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ABSTRACT

In this extended abstract we compare the performance of different families of
descriptors — molar composition descriptor, weight composition descriptor and
elemental descriptor — for regression task (prediction of bandgap) and include ex-
amples of a classification task for perovskite oxide materials with general formu-
las ABO3, A2 BB'Og, and A, A_, B, B} _,Og. The best performance was ob-
served for our elemental descriptor which consisted of A-site and B-site element
information on: Shannon’s ionic radius, ideal bond length, electronegativity, van
der Waals radius, ionization energy, molar volume, atomic number, and atomic
mass. The weight composition descriptor showed superior results over a simpler
molar composition descriptor. The results of principal component analysis, re-
gression models with the hyperparameters optimized using an autoML software
and Wasserstein autoencoders are briefly discussed for a possible use in inverse
materials design.

1 INTRODUCTION

Perovskites are one of the most versatile and studied groups of compounds with wide-ranging ap-
plications in electrocatalysis, clean energy conversion, photocatalysis and photovoltaics (Yin et al.|
2019). The atoms in the original perovskite with formula CaTiO3 can be substituted by many other
elements which results in an enormous number of possible compositions and structures (the chem-
ical space) with a wide range of properties. One of the most promising lines of research is the
photocatalytic activity of perovskites for water splitting (Kumar et al., 2021). It is not feasible to
experimentally explore all the element combinations in perovskites in the near future; therefore, the-
oretical predictions of geometric, electronic and catalytic properties represent a burgeoning field of
ongoing research (Gvozdetskyi et al., 2023 Tao et al., 2021).

In the last 10 years, there has been a growing number of available open-access databases containing
experimentally measured and synthetized materials as well as hypothetical compounds. Among
them, prominent examples are the NIST Inorganic Crystal Structure Database and the Materials
Project database that are on track to provide information about a million inorganic materials (Levin,
2018 Jain et al.l 2013). However, the growing number of entries represents a challenge in data
governance, curating data, ensuring data consistency and accuracy. This hinders efforts in applying
machine learning and artificial intelligence techniques in the predictions of unknown compositions.

Many of the state-of-the-art computational studies probe the idealized pure perovskite structures and
predict single, cubic, crystal geometries while experimentalists study a wide range of non-integer
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partial perovskites substitutions. For example, [Talapatra et al|(2021) focused on perovskites with
cubic symmetry and structures with less than 0.50 meV energy above the convex hull calculated
using density functional theory (DFT) in a recent encouraging study of synthesizability and forma-
bility of perovskites. This allowed the authors to probe a well-defined search space exhaustively,
however, this also limits the insights to the structurally ideal compounds and omits a high number of
diverse compounds in the process. |Pilania et al.|(2015) used similar tree-based classification models
and reported encouraging results on a more modest experimental dataset with 354 samples achieving
about 95% average accuracy for the classification task using geometrical descriptors.

For this work, we compiled a specific dataset of single- and double-perovskite compounds with
reported experimental bandgap values and promising catalytic properties for the water splitting re-
action. This dataset opened a unique opportunity for a quantitative study of this narrow group of
materials going beyond the predictions of formability and synthesizability. Next, we developed
3 types of descriptors and highlighted their performance for the bandgap prediction. Finally, we
demonstrated how they can be visualized and transformed for future efficient inverse design appli-
cations.

2 DATA COLLECTION AND DESCRIPTORS

While the ideal single perovskite oxides have a general formula ABO3 and a highly symmetrical
cubic structure, double perovskites have A and B sites each occupied by up to two different cations.
The charge and size difference between the elements in the B site determines the arrangement in the
lattice with the rock salt structure being the most prevalent. In total we have collected experimental
information related to about 85 perovskite-like compounds with promising properties for the water
splitting reaction with the references included in the dataset file (see Appendix[A.T)). The most abun-
dant elements in our data set were iron, bismuth and barium (see Figure E]) In total, 54 compounds
had a unique chemical formula and experimental bandgap value which we decided to investigate
further. The bandgap values ranged between 1.0 and 4.5 eV and this important property for many
applications has been used to test different descriptors for an initial regression task. The parame-
ters and description of the PCA, Wasserstein autoencoders, cross validation, and applied regression
methods is included in Appendix

2.1 DESCRIPTORS

We have compared the performance of several classes of descriptors for regression tasks which are
described below. We have started with two baseline descriptors: molar and weight composition.
To calculate these, we have used only the information about elements present in the A-site, B-site,
chemical formula and elemental weight.

Next, we have investigated the use of various fundamental elemental properties in the formulation
of the descriptor for perovskite materials. Some of these elemental properties were studied in the
past, e.g. ionic radii has been used for calculation of geometrical criteria such as tolerance and
octahedral factors (see formulas [TH4]in Appendix [A.3). To augment these geometrical criteria, we
gathered 8 elemental properties: Shannon’s ionic radius, ideal bond length, electronegativity, van
der Waals radius, ionization energy, molar volume, atomic number, and atomic mass. We have used
the pymatgen API (Ong et al, [2013) to collect the data for up to two elements in the A-site (A and
A’) and two elements in the B-site (B and B’). These values were scaled by the molar composition
of the given element which resulted in a descriptor with 8 x 4 = 32 features. Next, we decided to
investigate multi-site features. We calculated them as products (AB and A’ B’) and ratios (A/B and
A’/ B") of the properties listed above, which resulted in 32 additional features per material.

3 RESULTS AND DISCUSSION

We decided to test the simplest molar and weight composition descriptors first. These two descrip-
tors establish our baseline regression performance against which we can evaluate our more complex
descriptors. The weight composition descriptor has an inherently higher variance than the molar
composition descriptor since any two materials with the same stoichiometry containing different
elements will have the same molar composition but a different weight composition. In Figure
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Table 1: Models and feature processing optimized for different descriptors using TPOT autoML
package. XGB stands for extreme gradient boosting (XGB) regressor. Max. abs. scaling is Maxi-
mum absolute scaling. Pearson corr. coef. is Pearson correlation coefficient. Detailed information
about the models used can be found in scikit-learn documentation (Pedregosa et al.,[2017)).

Pearson corr. coef.

Descriptor (# of features) Model Feature preprocessing Training Testing

Weight composition (39) Random forest Stacking estimator 0.99 0.41

Molar composition (40) Adaptive boosting  Stacking estimator 0.92 0.26

Elemental descriptor (64)  XGB One hot encoding 1.00 0.61

Elemental descriptor (48) XGB Max. abs. scaling + 0.97 0.62
Stacking estimator

Elemental descriptor (32)  XGB Max. abs. scaling 0.98 0.55

we can see that the features within both composition descriptors are not correlated with each other,
which is because these descriptors are rather simple, sparse and lack chemical insight into material
properties. The molar composition of oxygen is a constant 3/5 for all compounds and has been
omitted. In the case of both composition descriptors, only 2, 3 or 4 values are non-zero. This results
in a rather poor performance in the regression task with achieved 0.41 and 0.26 Pearson correlation
coefficients on the testing set for weight and molar composition descriptors, respectively (Table [I)).
The weight composition descriptor achieved a marginally better result than the molar composition
descriptor which might be a reason why it is used in certain domains of materials design, e.g. alloy
discovery (Rao et al.,[2022). The models and feature preprocessing methods were optimized using
the Tree-Based Pipeline Optimization Tool (TPOT) autoML package and are listed in Table [I]

Next, we have investigated the correlation of the different elemental features in Figure ] Since
there are only 2 examples of alloy double perovskites which have two different elements occupying
the B-site and A-site at the same time, the correlations calculated for the sparse A’/B’ and A’B’
composition features do not bring new insights. However, we can conclude that the correlation of
elemental features of the elements in either the A-site or the B-site are above 0.6 (in Figure § from
the top left, the first four diagonal submatrices). Surprisingly, the A elemental properties are highly
correlated with the elemental properties of the second element in the B-site (denoted as B’ in Figure
and the same is true for elemental properties of the second element in the A-site (A’) and the
first element in the B-site (B). The high correlation between features indicates that the information
encoded in the respective features could be similar and therefore redundant.

The feature generation, that is a process of combining different properties, is an active area of re-
search and it can be used to generate new features or reduce the number of features. A successful
example of this is the octahedral factor (ratio of ionic radii of B-site cations and the anion, oxygen)
while a less promising one would be e.g. the ratio of atomic number and atomic weight. To study
these combinations, we generated features denoted as AB and A/ B which are the product and ratio
of the elemental properties of the first elements in the A-site and B-site (see section [2.1)).

We have optimized the model using information of the entire descriptor, [A, A’, B, B’, A/B,
AB, A'/B’, A’ B'] first. Let us inspect the regression results optimized using the autoML software
TPOT in Figure [5] and Table We can see that although the model shows signs of overfitting
when using the descriptor with 64 features, the performance on the test dataset is satisfactory with
Pearson correlation coefficient of 0.61. The reason for overfitting here might have been that the
autoML software evaluated the one hot encoding as the best performing feature preprocessing for
the training set which results in a high number of features and we are dealing with few data points (or
perovskites). To address this, one can use the developed descriptors and ML models here described
in an iterative framework for material discovery using the uncertainty for decision making, Bayesian
optimization or active learning (Lourenco et al.,[2022)). Through the acquisition of new perovskite
examples one might converge to a better ML model. If we drop the synthetic features A’B’ and
A’/B’ (graph B in Figure [3), the overfitting is less severe while maintaining decent correlation
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of 0.62. However, stripping the descriptor of remaining synthetic features AB and A/B slightly
decreases the performance to 0.55. For all three variants and sizes of the elemental descriptor, the
extreme gradient boosting regressor performed the best while the test results were rather robust in
the choice of the feature manipulations resulting in similar performance of one hot encoding and
maximum absolute scaling on these data sets.

If we add also tolerance factors calculated according to equations [TH4] the regression model perfor-
mance does not improve (see Figure [6)) despite the fact these geometrical factors are only weakly
correlated with each other as shown in Figure[/| This can be explained by the fact that the tolerance
factors are calculated using the ionic radii information which is already present in the previously
described descriptor and which does not show larger a contribution or importance as is indicated
by the feature importance results (in Figure [8). The product of atomic numbers of A and B site
is among the most important features with the importance close to 0.20 for both methods. This
indicates that adding electronic information e.g. number of d-electrons might improve the models
further. On average, A-site information is less important than B-site information which reflects the
fact that the data set is focused on double perovskites with doped B-site.

Finally, we have used two unsupervised techniques, Wasserstein autoencoders (WAE) and principal
component analysis (PCA), to visualize our dataset when the elemental descriptor with 64 features
is used. The preliminary results show that autoencoders can cluster our materials according to the
cationic content rather well (see Figure[I} left). We have investigated how the size of the descriptor
changes the principal components next. When we reduce the number of features which are used
as an input for PCA, the representation or latent space rotates but remains qualitatively similar (see
Figure [9). Surprisingly, a visually larger change can be observed when sparse features A’B’ and
A’/ B’ are neglected. However, the results discussed above are not sufficient to comment on which
method provides a more efficient representation of the latent space and a careful evaluation and
hyperparameter optimization of WAE for inverse design applications(Ren et al., [2022)) is planned in
the near future.
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Figure 1: Wasserstein autoencoder results (WAE) on the left and Principal Component Analysis
(PCA) on the right, the standard scaling was applied on 64 elemental features.

4 CONCLUSION

We compared different families of descriptors for the regression and classification tasks for alloy
perovskite oxide materials with a general formula AIA’l_mByB{_yOG. The weight composition
descriptor showed superior results over a simpler molar composition descriptor. The best perfor-
mance for regression tasks was observed for our elemental descriptor which consisted of A-site and
B-site values of: Shannon’s ionic radius, ideal bond length, electronegativity, van der Waals ra-
dius, ionization energy, molar volume, atomic number, and atomic mass. Wasserstein autoencoders
showed promising results for the use in inverse design.
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A.1 DATABASE
Database file which includes references to the experimental works can be downloaded at:

https://github.com/jiri-hostas/EDA-and-ML-for-Perovskites
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A.2 METHODS: EXPLORATORY DATA ANALYSIS, REGRESSION MODELS AND
CLASSIFICATION MODELS

The initial data collection and data management were done using python version 3.9, pandas,
scikit-learn and chemparse (Van Rossum & Drake, 2009; [Wes McKinney, 2010; [Pedregosa et al.,
2017). We explored the performance of popular regression methods using an automated Tree-Based
Pipeline Optimization Tool (TPOT) written in python |Le et al.[|(2020). This software optimizes ma-
chine learning pipelines using genetic programming. We have used default settings, leave one out
cross validation and 10 generations with the size of population 50 which resulted in the evaluation
of 550 ML pipeline configurations for each descriptor.

Since our data set size was limited to 54 compounds, we were not able to afford to use a separate
validation which will be addressed in the future by collecting more data by combining theoretical and
experimental data. We will focus on the discussion of results for two tree-based methods, extreme
gradient boosting and random forest (Chen & Guestrin, [2016j |Breiman), 2001).

We have compared the results of principal component analysis (PCA) and Wasserstein autoencoders
(WAE) (Tolstikhin et al., 2017). While the former method is used primarily for visualization and
data dimension reduction, the latter is a new class of algorithms for building generative models. We
have used both methods to visualize the datasets. PCA is readily available in scikit-learn and we
followed the WAE implementation by [Rao et al,| (2022)) written using the python package pytorch
(Pedregosa et al., 2017; |Paszke et al.,|2019)

A.3 GEOMETRICAL CRITERIA FOR PEROVSKITE FORMABILITY

In the literature, there exist different geometrical criteria for perovskite formability and those listed
below were tested: the tolerance factor calculated as

ra+rx
t= —— 1
V2(rp +7x) M

and octahedral factor

__ sl 5
TR rEt A @)

, where r 4 and rp are ionic radii of the cations and rx is the ionic radii of the anion, oxygen. These
factors can be generalized for double-perovskites resulting in the generalized tolerance factor|Pilania
et al.|(2015)):

r=TB1TE 3)

27"X

and the octahedral mismatch:

Ar=E_TE 4)
2r X

These aforementioned geometrical criteria were used as descriptors in this work. They were calcu-
lated as combinations of ionic radii of the anions and cations present in the perovskite lattice. To
explore descriptors which could be derived using similar feature combinations, we decided to aug-
ment the A, A’, B and B’ elemental descriptors with the product and ratios of these properties (AB,
A’B’, A/B and A’/B’). This approach is similar to the other one-dimensional vector descriptors such
as Magpie |Ward et al.| (2016), where one encodes physical, chemical, electronic, ionic and basic
properties of the material, with the exception that we generate such a vector for each A or B site
separately.

There is a large number of descriptors that can be used to encode 3D arrangement in the crystal
lattice (such as Orbital Field Matrix (Zhoua et al.l|2018), Sine Matrix, Many-body Tensor Represen-
tation and others (Himanen et al., [2020)). However, it was not possible to apply them here without
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making serious assumptions about the structure of the materials since there is only limited structural

information about the majority of the materials studied in this work.

A.4 FIGURES

20

«

= N w 5 I
S S 8 3 3

Number of compounds

o

A B C
Number of compounds Bandgap » 54 compounds with element O
16 @m o
é 14 § 25
g g
Q Q 20
g 10 £
o 8 15
5 ° s
g° L
£, £
3 E]
: —‘_‘_\ -
o
O ®m 8 O 5 £ F © = 10 15 20 25 30 35 40 45 %6125 0.150 0.175 0200 0225 0250 0275 0.300
@ S . . . . . . . . .
m O = Composition / wt.% Composition / wt.%
D E F
17 compounds with element Fe o 16 compounds with element Bi s 13 compounds with element Ba
& Fe I si . Ba

0.10 1 0.20 0.2!

0.00 0.05

.. 0.15
Composition / wt.%

5

[

[ []

0.0

0.1 0.2 0.3 0.4 0.5

Composition / wt.%

0.6

0.0

0.1 0.2 0.3 0.4

Composition / wt.%

0.5

Figure 2: Dataset characteristics: A) Number of perovskites containing the given element; B) Distri-
bution of experimental band gap values in [eV]; and distribution of weight composition for oxygen,
iron, bismuth and barium elements are shown in C, D, E and F, respectively.

0

5

10

15

20

25

0 5 10 15 20 25
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

Figure 3: Correlation matrices for weight (left) and molar (right) composition descriptors with 30
and 29 features, respectively. Oxygen molar composition feature is a constant 3/5 for all perovskites,
so it has been omitted.



Published as a conference paper at ICLR 2023

85 17 85 68 85 85

Figure 4: Correlation matrix for features in the elemental descriptors in the order: A, A’, B, B’,
A/B, AB. The values in red under the matrix are the numbers of non-zero values of the given
feature type for 85 perovskites.
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general tolerance factor and octahedral mismatch. See sections [2.1] and Appendix [A.3] for more

information.
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Figure 7: Correlations between tolerance factor, generalized tolerance factor, octahedral factor, oc-
tahedral mismatch and the experimental bandgap (from the left to the right and the top to the botom).

11



Published as a conference paper at ICLR 2023

4.5

4.0

Train prediction

0.20 4

Feature importance

0.00

Figure 8: Feature importance results for random forest and extreme gradient boosting methods
(XGB). The product of atomic numbers of A and B sites is among the most important features with
the importance close to 0.20 for both methods. On average, A-site information is less important than
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B-site information. Due to the small data set size, overfitting is the main challenge here.
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Figure 9: PCA results for elemental descriptors with 64, 48 and 32 elemental features (described in
section[2.T) in the rows from the top to bottom. In the columns, the data points are colored according
to content of the various elements. Principal components 1 and 2 are on the horizontal and vertical
axis, respectively.
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