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ABSTRACT

Motivated by applications in chemistry and other sciences, we study the expressive
power of message-passing neural networks for geometric graphs, whose node
features correspond to 3-dimensional positions. Recent work has shown that such
models can separate generic pairs of non-isomorphic geometric graphs, though they
may fail to separate some rare and complicated instances. However, these results
assume a fully connected graph, where each node possesses complete knowledge
of all other nodes. In contrast, often, in application, every node only possesses
knowledge of a small number of nearest neighbors.
This paper shows that generic pairs of non-isomorphic geometric graphs can be
separated by message-passing networks with rotation equivariant features as long
as the underlying graph is connected. When only invariant intermediate features
are allowed, generic separation is guaranteed for generically globally rigid graphs.
We introduce a simple architecture, EGENNET, which achieves our theoretical
guarantees and compares favorably with alternative architecture on synthetic and
chemical benchmarks.

1 INTRODUCTION

Geometric graphs are graphs whose nodes are a ’position’ vector in Rd (typically d = 3) and whose
symmetries include the permutation symmetries of combinatorial graphs and translation and rotation
of the node positions. Geometric graphs arise naturally in learning applications for chemistry, physical
dynamics, and computer vision as natural models for molecules, particle systems, and 3D point
clouds. These applications motivated the introduction of many learning models for geometric graphs,
which were often inspired by ’standard’ graph neural networks (GNNs) for combinatorial graphs
(Satorras et al., 2021; Han et al., 2024; Gasteiger et al., 2021). Subsequently, several theoretical
works aimed primarily at understanding the expressive power and limitations of GNNs for geometric
graphs.

GNNs for geometric graphs produce global graph features invariant to geometric graph symmetries.
The expressive power of GNNs is typically assessed primarily by their ability to assign different
global features to pairs of geometric graphs that are not geometrically isomorphic.

Recent research on this problem has uncovered several interesting results, mainly assuming that the
graphs are full (an edge connects each pair of nodes). Under the full graph assumptions, several
models for geometric GNNs are complete, that is, capable of separating all pairs of non-isomorphic
graphs. However, this typically comes at a relatively high computational price. Examples of complete
models include (d − 1)-WL-based GNNs (Delle Rose et al., 2023; Hordan et al., 2023; Li et al.,
2024a), GNNs based on sub-graph aggregation (Li et al., 2024b), and message passing models based
on arbitrarily high-dimensional irreducible representations (Thomas et al., 2018; Gasteiger et al.,
2021; Dym & Maron, 2020; Finkelshtein et al., 2022). This paper focuses on more efficient geometric
GNNs: message-passing neural networks (MPNN) based on simple invariant and equivariant features.
In (Pozdnyakov & Ceriotti, 2022; Li et al., 2024a), it was shown that, even under the full graph
assumption, invariant MPNN-based networks are not complete. In contrast, Li et al. (2024b) and
Hordan et al. (2023) proved that these models are ’generically complete,’ which means that, under
the full graph assumption, they are capable of separating most geometric graphs and only fail on a
Lebesgue measure zero set of corner cases, which are difficult to separate.
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Figure 1: (A) and (B) are pairs of non-isomorphic geometric graphs with the same distances along
edges. I-GGNN cannot distinguish such pairs, while E-GGNN can (generically) if the graph is
connected, as in (B). Subplot (C) depicts an example of globally rigid graphs, where non-isomorphic
geometric graphs do not share the same distances across edges (in the figure, the edge between pink
and light green). Such examples can be separated by both I-GGNN and E-GGNN.

In practical applications, the full graph assumption is often not fulfilled: to improve computational
efficiency, geometric GNNs often operate on sparse graphs, where each node is only connected to a
few nearest neighbors. Accordingly, the first question we address in this paper is:

Question 1. For which graphs, other than the full graphs, are geometric message-passing neural
networks generically complete?

Our answer to this question is inspired by the results of Joshi et al. (2023). They divided Message-
passing-based networks for geometric graphs into Equivariant Geometric Graph Neural Networks
(E-GGNNs), which use rotation equivariant hidden features, and Invariant Geometric Graph Neural
Networks (I-GGNNs), which use rotation invariant hidden features, and showed that E-GGNNs have
substantial advantages over I-GGNNs in terms of their expressive power.

Our answer to Question 1 is also strongly related to this dichotomy. We prove in Theorem 4.1 that
E-GGNNs are generically complete for a given graph if and only if the graph is connected. This
is visualized in Figure 1. E-GGNNs will not be able to differentiate between the pair of geometric
graphs in Figure 1(A) as the underlying graph is disconnected but will be able to differentiate between
the pairs in (B) and (C). In contrast, I-GGNNs will not be able to differentiate between the non-
isomorphic pairs in Figure 1(A)-(B), as the distances across all graph edges are the same. On the
other hand, in (C), the distances along graph edges determine the positions of all nodes up to rotation
and translation. In rigidity theory, such graphs are called ’generically globally rigid.’ In Theorem 3.1,
we prove that I-GGNNs are generically complete if and only if the underlying graph is generically
globally rigid. These two theorems give a complete answer to Question 1.

To guarantee generic separation, our theorems make the standard assumption (Joshi et al., 2023) that
the I-GGNN and E-GGNN we consider are maximally expressive, meaning that all aggregation and
readout functions used throughout the networks are injective. Recent work has shown that relatively
standard and simple I-GGNN can fulfill this assumption (Amir et al., 2023). However, for E-GGNN,
it is unclear how this assumption can be fulfilled. Accordingly, our second question is

Question 2. Can we devise a simple E-GGNN architecture that is maximally expressive hence,
generically complete on connected graphs?

We answer this question affirmatively by devising a simple architecture, which we name EGENNET,
and proving in Theorem 5.1 that it is maximally expressive (for generic graphs). This architecture is
based on a simple message-passing architecture that resembles EGNN (Satorras et al., 2021) but uses
multiple equivariant channels as in (Levy et al., 2023).

We experimentally find that EGENNET is highly successful in synthetic separation tasks and on
several learning tasks involving medium-sized molecules, with a performance comparable to, or
better than, state-of-the-art methods. These results indicate that simple, generically complete methods
like EGENNET are sufficient for the tasks we considered. However, we acknowledge that there may
be other tasks, perhaps involving molecules with non-trivial symmetry groups, where more complex
geometric graph neural networks that offer full separation could be beneficial.
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Contributions To summarize, our main results are

• Showing generic separation of E-GGNNs depends on graph connectivity.
• Showing generic separation of I-GGNNs depends on graph rigidity.
• Proposing a simple E-GGNN architecture that is provably (generically) maximally expres-

sive and performs well in practical tasks.

Appendix See the appendix for all full proofs and related work.

2 SETUP: GEOMETRIC GRAPH NEURAL NETWORKS AND RIGIDITY THEORY

Geometric Graphs. In our discussion of geometric graphs and GNNs, we loosely follow the
definitions of Joshi et al. (2023). We define a geometric graph as a pair G = (A,X). The
matrix A ∈ {0, 1}n×n is an adjacency matrix, which fully defines a combinatorial graph. The
neighborhood of a node i is denoted by Ni. Accordingly, we sometimes use statements like ’the
graph A.’ We assume for simplicity that the graph nodes are the integers 1, . . . , n. The matrix
X = (x1, . . . ,xn) ∈ Rn×d denotes node positions. We denote the set of all geometric graphs with
coordinates in Rd by G(d), and the subset of graphs with ≤ N nodes by GN (d). In Appendix H, we
discuss incorporating additional node and edge features into our model and theoretical results.

The symmetry group of geometric graphs is the product of the permutation group Sn and the group
of rigid motions E(d). The action of a permutation matrix P on a geometric graph is given by
PG := (PAP⊤,PX). A rigid motion in E(d) is a rotation Q ∈ O(d) and a translation vector
t ∈ Rd. They act on X by applying the rotation and translation to all its coordinates, xi 7→ Qxi + t.

Two geometric graphs G and H are geometrically isomorphic if there exists a transformation in
Sn × E(d) which can be applied to G to obtain H. We will say that a function F defined on G(d) is
invariant if F (G) = F (H) for all G and H which are geometrically isomorphic.

The expressive power of an invariant model F is closely related to its ability to separate pairs G,H
that are not geometrically isomorphic: clearly, if F cannot separate G from H, then F will not be a
good approximation for functions f for which f(G) ̸= f(H). Conversely, if F can separate all pairs
of geometric graphs, then it can be used to approximate all continuous invariant (Dym & Gortler,
2024; Hordan et al., 2023) and equivariant (Villar et al., 2021; Hordan et al., 2024) functions. In
Appendix F, we discuss the connection between approximation and separation in the context of our
results.

Constructing an F which can separate all geometric graphs is at least as challenging as distinguishing
all combinatorial graphs (by setting all node features to zero). Without any assumptions on the point
cloud, achieving this is infeasible. To address this, we employ the concept of generic geometric
graphs which originates from rigidity theory.

Generic separation and Rigidity Theory As discussed in the introduction, our paper focuses on
generic separation. The results we present in this section are primarily influenced by rigidity theory,
so we also use this field’s common notion of ’generic’. We will say that X ∈ Rd×n is generic if it is
not the root of any multivariate polynomial p : Rd×n → R with rational coefficients. The genericity
assumption guarantees that X avoids many degeneracies, making separation easier. For example, for
generic X all pairs of points have different norms, and every d tuple of points xi1 , . . . ,xid is full
rank because ∥xi∥2 − ∥xj∥2 and det[xi1 , . . . ,xid ] are polynomials with natural coefficients. We
note that Lebesgue almost all point clouds in Rd×n are generic (Mityagin, 2020).

A globally rigid graph is a central topic in rigidity theory:
Definition 2.1 (Globally rigid). ( Garamvölgyi et al. (2022)) A geometric graph G = (A,X) is
globally rigid in Rd, if the only X ′ ∈ Rn×d which satisfy that ∥xi − xj∥ = ∥x′

i − x′
j∥ for all edges

(i, j) in A, are those that are related to X by a rigid motion.
A combinatorial graph A is generically globally rigid in Rd, if the geometric graph G = (A,X) is
globally rigid in Rd for every generic X ∈ Rn×d.

The geometric graphs in Figure 1 (A)-(B) are not globally rigid, as they have the same distances along
edges but are not related by a rigid motion. The underlying combinatorial graph, disconnected in (A)
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or line graph in (B), is not generically globally rigid. In contrast, the underlying combinatorial graph
in (C) is generically globally rigid. Another simple example of a generically globally rigid graph is
the full graph. Additional non-trivial examples can be found in (Jordán & Tanigawa, 2022; Cheung &
Whiteley, 2005). A necessary condition for generic global rigidity of a graph with n ≥ d+2 nodes in
Rd is to be d+ 1 connected 1, which explains why the graphs in (A)-(B) are not generically globally
rigid.

Note that global rigidity definitions focus on reconstructing X when A is known. In the study of
GGNNs, we are interested in identifying both X and A:

Definition 2.2. Let d be a natural number. Following Li et al. (2024b), we will say that an invariant
function F defined on G(d), identifies a geometric graph G, if for every Ĝ ∈ G(d), we have that
F (G) = F (Ĝ) if and only if G and Ĝ are geometrically isomorphic.
We say that F generically identifies a combinatorial graph A in Rd, if F can identify G = (A,X)
for every generic X ∈ Rn×d.
We say that F generically fails to identify a combinatorial graph A in Rd, if F does not identify
G = (A,X) for every generic X ∈ Rn×d.

Note that the fact that F does not generically identify A only guarantees that there exists a generic
X so that F fails to identify (A,X). The statement ‘F generically fails to identify’ is, apriori,
significantly stronger. Also note that invariant F separates all non-isomorphic graphs (is complete)
if and only if it identifies all graphs. As discussed in the introduction, our goal will be to classify
which graphs are generically identifiable by standard message-passing-based networks for geometric
graphs, which can be classified as either I-GGNN or E-GGNN. We will now define these concepts.

E-GGNN In the context of combinatorial graphs (with no geometric information), Gilmer et al.
(2017); Jogl et al. (2023) and Veličković (2022) showed that many famous graph neural networks are
instantiations of MPNNs. The goal of Joshi et al. (2023) was to show, analogously, that many neural
networks for geometric graphs follow a generalized MPNN framework. Loosely following Joshi
et al. (2023), we define Equivariant Geometric Graph Neural Networks (E-GGNN) to be functions
defined by a sequence of layers that propagates vector features from iteration t to t+1 via a learnable
function f(t) (at initialization we set v(0)j = 0).

v
(t+1)
i = f(t)

(
{{v(t)

j ,xi − xj , | j ∈ Ni}}
)
. (1)

To ensure the equivariance of the construction, the function f(t) is required to be rotation equivariant.
Translation invariance is implicitly guaranteed by the translation invariance of xi − xj , and the
requirement that f(t) is defined on multi-sets implicitly enforces permutation equivariance. We will
often refer to f(t) as an aggregation function.

We note that for the sake of simplicity, we don’t require a combine step that incorporates v(t)
i in the

process of computing v
(t+1)
i since we find that this step has little influence on our theoretical and

empirical results. We also note that the vector v(t)
i is not necessarily d dimensional, and the action of

O(d) on v
(t)
i is allowed to change from layer to layer. For example, in the EGENNET architecture we

will introduce later on, each v
(t)
i will be a d×m matrix, and the action of O(d) will be multiplication

on each of the m coordinates.

After T iterations of E-GGNNs, a permutation, rotation, and translation invariant feature vector
can be obtained via a two-step process involving a rotation-invariant function finv and a multiset
READOUT function:

si = finv(v
(T )
i ), sglobal = READOUT{{s1, .., sn}} (2)

As shown by Joshi et al. (2023), many popular geometric graph neural networks can be seen as
instances of E-GGNNs with a specific choice of functions f(t) and readout functions. Examples
include EGNN (Satorras et al., 2021), TFN (Thomas et al., 2018), GVP (Jing et al., 2020), and MACE
(Batatia et al., 2022). In Section 5.1, we present EGENNET, our instantiation of this framework.

1We say a graph G is k connected if the graph remains connected after removing any k vertices.
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I-GGNNs An important subset of E-GGNNs are invariant GGNNs (I-GGNNs). These networks
only maintain scalar features s(t)i and replace xi − xj with its norm to obtain

s
(t+1)
i = f(t)

(
{{s(t)j , ∥xi − xj∥, | j ∈ Ni}}

)
(3)

A global invariant feature is obtained via a permutation invariant readout function as in equation 2. An
advantage of I-GGNNs is that there are no rotation equivariance constraints on f(t). Therefore, any
standard message-passing neural network that can process continuous edge weights can be employed
as an I-GGNN by setting the edge weights to ∥xij∥. Examples of I-GGNNs in the literature include a
variant of EGNN used for invariant tasks (Satorras et al., 2021), SchNet (Schütt et al., 2018), DimeNet
(Gasteiger et al., 2020b) and SphereNet (Liu et al., 2021)2. Our definition of I-GGNN follows the
definition from (Pozdnyakov & Ceriotti, 2022; Li et al., 2024a). In Appendix E, we explain that the
definition of I-GGNN Joshi et al. (2023) has a seemingly minor difference that renders it significantly
stronger.

Maximally expressive E-GGNN and I-GGNNs The separation power of E-GGNN and I-GGNN
architectures depends on the specific instance used. For example, if we choose the final readout
function as the zero function, all geometric graphs will be assigned the same value. To address this, it
is customary to assume that all functions f(t), as well as finv and the readout function, are injective,
up to the ambiguities these functions have by construction. Following Joshi et al. (2023), we will call
E-GGNN (respectively I-GGNN) architectures, which are composed of injective functions, maximally
expressive E-GGNN (respectively I-GGNN) architectures. We note that the existence of the injective
functions necessary for maximal expressivity follows from set-theoretic considerations, similar to
those used by Wang et al. (2024). The question of whether practical differentiable aggregation
functions are injective is discussed in Section 5.

3 EXPRESSIVE POWER OF I-GGNN

Our next goal is to analyze the separation abilities of I-GGNN.

Theorem 3.1. [expressive power of I-GGNN] Let d be a natural number. Let F be an I-GGNN. Let
A be a graph not generically globally rigid on Rd. Then, F generically fails to identify A.
Conversely, if A is generically globally rigid on Rd and F is a maximally expressive I-GGNN with
depth T = 1, then F generically identifies A.

Proof idea. if A is not globally rigid, then according to Gortler et al. (2010), for every generic X
there exists X ′ for which distances along edges are preserved, but X , X ′ are not related by a rigid
motion. It’s easy to see any I-GGNN, which is based only on distances along edges, can’t separate
such graphs.

On the other hand, generic geometric graphs have distinct pairwise distances. The full proof (see
Appendix G) shows that this can be used to reconstruct the combinatorial graph A. By global rigidity,
we can then reconstruct X , up to rigid motion.

Note that Theorem 3.1 is a generalization of Hordan et al. (2023) that showed maximally expressive
I-GGNN generically identify full graphs. We now showed this is true for all generically globally rigid
graphs.

I-GGNN generic separation by power graph preprocessing A natural strategy to overcome the
lack of generic separation for graphs that are not generically globally rigid, as proven in Theorem 3.1,
is to replace these graphs with graphs that are generically globally rigid. This replacement can be
done using power graphs: For a given graph G and natural number k, the power graph Gk is defined
to have the same nodes as the original graph G. A pair of nodes are connected by an edge in the
power graph if and only if there is a path between them in the original graph of length ≤ k.

2 DimeNet (Gasteiger et al., 2020b) and SphereNet (Liu et al., 2021) have access to the power graph G2

(defined later in the paper) and thus are invariant models on G2 and have potential expressive power stronger
than invariant I-GGNN on G.
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In (Jordán & Tanigawa, 2022; Cheung & Whiteley, 2005), it was shown that if the original graph
G is connected, then the power graph Gd+1 is generically globally rigid in Rd. Accordingly, when
the input graph G is connected but not generically globally rigid, our theory suggests that applying
I-GGNN not to the original graph but to its d + 1 power may benefit separation. An experiment
illustrating this idea is presented in Table 1.

4 EXPRESSIVE POWER OF E-GGNN

When using E-GGNN rather than I-GGNN, we will have generic separation if and only if the graph
is connected.

Theorem 4.1. [expressive power of E-GGNN] Let d be a natural number. Let F be an E-GGNN. Let
A be a disconnected graph. Then, F generically fails to identify A.
Conversely, if A is connected and F is a maximally expressive E-GGNN with depth T ≥ d+ 1, then
F generically identifies A.

Proof idea. Suppose a geometric graph G isn’t connected. We can apply two distinct rigid motions to
two connected components and obtain a new geometric graph, G′, which cannot be separated from G
using E-GGNN. This is illustrated in Figure 1(A). Conversely, in the appendix Theorem G, we show
that the features si obtained after d+1 iterations of a maximally expressive E-GGNN can encode the
multi-set of all distances ∥xi − xj∥ for all j which are d+ 1-hop neighbors of i (a similar claim was
shown by Joshi et al. (2023)). Thus, d+ 1 iterations of maximally expressive E-GGNN can simulate
the application of a single iteration of an I-GGNN on the d+ 1 power graph. The proof then follows
from the fact that the (d+ 1) power graph is generically globally rigid (Jordán & Tanigawa, 2022;
Cheung & Whiteley, 2005).

An immediate result of this theorem is that generic graph separation is a local problem with a problem
radius of d+ 1 (Alon & Yahav, 2020) .3 We note that the generic assumption allows us to reconstruct
the coordinates of the nodes and the combinatorial graph. Without the generic assumption, even
models based on 2-WL that are complete on full graphs cannot reconstruct the combinatorial graph.
Setting all positions to zero nullifies the geometric information, and 2-WL is insufficient to distinguish
all combinatorial graphs.

5 BUILDING A GENERICALLY MAXIMALLY EXPRESSIVE E-GGNN

To obtain generic separation guarantees as in Theorems 3.1, 4.1 for a practical instantiation of
E-GGNN (or I-GGNN), we will need to show that the instantiation is fully expressive. This type of
question was studied rather extensively for combinatorial graphs (Amir et al., 2023; Aamand et al.,
2022), and these results can be used to show that some simple realizations of I-GGNN are maximally
expressive. We discuss this in more detail in Appendix C.

For E-GGNN, the requirement that f(t) is simultaneously injective (up to permutation) and equivariant
to rotations seems to be challenging to attain with a simple E-GGNN construction, and indeed, Joshi
et al. (2023) who suggested the notions of maximally expressive E-GGNN, did not give any indication
of how they could be constructed in practice. Moreover, in Appendix D, we show that a maximally
expressive E-GGNN can separate all pairs of full graphs and separate geometrically all pairs of
connected graphs4, indicating constructing such a network may be computationally expensive, as
currently, such guarantees are only achieved by networks of relatively high complexity based on
2-WL subgraph aggregation techniques.

In our setting, however, the problem is less severe since, from the outset, we are only interested in
analyzing network behavior on generic graphs. Accordingly, we would like to require our E-GGNN
to be maximally expressive only for generic graphs. It turns out that this goal can be achieved with a

3A task’s problem radius denoted by r is the minimal integer where the task becomes solvable upon each
node observing its neighborhood within a r-hop radius and aggregating all node’s information.

4We define the geometric separation of a geometric graph if we can separate the point clouds up to group
action, without necessarily reconstructing the combinatorial graph.
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straightforward E-GGNN architecture, which we name EGENNET. Our next step will be to present
this architecture.

5.1 THE EGENNET ARCHITECTURE

Our goal in this section is to build a maximally expressive EGNN. For this, we need to implement
injective readout and aggregation functions f(t), finv,READOUT (see equations 1-2. The EGENNET
architecture we suggest resembles an EGNN architecture (Satorras et al., 2021) with multiple
equivariant channels as in (Levy et al., 2023). The EGENNET architecture depends on two hyper-
parameters: depth T (the term ‘depth’ refers to the number of MPNN iterations) and channel number
C. The input to the architecture is a geometric graph (A,X).

Aggregation The architectures then maintains, at each iteration t and node i, an ’equivariant’ node
feature with C channels

v
(t)
i = (v

(t)
i,1 , . . . , v

(t)
i,C), v

(t)
i,c ∈ Rd, c = 1, . . . , C (4)

These feature values are initialized to zero and are updated via the rotation and permutation equivariant
aggregation formula

v
(t+1)
i,q =

∑
j∈Ni

(
ϕ(t,q,0)(∥xi − xj∥, ∥vj∥)(xi − xj) +

C∑
c=1

ϕ(t,q,c)(∥xi − xj∥, ∥vj∥)v(t)jc

)
(5)

where ∥vj∥ is the C dimensional vector containing the norms of the vectors vjc, c = 1, . . . , C.

Construction of finv and READOUT After T iterations, we obtain rotation and permutation
invariant node features si ∈ RC and global feature sglobal ∈ RC via

si,q = ∥
C∑

c=1

θc,qv
(T )
i,c ∥2, sglobalq =

n∑
i=1

ϕ
(q)
global(si), q = 1, . . . , C (6)

Where θ is a learnable matrix, and the functions ϕ(q)global, ϕ
(t,q,c) are all fully connected neural

networks with a single layer, an output dimension of 1, and an analytic non-polynomial activation
(in our implementation, TanH activation). The complexity of EGENNET is linear in N · C, as we
discuss in Appendix G.2.

The next theorem shows that EGENNET is generically maximally expressive:
Theorem 5.1. Let d,N, T be natural numbers. Let F be a maximally expressive E-GGNN of depth
T , and let Fθ denote the EGENNET architecture with depth T and C = 2Nd+1 channels. Then, for
Lebesgue almost every choice of network parameters θ, we have that for all generic G, Ĝ ∈ GN (d),

F (G) = F (Ĝ) ⇐⇒ Fθ(G) = Fθ(Ĝ)

Proof idea. The proof relies on the methodology developed by Dym & Gortler (2024); Amir et al.
(2023) and Hordan et al. (2023). We note that each step in EGENNET employs C identical analytic
functions indexed by q = 1, . . . , C, with independent parameters. Dym & Gortler (2024) and Amir
et al. (2023) showed that in this setting, if every pair of non-isomorphic inputs can be separated by
some parameter of the original function, then C = 2Nd + 1 copies of this function with random
parameters will suffice to separate all pairs uniformly. The proof is then reduced to showing that any
pair of non-isomorphic inputs can be separated by some parameter vector, which we prove in the
appendix G.1.

Joining this theorem with our theorem on maximally expressive E-GGNN, we deduce
Corollary 5.2. Let d,N be natural numbers. let Fθ denote the EGENNET architecture with depth
T = d+ 1 and C = 2Nd+ 1 channels. Then for Lebesgue almost every θ, for every pair of graphs
G,G′ ∈ GN (d) which are generic and connected,

Fθ(G) = Fθ(Ĝ) ⇐⇒ G, Ĝ are geometrically isomorphic

Note that by Joshi et al. (2023), theorems 20, 22, the dimension of any injective embedding must be
at least nd− d(d−1)

2 , showing our embedding dimension 2nd+ 1 is optimal up to factor of 2 (when
n≫ d).
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Figure 2: From Left to Right: k-chain pair graphs that are non-generic and require ∼ k/2 blocks for
separation, Pair a in which 2-power graph is enough for I-GGNN to distinguish and Pair b in which
3-power graph is necessary and sufficient for separation.

6 EXPERIMENTS

In the experiments section, we have three main objectives. First, we aim to demonstrate that invariant
models are indeed strictly less expressive than equivariant models and that power graphs help to
mitigate this gap. Second, we seek to show that our model can distinguish challenging graph examples,
including those requiring multiple layers for separation, thereby avoiding the bottleneck phenomenon
encountered in other geometric models. Finally, we aim to demonstrate the improved performance of
our model on real-world benchmarks.

6.1 SEPARATION EXPERIMENTS

Enhancing Model Expressiveness: Power Graphs in Invariant vs. Equivariant Comparisons
We begin with experiments to corroborate our theoretical findings. We consider examples where
the graph A is a line graph, which is connected but not generically globally rigid. We choose two
pairs of geometric line graphs, Pair a and Pair b, depicted in Figure 2. These pairs have identical
distances along graph edges but are not isomorphic. Therefore, they cannot be distinguished by
any I-GGNN but (at least when generic) can be distinguished by E-GGNN and our EGENNET
architectures. Following the protocol from Joshi et al. (2023), we construct binary classification
problems from Pair a and Pair b and apply our E-GGNN architecture EGENNET, as well as three
popular I-GGNN architectures: SchNet (Schütt et al., 2018), DimeNet (Gasteiger et al., 2020b), and
SphereNet (Liu et al., 2021).

The results are shown in the first column in Table 1. As expected, EGENNET perfectly separates
pairs a and b, while SchNet fails to separate both. Note that DimeNet and SphereNet separate Pair
a but not Pair b. This is because DimeNet and SphereNet compute angles at edges, which utilizes
information not contained in the graph G but only in the power graph G2. Indeed, distances between
two-hop neighbors are sufficient for discriminating between the two geometric graphs in Pair a but
not in Pair b, where the distance between the three-hop red and orange nodes is needed for separation.
Next, as we suggested in Section 3, we apply the same algorithms to the powers of the original graph.
As shown in Table 1, this improves the separation capabilities of the I-GGNN models. All invariant
models succeed when the third power is taken, as expected since a connected graph’s d+ 1 power
(here d = 2) is generically globally rigid.

Unpacking the Bottleneck: Layer Requirements for Complex Graph Separation

k-chains Next, we consider the k chain pairs suggested in Joshi et al. (2023) and illustrated in
the left of Figure 2. By design, this is a pair of graphs with k nodes, which can only be separated
by k − 1 hop distances. In Joshi et al. (2023), it was shown that a depth of at least ⌊k/2⌋ + 1 is
necessary to achieve separation by E-GGNN in this setting. Note that as most nodes in the chain
graphs are on the same line, this point cloud is not generic, so the fact that for large k, more than
d + 1 iterations are needed does not contradict our theory. In our experiments, we include two
variations of SchNet (Schütt et al., 2018): full graph and global feature. Those variations use all
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Power graph
GNN Layer 1 2 3

Pa
ir

a

Maximal I-GGNN 50% 100% 100%
SchNet Schütt et al. (2018) 50.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

DimeNet Gasteiger et al. (2020b) 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

SphereNet Liu et al. (2021) 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

SchNet full graph
4 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

SchNetglobal feat
4 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

EGENNET(us) 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

Pa
ir

b

Maximal I-GGNN 50% 50% 100%
SchNet Schütt et al. (2018) 50.0 ± 0.0 50.0 ± 0.0 100.0 ± 0.0

DimeNet Gasteiger et al. (2020b) 50.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

SphereNet Liu et al. (2021) 50.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

SchNet full graph
4 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

SchNetglobal feat
4 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

EGENNET (us) 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

Table 1: E-GGNN models like EGENNET can separate the two pairs of connected graph in Figure 2.
I-GGNN models cannot separate unless power graphs are considered.

pairwise distances, thus showing better results than other invariant models. In the first experiment,
we set k = 4. Theoretically, 3 blocks are needed for propagating the information, and 2 blocks are
insufficient. As shown in Appendix Table 3, we succeed with a probability of 1 over 10 trials with 3
blocks. For checking long-term dependencies, we choose k = 12 again; 7 blocks are needed, and 6 is
insufficient. We examined all models with 7, 8, 9, 10, 11 blocks, each 10 times. As shown in Table 4,
we are the only ones succeeding with 7 blocks, and all other models need a much higher number
of blocks. This may suggest our model is less influenced by over-squashing Alon & Yahav (2020).
In the appendix, Table 7, we add a time comparison table for all models using the 128 dimensional
feature.

Hard examples In Table 5 in the appendix, we show that our model can also perfectly separate
challenging examples from (Pozdnyakov et al., 2020; Pozdnyakov & Ceriotti, 2022), using the
experiment setup taken from Hordan et al. (2023). These geometric graph pairs cannot be separated
by I-GGNN, even on full graphs, and are also difficult to separate using equivariant methods like
EGNN.

Chemical property experiments Finally, we check our model’s ability to learn regression-invariant
real-world chemical properties, a critical task in computational chemistry and material science.
Learning chemical properties accurately is essential for predicting the behaviors of compounds,
enabling advancements in drug discovery, material design, and environmental science. By effectively
capturing these properties, the model demonstrates its potential to assist in solving complex chemical
problems, where precise property prediction can reduce experimental costs and guide targeted
research. As in (Zhu et al., 2024), we compare to the following models: Random Forest (Breiman,
2001), LSTM (Hochreiter & Schmidhuber, 1997), Transformer (Vaswani et al., 2017), GIN (Xu et al.,
2018), GIN+VN (Hu et al., 2020), ChemProp (Heid et al., 2023), GraphGPS (Rampášek et al., 2022),
SchNet (Schütt et al., 2018), DimeNet++ (Gasteiger et al., 2020a), GemNet (Gasteiger et al., 2021),
PaiNN (Schütt et al., 2021), ClofNet (Du et al., 2022), LEFTNet (Du et al., 2024), and Marcel (Zhu
et al., 2024). Our task is learning chemical property prediction on three datasets: Drugs (Axelrod &
Gomez-Bombarelli, 2022), Kraken (Gensch et al., 2022), and BDE (Meyer et al., 2018). Drugs are the
largest and most challenging dataset, containing 560K samples; BDE is a medium-sized dataset with
80K datasets; and Kraken is the smallest, with 22K samples. The baseline model performance, data
split, and training procedure are taken from Zhu et al. (2024). In particular, we ran each experiment

4 Here, SchNet global and full are invariant models utilizing the full graph structure (unlike other models
utilizing the given combinatorial structure).
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Drugs Kraken BDE

Category Model IP EA χ B5 L BurB5 BurL BE

1D
Random Forest 0.4987 0.4747 0.2732 0.4760 0.4303 0.2758 0.1521 3.0335

LSTM 0.4788 0.4648 0.2505 0.4879 0.5142 0.2813 0.1924 2.8279
Transformer 0.6617 0.5850 0.4073 0.9611 0.8389 0.4929 0.2781 10.0771

2D

GIN 0.4354 0.4169 0.2260 0.3128 0.4003 0.1719 0.1200 2.6368
GIN+VN 0.4361 0.4169 0.2267 0.3567 0.4344 0.2422 0.1741 2.7417
ChemProp 0.4595 0.4417 0.2441 0.4850 0.5452 0.3002 0.1948 2.6616
GraphGPS 0.4351 0.4085 0.2212 0.3450 0.4363 0.2066 0.1500 2.4827

3D

SchNet 0.4394 0.4207 0.2243 0.3293 0.5458 0.2295 0.1861 2.5488
DimeNet++ 0.4441 0.4233 0.2436 0.3510 0.4174 0.2097 0.1526 1.4503

GemNet 0.4069 0.3922 0.1970 0.2789 0.3754 0.1782 0.1635 1.6530
PaiNN 0.4505 0.4495 0.2324 0.3443 0.4471 0.2395 0.1673 2.1261

ClofNet 0.4393 0.4251 0.2378 0.4873 0.6417 0.2884 0.2529 2.6057
LEFTNet 0.4174 0.3964 0.2083 0.3072 0.4493 0.2176 0.1486 1.5328

Marcel 0.4066 0.3910 0.2027 0.2225 0.3386 0.1589 0.0947 1.4741
EGENNET(Ours) 0.3965 0.3686 0.2068 0.1878 0.1738 0.1530 0.0626 0.3170

Table 2: Performance of 1D, 2D, and 3D baseline MRL models and the best results from ensemble
learning strategies on 3D GNNs. The metric used is the Mean Absolute Error (MAE, ↓). The bold
indicates the best-performing model, while underlined denotes the second-best.

three times and reported the model’s test error with the best validation performance. In Table 6 in the
appendix, we report the mean and standard deviation.

As we see in Table 2, we show comparable or improved results in all tasks. For example, in BDE, we
have an improvement of 78%, in Kraken property burL 33%, and in the property L 48%. Remarkably,
our method outperforms competing more complex methods like GemNet, which employs high-order
irreducible representations. This can be explained by the generic completeness of our method,
coupled with results we will show in the appendix Table 8, which shows that these datasets have a
small number of norm-repetitions, indicating that they are ‘close to generic’ .

7 LIMITATION AND FUTURE WORK

In this work, we characterized the generic expressive power of I-GGNN and E-GGNN, showed
that EGENNET is a generically maximally expressive E-GGNN, and showed the effectiveness of
this architecture on chemical regression tasks. A limitation of our work is that it may struggle with
symmetric and non-generic input. Future work could consider assessing the expressive power of
non-MPNN models like geometric 2-WL on sparse graphs to address such input efficiently.
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A RELATED WORK

This section discusses related work that is not discussed in the main text.

Equivariant models In the context of learning on geometric graphs, models should be equivariant
to the joint action of permutations, rotations, and translations. Besides the models discussed in the
paper, some prominent models with this equivariant structure include Cormorant (Anderson et al.,
2019), Vector Neurons (Deng et al., 2021), and SE(3) transformers (Fuchs et al., 2020).

Completeness, universality and generic completeness The main text discusses related works
on completeness focused on methods coming from the geometric learning community. Other
complete methods, generally using similar ideas, appeared independently in the more chemistry-
oriented community(Kurlin, 2023; Widdowson & Kurlin, 2023; Shapeev, 2016; Nigam et al., 2020).
Completeness in 2D was achieved in Bökman et al. (2022), and completeness with respect to rigid
motions (without permutations) was achieved by Comenet (Wang et al., 2022). Comenet also uses
some genericity assumptions (e.g., that there is a well-defined notion of nearest neighbors).

The main text discussed how generic completeness can be achieved using I-GGNN when the graph is
globally rigid. A similar result can be obtained when considering the list of all distances (Garamvölgyi
et al., 2022). Generic completeness for full graphs can also be obtained using more complex distance-
based features (Widdowson et al., 2022) or shape principal axes (Puny et al., 2021) (under the generic
assumption that the principal eigenvalues are distinct).

Comparison with Wang & Zhang (2022) Generic completeness without the full graph assumption,
employing only the assumption that local neighborhoods are not symmetric, is discussed by Wang
& Zhang (2022). However, there are notable differences in key aspects of the results. Specifically,
Theorem 4.2 in Wang & Zhang (2022) demonstrates that their proposed equivariant model can
identify generic molecules using L message-passing iterations, where L is the graph’s diameter. In
contrast, our Theorem 4.1 requires only d+1 iterations (where d = 3 in typical applications, resulting
in a total of just four iterations).

Moreover, while Theorem 4.2 in Wang & Zhang (2022) focuses on recovering the 3D structure, it
does not address the combinatorial structure. Our Theorem 4.1, however, guarantees the recovery of
both combinatorial and geometric structures in the generic case.

Additionally, our Theorem 3.1 precisely describes the conditions under which invariant models are,
and are not, generically complete—a result not covered in Wang & Zhang (2022).

B IMPLEMENTATION DETAILS

Here, we detail the hyper-parameter choice. For all experiments, we use AdamW optimizer
Loshchilov & Hutter (2017). We use a varying weight decay of 1e−4, 1e−5 and learning rate
of 1e−4. Reduce On Platue scheduler is used with a rate decrease of 0.75 with the patience of 15
epochs. We use two blocks with 40 channels in the challenging point cloud separation experiments.
For k-chain experiments, we repeat each experiment 10 times, with 10 different seeds, and set the
number of channels to be 60, and a varying number of blocks, as detailed in the table. For power
graph experiments, we repeat each experiment 10 times, with 10 different seeds, and set the number
of channels to be 60 and 3 blocks. For chemical property experiments, all the procedure is taken from
Zhu et al. (2024): each dataset is partitioned randomly into three subsets: 70% for training, 10% for
validation, and 20% for test. We set the number of channels to be 256 and used 6 blocks. Each model
is trained over 1, 500 epochs. Experiments are repeated three times for all eight regression targets,
and the results reported correspond to the model that performs best on the validation set in terms of
Mean Absolute Error (MAE). In contrast to the experiments in Zhu et al. (2024), we didn’t consider
the EE dataset as it’s currently not public on GitHub. We utilize PyTorch and PyTorch-Geometric to
implement all deep learning models. All experiments are conducted on servers with NVIDIA A40
GPUs, each with 48GB of memory. All dataset details, including statistics, can be found in Zhu et al.
(2024).
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C BUILDING PERFECT I-GGNN

Here, we describe in detail how to construct a perfect I-GGNN. We will assume that we consider
geometric graphs with up to N nodes. The main ingredients needed are aggregation functions
and READOUT function that are injective on the space of all multisets of size ≤ N . Amir et al.
(2023) proved that the sum of projections and analytic activation can be used to construct such
layers. Formally, be M semi-analytic set of dimension D, and N vectors in Rd denoted by X . Be
A ∈ R(2D+1)×d, b ∈ R2D+1, σ : R → R analytic non-polynomial activation, then for Lebesgue
almost every A, b

fA,b(X) =

N∑
i=1

σ(A ·Xi + b)

is injective up to permutation. Thus, the composition of such blocks and such READOUT function
with dimension D = d ·N yields a maximally expressive model on all input domain. Here, D is the
intrinsic dimension of all features, ultimately produced by the D dimensional input space.

D SEPARATION POWER OF FULLY MAXIMALLY EXPRESSIVE E-GGNN

In the main text, we proposed EGENNET a simple generically maximal expressive E-GGNN. In
this section, we show that if we have a maximally expressive E-GGNN on all input domain, we can
reconstruct a full graph up to group action, and if the graph is connected, we can reconstruct its
point cloud. This indicates that fully maximally expressive E-GGNN is as challenging as achieving
completeness, which generally requires complex methods like 2-WL-based GNNs.
Theorem D.1. Let G = (A,X) be a geometric graph, where A is the full graph on n nodes, and X
is an arbitrary d× n matrix, then one iteration of maximally expressive E-GGNN can reconstruct X .

Proof. Assume we run one iteration of E-GGNN on our geometric graph, then for each node i, we
know up to some rotation Qi

{{Qi · (xi − xj)|j ∈ [n]}}

Choosing i = 1, and xi = 0, we have all other positions Qi · xj , j ̸= i, thus up to translation (as we
set xi), rotation Qi and node permutation, we can reconstruct our point cloud.

We now show that using n iterations of E-GGNN can reconstruct the point cloud of each connected
graph.
Theorem D.2. Assuming a connected geometric graph G = (A,X) with n nodes, then n iteration
of maximally expressive E-GGNN can reconstruct the point cloud.

Proof. Assume we run n iterations of a maximally expressive E-GGNN on our connected graph.
Then, by Theorem 4.1, we can reconstruct for each node i its n-hop up to rotation Qi. As the n-hop
of a node is all other nodes (the graph’s diameter is at most n), we reconstruct the full geometric
graph up to rotation, and by theorem D.1, we can reconstruct the point cloud.

E I-GGNN+

Here, we present the definition of I-GGNN presented by Joshi et al. (2023), denoted by I-GGNN+,
and show that it can separate all geometric full graphs. After, we explain why this model is strictly
stronger than our I-GGNN.

Joshi et al. (2023) defines (neglecting the update step also used there)

v
(t+1)
i = f t

(
{{v(t)

j ,xi − xj , | j ∈ Ni}}
)
. (7)

Such that f t holds that for all Q ∈ O(d)

f t
(
{{v(t)

j ,xi − xj , | j ∈ Ni}}
)
= f t

(
{{v(t)

j , Q · (xi − xj), | j ∈ Ni}}
)
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I-GGNN+ is maximally expressive if f t holds:

f t
(
{{v(t)

j ,xi − xj , | j ∈ Ni}}
)
= f t

(
{{v(t)

j , x̂i − x̂j , | j ∈ Ni}}
)

⇐⇒

∃Q ∈ O(3) : {{v(t)
j ,xi − xj , | j ∈ Ni}} = {{v(t)

j , Q · (x̂i − x̂j), | j ∈ Ni}}

We now prove that if we run one iteration of maximally expressive I-GGNN+ on a full graph, we can
reconstruct it.

Theorem E.1. Let G = (A,X) be a geometric graph, where A is the full graph on n nodes, and X
is an arbitrary d× n matrix, then one iteration of maximally expressive I-GGNN+ can reconstruct
X .

Proof. Assume we run one iteration of I-GGNN+. Then, for each node i, we have

f t
(
{{v(t)

j ,xi − xj , | j ∈ [n]}}
)

then up to some rotation Qi ∈ O(3), we know

{{Qi · (xi − xj), | j ∈ [n]}}

Then, we can reconstruct the point cloud by Theorem D.1.

It’s easy to see that I-GGNN+ can simulate our I-GGNN as the norm function is invariant under
multiplication by Q ∈ O(3). But (Pozdnyakov et al., 2020; Pozdnyakov & Ceriotti, 2022) gave
examples of full-graphs each I-GGNN can’t separate, but by what we proved above, maximally
expressive I-GGNN+ can separate them. Thus, I-GGNN+ is strictly more powerful than I-GGNN in
its expressive power.

F APPROXIMATION AND SEPARATION

It is known that a tight connection exists between the approximation of invariant functions and
complete invariant models Hordan et al. (2023).

In the context of our paper, we discussed generic completeness. In particular, we showed in Corollary
5.2 that EGENNET with random parameters is complete on Ggeneric(d,N), which denotes the set
of all geometric graphs G = (A,X) with exactly N nodes, A connected, and X ∈ Rd×n generic.
Accordingly, we can obtain the following theorem:

Theorem F.1. Let K ⊆ Ggeneric(d,N) be a compact set, fsep : K → Rm a continuous function
invariant to rotations, translations, and permutations. Then fsep is injective on K (up to symmetries)
if and only if every continuous invariant f : K → RM can be approximated uniformly on K using
functions of the form N (fsep), where N is a fully connected neural network.

Proof. Assume, on the one hand, fsep is injective on K (up to symmetries). Given a continuous
f : K → RM we want to approximate, then, by Hordan et al. (2023), ∀ϵ > 0 ∃ neural network N :

supG∈K |f(G)−N (fsep(G))| < ϵ

On the other hand, assume by contradiction there exists G1 = (A1,X1) and G2 = (A2,X2) which
are not related by translation, rotation or permutation, such that fsep(G1) = fsep(G2).

Define f(G) = Infg∈G∥(A,X) − g · (A1,X1)∥, where G = (A,X), and G is the group of
permutations, rotations, and translation. Note that this minimum is obtained as the product group of
rotation and permutation is compact, and the translation can be bounded by the sum of the norms of the
two graphs. Then, according to the Tikhonov theorem, our group is compact, and we take a minimum
continuous function over a compact set. Note that f is an invariant, continuous function such that
f(G1) = 0, and f(G2) > 0, but for each neural network N , N (fsep(G1)) = N (fsep(G1)), and we
can’t approximate our desired function f with ϵ = f(G2)

2 accuracy, yielding a contradiction.
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G PROOFS

In this section, we restate and prove theorems that have not been fully proved in the main text.
Theorem 3.1. [expressive power of I-GGNN] Let d be a natural number. Let F be an I-GGNN. Let
A be a graph not generically globally rigid on Rd. Then, F generically fails to identify A.
Conversely, if A is generically globally rigid on Rd and F is a maximally expressive I-GGNN with
depth T = 1, then F generically identifies A.

Proof. Let G = (A,X) be a geometric graph, and assume that X is generic. First, we assume that
A is generically globally rigid. Assume that there is some geometric graph G′ which is assigned the
same global feature as G after a single iteration. We need to show the two graphs are geometrically
isomorphic. The multisets of si and s′i features in equation 2 are equal, and in particular, both graphs
have the same number of nodes n, and by relabeling if necessary, we can assume that si = s′i for all
i = 1, . . . , n. This equation, in turn, implies that for every node i,

{{∥xij∥, j ∈ Ni}} = {{∥x′
ij∥, j ∈ N ′

i}}
In particular, the i’th node in G and G′ have the same degree, so both graphs have the same number
of edges. For any fixed (i, j) which is an edge of G, the distance ∥xij∥′ will appear exactly once in
the multiset corresponding to s′i and s′j and will not appear in the other multisets. This observation
implies that (i, j) is also an edge in the graph G′. Since the number of edges in both graphs is the
same, we deduce that A = A′. By global rigidity, we deduce that all pairwise distances are the same,
and by Satorras et al. (2021), the two graphs are geometrically isomorphic.

We mention a theorem proved in Gortler et al. (2010) for the other direction. Gortler et al. (2010)
proved A is globally rigid if exists generic X such that (A,X) is globally rigid. Thus if A is not
globally rigid, for every generic X , there exists X ′ for whom distances along edges are preserved,
but X and X ′ aren’t geometrically isomorphic. By immediate induction on the number of layers, it
can be shown that any I-GGNN cannot separate any pair of geometric graphs whose distances across
edges are preserved. This concludes the proof.

Theorem 4.1. [expressive power of E-GGNN] Let d be a natural number. Let F be an E-GGNN. Let
A be a disconnected graph. Then, F generically fails to identify A.
Conversely, if A is connected and F is a maximally expressive E-GGNN with depth T ≥ d+ 1, then
F generically identifies A.

Proof. Assume A is not connected. Let X ∈ Rn×d. Let V1,V2 be two connected components of
the graph, and let G′ be the geometric graph whose adjacency matrix is A′ = A, and where X ′ is
obtained from X by applying a non-trivial rotation Q not in the symmetry group of V2 : x̂i = Q · xi

for all i ∈ V1, and setting x̂j = xj for all j ∈ V2. The two graphs are not geometrically isomorphic
by construction. However, for any E-GGNN, we can easily see recursively that all features v

(t)
i

constructed from X and X ′, respectively, will be the same, and therefore, the E-GGNN will assign
the same global features to G and G′.

Now assume A is connected, and we are given two geometric graphs G and Ĝ in
(Ggeneric(d,N),GN (d)). By assumption, X is generic. Assume that the E-GGNN assigns the
same value of G and Ĝ. We need to show that the two graphs are geometrically isomorphic. First, we
note that since the two graphs have the same global features, they have the same number of nodes n,
and by applying relabeling if necessary, we can assume that

si = ŝi, ∀i = 1, . . . , n

which implies that for every node i there is some rotation Ri ∈ O(d) such that v(T )
i = Riv̂

(T )
i . By

rotation equivariance, we know that Riv̂
(T )
i is the feature that we would have obtained by applying

the maximally expressive E-GGNN to Ri · X̂ . We deduce that

{{v(T−1)
j ,xi − xj |j ∈ Ni}} = {{Riv̂

(T−1)
j , Ri(x̂i − x̂j)|j ∈ N̂i}}

The equality of multisets above implies that the node i has the same degree in A and Â. Since this is
true for all nodes, A and Â have the same number of edges. Moreover

{{∥xi − xj∥, j ∈ Ni}} = {{∥xi − xj∥, j ∈ N̂i}}
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Since X is generic, for every edge (i, j) ∈ A the distance ||xi − xj || will appear only in the 1-hop
multi-sets corresponding to the i and j nodes. Thus, they will appear only once in the 1-hop multisets
corresponding to the second graph’s i and j nodes. This implies that (i, j) is an edge in Â too, and

Ri(x̂i − x̂j) = xi − xj ,∀j ∈ Ni.

Since the two graphs have the same number of edges, it follows that A = Â. We now show
recursively that for all 1 ≤ t ≤ T − 1, we have vT−t

j = Riv̂
T−t
j and xi − xj = Ri(x̂i − x̂j) for all

j that is a t-hop neighbor of i (we say j is an t-hop neighbor of i, if there is a path of length at most t
from i to j).

We have already proved the claim for t = 1. Now we assume correctness for t and show for t+ 1.
Since by the induction hypothesis we know that vT−t

j = Riv̂
T−t
j for every j which is t hop neighbor

of i, we deduce the multi-set equality

{{vT−(t+1)
k ,xj − xk|k ∈ Nj}} = {{Riv̂

T−(t+1)
k , Ri(x̂j − x̂k)|k ∈ Nj}}

Since we know that the pairwise norms of X are all distinct to to the genericity of X , and also that
for every edge (j, k) we have the norm equality ∥xj − xk∥ = ∥x̂j − x̂k∥, we see that necessarily

v
T−(t+1)
k = Riv̂

T−t+1
k , and xj − xk = Ri(x̂j − x̂k).

Now, every k, an t+ 1 hop neighbor of i, is connected by an edge to a node j, an t hop neighbor of i.
By the induction assumption we know that xi − xj = Ri(x̂i − x̂j). We deduce that

xi − xk = xi − xj + xj − xk = Ri(x̂i − x̂j + x̂j − x̂k) = Ri(x̂i − x̂k)

for all t + 1 hop neighbors of i. Continuing with this argument inductively, we see that for all
T = d+ 1 hop neighbors k of i, we obtain

xi − xk = Ri(x̂i − x̂k)

and in particular
∥xi − xk∥ = ∥x̂i − x̂k∥

for all d + 1 hop neighbors. By global generic rigidity of the d + 1 power graph of a connected
graph (Jordán & Tanigawa, 2022; Cheung & Whiteley, 2005), it follows that the two graphs are
geometrically isomorphic. Thus, as previously, we reconstructed the combinatorial graph, and we
now reconstructed the geometric graphs; we are done.

G.1 PROOF OF MAXIMAL EXPRESSIVITY OF EGENNET

This subsection is devoted to proving Theorem 5.1 on the generic maximal expressivity of EGENNET.
This proof will require some background on the finite witness theorem from Amir et al. (2023):

Background on the finite witness theorem Before we prove the theorem, we review some
definitions and results from Amir et al. (2023), which we will use for the proof. The main tool we
require from Amir et al. (2023) is Theorem A.2 from that paper, the finite witness theorem. We state
it here in the special case where the parameter space is Euclidean, and the function F is analytic in
the parameters:
Theorem G.1 (Finite Witness Theorem, Amir et al. (2023)). Let M ⊆ Rp be a σ-sub-analytic set
of dimension D. Let F : M × Rq → R be a σ-sub-analytic function, and assume that F (z;θ) is
analytic as a function of θ for all fixed z ∈ M. Define the set

N = {z ∈ M| F (z;θ) = 0, ∀θ ∈ Rq}.

Then for Lebesgue almost every 5
(
θ(1), . . . ,θ(D+1)

)
∈ Rq×(D+1),

N = {z ∈ M| F (z;θ(i)) = 0, ∀i = 1, . . . D + 1}. (8)

5The original statement in Amir et al. (2023) discussed generic
(
θ(1), . . . ,θ(D+1)

)
∈ WD+1, in the sense

defined in Amir et al. (2023). In particular, this implies the "Lebesgue almost every" statement we used here.
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Remark: We note that this theorem also holds when the output of F is a vector in Rd, which is what
we will use in our proofs below. To see the theorem holds for a function F̂ : M× Rq → Rd, we can
define a new parametric function F with additional parameters a ∈ Rd,

F (z;θ, a) = ⟨F̂ (z;θ), a⟩

and use the theorem for F , which has scalar output, to deduce the theorem for F̂ .

The finite witness theorem assumes the domain is a σ sub-analytic set. The full definition of σ-sub-
analytic sets is rather involved, and we refer the reader to Appendix A in Amir et al. (2023) for a full
definition. Rather than giving a full definition here, we will recall the properties of these sets, which
we will need.

The class of σ subanaltyic sets in Rd is rather large. In particular, it contains all open sets in Rd, all
semi-algebraic sets in Rd (sets defined by polynomial equalities and inequalities, like spheres and
linear sub-spaces), as well as sets defined by analytic equality and inequality constraints. The class of
σ subanaltyic sets is closed under countable unions and finite intersections.

σ-sub-analytic sets are always a countable union of smooth manifolds. The dimension of a σ
sub-analytic set is the maximal dimension of the manifolds composing it.

A σ-sub-analytic function is a function whose graph is a σ sub-analytic set. Analytic functions are,
in particular, σ-sub-analytic. When a σ sub-analytic function is applied to a σ sub-analytic set, the
image is a σ sub-analytic set whose dimension is no larger than the dimension of the σ sub-analytic
domain Amir et al. (2023).

We can now restate and prove Theorem 5.1:

Theorem 5.1. Let d,N, T be natural numbers. Let F be a maximally expressive E-GGNN of depth
T , and let Fθ denote the EGENNET architecture with depth T and C = 2Nd+1 channels. Then, for
Lebesgue almost every choice of network parameters θ, we have that for all generic G, Ĝ ∈ GN (d),

F (G) = F (Ĝ) ⇐⇒ Fθ(G) = Fθ(Ĝ)

Proof. In the proof, we consider the set of all generic geometric graphs in GN (d). We will prove
the theorem for an even larger set: the set Gdistinct

N (d) of all geometric graphs in GN (d), which
additionally satisfies that for any distinct edges (i, j) and (s, t) in the graph, 0 < ∥xi − xj∥ ̸=
∥xs − xt∥. Since polynomial inequalities with integer coefficients define it, we note that Gdistinct

N (d)
contains all generic graphs with ≤ N nodes. The advantage of considering Gdistinct

N (d) is that the set
of all geometric graphs in Gdistinct

N (d) of the same cardinality n ≤ N can be thought of as a subset of
Rn×n ⊕ Rn×d. Since a constant number of polynomial inequalities defines it, it is a semi-algebraic
set, and hence, in particular, σ-subanaltyic, so the finite witness theorem can be applied. In contrast,
it is unclear that the set of all generic points of fixed dimension is a σ subanaltyic set.

Our goal is to show that for the networks described in the theorem, for almost every choice of
parameter values, all functions described in the procedure are injective. To be more accurate, let us
introduce some notation given an arbitrary pair of geometric graphs

G = (A,X), Ĝ = (Â, X̂)

in our domain Gdistinct
N (d), we denote the features corresponding to the first graph by v

(t)
i , si and

sglobal as in the main text, and the features corresponding to the second graph by v̂
(t)
i , ŝi and ŝglobal.

The neighborhood of a node k in Ĝ is denoted by N̂k. The number of nodes in the two graphs is
denoted by n and m, respectively.

We need to show that for all t = 0, . . . , T − 1 and all nodes i of G and k of Ĝ,

v
(t+1)
i = v̂

(t+1)
k if and only if {{(xi − xj ,v

(t)
j ), j ∈ Ni}} = {{(x̂k − x̂j , v̂

(t)
j )|j ∈ N̂k}} (9)

si = ŝk if and only if ∃Q ∈ O(d),Qv
(T )
i = v̂

(T )
k (10)

sglobal = ŝglobal if and only if {{si|i = 1, . . . , n}} = {{ŝi|i = 1, . . . ,m}} (11)
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Our first step for reaching this result is using the finite witness theorem, similar to what was done in
Hordan et al. (2023). We note that the features we are interested in are composed of C = 2Nd+ 1
coordinates, denoted by q = 1, . . . , C, which are of the general form

v
(t+1)
i,q − v̂

(t+1)
i,q = Ft(X,V (t), X̂, V̂ (t);αq,t), t = 0, . . . , T − 1 (12)

s
(t+1)
i,q − ŝ

(t+1)
i,q = FT (V

(T ), V̂ (t);αq,T ) (13)

sglobalq − ŝglobalg = FT+1(s1, . . . , sn, ŝ1, . . . , ŝm;αq,T+1) (14)

where αq,t denote the parameters of the appropriate function, V (t) is the concatenation of all n
features v(t)

i , and V̂ (t) is the concatenation of all m features v̂(t)
k . In essence, we claim that by the

finite witness theorem, for almost every choice of network parameters, we will have the following
equalities for all geometric graphs G, Ĝ satisfying the theorem’s assumptions:

v
(t+1)
i − v̂

(t+1)
k = 0 if and only if Ft(X,V (t), X̂, V̂ (t);αt) = 0,∀α (15)

si − ŝk = 0 if and only if FT (V
(T ), V̂ (t);α),∀α (16)

sglobal − ŝglobal = 0 if and only if FT+1(s1, . . . , sn, ŝ1, . . . , ŝm;α) = 0, ∀α (17)

In other words, the finite witness theorem enables us to reduce the problem to the problem of showing
that some choice of network parameter exists, which enables separation.

Some explanation is needed as to the details of how the finite witness theorem is applied. It is
convenient to think of the network parameters being chosen recursively. For t = 0, the finite witness
theorem allows us to choose the parameters αq,0, q = 1, . . . , C in equation 12 so that the theorem
applies. Formally, to do this, we need to split into a finite number of cases: once the number of nodes
n and m in the two graphs are specified, as well as the combinatorial graphs A, Â and the nodes i, k,
we can think of F0 as a function which is analytic in the parameters, and σ-subanalytic on its domain
(the norms used in the network are semi-algebraic functions, and hence σ-subnaltyic functions. All
other functions used in the network are analytic). The function F0 operates on the domain of pairs
X ∈ Rd×n, X̂ ∈ Rd×m which satisfy a finite number of polynomial inequalities. This domain is
semi-algebraic and has dimensions d(n +m) ≤ 2Nd. Therefore, we can apply the finite witness
theorem with C = 2Nd + 1. Next, once the parameters αq,t are chosen for all t < t′, we can
choose the parameters αq,t′ again using the finite witness theorem. Central to the usage here is that,
once the previous parameters were fixed, the features in the t′ step are an image of a σ-subanaltyic
function applied to a pair (X, X̂). Therefore, the intrinsic dimension of the t′ generation features is
no larger than 2Nd+ 1 = C (for more on this argument, see Hordan et al. (2023)). This concludes
the recursive definition of parameter choice. By Fubini’s theorem, one can verify that, in fact, for
Lebesgue almost every parameter will be ’good.’ It remains to show that

The right hand side of equation 9 holds if and only if the right hand side of equation 15 holds
(18)

The right hand side of equation 10 holds if and only if the right hand side of equation 16 holds
(19)

The right hand side of equation 11 holds if and only if the right hand side of equation 17 holds
(20)

We now reformulate these three claims as three lemmas.

We use some fixed analytic non-polynomial function σ in the following lemmas. We say that ϕ is a
basic analytic network if it is of the form

ϕ(s; a, b) = σ(a · s+ b)

for some a ∈ Rd, b ∈ R.

Our first lemma will show 18, where zj will assume the role of xi − xj .

Lemma G.2. Let z1, . . . , zn and ẑ1, . . . , ẑm be non-zero vectors in Rd. Additionally assume that
∥z1∥ < ∥z2∥ < . . . < ∥zn∥ and ∥ẑ1∥ < ∥ẑ2∥ < . . . < ∥ẑm∥.
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Let v1, . . . ,vn and v̂1, . . . , v̂m be matrices in Rd×C , and denote vi = (vi,1, . . . , vi,C) and v̂ =

(v̂i,1, . . . , v̂i,C). If for all basic analytic neural networks ϕ(0), . . . , ϕ(C) we have that

n∑
j=1

(
ϕ(0)(∥zj∥)(zj) +

C∑
c=1

ϕ(c)(∥zj∥)vjc

)
−

m∑
j=1

(
ϕ(0)(∥ẑj∥)(ẑj) +

C∑
c=1

ϕ(c)(∥ẑj∥)v̂jc

)
= 0

(21)

then
{{(z1,v1), . . . (zn,vn)}} = {{(ẑ1, v̂1), . . . (ẑm, v̂m)}}

We note that this lemma is slightly stronger than we need since, in contrast with the original MPNN,
we do not use the norms of vi,c as features.

Our second lemma will show 19

Lemma G.3. Let v = (v1, . . . , vC) ∈ Rd×C and v̂ = (v̂1, . . . , v̂C) ∈ Rd×C . If for all θ ∈ RC we
have that

∥
C∑

c=1

θcvc∥ = ∥
C∑

c=1

θcv̂c∥

then there exists an Q ∈ O(d) such that Qvc = v̂c for all c = 1, . . . , C.

For proof of this lemma, see Section 3.2 in Dym & Gortler (2024).

Our third lemma will show 20

Lemma G.4. Let s1, . . . , sn and ŝ1, . . . , ŝm be vectors in Rd.

If for all basic analytic ϕ, we have that
∑n

i=1 ϕ(si) =
∑m

i=1 ϕ(ŝi) then {{s1, . . . , sn}} =
{{ŝ1, . . . , ŝm}}.

For proof of this lemma, see Proposition 3.2 in Amir et al. (2023).

It remains to prove Lemma G.2. We note that if equation 21 holds for all basic analytic networks
ϕ(c), c = 0, . . . , C, This equality is also true if each ϕ(c) is a linear combination of a finite number
of shallow neural networks. Next, since we are only considering the values of ϕ(c) on a fixed finite
collection of inputs, and since linear combinations of shallow neural networks with analytic (or even
continuous) non-polynomial functions can approximate any continuous function uniformly on a
compact set (and in particular on a finite set) Pinkus (1999), it follows that equation G.2 holds for all
continuous ϕ(c).

Next, we consider the norm multisets:

S = {{∥z1∥, . . . , ∥zn∥}}, Ŝ = ∥ẑ1∥, . . . , ∥ẑm∥.

We claim that S = Ŝ. We first show that S ⊆ Ŝ. Fix some s in {1, . . . , n}, we need to show that
∥zs∥ ∈ Ŝ. We define a continuous function fs such that fs(∥zs∥) = 1 and fs(∥zi∥) = 0 = fs(∥ẑj∥)
for all i ̸= s, and for all j = 1, . . . ,m such that the norms ∥ẑj∥ and ∥zs∥ are not equal. We claim
that there exists j for which the norms are equal. Otherwise, we choose the continuous functions
ϕ(c), c = 1, . . . , C to be the zero functions, and choose ϕ(0) to be fs. This will lead to the equation
zs = 0 in G.2, which contradicts the assumption that zs ̸= 0, so we see that S ⊆ Ŝ. A symmetric
argument shows that Ŝ ⊆ S and so S = Ŝ. We deduce that n = m and ∥zi∥ = ∥ẑi∥ for all
i = 1, . . . , n. We can now conclude the proof: fix an arbitrary s in {1, . . . , n}. Choose ϕ(0) = fs

and take the other ϕ(c) to be zero. Then G.2 gives

zs − ẑs = 0

Similarly, for an arbitrary index q in {1, . . . , C}, we can choose ϕ(q) = fs and ϕ(c) = 0 for all c ̸= q
in {0, 1, . . . , C}. In this case G.2 gives

vjq − v̂jq = 0.

This concludes the proof of the lemma and the proof of the theorem.
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G.2 COMPLEXITY

Running EGENNET for T iterations with C channels requires O(C · d · degi) elementary arithmetic
operation for every node i, at every iteration t. Overall, this requires O(C · d · N · davg · T ) to
run EGENNET, where davg denotes the average degree in the graph. This is linear in N , which
dominates the other terms in the complexity bound. If we set C = 2Nd+ 1 as required for maximal
expressivity in Theorem 5.1, then the complexity will be quadratic in N , which is less by a factor
of n then (Delle Rose et al., 2023; Li et al., 2024a), and by a factor of n2 than Hordan et al. (2023).
We also note that the cardinality in the finite witness theorem, the main tool for our proof, depends
on the intrinsic dimension of the input and not the ambient dimension. Thus, under the standard
’manifold assumption’ Cayton et al. (2008), which asserts that data in learning tasks typically resides
in a manifold of low dimension r, embedded in a high dimensional Euclidean space, the proof can be
adapted to show that the number of channels necessary for maximal expressivity is only 2r+1. Thus,
under the manifold assumption, the complexity of EGENNET is linear in the number of nodes N .

H ADDING NODE AND EDGE FEATURES

This section explains how we incorporate node and edge features into our architecture and theory.

A featured geometric graph is a 4-tuple G = (A1,X1,F1,E1) where as before A is an n by n
adjacency matrix, and X is a n by d matrix denoting node positions. F is a n by dn matrix denoting
node features (without the action of rigid motions), and E is a n× n× de tensor of edge features.
We denote the feature at a node i and edge (i, j) by fi (a column of F ) and fi,j , respectively.

We incorporate edge and node features into EGENNET by slightly modifying the aggregation step to

v
(t+1)
i,q =

∑
j∈Ni

ψ(t,q)
n (fi) · ψ(t,q)

e (fi,j) · (ϕ(t,q,0)(∥xi − xj∥, ∥vj∥)(xi − xj)+

k∑
c=1

ϕ(t,q,c)(∥xi − xj∥, ∥vj∥)v(t)jc )

In our analysis we will take ψ(t,q)
n : Rdn → R and ψ(t,q)

e : Rde → R to be simple linear functions

ψ(t,q)
n (fi) = a(t,q)n · fi + b(t,q)n , ψ(t,q)

e (fi,j) = a(t,q)e · fi,j + b(t,q)q

In practice, in our code, we use a slightly more complex function involving radial basis functions as
in Li et al. (2024a).

To extend our analysis to the case of node and edge features, we first extend our definition of
isomorphism of geometric graphs to include edge and node features.

Definition H.1. Given two featured geometric graphs

G = (A1,X1,F1,E1), H = (A2,X2,F2,E2)

G and H are featured geometrically isomorphic if there exists a permutation matrix P , a rotation
matrix Q, and a translation t such that:

1. A2 = P ·A1 · P T .

2. X2 = P ·X1 ·Q+ t

3. F2 = P · F1

4. E2 = P ·E1 · P T

where P ·E1 · P T should be understood as operating element-wise on the ne matrices of dimension
n× n which compose the tensor E.

We can then prove the following theorem: a generalization of Theorem 5.2 to the featured graph case.
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Theorem H.2. Let N, d, de, dn be natural numbers. Let Fθ denote the EGENNET architecture for
featured geometric graphs, with depth T = d + 1 and C = 2Nd + de + dn + 1 channels. Then
for Lebesgue almost every θ, we have for all featured graphs G,G′ ∈ GN (d) which are generic and
connected,

Fθ(G) = Fθ(Ĝ) ⇐⇒ G, Ĝ are featured geometrically isomorphic

We note that the assumption that the geometric graph is generic is only on the position coordinates
X . The statement will hold for all node and edge features in this case.

Proof. We explain how to modify the proof of Theorem 5.1 to obtain this result. First, we note that
the number of channels was adapted to take into account the higher dimensionality of the data now
that node and edge features are included. The finite witness theorem can be applied with this adapted
dimension, as explained in Theorem 5.1. Thus, we only need to show that, for given featured graphs
Ĝ,G satisfying the conditions of the theorem, if for all θ we have that Fθ(G) = Fθ(Ĝ), then G and Ĝ
are featured geometrically isomorphic.

Now, let us assume that, for all θ we have Fθ(G) = Fθ(Ĝ). We can obtain all the results we had for
the case where there were no additional features by choosing the parameters

a(t,q)n = 0, b(t,q)n = 1, a(t,q)e = 0, b(t,q)e = 1

so that ψ(t,q)
n = 1 = ψ

(t,q)
e , and the effect of node and edge features on the architectures is ’cancelled

out’. In particular, we can deduce that, after an appropriate permutation and rigid motion are applied
to the data, the graphs have the same number of nodes n, and for all node i and iteration t, we have

v
(t)
i = v̂

(t)
i ,xi = x̂i

Now, by setting ϕ(t,q,c) = 0 for c ≥ 1, and considering ϕ(t,q,0) which depend only on the first
coordinate, we can deduce that∑
j∈Ni

[
(ψ(t,q)

n (fi) · ψ(t,q)
e (fi,j)− ψ(t,q)

n (f̂i) · ψ(t,q)
e (f̂i,j)

]
·
(
ϕ(t,q,0)(∥xi − xj∥)(xi − xj)

)
= 0

for all choices of parameters of the functions ψ(t,q)
n , ψ

(t,q)
e and ϕ(t,q,0). As we showed in the proof of

Theorem 5.1, this equation implies that this equation will also hold for any continuous ϕ(t,q,0) (and
any choice of parameters of the other functions) since the span of all such basic analytic functions
is dense. In particular, for fixed i, j, we can choose ϕ(t,q,0) to be a continuous functions with
ϕ(t,q,0)(∥xi − xj∥) = 1 and ϕ(t,q,0)(∥xi − xk∥) = 0 if k ̸= j. Inserting this into the last equality
we obtain [

ψ(t,q)
n (fi) · ψ(t,q)

e (fi,j)− ψ(t,q)
n (f̂i) · ψ(t,q)

e (f̂i,j)
]
· (xi − xj) = 0

by genericity xi − xj ̸= 0, and so we deduce that

ψ(t,q)
n (fi) · ψ(t,q)

e (fi,j)− ψ(t,q)
n (f̂i) · ψ(t,q)

e (f̂i,j) = 0

for every choice of function parameters. Setting a(t,q)n = 0, b
(t,q)
n = 1, b

(t,q)
e = 0 we obtain that

ae · (fij − f̂ij) = 0, ∀ae ∈ Rde

and therefore fij − f̂ij = 0. Similarly, setting a(t,q)e = 0, b
(t,q)
e = 1, b

(t,q)
n = 0 we obtain that

an · (fi − f̂i) = 0, ∀an ∈ Rdn

and therefore fi − f̂i = 0. This concludes the proof of the theorem.

I ADDITIONAL EMPIRICAL RESULTS

k-chain results Here, we show the results of the k-chain experiment for k = 4. As we can see,
only our method EGENNET and GVP Jing et al. (2020) succeed using the minimal number of blocks.
This experiment illustrates our model’s ability to distinguish very sparse graphs. Next, we show
results for k = 12. As can be seen, we are the only ones succeeding with the minimal number of
blocks, and other models need a higher number of blocks to succeed in distinguishing.
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(k = 4-chains) Number of layers
GNN Layer ⌊k

2 ⌋ ⌊k
2 ⌋+ 1 = 3 ⌊k

2 ⌋+ 2 ⌊k
2 ⌋+ 3 ⌊k

2 ⌋+ 4

E
qu

iv
.

GWL 50% 100% 100% 100% 100%
E-GNN Satorras et al. (2021) 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 100.0 ± 0.0

GVP-GNN Jing et al. (2020) 50.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

TFN Thomas et al. (2018) 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 80.0 ± 24.5 85.0 ± 22.9

MACE Batatia et al. (2022) 50.0 ± 0.0 90.0 ± 20.0 90.0 ± 20.0 95.0 ± 15.0 95.0 ± 15.0

EGENNET(ours) 50.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

In
v.

IGWL 50% 50% 50% 50% 50%
SchNet Schütt et al. (2018) 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0

DimeNet Gasteiger et al. (2020b) 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0

SphereNet Liu et al. (2021) 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0

SchNet full graph
4 Schütt et al. (2018) 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

SchNetglobal feat
4 Schütt et al. (2018) 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

Table 3: Separation Learning of 4-chain paths Figure 2. We show the learned accuracy over ten trials
for each model, depending on the number of blocks. We show the minimal needed number of blocks
(3) is sufficient for separation, and only Jing et al. (2020) also succeeded (among equivariant models
working on the sparse graph) all 10 trials using 3 blocks.

(k = 12-chains) Number of layers
GNN Layer ⌊k

2 ⌋ ⌊k
2 ⌋+ 1 ⌊k

2 ⌋2 ⌊k
2 ⌋+ 3 ⌊k

2 ⌋+ 4

E
qu

iv
.

Maximally expressiveness E-GGNN 50% 100% 100% 100% 100%
E-GNN Satorras et al. (2021) 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 95 ± 15.0

GVP-GNN Jing et al. (2020) 50.0 ± 0.0 50.0 ± 0.0 60.0 ± 20.0 50.0 ± 0.0 60.0 ± 20.0

TFN Thomas et al. (2018) 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0

MACE Batatia et al. (2022) 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0

EGENNET(ours) 50.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

In
v.

Maximally expressiveness I-GGNN 50% 50% 50% 50% 50%
SchNet Schütt et al. (2018) 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0

DimeNet Gasteiger et al. (2020b) 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0

SphereNet Liu et al. (2021) 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0

SchNetfull graph
4 Schütt et al. (2018) 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

SchNetglobal feat
4 Schütt et al. (2018) 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

Table 4: Separation Learning of 12-chain paths Figure 2. We show the learned accuracy over ten
trials for each model depending on the number of blocks. As we can see, we are the only ones that
succeed with the minimal number of blocks (7), and other models need many more layers to show
high Performance.

Hard examples This section presents the results mentioned in Section 6.1. We use a dataset of four
difficult-to-separate pairs of point clouds. Three (Hard1,Hard2,Hard3) are taken from Pozdnyakov
et al. (2020). The last pair, ’Harder,’ is taken from Pozdnyakov & Ceriotti (2022) and is an example of
a non-isomorphic pair that I-GGNN models cannot distinguish. We show we succeeded in separating
all tuples with a probability of 1. The tested models are EGENNET, GramNet Hordan et al. (2023),
GeoEGNN Hordan et al. (2023), EGNN Satorras et al. (2021), LinearEGNN, MACE Batatia et al.
(2022), TFN Thomas et al. (2018), DimeNet Gasteiger et al. (2020b), GVPGNN Jing et al. (2020)
and are taken from Hordan et al. (2023).

Chemical property experiments with full statistics the table for the chemical property prediction
tasks in the main text, Table 6, was produced using the protocol from Zhu et al. (2024). In particular,
each method was run with three different seeds. The seed that did best on the validation set was
chosen, and its results on the test set were reported.

Table 6 presents each task’s mean and standard deviation over 3 seeds. As we can see, in most tasks,
the standard deviation is rather low, and the results are qualitatively similar to those obtained in Table
2. In particular, in the tasks in the Kraken and BDE datasets, we outperform the competitors, often
by a large margin. In the Drugs 75K, we obtain comparable, but somewhat higher, results than the
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Point Clouds Hard1 Hard2 Hard3 Harder

R
es

ul
ts

GramNet 1.0 1.0 1.0 1.0
GeoEGNN 0.998 0.97 0.85 0.899
EGNN 0.5 0.5 0.5 0.5
LinearEGNN 1.0 1.0 1.0 0.5
MACE 1.0 1.0 1.0 1.0
TFN 0.5 0.5 0.55 0.5
DimeNet 1.0 1.0 1.0 1.0
GVPGNN 1.0 1.0 1.0 1.0
EGENNET (ours) 1.0 1.0 1.0 1.0

Table 5: Results on challenging point clouds Pozdnyakov & Ceriotti (2022); Pozdnyakov et al. (2020).
The table shows the performance of different models on progressively more difficult tasks (Hard1 to
Harder).

best method (while in Table 2, in two of three Drugs-75K cases, our results were the best by a small
margin).

Time measurements To compare our running time with other models, we measured the execution
time for each model on the 12-chain task with all models using 128 hidden feature size. The results 7
show that our running time is on par with the competitors.

Norm Accuracies To heuristically estimate ‘how generic’ the molecules in the chemical property
datasets (Axelrod & Gomez-Bombarelli, 2022; Gensch et al., 2022; Meyer et al., 2018) we considered
are, we computed all norms of atoms in each (centralized) molecule and counted the number of
unique norms relative to the total number of points. We considered a norm unique if its distance
from all other norms exceeded a specified threshold µ, and considered various threshold values. The
results 8 indicate that the norms exhibit considerable variation, suggesting that the molecules are
close to being generic. This supports the conjecture stated in the main text that the surprising success
of our simple method, compared to more expressive methods, is related to the near-genericity of the
molecules in these datasets.
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Category Model IP EA χ B5 L BurB5 BurL BDE

1D Random Forest 0.4987±0.0037 0.4747±0.0022 0.2732±0.0031 0.4760±0.0041 0.4303±0.0090 0.2758±0.0180 0.1521±0.0149 3.03±0.27

1D LSTM 0.4788±0.0024 0.4648±0.0002 0.2505±0.0050 0.4879±0.0280 0.5142±0.0411 0.2813±0.0041 0.1924±0.0028 2.82±0.07

1D Transformer 0.6617±0.0023 0.5850±0.0031 0.4073±0.0006 0.9611±0.0813 0.8389±0.0431 0.4929±0.0369 0.2781±0.0207 10.08±0.64

2D GIN 0.4354±0.0029 0.4169±0.0032 0.2260±0.0017 0.3128±0.0264 0.4003±0.0341 0.1719±0.0031 0.1200±0.0040 2.63±0.22

2D GIN-VN 0.4361±0.0059 0.4169±0.0083 0.2267±0.0002 0.3567±0.0031 0.4344±0.0416 0.2422±0.0033 0.1741±0.0109 2.74±0.24

2D ChemProp 0.4595±0.0028 0.4417±0.0045 0.2441±0.0012 0.4850±0.0068 0.5452±0.0454 0.3002±0.0086 0.1948±0.0138 2.66±0.14

2D GraphGPS 0.4351±0.0049 0.4085±0.0055 0.2212±0.0054 0.3450±0.0324 0.4363±0.0133 0.2066±0.0115 0.1500±0.0138 2.48±0.19

3D SchNet 0.4394±0.0062 0.4207±0.0021 0.2243±0.0089 0.3293±0.0068 0.5458±0.0341 0.2295±0.0111 0.1861±0.0095 2.54±0.00

3D DimeNet++ 0.4441±0.0087 0.4233±0.0072 0.2436±0.0075 0.3510±0.0107 0.4174±0.0397 0.2097±0.0160 0.1526±0.0072 1.45±0.03

3D GemNet 0.4069±0.0007 0.3922±0.0024 0.1970±0.0039 0.2789±0.0125 0.3754±0.0086 0.1782±0.0099 0.1635±0.0063 1.65±0.30

3D PaiNN 0.4505±0.0041 0.4495±0.0054 0.2324±0.0040 0.3443±0.0388 0.4471±0.0324 0.2395±0.0176 0.1673±0.0088 2.12±0.09

3D ClofNet 0.4393±0.0084 0.4251±0.0066 0.2378±0.0020 0.4873±0.0093 0.6417±0.0362 0.2884±0.0166 0.2529±0.0052 2.60±0.02

3D LEFTNet 0.4174±0.0007 0.3964±0.0009 0.2083±0.0054 0.3072±0.0012 0.4493±0.0261 0.2176±0.0010 0.1486±0.0095 1.53±0.05

3D EGENNET(Ours) 0.4251±0.0463 0.3935±0.0361 0.2332±0.0248 0.1953±0.0068 0.1956±0.0264 0.1545±0.0019 0.0644±0.0017 0.4455±0.1305

3D + Sampling SchNet 0.4452±0.0080 0.4232±0.0042 0.2243±0.0022 0.3235±0.0147 0.4598±0.0041 0.2086±0.0111 0.1739±0.0142 1.97±0.01

3D + Sampling DimeNet++ 0.4395±0.0032 0.4217±0.0040 0.2432±0.0048 0.3323±0.0320 0.4153±0.0208 0.2237±0.0122 0.1561±0.0241 1.47±0.03

3D + Sampling GemNet 0.4066±0.0015 0.3910±0.0004 0.2027±0.0013 0.2694±0.0221 0.3488±0.0252 0.1796±0.0098 0.1184±0.0033 1.60±0.10

3D + Sampling PaiNN 0.4466±0.0087 0.4393±0.0045 0.2331±0.0037 0.3441±0.0161 0.4358±0.0343 0.2476±0.0070 0.1543±0.0022 1.92±0.01

3D + Sampling ClofNet 0.4430±0.0074 0.4237±0.0005 0.2335±0.0090 0.4524±0.0935 0.5962±0.0074 0.2442±0.0109 0.1756±0.0112 2.51±0.23

3D + Sampling LEFTNet 0.4149±0.0019 0.3988±0.0048 0.2141±0.0084 0.2834±0.0068 0.4407±0.0531 0.2120±0.0097 0.1547±0.0101 1.52±0.00

SchNet Mean 0.4583±0.0019 0.4410±0.0018 0.2371±0.0098 0.3075±0.0151 0.4691±0.0234 0.2282±0.0206 0.1619±0.0062 2.53±0.02

DeepSet 0.4537±0.0065 0.4396±0.0010 0.2385±0.0066 0.3105±0.0381 0.4322±0.0464 0.2249±0.0234 0.1535±0.0076 2.29±0.22

Attention 0.4556±0.0075 0.4382±0.0125 0.2380±0.0007 0.2704±0.0187 0.4517±0.0132 0.2024±0.0183 0.1443±0.0043 2.64±0.00

DimeNet++ Mean 0.4488±0.0086 0.4340±0.0079 0.2425±0.0060 0.2630±0.0122 0.3828±0.0331 0.1960±0.0059 0.1268±0.0060 1.79±0.12

DeepSet 0.4126±0.0076 0.3944±0.0034 0.2267±0.0047 0.2889±0.0069 0.3468±0.0090 0.1783±0.0110 0.1339±0.0087 1.75±0.01

Attention 0.4188±0.0024 0.4030±0.0075 0.2325±0.0028 0.3718±0.0300 0.3628±0.0259 0.1899±0.0081 0.1185±0.0105 2.57±0.21

GemNet Mean 0.4505±0.0052 0.4334±0.0023 0.2289±0.0032 0.2635±0.0053 0.3753±0.0036 0.1671±0.0154 0.1587±0.0029 2.19±0.06

DeepSet 0.4187±0.0022 0.4002±0.0012 0.2169±0.0036 0.2313±0.0026 0.3386±0.0269 0.1589±0.0068 0.0947±0.0012 2.25±0.21

Attention 0.4212±0.0017 0.4221±0.0097 0.2260±0.0056 0.2670±0.0026 0.3554±0.0147 0.1769±0.0153 0.1346±0.0075 2.68±0.02

PaiNN Mean 0.4591±0.0024 0.4425±0.0064 0.2360±0.0032 0.2877±0.0252 0.3950±0.0233 0.1817±0.0091 0.1472±0.0039 1.87±0.16

DeepSet 0.4471±0.0071 0.4269±0.0033 0.2294±0.0065 0.2225±0.0218 0.3619±0.0192 0.1693±0.0111 0.1324±0.0091 2.20±0.05

Attention 0.4641±0.0016 0.4567±0.0094 0.2471±0.0049 0.3496±0.0140 0.4109±0.0167 0.2123±0.0005 0.1506±0.0029 2.23±0.12

ClofNet Mean 0.4536±0.0030 0.4301±0.0007 0.2365±0.0075 0.3555±0.0193 0.4485±0.0053 0.2473±0.0076 0.2022±0.0212 2.01±0.08

DeepSet 0.4280±0.0056 0.4033±0.0024 0.2199±0.0073 0.3228±0.0020 0.4742±0.0161 0.2263±0.0249 0.1548±0.0039 2.35±0.04

Attention 0.4330±0.0071 0.4107±0.0048 0.2220±0.0084 0.3734±0.0267 0.4963±0.0286 0.2178±0.0186 0.1690±0.0281 2.66±0.14

LEFTNet Mean 0.4402±0.0062 0.4267±0.0026 0.2183±0.0007 0.2949±0.0001 0.3643±0.0352 0.2098±0.0146 0.1386±0.0007 2.04±0.00

DeepSet 0.4167±0.0043 0.3953±0.0000 0.2069±0.0022 0.2644±0.0130 0.3866±0.0270 0.2023±0.0026 0.1441±0.0042 2.51±0.30

Attention 0.4229±0.0059 0.4067±0.0047 0.2198±0.0011 0.3161±0.0116 0.4324±0.0292 0.2017±0.0023 0.1508±0.0075 2.63±0.15

Table 6: Raw performance data (mean ± standard deviation) of 1D, 2D, 3D, and conformer ensemble
MRL models all taken from Zhu et al. (2024) in terms of absolute test error. Our model is in the 3D
category, named EGENNET.
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Method Time (in secs)

SchNet Schütt et al. (2018) 53.3

DimeNet Gasteiger et al. (2020b) 222.6

Sphere-Net Liu et al. (2021) 360.9

EGNN Satorras et al. (2021) 98.8

GVP Jing et al. (2020) 222.4

TFN Thomas et al. (2018) 268.1

MACE Batatia et al. (2022) 440.6

EGENNET (ours) 112.0

Table 7: Running times of different methods on the 12-chain problem.

Threshold Drugs Kraken BDE

0.0 1.0 1.0 1.0

1e-4 0.9967 0.9804 0.9950

1e-3 0.9678 0.9139 0.9573

1e-2 0.7230 0.5217 0.6698

Table 8: Norms repetition percentages at various thresholds for each dataset.

28


	Introduction
	Setup: Geometric Graph Neural Networks and Rigidity Theory
	Expressive power of I-GGNN
	Expressive power of E-GGNN
	Building a generically maximally expressive E-GGNN
	The µs architecture

	Experiments
	Separation experiments

	Limitation and Future Work
	Related Work
	Implementation details
	Building perfect I-GGNN
	Separation Power of Fully Maximally expressive E-GGNN 
	I-GGNN+
	Approximation and separation
	Proofs
	Proof of Maximal Expressivity of µs
	Complexity

	Adding node and edge features
	Additional Empirical Results

