Y ) ∼ P, with observed confounders
X ∈ X ⊆ Rp, binary treatments A ∈ A ⊆ {0, 1}, and bounded outcomes Y ∈ Y ⊆ [s1, s2] ⊆ R.
Additionally, we allow for unobserved confounders U of arbitrary form between A and Y .

We further assume a causal structure as shown in Fig. 1. In particular, we assume that Z is an
instrumental variable that has an effect on the treatment A but no direct effect on the outcome Y
except through A. Further, we assume that Z is independent of X , e.g., by randomization. In
Appendix B, we provide an extended discussion to show the real-world relevance and validity of our
assumptions in different settings.
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Notation: Throughout our work, we denote the response function by µa(x, z) := E[Y |X = x,A =
a, Z = z] and the propensity score by π(x, z) := P(A = 1|X = x, Z = z).

CATE: We use the potential outcomes framework (Rubin, 1974) to formalize our causal inference
problem. Let Y (a) ∈ Y denote the potential outcome under treatment A = a. We are thus interested
in the CATE τ(x) = E[Y (1)− Y (0)|X = x].

Identifiability: We make the following standard assumptions from the literature in partial identi-
fication with IVs (Angrist et al., 1996). Assumption 1 (Consistency): Y (A) = Y . Assumption 2
(Exclusion): Z ⊥⊥ Y (A) | (X,A,U). Assumption 3 (Independence): Z ⊥⊥ (U,X).

Note that, however, Assumptions 1–3 from the standard IV setting are not sufficient to ensure
identifiability of the CATE (Gunsilius, 2020). To ensure identifiability, one would require additional
assumptions, such as linearity or, more generally, additive noise assumptions (Hartford et al., 2017;
Wang & Tchetgen Tchetgen, 2018). Yet, such assumptions are highly restrictive and are neither
testable nor typically ensured in real-world scenarios. Hence, this motivates our objective to perform
partial identification instead.

Objective: We frame our objective as a partial identification problem and thus focus on estimating
valid bounds (b−(x), b+(x)) for the CATE τ(x) such that b−(x) ≤ τ(x) ≤ b+(x) holds for all
possible x ∈ X . Furthermore, the bounds should be informative, i.e., we would like to minimize the
expected bound width EX [b+(X)− b−(X)], while still ensuring validity. Formally, we aim to solve

b−∗ , b
+
∗ ∈ argmin

b−,b+
EX [b+(X)− b−(X)] s.t. b−(x) ≤ τ(x) ≤ b+(x) for all x ∈ X . (1)

4 PARTIAL IDENTIFICATION OF CATE WITH COMPLEX INSTRUMENTS

4.1 OVERVIEW

We now present our proposed method to solve the partial identification problem from Eq. (1). Solving
Eq. (1) directly is infeasible because it involves the unknown CATE τ(x). Hence, we propose the
following approach:

Outline: 1 We learn a discretized representation (also called partitioning) ϕ(Z) of the instrumental
variable Z. 2 We then derive closed-form bounds given the discrete representation ϕ. 3 We
transform the closed-form bounds back to our original bounding problem and, in particular, express
all quantities involved as quantities that can be estimated from observational data.

Below, we first explain why existing closed-form bounds are not directly applicable and why deriving
such bounds is non-trivial. We then proceed by providing the corresponding theory for the above
method. Specifically, we first take a population view to show theoretically that our bounds are valid
(Sec. 4.2). Then, we take a finite-sample view and present an estimator (Sec. 4.3).

Limitations of existing bounds: There exist different approaches for bounding treatment effects (see
Sec. 2) using continuous instruments, yet these either require additional assumptions or can easily
become unstable, especially for high-dimensional Z. Furthermore, these bounds consider continuous
treatments but are not tailored for binary treatments (e.g., whether a drug is administered). Hence,
we derive custom bounds for our setting.

Why is the derivation non-trivial? For binary treatments, it turns out that there exist closed-form
solutions for bounds whenever the instrument Z is discrete. That is, the existing bounds for the
average treatment effect (ATE) with continuous bounded outcome proposed in (Manski, 1990) can
be extended to non-parametric closed-form bounds for the CATE (Schweisthal et al., 2024). While
these bounds are useful in a setting with discrete instruments Z, they are not directly applicable to
continuous or even high-dimensional Z due to two main reasons: (1) The bounds need to be evaluated
for all combinations l,m ∈ Z2 ⊆ Rd×Rd, which is intractable. (2) Evaluating the bounds only on a
random subset of combinations l,m can result in arbitrary high estimation variance for regions with a
low joint density of p(X = x, Z = l) or p(X = x, Z = m). Hence, we must derive a novel method
for estimating bounds based on complex instruments (that are, e.g., continuous or high-dimensional),
yet this is a highly non-trivial task.
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4.2 POPULATION VIEW

In the following theorem, we provide a novel theoretical result of how to obtain valid bounds based
on discrete representations ϕ(Z) of the instrument Z.
Theorem 1 (Bounds for arbitrary instrument discretizations). Let ϕ : Z −→ {0, 1, . . . , k} be an
arbitrary mapping from the high-dimensional instrument Z to a discrete representation. We define

µa
ϕ(x, ℓ) =

∫
Z

µa(x, z)P(ϕ(Z) = ℓ|Z = z)

P(A = a, ϕ(Z) = ℓ)
P(A = a|Z = z)P(Z = z) dz and (2)

πϕ(x, ℓ) =

∫
Z

π(x, z)P(ϕ(Z) = ℓ|Z = z)

P(ϕ(Z) = ℓ)
P(Z = z) dz. (3)

Then, under Assumptions 1, 2, and 3, the CATE τ(x) is bounded by

b−ϕ (x) ≤ τ(x) ≤ b+ϕ (x), (4)

with
b+ϕ (x) = min

l,m
b+ϕ;l,m(x) and b−ϕ (x) = max

l,m
b−ϕ;l,m(x) (5)

where

b+ϕ;l,m(x) = πϕ(x, l)µ
1
ϕ(x, l) + (1− πϕ(x, l))s2 − (1− πϕ(x,m))µ0

ϕ(x,m)− πϕ(x,m)s1, (6)

b−ϕ;l,m(x) = πϕ(x, l)µ
1
ϕ(x, l) + (1− πϕ(x, l))s1 − (1− πϕ(x,m))µ0

ϕ(x,m)− πϕ(x,m)s2. (7)
Proof. See Appendix A.
Theorem 1 states that, in population, we yield valid closed-form bounds for τ(x) for arbitrary
representations ϕ. In particular, we can relax the optimization problem from Eq. (1) and obtain valid
bounds bϕ∗+(X) ≥ b+∗ (X) and bϕ∗−(X) ≤ b−∗ (X) by solving

ϕ∗ ∈ argmin
ϕ∈Φ

EX [bϕ
+(X)− bϕ

−(X)]. (8)

Here, we highlight the dependence of variables on the representation ϕ in green to show the dif-
ferences to Eq. (1). Note the following differences: In contrast to Eq. (1), we do not impose any
validity constraints in Eq. (8) because Theorem 1 automatically ensures the validity of our bounds.
Furthermore, in contrast to Eq. (1), the objective from Eq. (8) only depends on identifiable quantities
that can be estimated from observational data.

Implications of Theorem 1: A naïve implementation minimizing the bounds following Eq. (8) would
require alternating learning. The reason is that, after every update step of ϕ(z), the quantities µa

ϕ(x, l)

and πa
ϕ(x, l) are not valid for the updated ϕ anymore and would need to be retrained to ensure valid

bounds. This is computationally highly expensive and causes unstable training as well as convergence
problems. However, our method circumvents these issues: by using our novel Theorem 1, we show
that, while training ϕ(z), the quantities µa

ϕ(x, ℓ) and πϕ(x, ℓ) can be directly calculated. For that, we
can simply evaluate the nuisance functions, which only need to be trained once in the first stage. This
holds because our derivation of closed-forms bounds for arbitrary discrete representations of complex
Z comes with an important additional benefit: The bounds only depend on (i) discrete probabilities,
(ii) quantities which are independent of ϕ and thus do not change for different ϕ, and (iii) the discrete
representation mapping to be learned itself. As a result, this allows us to directly learn ϕ wrt. Eq. (8).
As such, we circumvent the need for adversarial or alternating training, which results in more robust
estimation.

4.3 FINITE-SAMPLE VIEW

In practice, we have to estimate the bounds from Theorem 1 from finite observational data. For this
purpose, we start with arbitrary initial estimators: π̂(x, z) is the estimator of the propensity score
π(x, z), µ̂a(x, z) of the response function µa(x, z), and η̂(z) of η(z) = P(A = 1 | Z = z).

Once the initial estimators are obtained, we can estimate our second-stage nuisance functions defined
in Eq. (23) and (24) via

µ̂a
ϕ(x, ℓ) =

1∑n
j=1 1{ϕ(zj) = ℓ, aj = a}

n∑
j=1

µ̂a(x, zj)1{ϕ(zj) = ℓ}(aη̂(zj)+(1−a)(1− η̂(zj))),

(9)
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π̂ϕ(x, ℓ) =
1∑n

j=1 1{ϕ(zj) = ℓ}

n∑
j

π̂(x, zj)1{ϕ(zj) = ℓ}. (10)

Finally, we can directly ‘plug in’ these estimators into Eq. (5) to compute estimates of the upper and
lower bound b̂−ϕ (x), b̂

+
ϕ (x).

A naïve approach would now directly use (b̂−ϕ (x), b̂
+
ϕ (x)) to solve the optimization in Eq. (8).

However, for finite samples, it turns out this is infeasible without restricting the complexity of the
representation function. The reason is outlined in the following theoretical results.
Lemma 1 (Tightness-bias-variance trade-off). Let En and Varn denote the expectation and variance
with respect to the observational data (of size n). Then, it holds

En

[ (
b+∗ (x)− b̂+ϕ (x)

)2 ]
≤ 2

((
b+∗ (x)− b+ϕ (x)

)2

︸ ︷︷ ︸
(i) Population tightness

+En

[
b+ϕ∗(x)− b̂+ϕ (x)

]2
︸ ︷︷ ︸

(ii) Estimation bias

+ Varn(b̂+ϕ (x))︸ ︷︷ ︸
(iii) Estimation variance

)
.

(11)
Proof. See Appendix A.

Interpretation of Lemma 1: Lemma 1 shows that the mean squared error (MSE) between the
estimated representation-based bound b̂+ϕ (x) and the ground-truth optimal bound b+∗ (x) can be
decomposed into the following three components: (i) population tightness, (ii) estimation bias, and
(iii) estimation variance. •Term (i) describes the discrepancy between the representation-based
bound in population b+ϕ (x) and the ground-truth optimal bound b+∗ (x). It will decrease if we allow
for more complex representations Φ, for example by increasing the number of partitions k. •Term (ii)
describes the estimation bias due to using finite-sample estimators for estimating the bounds. It will
generally depend on the type of estimators we employ for π̂(x, z), µ̂a(x, z), and η̂(z). • Finally, term
(iii) characterizes the variance due to using finite-sample estimators. In contrast to term (i), it will
increase when we allow the representation to be more complex. 3

To make point (iii) more explicit, we derive the asymptotic distributions of the estimators from Eq. (9)
and Eq. (10) that are used during training of ϕ to estimate the final bounds.
Theorem 2 (Asymptotic distributions of estimators). It holds that

√
nµ̂a

ϕ(x, ℓ)
d−→ N

(
µa
ϕ(x, ℓ),

1

pℓ,ϕ

(
Var(g(Z) | ϕ(Z) = ℓ)

c
+ d

))
(12)

√
nπ̂ϕ(x, ℓ)

d−→ N
(
πϕ(x, ℓ),

1

pℓ,ϕ
Var(h(Z) | ϕ(Z) = ℓ)

)
(13)

for c = q2ℓ,ϕ, d =
θ2
ℓ (1−pℓ,ϕqℓ,ϕ)

q3ℓ,ϕ
, such that c, d > 0 and where pℓ,ϕ = P(ϕ(Z) = ℓ), qℓ,ϕ =

P(A = a | ϕ(Z) = ℓ), g(Z) = µ̂a(x, Z)(aη̂(Z) + (1 − a)(1 − η̂(Z)), h(Z) = π̂(x, Z), and
θℓ,ϕ = E[g(Z) | ϕ(Z) = ℓ].

Proof. See Appendix A.

We observe that the variance of the estimators (and, thus, of the estimated bounds) explodes for
small values of pℓ,ϕ = P(ϕ(Z) = ℓ). Hence, to reduce the estimation variance, we aim to learn a
representation ϕ that avoids low pℓ,ϕ for some ℓ, e.g., by limiting the number of partitions k. ⇒
Altogether, as a consequence of Lemma 1 and Theorem 2, we obtain an inherent trade-off between
tightness of the bounds in populations and estimation variance in finite-samples.

Learning objective for the representation ϕ: Due to the inherent trade-off between tightness of
the bounds and estimation variance, the aim for learning the representation ϕ is two-fold. On the
one hand, we (a) aim to learn tight bounds, which is given in the objective in Eq. (8). On the other
hand, we (b) also have to account for controlling the variance in finite-sample settings, especially for
high-dimensional Z. Motivated by Theorem 2, we ensure p̂ℓ,ϕ > ε for some ε > 0, where p̂ℓ,ϕ is an
estimator of pℓ,ϕ = P(ϕ(Z) = ℓ). Combining both (a) and (b) yields the following objective:

3Note that Lemma 1 and Theorem 2 hold for arbitrary ϕ and the corresponding bound estimators b̂+ϕ (x).
This allows us to ensure more stable update steps during training by reducing the estimation variance of the
estimators. However, this implies that Lemma 1 and Theorem 2 and the following properties also directly hold
for some finally learned or optimal ϕ∗ which results in reduced variance of final estimates.
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ϕ∗ ∈ argmin
ϕ∈Φ

EX [b̂+ϕ (X)− b̂−ϕ (X)] s.t. p̂ℓ,ϕ > ε, (14)

for some ε > 0 and all ℓ ∈ {1, . . . , k}.

Notably, the main motivation of Theorem 2 is not to construct confidence intervals or to provide
theoretical results on the width of the finally learned bounds. Instead, we aim to yield valid final
bound estimates by already ensuring valid bound estimates during training for robustly updating
ϕ. For that, we want to ensure that all nuisance functions are estimated with low variance at every
update step to guarantee stable training. As a consequence, the final bounds built on top of these
nuisance functions after training will also yield reliable estimates.

We next present a neural method to learn tight bounds using the above objective.

5 NEURAL METHOD FOR LEARNING CATE BOUNDS WITH COMPLEX
INSTRUMENTS

In this section, we propose a neural method for our objective to learn tight and valid bounds. Our
method consists of two separate stages (see Algorithm 1): 1 we learn initial estimators of the three
nuisance functions, and 2 we learn an optimal representation ϕ∗, so that the width of the bounds is
minimized. Note that our method is completely model-agnostic. Hence, arbitrary machine learning
models can be used in the first and second stages in order to account for the properties of the data.
For example, for instruments with gene data, one could use pre-trained encoders to further optimize
the downstream performance. We give an overview of the workflow of our method in Fig. 3 (see
Algorithm 1 for pseudocode).

trainable parameters

Complex
instrument 

Representation
network 

2nd stage
nuisance calculation Bounds on CATE

pre-trained 1st stage
nuisance functions 

fixed parameters

Figure 3: Workflow of the second stage of our method for calculating bounds on the CATE: The
representation network ϕθ learns discrete latent representations of the complex Z (e.g., continuous or
high-dimensional). By employing the pre-trained µ̂, π̂, and η̂, we can directly calculate the nuisance
estimates conditional on the latent representation ϕ(z) by using Eq. (9) and Eq. (10) to yield the
bounds.

1 Initial nuisance estimation: In the first stage, we can use arbitrary machine learning models
(e.g., feed-forward neural network) to learn the first-stage nuisance functions µ̂a(x, z) = Ê[Y | X =

x,A = a, Z = z] , π̂(x, z) = P̂(A = 1 | X = x, Z = z), and η̂(z) = P̂(A = 1 | Z = z).

Recall that we consider Z and X , which are both potentially high-dimensional. Hence, for µ̂a(x, z)
and π̂(x, z), we use network architectures that have (i) different encoding layers for X and Z, so that
we capture structured information within the variables and (ii) shared layers on top of the encoding to
learn common structures. Further, for µ̂a(x, z), we use two outcome heads for both treatment options
A ∈ {0, 1} to ensure that the influence of the treatment on the outcome prediction does not ‘get lost’
in the high-dimensional space of X and Z (Shalit et al., 2017).

2 Representation learning: In the second stage, we train a neural network to learn discrete
representations of the instruments with the objective of obtaining tight bounds but with constraints
on the estimation variance. To learn the function ϕ(z), we use a neural network ϕθ with trainable
parameters θ. Then, on top of the final layer of the encoder, we leverage the Gumbel-softmax trick
(Jang et al., 2017), which allows us to learn k discrete representations of the latent space of the
instruments, where k can be flexibly chosen as a hyperparameter.
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Custom loss function: We further transform our objective into a loss function to train the network
ϕθ. For that, we design a compositional loss consisting of three terms:

1 A bound-width minimization loss that aims at our objective in Eq. (14), defined via

Lb(θ) =
1

n

n∑
i=1

b̂+ϕθ
(xi)− b̂−ϕθ

(xi) (15)

2 A regularization loss to enforce the constraints in Eq. (14), i.e., enforcing that p̂ℓ,ϕ = P̂(ϕθ(Z) =
ℓ) > ε, ∀ℓ ∈ 1, . . . , k, for some ε > 0. For that, we aim to penalize the negative log-likelihood
−
∑k

j=1 log(P(ϕθ(Z) = j)), which we can estimate via

Lreg(θ)=−
k∑

j=1

log
( 1

n

n∑
i=1

1{ϕθ(zi) = j}
)
. (16)

3 An auxiliary guidance loss Laux(θ), which enforces more heterogeneity between P(Z | ϕθ(Z) = l)
and P(Z | ϕθ(Z) = m), for all l,m. To achieve this, we add an additional linear classification
head pζ with weights ζ on top of the last hidden layer of ϕθ before the discretization. The auxiliary
guidance loss is explicitly defined as the cross-entropy loss via

Laux(θ) = − 1

n

n∑
i=1

k∑
j=1

1{ϕθ(zi) = j} log (pζ(zi)) , (17)

where pζ(zi) is the predicted probability of assigning zi to discrete representation j by the additional
classification head. While Laux(θ) is not strictly necessary for our objective, we empirically observed
that it helps stabilize training by avoiding convergence to non-informative local minima. Hence, we
yield our final training loss

L(θ) = Lb(θ) + λLreg(θ) + γLaux(θ), (18)

with hyperparameters λ and γ. Here, λ controls the trade-off between bound tightness and estimation
variance, and can thus be tailored depending on the application. The hyperparameter γ can be simply
tuned as usual.

The main benefit of our method is that it is particularly efficient and robust compared to other learning
procedures (such as alternating learning procedure or adversarial training). In the second stage, we
solely update the parameters θ of the discretization network ϕθ to minimize Lθ. In contrast, the
networks of the first-stage nuisance estimators have frozen weights. In the second stage, networks of
the first-stage nuisance estimators are only evaluated but are not updated. This allows us to re-use the
trained first-stage networks for different training settings of the second-stage network (e.g., varying
k). Thus, this results in a training procedure that is computationally more effective and robust.

Robustness across k: Our method is directly designed to be robust across the choice of the number
of partitions k. This is due to its neural backbone and custom loss that encourages learning flexible
representations that minimize the bound width already for low k while ensuring robust estimation also
for higher k through regularization. This is particularly advantageous in real-world causal inference
tasks, where model evaluation and selection are challenging due to the lack of oracle performance
metrics. In the following experiments section, we demonstrate such robustness empirically. Further,
we provide an extended discussion including practical guidelines in Appendix F.

6 EXPERIMENTS

Baselines: Existing methods (see Sec. 2) focus either on (a) point identification with strong as-
sumptions, (b) partial identification with continuous treatment variables, or (c) discrete instruments.
We instead focus on a setting with complex instruments and binary treatments. Hence, existing
methods are not tailored to our setting, because of which a fair comparison is precluded. Instead,
we thus demonstrate the validity and tightness of our bounds. Further, for comparison, we propose
an additional NAÏVE baseline, which first learns a discretization of the instruments (via k-means
clustering) and then learns the nuisance functions wrt. to the discretized instruments to apply the
existing bounds for discrete instruments from Lemma 2 on top.
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Metric Dataset 1 Dataset 2
Naïve Ours Rel. Improvement Naïve Ours Rel. Improvement

Coverage[↑] 1.00± 0.00 1.00± 0.00 0.00% 1.00± 0.00 1.00± 0.00 0.00%
Width[↓] 1.22± 0.05 1.05 ± 0.01 13.9% 1.31± 0.16 1.14 ± 0.16 13.0%
MSD[↓] 0.28± 0.06 0.03 ± 0.03 89.3% 0.09± 0.06 0.06 ± 0.06 33.3%

Table 1: Datasets 1 and 2: Comparison of both methods (NAIVE vs. Ours) regarding width, and
MSD. Relative performance improvements in green.

Data: We perform experiments mimicking Mendelian Randomization but where we
simulate the data to have access to the ground-truth CATE for performance evalua-
tions, so that we can check for coverage and validity of the bounds. We con-
sider three different realistic settings. For Datasets 1 and 2, we consider a one-
dimensional continuous instrument representing a polygenic risk score (Pierce et al., 2018).

Metric Naïve Ours Rel. Improve
Coverage (oracle)[↑] 0.96± 0.09 0.99 ± 0.01 3.4%
Width*[↓] 1.88± 0.04 1.85 ± 0.04 1.8%
MSE*[↓] 0.12± 0.01 0.11 ± 0.01 9.2%
MSD[↓] 0.10± 0.10 0.03 ± 0.02 70.3%

Table 2: Dataset 3: Comparison of both methods (NAIVE
vs. Ours) regarding the coverage with respect to the oracle
bounds, width, and MSD. Relative performance improve-
ments in green.

Further, in Dataset 1, we model the
true π(x, z) as a rather simple func-
tion to check if our method is al-
ready competitive in such settings. In
Dataset 2, we model π(x, z) as a com-
plex function to evaluate the perfor-
mance in more challenging settings.
We use the same CATE for Dataset 1
and Dataset 2 to allow for compar-
isons between both. In Dataset 3, we
model high-dimensional instruments
with single nucleotide polymorphisms (SNPs, i.e., genetic variants; Burgess et al., 2020) to test
our method in an additional realistic and even more complex setting. In all datasets, we model
the CATE to be heterogeneously conditioned on X to check whether the bounds adapt to different
subpopulations. Details are in Appendix D.
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Figure 4: Datasets 1 and 2: Estimated bounds
on the CATE. mean ± sd over 5 runs for different
k. Left: Dataset 1 with a simple π(x, z). Right:
Dataset 2 with a complex π(x, z).

Performance metrics: We report the following
metrics to assess the validity and robustness of
the estimated bounds: (i) The coverage, i.e., how
often the true CATE lies within the estimated
bounds. (ii) The average width of bounds, where
lower values indicate more informative bounds.
(iii) The mean squared difference (MSD) of the
predicted bounds over different values of k, in-
dicating the robustness wrt. to the selection of
the hyperparameter. Further, for Dataset 3, we
model π(x, z) to be dependent on some latent
discrete representation of the observed Z, such
that we can approximate oracle bounds. Thus,
we can evaluate (iv) the coverage wrt. to the oracle bounds and (v) the MSE to the oracle bounds.
Recall that, for reliable decision-making, we would like to obtain tight bounds but only under the
constraint that they yield valid coverage. We thus propose two new metrics, which we call width* and
MSE*, which denote the corresponding metrics but where we filter for runs with coverage ≥ 95%.
This allows us to properly compare the ability to learn tight bounds without distortions due to falsely
overconfident predictions.

Implementation details: For our method, we use multi-layer-perceptrons (MLPs) for the first-stage
nuisance estimation and an MLP with Gumbel-softmax (Jang et al., 2017) discretization on the last
layer for learning ϕθ. For the NAÏVE baseline, we use k-means clustering in the first step to learn
discretized instruments and then use MLPs with identical architecture for the nuisance estimation to
ensure a fair comparison. We provide further details in Appendix C.

Results: We present the results of our experiments in Table 1 (for Datasets 1 and 2) and in Table 2
(for Dataset 3). Therein, we compare our method against the NAÏVE baseline averaged over multiple
runs and over different choices of clusters k. Overall, we observe the following patterns: (i) Both
methods (i.e., ours and the NAÏVE baseline) almost always reach a perfect coverage of 100% for
the true CATE, which shows the validity of the bounds. For Dataset 3, our method achieves better
coverage wrt. to the oracle bounds, which further suggests that our method leads to a more reliable
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estimation. (ii) As expected, on average, our method learns tighter bounds for Datasets 1 and 2
(lower width), and for Dataset 3 our method learns tighter valid bounds that are closer to the oracle
bounds (lower width* and MSE*). This demonstrates that our method can clearly improve over a
discretization that uses solely information of Z in the first step (NAÏVE). (iii) Unlike the baseline, our
method is robust over different values of k. This is demonstrated by a low MSD in all datasets, with
improvements up to 89% over the naïve baseline.

Dataset Method k Coverage[↑] Width[↓]

Dataset 1

Naïve 2 1.00± 0.00 1.62± 0.06
3 1.00± 0.00 0.83± 0.16

Ours 2 1.00± 0.00 1.01± 0.05
3 1.00± 0.00 1.09± 0.04

Dataset 2

Naïve 2 1.00± 0.00 1.34± 0.19
3 1.00± 0.00 1.28± 0.20

Ours 2 1.00± 0.00 1.13± 0.19
3 1.00± 0.00 1.15± 0.31

Table 3: Datasets 1 and 2: Comparison of meth-
ods across key metrics.

Sensitivity over k: To better understand the ro-
bustness as well as the source of performance
gain of our method, we analyze the behavior of
the methods for different parameters k. For that,
we report the performance metrics for varying
k in Table 3 and Table 4. Also, we plot the esti-
mated bounds for Datasets 1 and 2 in Fig. 4, and
the estimated bound width over varying k for
Dataset 3 in Fig. 5. Overall, we observe robust
behavior of our method but unstable behavior
of the NAÏVE baseline wrt. k. The latter is also
clearly visible by the large differences in the learned bounds in Fig. 4 on the left, and the high
variation in estimated bound width in Fig. 5. This even results in learning falsely overconfident
bounds for k = 6, as also shown by low oracle coverage in Table 4.

Method k Coverage[↑] Width[↓] Coverage
(oracle)[↑]

MSE
(oracle)[↓]

Naïve 2 1.00± 0.00 1.96± 0.05 1.00± 0.00 0.15± 0.02
4 1.00± 0.00 1.91± 0.03 1.00± 0.00 0.13± 0.02
6 1.00± 0.00 1.74± 0.26 0.75± 0.50 0.09± 0.05
8 1.00± 0.00 1.89± 0.09 1.00± 0.00 0.12± 0.04

Ours 2 1.00± 0.00 1.87± 0.05 1.00± 0.00 0.12± 0.02
4 1.00± 0.00 1.87± 0.08 1.00± 0.00 0.12± 0.03
6 1.00± 0.00 1.85± 0.06 1.00± 0.00 0.11± 0.02
8 1.00± 0.00 1.83± 0.07 0.99± 0.01 0.11± 0.03

Table 4: Dataset 3 (high-dimensional): Comparison of methods across
key metrics.

In contrast, our method
yields bounds that are valid
for a given k as well
as over varying values of
k, which is naturally en-
couraged by our objective
of flexibly learning repre-
sentations. We thus see
that our method is ro-
bust regardless of the pa-
rameter k, meaning that
k is not responsible for
the performance gain but
that this is due to our proposed learning objective. We provide an extended dis-
cussion about the role of k and a practical guideline for selection in Appendix F.
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Figure 5: Dataset 3 (high-dimensional):
Sensitivity analysis wrt. to the number of
partitions k where we show the average
bound width ± sd over 5 runs.

Takeaways: Our method can successfully learn bounds
that have a high coverage and a low width. Further, our
method outperforms the NAÏVE baseline clearly while en-
suring robustness. Here, our results show that the source
of the performance gain is the way how we learn the repre-
sentation ϕ and that the performance gain from our method
becomes larger for more complex datasets.

Limitations: Our method for partial identification allows
us to relax multiple assumptions that are inherent to meth-
ods for point identification. Nevertheless, we still rely on
the standard assumptions of IV settings. However, such
assumptions often hold by design or can be ensured by
expert knowledge such as in Mendelian randomization. We provide an extended discussion in
Appendix B. Further, we show the asymptotic behavior of the nuisance estimates to motivate our
regularization loss for improving training stability. Deriving asymptotic properties on final bound
estimators (e.g., to derive uncertainty estimates or estimators that are efficient or multiply robust) is
thus a promising direction for future research in partial identification, not only for complex IVs but
even for simple discrete settings.

Conclusion: We propose a novel method for learning tight bounds on treatment effects by making
use of complex instruments (e.g., instruments that are continuous, potentially high-dimensional, and
that have non-trivial relationships with the treatment intake or exposure).
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A PROOFS

A.1 PROOF OF THEOREM 1

We begin by stating a result from the literature that obtains valid bounds for discrete instruments.

Lemma 2 ((Swanson et al., 2018; Schweisthal et al., 2024)). Under Assumptions 1 and 2, the CATE
is bounded via

b−(x) ≤ τ(x) ≤ b+(x), (19)

with

b+(x) = min
l,m

b+l,m(x) and b−(x) = max
l,m

b−l,m(x) (20)

where

b+l,m(x) = π(x, l)µ1(x, l) + (1− π(x, l))s2 − (1− π(x,m))µ0(x,m)− π(x,m)s1, (21)

b−l,m(x) = π(x, l)µ1(x, l) + (1− π(x, l))s1 − (1− π(x,m))µ0(x,m)− π(x,m)s2. (22)

Proof of Theorem 1. First, note that, for a given representation ϕ, the representation ϕ(Z) is still a
valid (discrete) instrument that satisfies Assumptions 1 and 2. Hence, we can apply Lemma 2 using
ϕ(Z) as an instrument and immediately obtain the bounds from Theorem 1, but with representation-
induced nuisance functions µa

ϕ(x, ℓ) = E[Y |X = x,A = a, ϕ(Z) = ℓ] and πϕ(x, ℓ) = P(A =

1|X = x, ϕ(Z) = ℓ) for ℓ ∈ {0, . . . , k}.

We can write the representation-induced response function as

E[Y |X = x,A = a, ϕ(Z) = ℓ]
Z⊥⊥X
=

∫
Z

E[Y |X = x,A = a, Z = z]P(Z = z|A = a, ϕ(Z) = ℓ) dz

=

∫
Z

E[Y |X = x,A = a, Z = z]
P(ϕ(Z) = ℓ|A = a, Z = z)P(A = a|Z = z)P(Z = z)

P(A = a|ϕ(Z) = ℓ)P(ϕ(Z) = ℓ)
dz

=
1

P(A = a|ϕ(Z) = ℓ)P(ϕ(Z) = ℓ)∫
Z

E[Y |X = x,A = a, Z = z]P(ϕ(Z) = ℓ|A = a, Z = z)P(A = a|Z = z)P(Z = z) dz

=
1

P(A = a|ϕ(Z) = ℓ)P(ϕ(Z) = ℓ)∫
Z

E[Y |X = x,A = a, Z = z]P(ϕ(Z) = ℓ|Z = z)P(A = a|Z = z)P(Z = z) dz

(23)
and the representation-induced propensity score as

P(A = 1|X = x, ϕ(Z) = ℓ)
Z⊥⊥X
=

∫
Z

P(A = 1|X = x, Z = z)P(Z = z|ϕ(Z) = ℓ) dz

=

∫
Z

P(A = 1|X = x, Z = z)P(ϕ(Z) = ℓ|Z = z)
P(Z = z)

P(ϕ(Z) = ℓ)
dz

=
1

P(ϕ(Z) = ℓ)

∫
Z

P(A = 1|X = x, Z = z)P(ϕ(Z) = ℓ|Z = z)P(Z = z) dz,

(24)

which completes the proof.
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A.2 PROOF OF LEMMA 1

Proof. The result follows from

En

[(
b+∗ (x)− b̂+ϕ (x)

)2
]
= En

[(
b+∗ (x)− b+ϕ∗(x) + b+ϕ∗(x)− b̂+ϕ (x)

)2
]

(25)

≤ 2

((
b+∗ (x)− b̂+ϕ (x)

)2

+ En

[(
b+ϕ∗(x)− b̂+ϕ (x)

)2
])

(26)

(∗)
(=)2

((
b+∗ (x)− b̂+ϕ (x)

)2

+ En

[
b+ϕ∗(x)− b̂+ϕ (x)

]2
+ Varn(b̂+ϕ (x))

)
,

(27)

where we used the bias-variance decomposition for the MSE for (∗).

A.3 PROOF OF THEOREM 2

Proof. We derive the asymptotic distributions of the estimators µ̂a
ϕ(x, ℓ) from Eq. (9) and π̂ϕ(x, ℓ)

from Eq. (10). We proceed by analyzing the numerator and denominator of each estimator. First, we
show that both are asymptotically normal and then we apply the delta method to obtain the asymptotic
distribution of the ratios.

Distribution of µ̂a
ϕ(x, ℓ): Recall from Equation (9) that we can write µ̂a

ϕ(x, ℓ) as

µ̂a
ϕ(x, ℓ) =

Sn

Nn
, (28)

where

Sn =
1

n

n∑
j=1

Wj , with Wj = µ̂a(x, zj)1{ϕ(zj) = ℓ}[aη̂(zj) + (1− a)(1− η̂(zj))], (29)

Nn =
1

n

n∑
j=1

Dj , with Dj = 1{ϕ(zj) = ℓ, aj = a}. (30)

We define the moments

µW = E[W ] = pℓθℓ (31)

σ2
W = Var(W ) = pℓ(γℓ − pℓθ

2
ℓ ) (32)

µD = E[D] = pℓqℓ (33)

σ2
D = Var(D) = pℓqℓ(1− pℓqℓ) (34)

cWD = Cov(W,D) = pℓqℓθℓ(1− pℓ), (35)

where pℓ = P(ϕ(Z) = ℓ), qℓ = P(A = a | ϕ(Z) = ℓ), θℓ = E[g(Z) | ϕ(Z) = ℓ], and
γℓ = E[g(Z)2 | ϕ(Z) = ℓ], with g(Z) = µ̂a(x, Z)(aη̂(Z)+ (1−a)(1− η̂(Z)). Note that, for better
readability, in this proof we avoid the double indexing showing the dependency on ϕ which we used
in the theorem in the main paper.

By the central limit theorem, we know that

√
n

(
Sn

Nn

)
d−→ N2

(
µ =

(
µW

µD

)
,Σ =

(
σ2
W cWD

cWD σ2
D

))
. (36)

Let f(s, n) = s
n . We are interested in the asymptotic distribution of the ratio µ̂a

ϕ(x, ℓ) = f(Sn, Nn).
The delta method states that

√
nf(Sn, Nn)

d−→ N2

(
f(µW , µD),∇f⊤(µW , µD)Σ∇f(µW , µD)

)
(37)
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Using that the gradient is ∇f⊤(µW , µD) =

(
1

µD
,−µW

µ2
D

)
, we can obtain the asymptotic variance

via

∇f⊤(µW , µD)Σ∇f(µW , µD) =
σ2
W

µ2
D

− 2
µW cWD

µ3
D

+
µ2
Wσ2

D

µ4
D

(38)

=
1

pℓ

(
(γℓ − θ2ℓ )

q2ℓ
+

θ2ℓ (1− pℓqℓ)

q3ℓ

)
(39)

=
1

pℓ

(
Var(g(Z) | ϕ(Z) = ℓ)

q2ℓ
+

θ2ℓ (1− pℓqℓ)

q3ℓ

)
. (40)

Distribution of π̂ϕ(x, ℓ): Recall from Equation (10) that we can write π̂ϕ(x, ℓ) as

π̂ϕ(x, ℓ) =
Sn

Nn
, (41)

where

Sn =
1

n

n∑
j=1

Wj , with Wj = π̂(x, zj)1{ϕ(zj) = l}, (42)

Nn =
1

n

n∑
j=1

Dj , with Dj = 1{ϕ(zj) = l}. (43)

We define the moments

µW = E[W ] = pℓθℓ (44)

σ2
W = Var(W ) = pℓ(γℓ − pℓθ

2
ℓ ) (45)

µD = E[D] = pℓ (46)

σ2
D = Var(D) = pℓ(1− pℓ) (47)

cWD = Cov(W,D) = pℓθℓ(1− pℓ), (48)

where pℓ = P(ϕ(Z) = ℓ), θℓ = E[h(Z) | ϕ(Z) = ℓ], and γℓ = E[h(Z)2 | ϕ(Z) = ℓ], with
h(Z) = π̂(x, Z).

By the central limit theorem, we know that

√
n

(
Sn

Nn

)
d−→ N2

(
µ =

(
µW

µD

)
,Σ =

(
σ2
W cWD

cWD σ2
D

))
. (49)

We can then calculate the asymptotic variance using the delta method as above and obtain

∇f⊤(µW , µD)Σ∇f(µW , µD) =
σ2
W

µ2
D

− 2
µW cWD

µ3
D

+
µ2
Wσ2

D

µ4
D

(50)

=
1

pℓ
(γℓ − θ2ℓ ) (51)

=
1

pℓ
Var(h(Z) | ϕ(Z) = ℓ). (52)
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B REAL-WORLD RELEVANCE AND VALIDITY OF ASSUMPTIONS

In this section, we elaborate on the real-world relevance of our considered setting and show that our
assumptions often hold and are even weaker than the ones of existing approaches. For that, we draw
upon two real-world settings.

B.1 MENDELIAN RANDOMIZATION

Mendelian randomization (MR; the main motivational example from our paper) is a widely used
method from biostatistics to estimate the causal effect of some treatment or exposure (such as alcohol
consumption) on some outcome (such as cardiovascular diseases). We refer to Pierce et al. (2018)
for an introduction to MR, which also shows that MR is widely used in medicine. For that, genetic
variants (such as different single nucleotide polymorphisms, SNPs) are used as instruments where it
is known that they only influence the exposure but not directly the outcome. Our method for partial
identification with complex instruments is perfectly suited for this common real-world application.
Depending on the use case, either a predefined genetic risk score (Burgess et al., 2020) as a continuous
variable, or up to hundreds of SNPs are used simultaneously as IVs to strengthen the power of the
analysis, resulting in high-dimensional instruments (Pierce et al., 2018).

Validity of assumptions: The IV assumptions used in our paper such as the exclusion and indepen-
dence assumptions can be ensured by expert knowledge (e.g., given some observed confounder age
(X), genetic variations (Z) do not affect age) or, in some cases, they can be even directly tested for
(Glymour et al., 2012). In contrast, as explained in Sec. 2, existing methods for MR rely on additional
hard assumptions on top such as the knowledge about the parametric form of the underlying data-
generating process. Especially with such high-dimensional IVs, misspecification of these models may
result in significantly biased effect estimates. In contrast, our method does not rely on any parametric
assumption and also no additional assumptions compared to previous methods, thus enabling more
reliable causal inferences in the real-world application of MR by using strictly weaker assumptions
than existing work.

B.2 INDIRECT EXPERIMENTS

With indirect experiments (IEs), we show that, in principle, our method is not constrained to medical
applications but is also highly useful in various other domains. IEs are widely applied in various
areas such as social sciences or public health to estimate causal effects in settings with non-adherence,
i.e., where people cannot be forced to take treatments but rather be encouraged by some nudge (Pearl,
1995). For instance, researchers might be interested in estimating the effect of some treatment such as
participating in a healthcare program (T ) on some health outcome Y by randomly assigning nudges Z
(IVs) in the form of different text messages on social media promoting participation. Here, common
nudges (IVs) are in the form of, for instance, text or even image data and thus high-dimensional,
showing the necessity of a method capable of handling complex IVs such as ours.

In principle, our method can be applied to every setting with continuous or multi-dimensional IVs
where one wants to avoid making the hard untestable assumptions necessary for point identification
such as linearity or additivity (e.g., Hartford et al. (2017)). Specific examples for applications with
high-dimensional IVs are text-based nudges for encouraging vaccinations (Milkman et al., 2021),
or various kinds of experiments where text nudges are generated by different strategies such as for
political microtargeting (Hackenburg & Margetts, 2024) or for personalized persuasion in general
(Matz et al., 2024).

Another important application area is online marketing. Concrete use cases involve extended A/B
testing for evaluating the benefits of new features, e.g., when one is interested in the effect of a new
version of an app on user engagement. Here, users with features such as age, gender, and content
preferences (X) can be nudged by emails or push notifications (Z) to test a new feature such as using
a new version of an app (A) to estimate its effect on engagement metrics such as screen time (Y ).
Further, our method could also be extended to improve current methods for optimizing instrument
designs for indirect experiments that for now assume identifiability is possible (e.g., Chandak et al.
(2023)).
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Validity of assumptions: As a major benefit of IEs, the IV assumptions are ensured per design as
the IVs are randomly assigned, and, thus they always hold. Hence, our method provides a promising
tool for evaluating the effects of IEs.
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C IMPLEMENTATION AND TRAINING DETAILS

Model architecture: For all our models, we use MLPs with ReLU activation function. For µ̂a
ϕ, we

use 2 layers to encode X and 3 layers to encode Z. Then, we concatenate the outputs and add 2
additional shared layers. Finally, we calculate the outputs by a separate treatment head for A = 0
and A = 1 to ensure the expressiveness of A for predicting Y . For π̂, we use the same architecture.
For η̂, we use 3 layers. For ϕθ, we also use 3 layers and apply discretization on top of the K outputs
(Jang et al., 2017). For the nuisance parameters of the k-means baseline, we use the same models as
for µ̂a

ϕ and π̂ for a fair comparison. We use a neuron size of 10 for all hidden layers.

Training details: For training our nuisance functions, we use an MSE loss for the functions learning
the continuous outcome Y and a cross-entropy loss for functions learning the binary treatment A.
For all models, we use the Adam optimizer with a learning rate of 0.03. We train our models for a
maximum of 100 epochs and apply early stopping. For our method, we fixed λ = 1 and performed
random search to tune for [0, 1] for γ. We use PyTorch Lightning for implementation. Each training
run of the experiments could be performed on a CPU with 8 cores in under 15 minutes.
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D DATA DESCRIPTION

Dataset 1: We simulate an observed confounder X ∼ Uniform[−1, 1] and an unobserved confounder
U ∼ Uniform[−1, 1].

The instrument Z is defined as

Z ∼ Mixture
(
1

2
Uniform[−1, 1] +

1

4
Beta(2, 2) +

1

4
(−Beta(2, 2))

)
. (53)

We define ρ as

ρ =
1

1 + exp (− ((2|Z| −max(Z)) +X + 0.5 · U))
. (54)

Then, the propensity score is given by

π = (ρ− 0.5) · 0.9 + 0.5. (55)

We then sample our treatment assignments from the propensity scores as

A ∼ Bernoulli(π). (56)

The conditional average treatment effect (CATE) is defined as

τ(X) = − (2.5X)4 + 12 sin(6X) + 0.5 cos(X)

80
+ 0.5. (57)

The outcome Y is then generated by

Y = (X + 0.5U + 0.1 · Laplace(0, 1)) · 0.25 + τ(X) ·A. (58)

Dataset 2: We keep the other properties but change the propensity score to be more complex, which
results in harder-to-learn optimal representations of Z for tightening the bounds. The propensity
score is given by

π = sin(2.5Z +X + U) · 0.48 + 0.48 +
0.04

1 + exp(−3|Z|)
. (59)

Dataset 3: We simulate X and U as above. Then, we sample a d-dimensional Z ∈ {0, 1}d with
d = 20 as

Z ∼ Binomial(d, 0.5). (60)
Thus, our modeling is here inspired by using multiple SNPs (appearances of genetic variations) as
instruments (Burgess et al., 2020), where we simulate potential variations for 20 genes.

Then, we define

ρ =

d∑
j=1

[1{j ≤ 5}Zj ] (61)

and the propensity score, inspired by the more complex setting of Dataset 2, as

π = 0.48 sin(10ρ+X + U) + 0.48 +
0.04

1 + exp(−3|5ρ|)
. (62)

Then, we define the CATE as

τ(X) = −−(1.6X + 0.5)4 + 12 sin(4X + 1.5) + cos(X)

80
+ 0.5. (63)

and the outcome dependent on τ , X and U analogously as for Datasets 1 and 2.

Dataset 4: To test our method even in higher-dimensional settings, we consider a 4th dataset with
100-dimensional IVs. For that, we adapt the DGP from dataset 3 but set d = 100. Then we adjust
the latent discrete IV score as

ρ =

d∑
j=1

[1{j ≤ 25}Zj ]. (64)
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By Eq. (61) and Eq. (64), we ensure that some of the modeled SNPs are irrelevant for π and thus do
not affect the treatment or exposure A. Thereby, we focus on realistic settings in practice, where the
relevance of instruments cannot always be ensured which imposes challenges especially for existing
methods for point identification, but not for our approach. Further, we ensure that the latent score ρ
can only take 5 discrete levels for dataset 3 and 25 discrete levels for dataset 4. This allows us to
approximate oracle bounds using the discrete bounds on top of ρ by leveraging Lemma 2 such that
we can evaluate our method and the baseline in comparison to oracle bounds.

To create the simulated data used in Sec. 6, we sample n = 2000 from the data-generating process
above. We then split the data into train (40%), val (20%), and test (40%) sets such that the bounds
and deviation can be calculated on the same amount of data for training and testing.
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E ADDITIONAL RESULTS

E.1 ADDITIONAL BASELINES

As mentioned in the main paper, existing methods are not designed for our considered setting of
continuous or high-dimensional IVs with binary treatments. However, to further show the advantages
and necessity of our tailored method, we compare with two additional baselines that were not
developed for our task but which we adapted for our task, namely, one from uncertainty quantification
for point estimates and one from the discrete instruments setting:

(i) DeepIV with bootstrapped confidence intervals. DeepIV (Hartford et al., 2017) is a neural method
tailored for high-dimensional instruments when point identification can be ensured. This requires the
additional assumption of additivity of the unobserved confounding, which usually cannot be ensured
and is not necessary for our method. For DeepIV, we can approximate confidence intervals using
bootstrapping. Here, we approximate confidence intervals with a confidence level of 95%, indicating
an expected coverage of 95% if assumptions were not violated. However, note that these intervals
can only adjust for statistical uncertainty, but not for identifiability uncertainty due to the violation of
causal assumptions. Thus, this baseline acts as an additional motivation for why bound estimators
such as our method are important.

(ii) Discretized IVs: As a further additional baseline, we proceed by directly discretizing the high-
dimensional IVs and then estimating the existing bounds for discrete IVs. Hence, one looses
information from the IV due to the discretization. Our implementation here is the same as for the
naïve baseline, however, the k partitions are not learned by k-means clustering but instead defined by
a simple grouping rule. To ensure a fair comparison, we average the results of experiments conducted
with the same number of partitions k for all methods.

Metric DeepIV (CI) Discretized Naïve Ours Rel. Improvement
Coverage[↑] 0.52± 0.29 1.00± 0.00 1.00± 0.00 1.00± 0.00 0.0%
Coverage (oracle)[↑] 0.00± 0.00 0.99± 0.01 0.96± 0.09 0.99 ± 0.01 0.0%
Width*[↓] — 1.91± 0.04 1.88± 0.04 1.85 ± 0.04 1.8%
MSE*[↓] — 0.13± 0.01 0.12± 0.01 0.11 ± 0.01 9.2%
MSD[↓] — 0.08± 0.03 0.10± 0.10 0.03 ± 0.02 70.3%

Table 5: Dataset 3: Comparison of methods (Naïve vs Ours) on coverage and width metrics with
relative performance improvement. Note: “—” means that there are no reliable runs for which the
corresponding performance metrics could be calculated.

Results: We report our results for Dataset 3 in Table 5. We observe that the DeepIV method, as
expected, gives falsely overconfident bounds with only about 53% coverage of the true CATE and no
coverage of the oracle bounds. Thus, there are no reliable runs for which the other metrics could be
calculated (denoted by “—” in the tables). This emphasizes the necessity for using bound estimators.
Further, we observe that the discretized baseline gives more conservative and wider bounds under
similar coverage (higher Width* and MSE*) and performs less robustly with regard to k (higher
MSD). In sum, the results confirm the strong performance of our method.

E.2 HIGH-DIMENSIONAL DATASET

Metric DeepIV (CI) Discretized Naïve Ours Rel. Improvement
Coverage[↑] 0.01± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 0.0%
Coverage (oracle)[↑] 0.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 0.0%
Width*[↓] — 1.90± 0.06 1.82± 0.13 1.75 ± 0.08 3.7%
MSE*[↓] — 0.26± 0.03 0.23± 0.05 0.21 ± 0.03 10.9%
MSD[↓] — 0.05± 0.03 0.10± 0.04 0.05 ± 0.01 48.2%

Table 6: Dataset 4 (100-dimensional IVs): Comparison of methods (Naïve vs Ours) on coverage and
width metrics with relative performance improvement. Note: “—” means that there are no reliable
runs for which the corresponding performance metrics could be calculated.

To show the validity of our method in even more high-dimensional settings, we added additional
experiments with 100-dimensional IVs. For that, we introduced our Dataset 4 (see Appendix D).
We report the results for our method and the same baselines as in the previous section. Further, for
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the higher-dimensional setting, we varied the hyperparameter k over [2, 5, 7, 10, 20] for all bound
estimation methods. We observe similar patterns as for our other dataset. In particular, the DeepIV
baseline fails entirely to provide reliable bounds. In summary, our method shows robust performance
by providing tighter and more reliable bounds than the baseline, even in high-dimensional settings.
This emphasizes the applicability of our bounds in even more complex settings.

E.3 ABLATION STUDYS

To further examine the robustness of our method in non-standard settings, we perform two additional
ablation studies, one for varying the DGP and one for varying the selected nuisance models.

Linear DGP with flexible models: To analyze if our flexible method also performs robustly in
simple settings, we evaluate our method which uses neural networks at every stage on a simple linear
DGP. For that we adapt our Dataset 3 and use linear functions for the dependencies between the
variables. We report the results in Table 7. As expected, our method performs also robustly in the
simpler linear setting and outperforms the baseline by a clear margin again. Summarized, our method
shows strong performance which emphasizes its applicability to datasets of various complexity levels.

Metric Naïve Ours Rel. Improve
Coverage[↑] 1.00± 0.00 1.00 ± 0.00 0.0
Coverage (oracle)[↑] 0.92± 0.18 1.00 ± 0.00 8.6%
Width*[↓] 2.07± 0.04 1.99 ± 0.05 3.9%
MSE*[↓] 0.10± 0.01 0.08 ± 0.01 20.0%
MSD[↓] 0.08± 0.08 0.04 ± 0.03 50.0%

Table 7: Linear DGP: Comparison of methods across key metrics. Relative performance improve-
ments in green.

Non-linear DGP with linear models: In our method, we leverage neural networks at all stages to
allow for consistent and flexible estimation of all properties. However, since our method is model-
agnostic in principle, we analyze the behavior of our method when using non-flexible (mis-specified)
models. For that, we implement our method and the baseline by using linear models for the nuisance
estimates and evaluate the performance on our non-linear Dataset 3 (i.e., the nuisances and the bounds
are misspecified). We report the results in Table 8. As expected, because of the misspecification of
the nuisance models, full coverage of the bounds cannot be guaranteed. However, our method still
outperforms the naive baseline evidently with respect to coverage and MSD while yielding similar
bound tightness. Further, with coverage to the oracle bounds over 90% and low MSD, our method
still predicts close to valid bounds robustly over different runs which is unlike the naive baseline.
This shows that our method is also robust against misspecification of the nuisance models as when
using linear models for non-linear datasets.

Metric Naïve Ours Rel. Improve
Coverage[↑] 0.96± 0.06 1.00 ± 0.00 4.1%
Coverage (oracle)[↑] 0.59± 0.28 0.91 ± 0.04 54.2%
Width*[↓] 1.91± 0.02 1.91 ± 0.03 0.0%
MSE*[↓] 0.14± 0.04 0.14 ± 0.02 0.0%
MSD[↓] 0.20± 0.11 0.02 ± 0.01 90.0%

Table 8: Non-linear DGP with linear nuisance models: Comparison of methods across key metrics.
Relative performance improvements in green.
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F ROLE OF NUMBER OF PARTITIONS k

F.1 WHY OUR METHOD IS ROBUST TO DIFFERENT CHOICE OF k

One major advantage of our method is that it is clearly less sensitive to the hyperparameter k than, for
example, the naïve baseline. Empirically, we demonstrate this in our experiments by lower variance
and stable behavior over varying k, especially visible in the low values of MSD. This is due to the
combination of learning flexible representations tailored to minimize bound width (allowing us to
estimate tight bounds already for low k) while ensuring reliable estimates of the nuisance functions
in the second stage by using our regularization loss in Eq. (16) (ensuring robust behavior also for
higher k).

Note that the robustness of our method is especially beneficial when applying our method to real-
world settings in causal inference. In real-world settings from causal inference, hyperparameter
tuning and model evaluation are not directly possible because oracle CATE or oracle bounds are not
known. Thus, the robustness against suboptimal selection of hyperparameters such as k is crucial.
In the following, we provide further high-level theoretical insights into the role of k and propose
practical recommendations for selecting k in real-world applications.

Estimation error for different k: The hyperparameter λ controls the regularization loss in Eq. (16),
i.e., it tries to maximize p̂ℓ,ϕ = P̂(ϕθ(Z) = ℓ) > ε for all ℓ ∈ 1, . . . , k. Thus, if we choose λ
high enough, then we enforce that p̂ℓ,ϕ = 1/k for all ℓ ∈ 1, . . . , k. Plugged into Theorem 12, the

asymptotic variances for the nuisance estimators are k
(

Var(g(Z)|ϕ(Z)=ℓ)
c + d

)
for µ̂a

ϕ(x, ℓ), and
k (Var(h(Z) | ϕ(Z) = ℓ)) for π̂ϕ(x, ℓ), respectively. Thus, for large enough λ, the variance of the
nuisance estimators (and, thus, also likely of the final bounds) will increase for increasing k. However,
as an interesting side note, for a fixed (not too large) λ, the penalization term in Eq. (16) will also
grow with growing k due to the same reason, which yields an automated stabilization for higher k.
This is also shown in our experiments where higher values of k do not necessarily result in a higher
variance.

Bound tightness for different k: On a population level, the bounds get tighter with growing
k. This follows straightforwardly from Theorem 1, since using more k increases the flexibility
of ϕ. While the exact bound width is highly non-trivial, we can use results from Schweisthal
et al. (2024) about bounds for the CATE with discrete instruments to give some intuition.
Specifically, in our setting, for some x, the bound width is bounded by b+ϕ (x) − b−ϕ (x) ≤
minl,m {(s2 − s1)(2− πϕ(x, ℓ)− (1− πϕ(x,m)))} with ℓ,m ∈ {1, . . . , k}. This has two ma-
jor implications. First, if for some x, ϕ is learned such that ϕ(x, ℓ) is close to 1 for some l and
πϕ(x,m) is close to 0 for some m, the bound width is close to zero (“point identification”). Second,
if the optimal partitioning function ϕ is the same for all x (implying b(x) = b), then setting k = 3
can be sufficient to yield the tightest bounds. This is because, by using a flexible network for ϕ, the
partitions can be learned such that partition 1 yields propensity scores as close as possible to zero (as
the data allows), partition 2 yields propensity scores as close as possible to 1, and partition 3 contains
all z resulting in propensity scores between those values. Note, however, that this is only valid in
population but can result in highly unreliable estimation in finite sample data.

F.2 PRACTICAL GUIDELINES FOR SELECTING k

Although we showed that our method is designed to be robust against different selections of k, we
provide two potential guidelines for how to choose k in real-world settings where ground-truth CATE
or bounds are not available for model selection.

Approach 1: Expert-informed approach. In some medical applications, physicians might already
know or make an educated guess about a number of underlying clusters of patient characteristics
such as genetic variants. For instance, this is a common assumption in subgroup identification or
latent class analysis in medicine where patient groups are characterized by having similar responses
to treatments or showing similar associations with diseases (Kongsted & Nielsen, 2017). Thus, no
data-driven approach is necessary here but one can integrate existing domain knowledge.

Approach 2: Data-driven for hypothesis confirmation. Often, physicians are interested in whether
some treatment or exposure has a positive or negative effect (i.e., lower bound > 0 or upper bound
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< 0) for at least some observations x. Thus, k can be selected by increasing k until such an effect
can be observed while holding the variance minimal. Then, the variance can be approximated (e.g.,
by bootstrapping to test for the reliability of the corresponding bound model and its effect). Thus,
this approach can be used when our method is used as a support tool for hypothesis confirmation.

Last, straightforwardly, from an exploratory perspective, all hyperparameters (k, λ, γ) can be altered
together to examine the behavior of bound width and estimation variance to post-hoc find a suitable
hyperparameter configuration for a dataset that fulfills the subjective preferences of the practitioner.
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G SENSITIVITY ANALYSIS

We perform a sensitivity analysis over the hyperparameters in our custom loss function. We report
the results in Fig. 6 and Fig. 7 for dataset 3 and for k = 3. We observe that γ does not affect the
bound size but can be optimized to reduce estimation variance, as mentioned in the motivation of
our auxiliary guidance loss. Thus, λ demonstrates the trade-off between tightness and variance and
shows the importance of our regularization loss. Here, λ can be increased to reduce the variance. In
our experiments, the optimal trade-off between reduced variance and bound tightness also results in
optimal oracle coverage, showing the practicability of our regularization.
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Figure 6: Sensitivity over λ. Left: Average bound width. Right: Oracle coverage. Averaged over 5
runs ± sd.
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Figure 7: Sensitivity over γ. Left: Average bound width. Right: Oracle coverage. Averaged over 5
runs ± sd.
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H TRAINING PROCEDURE

Algorithm 1: Two-stage learner for estimating bounds with complex instruments
Input :observational data sampled from (Z,X,A, Y ), epochs e, batch size nb, neural network ϕθ with parameters θ, learning rate δ

Output :bounds b̂−ϕθ
(x), b̂+ϕθ

(x)

// First stage (nuisance estimation)

µ̂a(x, z)← Ê[Y | X = x,A = a, Z = z]

π̂(x, z)← P̂(A = 1 | X = x, Z = z)

η̂(z)← P̂(A = 1 | Z = z)
// Second-stage (partition learning and bound calculation)
for ϵ ∈ {1, . . . , e} in batches do

for ℓ ∈ {1, . . . , k} do
µ̂a
ϕθ

(x, ℓ) = 1∑nb
j

1{ϕθ(zj)=ℓ,A=a)}

∑nb
j µ̂a(x, zj)1{ϕθ(zj) = ℓ}(aη̂(zj) + (1− a)(1− η̂(zj)))

π̂ϕθ
(x, ℓ) = 1∑nb

j
1{ϕθ(zj)=ℓ}

∑nb
j π̂(x, zj)1{ϕθ(zj) = ℓ})

end
b̂+ϕθ

(x) = minl,m b̂+ϕθ ;l,m(x), b̂−ϕθ
(x) = maxl,m b̂−ϕθ ;l,m(x) for l,m ∈ {1, . . . , K}

L(θ)← Lb(θ) + λLreg(θ) + γLaux(θ) as per Sec. 5
θ ← θ − δ∇θL(θ)

end
// Final bounds

return b̂−ϕθ
(x), b̂+ϕθ

(x)
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I DISCUSSION: DOUBLY ROBUSTNESS

Background doubly robustness: A related literature stream addressing robustness in causal inference
aims to construct such called doubly robust or multiply robust estimators of causal quantities (see e.g.,
Bang & Robins (2005); Kennedy (2023)). Here, doubly / multiply robust means that the final estimator
of the causal quantity (e.g., the ATE or CATE) is consistent if some of the nuisance estimators are
consistent. For instance, under identifiability assumptions, the DR-learner for estimating the CATE
(Kennedy, 2023) is consistent if either the outcome estimator Ê[Y |X,A = a] or the propensity
estimator P̂(A = 1|X) is consistent. Other works extend such an idea for multiply robustness with
additional nuisance estimators for other settings such as with IVs (Ogburn et al., 2015; Frauen &
Feuerriegel, 2023). However, these methods consider only settings where the causal quantity can be
point-identified, i.e., they require hard assumptions and are not tailored for estimating bounds, which
is unlike our setting.

Only recently, doubly robust estimators have been proposed for bounds for the CATE (i.e., partial
identification) for sensitivity analysis (Oprescu et al., 2023), and, closest to our setting, when IVs
are available (Schweisthal et al., 2024). However, these bounds are only applicable for discrete IVs,
which is unlike our setting with continuous or high-dimensional IVs.

Why is our method not doubly robust?: To derive doubly or multiply robust estimators, we would need
to derive the efficient influence function of the causal quantity we want to estimate (Kennedy, 2023),
i.e., in our setting the bounds for the CATE. However, under our assumptions 1-3, no closed-form
solution exists for the bounds for the CATE for general IVs (i.e., continuous or high-dimensional).
Instead, we can only describe the identification of the bounds as a constraint optimization problem
(Gunsilius, 2020; Kilbertus et al., 2020) as we do in Eq (1). Since the constrained optimization
problem is not pathwise-differentiable, the current statistical efficiency theory used for deriving
doubly robustness is not applicable. Thus, deriving doubly robust estimators without a closed-form
solution is not solvable with the usual toolkit and highly non-trivial. Instead, in a more general setting,
related works try to solve such constrained optimization with different optimization methods such as
alternating learning (e.g., Padh et al. (2023)), and are also not doubly robust.

Potential extension with doubly robust estimation: As stated above, we cannot directly derive doubly
robust estimators for the bounds in our setting. However, as an advantage of our method, we try to
learn optimal partitions (i.e., discretizations) of the IVs to yield reliable and tight bound estimates.
This implies that after we finally learned our optimal partitions, we could replace the calculation of
the final bounds for which we used Eq. (9) and Eq. (10), with an additional estimation procedure for
discrete IVs such as by using the meta-learners for bounds of Schweisthal et al. (2024), including their
doubly-robust learner. Note, however, that this only results in doubly robust estimates of the bounds
on top of the learned partition but not for the original problem. Further, as this requires learning
additional nuisance functions and does not use our optimized nuisance estimates, such a procedure
might easily result in higher variance again and produces computational overhead. Therefore, we
would not recommend this extension.
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