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Abstract

Despite its undeniable success, deep learning for medical imaging with large public datasets
leads to an often overlooked risk of leaking sensitive patient information. A person’s X-
ray, even with proper anonymisation applied, can readily serve as fingerprint and would
enable a highly accurate re-identification of the same individual in a large pool of scans.
Common practices for reducing privacy risks involve a synthetic deterioration of image
quality, e.g. by adding noise or downsampling images, before sharing them publicly. Yet,
this also adversely affects the quality of downstream image recognition models trained on
such datasets. We propose a novel strategy for finding a better compromise of model
quality and privacy preservation by means of implicit neural obfuscation. Our method
jointly overfits a neural network to a small batch of patients’ X-ray scans and applies a
substantial compression - the number of network parameters representing the images is
more than 6x smaller than the original images. In addition, we introduce a k-anonymity
mixing that injects partial information from other patients for each reconstruction. That
way identifiable information is efficiently obfuscated, while we manage to maintain the
quality of relevant image parts for the intended downstream task. Experimental validation
on the public RANZCR CLiP dataset demonstrates improved segmentation quality and
up to 3 times reduced privacy risks compared to a more basic image obfuscation baselines.
In contrast to other recent work that learn specific anonymous representations, which no
longer resemble visually meaningful scans, our approach remains interpretable and is not
tied to a certain downstream network. Source code and a demo dataset are available at
https://github.com/mattiaspaul/neuralObfuscation.
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1. Introduction / Motivation

The trend towards larger models, in particular vision transformers, for image recognition
have exemplified the need for training with millions of images at the same time. While the
advent of grand challenges in medical imaging has led to an ever increasing amount of public
CTs, MRIs and X-rays - their amount is still orders of magnitudes smaller than natural
image databases (e.g. LVD-142M or SA-1B). Yet, hundreds of millions of digitised scans
(Schockel et al., 2020) are acquired and stored in local clinical picture archives each year.
The vast majority of them is never shared (anonymously) with the research community,
one likely strong reason being privacy concerns and tighter regulations (Mostert et al.,
2016). Despite its benefits of restricting direct access to personal information the current
process of image anonymisation or pseudonymisation is far from perfect (Kaissis et al.,
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2020). (Packhduser et al., 2022) revealed a severe risk of re-identification even if rigorous
anonymisation of images is performed, which may enable an attacker to find a person
with probabilities as high as 90% within a large public dataset given another X-ray of
them. In fact millions of scans together with medical reports have already been leaked
due to poor IT security at some hospitals' that could be linked to anonymised data and
increase the risk of re-identification attacks even further. Our objective is hence to devise
a safer mechanism that enables anonymous image data release with substantially reduced
re-identification risk, but at the same time this data should retain its diagnostic value for a
given intended downstream task, e.g. semantic segmentation.

2. Related work

Much research has been devoted to de-identifying individuals in natural images or video
sequences. Since visual re-identification risks pose a severe challenge to comply with current
data privacy regulation obfuscation strategies have been devised to modify images to make
persons harder to identify. The DP-Net (Fan, 2018) explores blurring, black/white boxes
as well as adversarially learned degradations (cf. also (Wu et al., 2018)) to maintain the
targeted downstream task performance while reducing privacy leakage. (Zhu et al., 2020)
and (Dall’Asen et al., 2022) propose to create synthetic image replacements (DeepFakes for
de-identification) to preserve privacy in medical videos while preserving diagnostic features
for downstream tasks, i.e. preserving keypoints. Advanced methods for video-based person
re-identification have been developed in (McLaughlin et al., 2016). (Kim et al., 2021a) and
(Packhduser et al., 2023b) proposed to learn certain geometric deformations that make the
re-identification of brain MRI or chest X-rays with retrieval learning much harder. La-
tent diffusion models are explored in (Packhéiuser et al., 2023a) to create replica datasets
that demonstrate only moderate performance drops for training models for downstream
abnormality classification, while enhancing privacy preservation. (Kim et al., 2021b) pro-
pose a Privacy-Net that jointly learns to map input MRI brain scans into an intermediate
privacy-preserving representation, train a semantic parcellation U-Net and also minimises
the re-identification risk. While showing excellent results for the given tasks, this proce-
dure requires access to paired patients for each annotation (which is often not fulfilled)
and leaves the intermediate representations not interpretable for humans. Mixup-privacy
(Kim et al., 2023a) is another strategy aimed at avoiding full knowledge transfer between
client and server. Both can therefore be more closely associated with recent differential pri-
vacy approaches in federated learning (Rieke et al., 2020) that could also be supplemented
by encryption with mathematical security guarantees (Kaissis et al., 2021). k-anonymity,
which mixes information from several identities in a single output datapoint, can be seen
as a particularly promising strategy to strike a good balance between privacy preserva-
tion, downstream task performance and interpretability of the obfuscation. (Meden et al.,
2018) compare several approaches for k-anonymity including k-Same-Pixel (Newton et al.,
2005) and a new proposed k-Same-Net along with basic pixelation strategies for face photos.
They demonstrate good performance for learning to generate synthetic images that share
attributes from multiple persons but are specific labels (age, gender, facial expression).

1. https://www.blackhat.com/eu-23/briefings/schedule/index.html#millions-of-patient-records
-at-risk-the-perils-of-legacy-protocols-34188
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Contribution: Our method advances the state-of-the-art in effective medical image ob-
fuscation strategies with regards to the following three main points:

e robust generative model, by adapting recent work on neural implicit representation
and compression for video sequences to the obfuscation of a subset of an X-ray col-
lection,

e novel strategy for k-anonymity that only moderately affects visual image quality while
substantially reducing re-identification risks, and

e alleviation of the strong requirements of prior work that are based on simultaneous
availability of multiple scans per patients at each data provider

Along with these technical contributions, we advance the field of privacy concerning medical
deep learning with comprehensive experiments that include the evaluation of privacy risks
along downstream task performance (semantic segmentation of catheters in X-rays) for
baselines compared to our proposed model. Furthermore, we provide reproducible code for
public Kaggle challenge data for others to replicate and built upon our work.
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Figure 1: Concept figure of proposed implicit neural obfuscation strategy. A number of
input chest X-rays serve as target for a neural reconstruction decoder that com-
prises learnable instance embeddings (D-dimensional vector for each data point)
and convolutional weights. The reconstructions are supervised with a loss based
on structural image similarity (SSIM). During inference a k-anonymity mixing
is introduced that aims to obfuscate patient information by adding latent code
information from other patients.

3. Methods

Our study comprises three aspects: image obfuscation, semantic X-ray segmentation and
siamese network re-identification. The concept is implemented within the following scenario.
Several data providers want to contribute anonymised X-ray scans along with detailed
expert annotations of clinically relevant objects. Here, we use pixel level segmentations of
foreign material, in particular central venous catheters (CVC), which are commonly used
to detect critical malpositioning (Roldan and Paniagua, 2015). We assume that part of the
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combined dataset comprises images with the same patient pseudonym that can be used to
train a siamese retrieval network, which will be used to assess the re-identification risk. But
crucially neither every image has to be annotated with CVC labels nor does every patient
have to be present multiple times. Hence, we do not assume the possibility of jointly training
an image obfuscation strategy to de-identify patients along with the segmentation task but
rather require the obfuscation to work as a stand-alone step. In addition and in contrast to
(Kim et al., 2021b) and (Packhéuser et al., 2023b), we define the obfuscation strategy to
be a white-box model that is accessible to the potential attacker, since having to keep such
methods hidden to the public while sharing them across multiple clinics would pose another
severe risk/challenge. Our main contribution lies in the development of a novel strategy
for creating partially k-anonymous scans using neural implicit compression for open data
sharing that preserve relevant feature to train semantic segmentation networks. Yet, the
employed semantic segmentation and siamese re-identification methods are described as well
for completeness.

Implicit neural obfuscation: We base our work on the recent NeRV approach for neural
representations for video compression (Chen et al., 2021). Implicit Neural Representations
(INRs) are rapidly gaining attention for effective image representations that amongst others
enabled performance leaps for 3D reconstruction (Mildenhall et al., 2021), image compres-
sion (Striimpler et al., 2022) or alignment (Lin et al., 2021; Wolterink et al., 2022).

The key observation is that a low parameterisation of a fully-connected or convolutional
network is sufficient to represent images based on an input of a positional encoding. Ex-
tending INRs to larger datasets (e.g. through amortised learning (Sitzmann et al., 2020))
is not trivial, yet several newer approaches either employ learnable encoders (Kim et al.,
2023b) to predict a latent code embedding for each image or simply keep a dictionary of
embedding vectors. (Chen et al., 2021) implements the latter and learns a compact decoder
model to restore a video sequence. They clearly demonstrate that in contrast to traditional
auto encoders, which have a shared encoder for the whole dataset, NeRV improves recon-
struction quality by training a new model for each subset (in their work short video clip).
For our approach, we adopt this concept and fit a NeRV to each chunk of 64 images in
our data set. We specify the decoder to start from a 64-dimensional latent vector that is
mapped with a fully-connected layer into a 16-channel 3 x 3 latent code and then upsampled
with convolutions and pixel-shuffle operations to a target image size of 360 x 360 pixels. We
firstly experimented with a mean-squared error reconstruction loss (used traditionally in
auto-encoders to mimic a maximum likelihood model) yet this led to unsatisfactory results.
Minimising the structural dissimilarity index (maximising SSIM) (Woods et al., 1998), how-
ever, achieves high quality reconstructions with good convergence. The concept is presented
in detail in Fig. 1.

Next, we introduce a k-anonymity mixer into the inference path of our NeRV-image
reconstruction. A N x N matrix, which is the sum of an identity and Gaussian noise
with a hyperparameter p controlling the standard deviation, is multiplied with the instance
embeddings. That way the latent codes share information from other patients in the same
mini-batch. Because the noise is injected at the lowest level of the convolutional decoder it
also affects global contextual image content and will ideally mask a substantial amount of
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identifiable information. This step is only performed at inference, once a subset of images
has been fully fitted to avoid the risk of learning to reintroduce personal fingerprints.

Catheter segmentation: We opt to use semantic segmentation of catheters as down-
stream task, due to its clinical relevance paired with challenges for obfuscated images.
Central venous catheters are extremely thin foreign objects that typically form an elliptic
curve that end in the vena cava. We employ a straightforward 2D SegResNet model (using
the MONALI implementation) (Myronenko, 2019). A unit-weighted combination of soft Dice
loss and binary cross entropy (after sigmoid activation) is used to train the network with
pixellevel supervision. Note, that we always assume high-quality annotations are available
and do not deteriorate labels as they pose a very limited risk for re-identification.

Re-identification We implement a classic siamese re-identification network (Taigman
et al., 2014) that comprises two identical ResNet34 streams, which produce D-dimensional
feature encodings for each image within a mini-batch of size N. A cosine similarity is applied
to produce a 2NN x 2N score matrix which is fed into the objective function, noise-contrastive
estimation loss (InfoNCE) (Oord et al., 2018), which aims to maximise the similarity of the
only positive example out of each 2N — 1 candidates.

4. Experiments and Results

The data was obtained from the Kaggle RANZCR CLiP challenge’. We follow a similar
pre-processing as (Hansen et al., 2021) in that we first predict lung masks to each X-ray
and automatically define a suitable bounding box for each scan. The images and labels are
resampled to 384 x 384 pixels and the CVCs are dilated to approx. 5 pixels. The whole
dataset comprises >10’000 images, but we make a subselection to datapoints that either
contain a normal CVC annotation or a part of a patient that occurs at least twice to be
able to evaluate the re-identification risk. This yields 1536 training and 512 test scans for
CVC segmentation and 576 patients with 1152 scans - and 384 patients with 768 images
respectively for training and testing for the re-identification risk evaluation (note: the sets
do not have to be disjoint).

For the image reconstruction/obfuscation, we leave the architectural design setup as is
based on the public NeRV repository °, yet we substantially decreased the capacity of the
model to avoid overfitting. In initial experiments, we aimed for approx. 500k trainable
parameters per batch of 128 images, which yields a compression of >33-fold when assuming
the same quantisation of model weights and image pixels and image dimensions of 360 x 360
pixels. However, this resulted in an under-fitting of the reconstructed images with missing
details. Hence, we opted for tripling the parameter count and storing 64 images per NeRV,
which is still a considerable 6-fold compression and yields PSNRs of, on average, approx.
40dB. Such a high agreement with the original data will obviously make the re-identification
of the same person easier and hence decrease the desired privacy preservation. It is therefore
crucial to adjust a suitable noise parameter p € {0,0.04,0.06,0.08} for the proposed k-
anonymity mixing.

2. https://wuw.kaggle.com/c/ranzcr-clip-catheter-line-classification/data
3. github.com/haochen-rye/NeRV
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As baseline obfuscation strategy, we employ pixellation. That means a range of com-
pressed versions of the input images are obtained by downsampling the input images by
factors of {1,2,4,6} and resampling them afterwards to the original resolution. We ex-
pect both the segmentation quality and re-identification risk of models trained with these
degraded images will be lowered.

For the 2D SegResNet we chose 24 initial feature channels and 3.5 million parameters
in total. The model is trained with a batch-size of 32 for 375 epochs (number of training
images is 1536). We use Adam with an initial learning of 2-10~2 that is reduced by half
every 1500 iterations and restarted every 4500 iterations. The first 1000 iterations are sta-
bilised with an additional heatmap loss. We employ the RandomPhotometricDistort and
RandomErasing augmentation from Torchvision (v2) and add affine geometric transforma-
tions (with a standard deviation of 7-10~2 and random horizontal flipping to both images
and labels. At test time, we only include the horizontal flip, hence two predictions are
averaged per input.

For training a siamese re-identification network, we follow common practices of con-
trastive self-supervised learning and use an Imagenet-pretrained ResNet34 for each batch
of 32 image pairs. The output feature size is fixed to 256 channels and the InfoNCE loss
with cosine similarity and a temperature of 7-1072 is used as loss. Adam was used with
initial learning rate of 10~3 for 444 epochs with a single step of 0.2 at half-time. The same
augmentations are used as before for the SegResNet. This time, we also include them for
testing as we found otherwise all models could not cope with the large diversity of scanning
parameters and/or geometric misalignment. We average 25 predictions for each pair of po-
tential matches. Having 384 patients in the test set, we compute the risk of re-identification
for a single other image of that same person in the training using any number of guesses
from 1 to 15, meaning e.g. the random chance at top-5 would be about 1%.

For both experiments (segmentation and re-identification) we evaluated whether the
models trained with obfuscation perform better (here higher re-identification means better
even though this is a worse outcome for an algorithm) with original test scans or the same
modulation. We found that using obfuscated images at test time works in all instances best,
likely due to the fact that the models have learned to adapt to these images. Crucially, all
re-identification attacks reported were also retrained with the same obfuscation strategies
to adapt to the knowledge of the defence mechanism. All models are trained on RTX
A4000 cards with bfloat16 precision and torch.compile - within a typical run time of 1
hour. Further implementation details can be found in our public source code at: https:
//github.com/mattiaspaul/neuralObfuscation.

Segmentation Results:  Apart from the strongest pixellation variant, all approaches
perform reasonably well with average Dice scores of above 75% on the challenging down-
stream task. Remarkably the NeRV obfuscation with p = 0.08, which introduces strong
visible artefacts still produces predominantly high quality segmentations as visualised in
Fig. 2 and 4. The highest overall performance of 86% is reached by using the original
images followed by NeRV without k-anonymity and half-resolution scans with each 83%.

Re-identification Evaluation: Putting the segmentation scores into context with pri-
vacy preservation, it becomes evident that only the strongest pixellation with poor down-
stream performance comes close with a top-5 risk of 47% to the lowering of re-ID risks of
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Figure 2: Visual result comparing both obfuscation and downstream performance. From
left to right: M original image with ground truth segmentation; M pixellation to
% resolution; M NeRV based obfuscation with p = 0.04 and; B p = 0.08 respec-
tively. Clearly, the neural obfuscation better balances personal de-identification
and diagnostic quality. More results are found in the appendix.
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Figure 3: Comparison of cumulative statistics of segmentation quality vs. re-identification
risk. NeRV obfuscation with p = 0.04 is on par for CVC segmentations while
posing a 50% lower privacy risk (at top-5) as pixellation with half-resolution
(indicated as 192).
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the implicit neural obfuscation. When increasing p from 0.04 to 0.08 the top-5 risk de-
creases from 42% to 32%. The contrast is particular stark for top-1 re-identification with
original images, >60% compared to our NeRV with p = 0.08 with <20% - a three-fold
improvement. Choosing p depends on the intended use case and privacy-risk assessment.
Since pre-trained task- and re-identification models can be quickly evaluated with different
ps for a given NeRV model this provides a first indication of suitable choices. A re-training
of both networks is, however, required to validate this assessment.

5. Discussion and Conclusion

Our study demonstrates that privacy risks are imminent for anonymous medical image
data sharing, but they could be addressed by a suitable neural obfuscation strategy with
negligible performance drops of the models trained and evaluated with such data. The
white-box model leads to interpretable outputs and does not impact the process of training
downstream models, since normal images can be shared. It is computationally lightweight
requiring on average one second to fit a NeRV per image (one minute for a batch of 64).
The compression of > 6-fold also brings benefits for a more efficient data transfer. This is
the first time neural implicit obfuscation is used for interpretable X-ray segmentation and
the proposed introduction of k-anonymity yielded a large improvement in risk reduction.

Limitations: There are limitations with regards to the employed comparative methods,
since we restricted them to be viable in a scenario where not all labelled data has to be
available with multiple scans per patient during training. In case this is possible, even
stronger performance could be achieved by specifically optimising de-identification together
with segmentation. We also wanted to avoid black-box obfuscation models that have to
be kept secure for further anonymisation steps, e.g. at another clinical centre. This is not
strictly necessary if all data comes from one hospital. Further initial experiments to extend
the number of baseline comparisons to deformation based obfuscation and mixup-privacy
as well as the extended evaluation on our NeRV based approach to digitally reconstructed
radiographs (DRRs) and another downstream segmentation task can be found in our Github
repository and Supplementary material.

Future work: It is not yet clear, how such an approach could be extended to sharing
volumetric scans. 3D CTs and MRI comprise substantially more anatomical detail and could
thus lead to even greater privacy risks. There are also other promising strategies to learn
implicit image embeddings, e.g. using generalisable INRs (Kim et al., 2023b). While being
more complex to train, using meta-learning, they could decouple larger parts of the neural
networks between shared and instance based parameters and hence provide more control
over the level of compression and obfuscation. It also remains to be seen, whether a dataset
with NeRV-based k-anonymity still excels at other tasks of chest pathology detection.
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There are certain restrictions (see paragraph Limitation in main paper) that have lim-
ited our baseline comparisons for privacy-preserving data sharing experiments: the work
of Packher et al. (Packhduser et al., 2023b) e.g. assumes access to an already trained
task model to perform obfuscation and some aspects of Kim et al. (Kim et al., 2023a)
are set within a scenario where not all data from multiple providers is publicly shared.
We designed two additional new experiments inspired by this state-of-the-art with cer-
tain adaptations to our setting 1) deformation-based obfuscation and 2) mix-up privacy;
details of which can be found in the revised appendix. For 1) we create smooth, invert-
ible local deformations to obscure the identity and do indeed see a 20% drop in top) re-
identification risk. However, when re-training the attack model with knowledge about
deformations (online augmentations) the risk increases again by 10% making it 30% less
safe than NeRV with p=0.06. For 2) the scenario of sharing mix-up versions of images
and labels without requiring a dual client-server training setup is more challenging (but
also possible) and leads to a great reduction of privacy risks (by a factor of 2 or 4 in
our tests): we could, however, not avoid a substantial drop in segmentation accuracy to
about 40% Dice score for 4-fold mix-up (lower than the strongest pixelation strategy).
We attribute this to the fact that jointly training on multiple images with similarly look-
ing thin foreign objects (catheters, tubes, electrodes) is less stable than brain segmen-
tation. Future work could strengthen a combination of these orthogonal strategies. In
addition, we included two additional proof-of-concept experiments on different datasets
in the public repository (https://github.com/mattiaspaul/neuralObfuscation).
They demonstrate the transfer of our method with same hyper-parameters onto a slightly
different modality and a new downstream segmentation task. 1) We created DRRs (dig-
itally reconstructed radiographs) of a public paired thorax CT dataset and evaluated the
gains in re-identification risk (top5) reduction from 72.92% to 53.12% using NeRV (with
p=0.08) 2) Due to the absence of fine-grained structures in large-scale X-ray databases (e.g.
https://github.com/ngaggion/CheXmask-Database only provides masks for lungs and
heart) we evaluated the possibility of segmenting the clavicles in the Montgomery County
CXR dataset (Brioso et al., 2023). This also led to satisfactory quantitative results of 81%
Dice for qualitatively strongly obfuscated images. The repository also contains code for
data preparation to further extend the experiments once more comprehensive data becomes
available.
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NEURAL OBFUSCATION FOR PRIVACY PRESERVATION

Figure 4: Additional results comparing both obfuscation and downstream performance.
From left to right: M original image with ground truth segmentation; M pixella-
tion to % resolution; M NeRV based obfuscation with p = 0.04 and; B p = 0.08
respectively.
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