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Abstract

We propose a two-stage deep learning framework for the inverse design of rectan-1

gular patch antennas. Our approach leverages generative modeling to learn a latent2

representation of antenna frequency response curves and conditions a subsequent3

generative model on these responses to produce feasible antenna geometries. We4

further demonstrate that leveraging search and optimization techniques at test5

time improves the accuracy of the generated designs and enables consideration of6

auxiliary objectives such as manufacturability. Our approach generalizes naturally7

to different design criteria, and can be easily adapted to more complex geometric8

design spaces.9

1 Introduction10

In our increasingly wireless world, antennas serve as the fundamental link between radio frequency11

(RF) waves and electronic devices, and enable essential functions such as communication, navigation,12

and sensing across diverse systems, including GPS, Wi-Fi, Bluetooth, and cellular networks. Among13

these, patch antennas (metallic patches printed onto dielectric substrates) are particularly attractive14

due to their low cost, low profile, and ease of fabrication. Rectangular patch antennas, in particular,15

are widely utilized in mobile devices and other space-constrained applications [1].16

For a patch antenna to be implemented for a specific use case, its behavior needs to be tuned to17

maximize efficiency. Specifically, the antenna should easily receive and transmit power at certain18

frequency ranges, while minimizing unwanted radiation or reception at other ranges. These frequency19

ranges, each consisting of a center frequency and bandwidth, characterize the frequency response of20

the antenna. Tuning the frequency response of the antenna has the effect of filtering out unwanted21

signals during reception, and maximizing power converted into radiation at the desired frequency22

during transmission.23

However, designing patch antennas for optimal electromagnetic (EM) performance remains a time-24

consuming and iterative process. Engineers typically rely on combinations of analytical approxima-25

tions and full-wave EM simulations to match desired frequency responses [3, 5]. While analytical26

models or lumped circuit approximations can guide preliminary geometric parameter selection, they27

are limited to simple geometries and often yield only coarse solutions [1]. Additionally, adjusting28

one geometric parameter, such as the patch width, can simultaneously affect multiple aspects of the29

antenna’s frequency response, necessitating careful, often tedious manual tuning.30

In this work, we propose a novel two-stage generative framework for the inverse design of rectangular31

patch antennas that leverages variational autoencoders to model distributions over feasible electromag-32

netic responses and corresponding antenna geometries. The framework’s adversarial training process33

enables controlled generation while its probabilistic nature addresses the one-to-many mapping34

challenge inherent to inverse design. Through our experiments, we show that simple search and35
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Figure 1: Overview of our two-stage generative inverse design framework.

optimization techniques employed at test time enhance design accuracy and practicability while36

reducing sensitivity to limited training data. Finally, while demonstrated specifically for rectangular37

patch antennas, we discuss how our approach naturally generalizes to arbitrary design criteria and38

more complex geometric design spaces.39

2 Methodology40

2.1 Problem Setup and Overview41

We consider antennas defined by x = (L,W, p), where L and W are the patch dimensions and p is42

the feed position. Each design x yields a frequency-dependent reflection coefficient S11(f), sampled43

at N = 1000 frequencies. We represent this response as a 1000-dimensional vector y ∈ RN , where44

we convert the response curve to dB.45

We define our design criteria as a set of K desired resonant frequencies fres = {f1, . . . , fK} with46

their corresponding bandwidths BW = {BW1, . . . , BWK} and depths d = {d1, . . . , dK}. A lower47

|S11|dB near a desired frequency band indicates efficient power transfer and radiation, whereas higher48

|S11|dB elsewhere can mitigate interference. This means we are searching for antennas that have49

an idealized target response curve y∗, modeled as a product of Lorentzian notches (Equation (1) in50

Appendix B). Of course, antennas with these exact frequency response curves do not exist in practice51

(at the very least, there will be higher harmonics). So, we only consider regions of the idealized target52

response relevant to our design criteria in our search.53

Our inverse design goal is as follows: given an idealized target response y∗(fres, BW, d), find antenna54

design parameters x̃ such that φEMS(x̃) ≃ y∗, where φEMS represents the forward EM simulation [4].55

Since φEMS is expensive to evaluate and the preimage y∗ 7→ x̃ is not unique, we propose a two-stage56

generative pipeline (see Fig. 1):57

1. Stage 1: Latent Representation of S11-Responses. We train a VAE that encodes y ∈ RN58

into a latent vector zy ∈ R64, capturing the key variations of physically realizable frequency59

responses. At test time, we search the latent space of this VAE to find an approximation ỹ of60

y∗(fres, BW, d).61

2. Stage 2: Conditional Design Generation. We train a conditional VAE (CVAE) whose62

encoder maps x ∈ R3 to zx ∈ R16, and a decoder that maps zx conditioned on the desired63

frequency response ỹ to a design x̃. To ensure x̃ depends both on zx and ỹ (rather than just64

zx), we use an adversarial predictor that discourages zx from leaking information about ỹ.65

At test time, we use this CVAE to decode x̃ from ỹ and zx.66

2.2 Latent Search for Characteristic Target Responses67

Using the idealized target response y∗ computed from (1) in the CVAE can lead to undesirable results68

as it is potentially out of the distribution of realizable y. Instead, we search the VAE latent space to69

find latent variables zy that decode to a physically realizable response ỹ. To find good latent space70

vectors, we perform a gradient-based search over the latent space zy and perform updates using:71

z(t+1)
y = z(t)y − α∇zy

(
∥pθ(y|zy)− y∗∥2masked + λreg∥zy∥2

)
,
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where α is the learning rate. In the loss, we mask y in frequency regions that are irrelevant for our72

desired response curves, ensuring we only penalize differences in regions of interest. We also add a73

regularization term λreg∥zy∥2 to keep the solution near the prior. This iterative optimization yields a74

z∗y whose decoded response ỹ closely approximates y∗ and remains on the manifold of physically75

realizable curves.76

2.3 Controlled Design Generation77

To generate antenna designs x that produce a given frequency response (denoted y using ground78

truth from the dataset during training, and ỹ from Stage 1 at test time), we train a conditional VAE79

(CVAE):80

zx ∼ qφ(zx|x), x ∼ pψ(x|zx, y) ,
where qφ and pψ are feed-forward networks mapping between design parameters and latent variables.81

However, during training, zx may easily learn to encode all information about x needed for recon-82

struction. As noted by [2], this can lead to a pathological scenario where the decoder simply ignores83

the conditional input y, since the necessary information is already present in the latent code zx. In84

such cases, attempts to control generation by varying y would have no effect. To prevent this, we85

follow [2] and introduce an adversarial predictor Dω that attempts to predict y directly from zx.86

We let η be a hyperparameter controlling the weight of the adversarial term. The predictor tries to87

minimize88

Lpred = Eqφ(zx|x)[∥y −Dω(zx)∥2] .
The encoder tries to maximize this error (i.e., make it hard to predict y from zx). By this minimax89

interplay, the encoder removes direct correlation between zx and y. Since x maps to a unique y via90

the EM solver, forcing the encoder to remove y-information from zx ensures the decoder must rely on91

the explicit conditional input y to reconstruct the design. This yields a controllable model: changes92

in y at test time directly influence x, and zx can be adjusted to handle auxiliary objectives without93

altering the frequency response of x.94

2.4 Test-Time Optimization95

While our two-stage framework generates feasible designs directly from target specifications, ad-96

ditional refinement at test time can further improve accuracy and practicability. We consider two97

approaches: (1) generating multiple candidate designs and (2) optimizing single candidates to satisfy98

auxiliary constraints.99

Generating Multiple Candidates. By sampling multiple response curves ỹ during latent search100

and multiple designs from the conditional VAE for each candidate, we obtain a pool of potential101

solutions.102

Optimizing a Single Candidate. For a single candidate curve, the latent code of the conditional103

design decoder can be further optimized to meet auxiliary geometric criteria. For the rectangular104

patch antenna, we define a penalty105

Lpenalty(L,W, p) = ReLU(−L)2 + ReLU(−W )2 + ReLU
(
−L

2
− p

)2

+ ReLU(p)2 ,

encouraging positive dimensions and a feed position between the center and edge of the patch. We106

then use this penalty to conduct a gradient-based search over the latent variable zx in the same way107

as described in Section 2.2 for zy .108

3 Experiments109

3.1 Test-Time Compute Scaling110

We conduct two investigations to determine how increasing test-time compute affects framework111

performance. In both investigations, we consider three distinct target response functions, and at each112

search configuration, record the lowest Surrogate Scorer score from the pool of generated antenna113

designs, averaged across the three targets. Results can be seen in Figure 2.114
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(a) Performance vs. No. of Curves
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(b) Performance vs. No. of Designs per Curve

Figure 2: Scaling performance as the number of curves (left) and the number of designs per curve
(right) is increased. The shaded regions indicate variability across runs.

Multiple Candidate Curves. To determine how sampling multiple candidate frequency response115

curves ỹ affects design accuracy, we consider a setup where one antenna design x̃ is sampled per116

candidate curve, and vary the number of candidate curves. To obtain the different curves ỹ, we117

explore two initialization strategies for z(0)y : (i) Random, initializes each zy as a sample from a118

Gaussian prior; (ii) k-closest, initializes zy as the latent codes of the k curves in the training dataset119

closest to the ideal curve (k is the number of candidate curves).120

We find that as the pool of antenna designs x̃ grows with the number of candidate frequency response121

curves, both initialization strategies yield better and more consistent predictions. Additionally, we find122

that early on, k-closest initialization may offer more stable or slightly better performance than random123

initialization, but as the number of curves increases, the difference in their average performance124

diminishes. This makes sense, since k-closest initialization potentially offers a more principled125

starting point for optimization in the one-shot case.126

Multiple Candidate Designs per Curve. To determine how the number of generated designs per127

candidate curve affects design accuracy, we consider a setup where only one candidate response curve128

ỹ is sampled, and vary the number of designs sampled from this curve. Additionally, we explore129

the case where zx is optimized according to the auxiliary geometric criteria and compare it to the130

unoptimized performance.131

Again, we find that the quality of the antennas improves as we sample multiple antenna designs x̃.132

Additionally, we find that the quality of the optimized and unoptimized design agrees well across133

search configurations, indicating that we have been successful in decorrelating zx from the physical134

response of x.135

4 Conclusion136

In this work, we presented a two-stage generative framework for the inverse design of rectangular137

patch antennas that effectively addresses key challenges in computational antenna design. Our138

approach combines the strengths of generative modeling with targeted test-time optimization to yield139

physically realizable antenna designs that meet desired frequency response characteristics.140

Our experimental results demonstrate that test-time computation can dramatically improve design141

quality with minimal additional training data or model complexity.142

Our approach generalizes naturally to more complex electromagnetic design tasks. While we focused143

on rectangular patch antennas with three design parameters, the same framework could be extended144

to patch antennas with arbitrary geometries or to multi-element antenna arrays with more complex145

frequency-domain behavior. Furthermore, our test-time optimization framework offers a flexible146

mechanism for incorporating auxiliary design constraints, such as fabrication limitations or size147

restrictions, without compromising the primary electromagnetic performance objectives.148
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A Code and Data Availability159

We have made our dataset, simulation scripts, trained models, and source code to repro-160

duce all experiments and figures publicly available at https://anonymous.4open.science/r/161

patch-antenna-tto-FBED.162

B Idealized Target Response Model163

We represent idealized target responses as a product of Lorentzian notches164

S∗
11(f | fres, BW, d) =

K∏
k=1

[
1− (1− 10

dk
20 )

(
1−

(
1− (BWk/2)

2

(f − fk)2 + (BWk/2)2

))]
, (1)

where fk denotes the resonant frequency where minimal reflection is desired, BWk specifies the165

width of the frequency band around fk with efficient power transfer, and dk sets the target depth (in166

dB) of the reflection at fk.167

From this response curve, we convert to idealized target dB values168

y∗(fi | fres, BW, d) = 20 log10 |S∗
11(fi | fres, BW, d)|, i = 1, . . . N . (2)

C Comparison of Target vs. Simulated Responses169

Table 1: Patch antenna geometries corresponding to the frequency responses in Figure 3.
Target fr Budget (# curves × # designs) L [mm] W [mm] p [mm]

2.40 GHz 1 × 1 30.0 40.5 −7.4
10 × 20 31.3 45.8 −7.2

4.00 GHz 1 × 1 36.0 53.6 −2.6
10 × 20 37.8 52.7 −2.7

5.00 GHz 1 × 1 15.7 25.5 −2.1
10 × 20 29.0 46.9 −1.7
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Figure 3: Comparison of the idealized target S11 curve y∗ (black dashed), the dominant-mode
analytical resonance fr,TM10 (dotted vertical), and the simulated S11 of designs x̃ generated with
two test-time compute budgets. Blue = 1 curve × 1 design, red = 10 curves × 20 designs. Note:
Generated geometries may exploit higher-order or coupled modes, so exact agreement with the
analytical reference is not expected.
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