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ABSTRACT

Implicit neural networks (NNs) have demonstrated remarkable success in various
tasks; however, there is a lack of theoretical understanding of the connections and
differences between implicit and explicit networks. In this paper, we employ ran-
dom matrix theory (RMT) to analyze the eigenspectra of neural tangent kernels
(NTKs) and conjugate kernels (CKs) for a broad range of implicit NNs, when
the input data are drawn from a high-dimensional Gaussian mixture model. Sur-
prisingly, the spectral behavior of Implicit-CKs and NTKs depend on the activa-
tion function and initial weight variances, but only via a system of four nonlinear
equations. As a direct (and important!) consequence of our theoretical analysis,
we demonstrate that (as shallow as) a two-hidden-layer explicit NN with well-
designed activations can share the same CK or NTK eigenspectra with a given
implicit NN. These findings offer practical benefits and allow for the design of
memory-efficient explicit NNs that match implicit NNs’ performance without in-
curring the computational overhead of fixed-point iterations. The proposed theory
is supported by empirical results on both synthetic and real-world datasets.

1 INTRODUCTION

Recently, a novel approach in neural network design has gained prominence in the form of Implicit
Neural Networks (NNs) (Bai et al., 2019; El Ghaoui et al., 2021). Implicit NNs introduce a paradigm
shift by resembling an infinite-depth weight-shared model with input-injection. In contrast to tra-
ditional explicit NNs, such as multi-layer perceptrons (MLPs), recurrent neural networks (RNNs),
and residual networks (ResNets), implicit NNs derive features by directly solving for the fixed point.
This fixed point represents an equilibrium state in the neural network’s computation, bypassing con-
ventional layer-by-layer forward propagation. Additionally, implicit NNs offer a notable advantage,
as gradients are analytically computed solely through the fixed point via implicit differentiation.
Consequently, the training process for implicit NNs requires only constant memory.

Implicit NNs have demonstrated remarkable performance across a variety of applications, including
computer vision (Bai et al., 2020; Xie et al., 2022), natural language processing (Bai et al., 2019),
neural rendering (Huang et al., 2021), and solving inverse problems (Gilton et al., 2021). Despite
the empirical success achieved by implicit NNs, our theoretical understanding of these models is
still limited. As a telling example, it remains unclear whether the training and/or generalization
properties of implicit NNs can be connected to those of explicit NNs. Bai et al. (2019) demonstrates
that any deep explicit NN can be reformulated as an implicit NN with carefully-designed weight re-
parameterization. However, many questions such as “whether general implicit NNs have advantages
over explicit NNs” or “whether an equivalent explicit NN always exists for a given implicit NN”,
remain largely open. Novel insights into the aforementioned questions are strongly desired since
implicit NNs incur significantly higher computational costs than explicit NNs during training and
inference, as a consequence of their reliance on iterative solutions to fixed points when computing
features or gradients. These iterative solutions involve repeatedly refining computations until they
converge to equilibrium states, which is in general computationally intensive. As such, finding
explicit shallow NNs that can mimic the behavior of implicit NNs is of great practical significance.
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In this paper, building upon recent advances in random matrix theory (RMT), we investigate the
high-dimensional eigenspectral behavior of implicit NN models, by focusing on a typical implicit
NN, the deep equilibrium model (DEQ) (Bai et al., 2019). We perform a fine-grained asymptotic
analysis on the eigenspectra of neural tangent kernels (NTKs) and conjugate kernels (CKs) (Jacot
et al., 2018) of implicit NNs, which serve as powerful analytical tools for assessing the convergence
and generalization properties of sufficiently wide NNs. For input data following a K-class Gaussian
mixture model (GMM), we show, in the high-dimensional regime where the data dimension p and
their size n are both large and comparable, that the Implicit-CKs and NTKs can be evaluated via
more accessible random matrix models that only depend on the variance parameter and the activa-
tion function via four scalar parameters. And possibly more surprisingly, these high-dimensional
“proxies” of Implicit-CKs and NTKs have consistent forms with those of explicit NNs established
previously in (Ali et al., 2022; Gu et al., 2022).

Inspired by this observation, we establish the high-dimensional “equivalence” between implicit and
explicit NNs by matching the key designing parameters of the two nets. In particular, our results
reveal that a two-hidden-layer explicit NN with carefully designed activations is bound to the same
CK or NTK eigenspectra as a given implicit DEQ model, the depth of the latter is essentially infinite.
Furthermore, in the case of implicit NNs with even or piecewise linear activations like Tanh or ReLU,
our findings show that a single-hidden-layer explicit NN with a thoughtfully designed Leaky ReLU
activation exhibits the same CK or NTK eigenspectra. This implies that, at least for GMM data,
one can design an equivalent shallow explicit NN, which requires the same amount of memory for
training and inference as implicit NNs, but avoids the significant computational overhead arising
from fixed-point iterations. Despite our theoretical results are derived for GMM data, we observe an
unexpected close match between our theory and the empirical results on real-world datasets.

1.1 RELATED WORKS

Here, we provide a brief review of related previous efforts.

Neural tangent kernels. Neural Tangent Kernel (NTK), initially proposed by Jacot et al. (2018),
examines the behavior of wide deep neural networks (DNNs) when trained using gradient descent
with small steps. In short, NTK is a specific kernel defined in the context of DNN. During (gradi-
ent descent) training, the network parameters change and the NTK also evolves over time. It has
been shown by Jacot et al. (2018) and follow-up works that for sufficiently wide DNNs trained on
gradient descent with small learning rate, (i) the NTK is approximately constant after initialization
and (ii) running gradient descent to update the network parameters is equivalent to kernel gradient
descent with the NTK. This duality allows one to assess the training dynamics, generalization, and
predictions of wide DNNs as closed-form expressions involving eigenvalues and eigenvectors of the
NTK (Bartlett et al., 2021, Section 6). Originally developed for fully-connected networks, the NTK
framework has since then been expanded to convolutional (Arora et al., 2019), graph (Du et al.,
2019), and recurrent (Alemohammad et al., 2020) network settings.

Over-parameterized implicit neural networks. Feng and Kolter (2020) extended previous NTK
studies to implicit NN models and derived the exact expressions of the CK and NTK of ReLU im-
plicit NNs. This study particularly asserts that (i) the NTK of implicit NNs is equivalent to the corre-
sponding weight-untied models in infinitely wide regime and (ii) implicit NNs have non-degenerate
NTKs even in the infinite depth. However, the connections between implicit and explicit NTKs re-
main unexplored. Here we perform a fine-grained analysis on the CK and NTK of implicit NNs and
establish the equivalence between implicit DEQ model and explicit NN model in high-dimensional
scenarios. Also, while training dynamics (and global convergence) of over-parameterized Implicit
NNs have been investigated in previous works (Gao et al., 2022; Gao and Gao, 2022; Ling et al.,
2023; Truong, 2023) in the regime of NTKs, it remain unclear what distinguishes the training dy-
namic of implicit NNs from that of explicit NNs. Moreover, many previous works (Micaelli et al.,
2023; Fung et al., 2022; Bai et al., 2022; Ramzi et al., 2021; Bai et al., 2021) have focused on ac-
celerating the training and inference of implicit neural networks. However, these efforts primarily
concentrate on developing fast algorithms for implicit differentiation or fixed-point iterations within
implicit networks, rather than exploring the connections between implicit and explicit networks.
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Random matrix theory and neural networks. Random matrix theory (RMT) has emerged as
a versatile and potent tool for evaluating the behavior of large-scale systems characterized by a
substantial “degree of freedom.” Its application has been increasingly embraced in the realm of NN
analysis, spanning shallow (Pennington and Worah, 2017; Liao and Couillet, 2018b;a) and deep (Be-
nigni and Péché, 2019; Fan and Wang, 2020; Pastur, 2022; Pastur and Slavin, 2023) models, as well
as homogeneous (e.g., standard normal) (Pennington and Worah, 2017; Mei and Montanari, 2022)
and mixture-type datasets (Liao and Couillet, 2018b; Ali et al., 2022; Gu et al., 2022). From a tech-
nical perspective, the most relevant papers are Ali et al. (2022) and Gu et al. (2022), in which the
eigenspectra of CK and NTK were evaluated, for explicit single-hidden-layer NN in Ali et al. (2022)
and explicit deep NNs with multi (but finite) layer in Gu et al. (2022). Here, we extend previous
analysis to implicit NNs with an effectively infinite depth, and establish an equivalence between
implicit and explicit NNs.

1.2 OUR CONTRIBUTIONS

Our contributions are summarized as follows.

(1) We provide, in Theorems 1 and 2 respectively, for high-dimensional GMM data, precise
eigenspectral characterizations of CK and NTK matrices of Implicit NNs; we particularly
show that Implicit-CKs and NTKs only depend on the variance parameter and the activation
function via a few scalar parameters.

(2) We establish, in Corollaries 1 and 2, by matching the key designing parameters derived
in Theorems 1 and 2, the equivalence between CKs (and NTKs) of a given implicit DEQ
model and shallow explicit NN model with carefully-designed activations.

(3) We present empirical evidence using (not-so) wide DNNs trained on synthetic Gaus-
sian datasets and real-world datasets such as MNIST (LeCun et al., 1998), Fashion-
MNIST (Xiao et al., 2017), and CIFAR-10 (Krizhevsky, 2009). Our results illustrate that
the proposed shallow and carefully-designed explicit NNs achieve comparable performance
with respect to implicit NNs, while incurring reduced computational overhead.

2 PRELIMINARIES

Notations. We use N (0, I) to denote the standard Gaussian distribution. For a vector v, kvk is
the Euclidean norm of v. For a matrix A, we use Aij denote its (i, j)-th entry, and use kAkF to
denote the Frobenius norm and kAk to denote the operator norm. We use � to denote the Hadamard
product. We let O(·) and ⌦(·) denote standard Big-O and Big-Omega notations, respectively. We
let Ok·k(n

�1/2) denotes matrices of spectral norm order O
�
n�1/2

�
.

Implicit NNs. In this paper, we focus on the deep equilibrium model (DEQ) Bai et al. (2019). Let
X = [x1, · · · ,xn] 2 Rp⇥n denote the input data. We define a vanilla DEQ with the transform at
the l-th layer as

h(l)
i =

r
�2
a

m
Az(l�1)

i +

r
�2
b

m
Bxi, z(l)

i = �(h(l)
i ) (1)

where A 2 Rm⇥m and B 2 Rm⇥p are weight matrices, �a,�b 2 R are constants, � is an element-
wise activation, h(l)

i is the pre-activation and z(l)
i 2 Rm is the output feature of the l-th hidden

layer corresponding to the input data xi. The output of the last hidden layer is defined by z⇤

i ,
liml!1 z(l)

i and we denote the corresponding pre-activation by h⇤

i . Note that z⇤

i can be calculated
by directly solving for the equilibrium point of the following equation

z⇤

i = �

 r
�2
a

m
Az⇤

i +

r
�2
b

m
Bxi

!
. (2)

Moreover, we define the network’s prediction as f(xi) = a>z⇤

i , for i 2 [n], where a 2 Rm.
We are interested in the associated conjugate kernel and the neural tangent kernel (Implicit-CK and
Implicit-NTK, for short) of implicit neural networks defined in Eq. (2). According to the results
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in (Feng and Kolter, 2020, Theorem 2), the corresponding Implicit-CK takes the following form

G⇤ = lim
l!1

G(l), (3)

where the (i, j)-th entry of G(l) is defined recursively as G(0)
ij = x>

i xj and1

G(l)
ij = �2

aE(u,v)⇠N (0,⇤(l)
ij )

[�(u)�(v)] + �2
bx

>

i xj , ⇤(l)
ij =

"
G(l�1)

ii G(l�1)
ij

G(l�1)
ji G(l�1)

jj

#
, l � 1. (4)

The Implicit-NTK is defined as K⇤ = liml!1 K(l) whose the (i, j)-th entry is defined as

K(l)
ij =

l+1X

h=1

 
G(h�1)

ij

l+1Y

h0=h

Ġ(h0)
ij

!
, (5)

with Ġ(l)
ij = �2

aE(u,v)⇠N (0,⇤(l)
ij )

[�0(u)�0(v)]. The limit of Implicit-NTK is

K⇤

ij ⌘
G⇤

ij

1� Ġ⇤

ij

. (6)

In this paper, we focus on fully-connected implicit DEQs under the following assumptions regarding
the weights and activation functions.
Assumption 1 (Initialization). The random matrices A 2 Rm⇥m and B 2 Rm⇥p are independent
and have i.i.d. entries of zero mean, unit variance, and finite fourth-order moment. We consider,
without loss of generality, that �2

a + �2
b = 1.

Assumption 2 (Activation functions). The activation function � is a L1-Lipschitz func-
tion, and at least four-times differentiable with respect to standard normal measure, i.e.,
maxk2{0,1,2,3,4} |E[�(k)(⇠)]| < Ck where Ck is some universal constant and ⇠ ⇠ N (0, 1).

Using the Gaussian integration by parts formula, one has E[�0(⇠)] = E[⇠�(⇠)] for ⇠ ⇠ N (0, 1), as
long as the right-hand side expectation exists. As a result, Assumption 2 applies for commonly used
piecewise linear activations, e.g. ReLU.

The existence and the uniqueness of Implicit-CKs and Implicit-NTKs. Our formulation re-
quires the existence and the uniqueness of the Implicit-CK G⇤ and the Implicit-NTK K⇤.
By Eq. (6), we find that the existence and the uniqueness of the Implicit-NTK is determined by
those of the corresponding Implicit-CK. Moreover, we note that the (i, j)-th entry of is G(l) de-
termined by the inner product (z(l�1)

i )>z(l�1)
j , for z(l)

i defined in Eq. (1), which implies that the
existence and the uniqueness of G⇤ can be guaranteed by those of z⇤

i , for i 2 [n]. Therefore, we
propose to ensure the existence and uniqueness of z⇤ by imposing the following condition, there by
ensuring those of the Implicit-CK and the Implicit-NTK.
Condition 1. The variance parameter defined in Eq. (2) satisfies �2

a < 1
4L2

1
.

For Condition 1, we apply the consequence of standard bounds concerning the singular values of ran-
dom matrices (Vershynin, 2018), namely, it holds that kAk  2 with exponentially high probability.
Furthermore, by noting that �(·) is L1-Lipschitz, one can easily demonstrate that the transformation
in Eq. (1) is a contractive mapping, and thus ensuring the existence of the unique fixed point of z⇤.

Gaussian mixture data. We consider n data vectors x1, · · · ,xn 2 Rp independently drawn from
one of the K-class Gaussian mixture C1, · · · , CK and denote X = [x1, · · · ,xn] 2 Rp⇥n, with class
Ca having cardinality na, i.e., for xi 2 Ca, we have

xi ⇠ N (µa/
p
p,Ca/p), (7)

1Note that the expectation is conditioned on the input data, and is taken with respect to the random weights.
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Assumption 3 (High-dimensional asymptotics). We assume that, as n ! 1, for a 2 {1, · · · ,K},
(i) p/n ! c 2 (0,1) and na/n ! ca 2 (0, 1); (ii) kµak = O(1); (iii) for C�

⌘
PK

a=1
na
n Ca

and C�
a ⌘ Ca � C�, we have kCak = O(1), trC�

a = O
�p

p
�

and tr(CaCb) = O(p) for
a, b 2 {1, · · · ,K}; and (iv) ⌧0 ⌘

p
trC�/p converges in (0,1).

Remark 1 (On GMM data and Assumption 3). Note that the Gaussian mixture model defined
in Eq. (7) is nothing but standard multivariate Gaussian distribution N (µa,Ca) normalized by
1/
p
p. This normalization is commonly used in the literature of high-dimensional statistics and over-

parameterized DNNs and ensures, together with Assumption 3, that the data vectors have bounded
norms kxik = O(1) in the n, p ! 1 limit. The high-dimensional asymptotics as n, p ! 1 with
p/n ! c 2 (0,1) in Assumption 3 does not demand that n, p be growing but merely that they be
both large. And the obtained approximations error in Theorems 1 and 2 would be of order O

�
n�1/2

�

or O
�
p�1/2

�
. The GMM in Eq. (7) and the high-dimensional (non-trivial) classification setting in

Assumption 3 have been extensively studied in the literature for various ML methods ranging from
kNN, LDA, spectral clustering, SVM, to shallow neural networks, see for example (Louart et al.,
2018; Couillet and Liao, 2022; Couillet et al., 2018; Dobriban and Wager, 2018) as well as (Blum
et al., 2020, Section 2), and have led to, e.g., a thorough theoretical understanding of the so-called
“double descent” curves for over-parameterized ML models (Mei and Montanari, 2022).

3 MAIN RESULTS

We present in Section 3.1 our main technical results on the high-dimensional characterization of CK
and NTK matrices of implicit NNs, in Theorems 1 and 2, respectively. We show in Section 3.2 that
the proposed theoretical analysis allows to construct, for a given implicit DEQ model, an equivalent
and not-so-deep explicit NN model (having at most two hidden layers) that shares the same CK or
NTK eigenspectral behavior as the implicit NN.

3.1 HIGH-DIMENSIONAL CHARACTERIZATION OF IMPLICIT-CK AND NTK MATRICES

For ease of presentation, let us first define some useful quantities. For Gaussian mixture data defined
in Eq. (7), we denote

J ⌘ [j1, · · · , jK ] 2 Rn⇥K , ja 2 Rn, (8)
with label vector [ja]i = �xi2Ca of class Ca, a 2 {1, . . . ,K}, and rows of J the standard one-hot-
encoded label vectors in RK . We define the second-order data fluctuation vector as

 ⌘ {kxi � E[xi]k
2
� E[kxi � E[xi]k

2]}ni=1 2 Rn, (9)

and use
T = {trCaCb/p}

K
a,b=1 2 RK⇥K , t = {trC�

a/
p
p} 2 RK , (10)

to denote the second-order discriminative statistics of the Gaussian mixture in Eq. (7). These quan-
tities, as we shall see below, will be consistently used in the high-dimensional characterizations of
CK and NTK matrices, for both implicit and explicit NN models.
Condition 2. The activation function � satisfies E[(�2(⌧⇠))00] < L2 for ⇠ ⇠ N (0, 1) and some
universal constant L2 > 0, and the variance parameter defined in Eq. (2) satisfies �2

a < 2/L2.

Define ⌧⇤ the fixed point of the following equation

⌧⇤ =
q
�2
aE [�2(⌧⇤⇠)] + (1� �2

a)⌧
2
0 , ⇠ ⇠ N (0, 1), (11)

the existence and uniqueness of which is ensured under Assumptions 1-2, per the following remark.
Remark 2 (Existence and uniqueness of ⌧⇤). It can be checked that for any given ⌧0 > 0 and vari-
ance parameter �a that satisfies Condition 2, the right-hand side of Eq. (11) constitutes a contractive
mapping, thereby ensuring the existence of a unique fixed point ⌧⇤. Please see Lemma. A.1 in the
supplementary material for a detailed proof of this fact.

With these notations at hand, we are ready to present our first result on the high-dimensional char-
acterization of the CK matrices for implicit NNs, the proof of which is given in Appendix B of the
supplementary material.
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Theorem 1 (Asymptotic approximation of Implicit-CKs). Let Assumptions 1-3 hold, and let the
activation �(·) be “centred” such that E[�(⌧⇤⇠)] = 0 for ⇠ ⇠ N (0, 1) and ⌧⇤ defined in Eq. (11).
Further assume that the variance parameter �a satisfies Conditions 1 and 2. Then, the Implicit-CK
matrix G⇤ defined in Eq. (3) can be well approximated, in an operator norm sense, by the random
matrix G as
��G⇤

�G
�� = O

⇣
n�1/2

⌘
, G ⌘ ↵⇤,1X

>X + V C⇤V
> + (⌧2

⇤
� ⌧20↵⇤,1 � ⌧40↵⇤,3)In, (12)

where

V = [J/
p
p,  ] 2 Rn⇥(K+1), C⇤ =


↵⇤,2tt> + ↵⇤,3T ↵⇤,2t

↵⇤,2t> ↵⇤,2

�
2 R(K+1)⇥(K+1), (13)

with non-negative scalars ↵⇤,1,↵⇤,2,↵⇤,3,↵⇤,4 � 0 defined, for ⇠ ⇠ N (0, 1), as

↵⇤,1 =
1� �2

a

1� �2
aE[�0(⌧⇤⇠)]2

, ↵⇤,2 =
�2
aE[�00(⌧⇤⇠)]2

4 (1� �2
aE[�0(⌧⇤⇠)]2)

↵2
⇤,4, (14)

↵⇤,3 =
�2
aE[�00(⌧⇤⇠)]2

2 (1� �2
aE[�0(⌧⇤⇠)]2)

↵2
⇤,1, ↵⇤,4 =

1� �2
a

1� �2
a
2 E[(�2(⌧⇤⇠))00]

. (15)

Theorem 1 reveals the surprising fact that, for high-dimensional GMM data in Eq. (7), the implicit
CK matrix G⇤, despite its mathematically involved form (as the fixed point of the recursion) in
Eq. (3), is approximately equivalent to a much more simple matrix. This “equivalent” CK matrix G,

(i) depends, as expected, on the input GMM data (X), their class structure (J ) and statistics
(t and T ), but in a rather explicit fashion; and

(ii) is independent of the distribution of the weight matrices A and B; and

(iii) depends on �2
a and the activation � only via four scalars ↵⇤,1,↵⇤,2,↵⇤,3 and ⌧⇤.

A similar result can be derived for the NTK matrices of implicit NNs and is given as follows.
Theorem 2 (Asymptotic approximation of Implicit-NTKs). Let Assumptions 1-3 hold, and let the
activation �(·) be “centred” such that E[�(⌧⇤⇠)] = 0 for ⇠ ⇠ N (0, 1) and ⌧⇤ defined in Eq. (11).
Further assume that the variance parameter �a satisfies Conditions 1 and 2. Then, the Implicit-NTK
matrix K⇤ defined in Eq. (6) can be well approximated, in an operator norm sense, by the random
matrix K as
��K⇤

�K
�� = O

⇣
n�1/2

⌘
, K ⌘ �⇤,1X

>X + V D⇤V
> + (2

⇤
� ⌧20�⇤,1 � ⌧40�⇤,3)In, (16)

where 2
⇤
= ⌧2

⇤
/
�
1� �2

aE
⇥
�0(⌧⇤⇠)2

⇤�
and

V = [J/
p
p,  ] 2 Rn⇥(K+1), D⇤ =


�⇤,2tt> + �⇤,3T �⇤,2t

�⇤,2t> �⇤,2

�
2 R(K+1)⇥(K+1), (17)

with non-negative scalars �⇤,1,�⇤,2,�⇤,3 � 0 defined, for ⇠ ⇠ N (0, 1), as

�⇤,1 =
↵⇤,1

1� �2
aE[�0(⌧⇤⇠)]2

, �⇤,2 =
↵⇤,2

1� �2
aE[�0(⌧⇤⇠)]2

, �⇤,3 =
↵⇤,3 + �⇤,1�2

aE[�00(⌧⇤⇠)]2↵⇤,1

1� �2
aE[�0(⌧⇤⇠)]2

.

We refer the readers to Appendix C of the supplementary material for the proof of Theorem 2.
Theorem 2 tells us that the NTK matrices of implicit NNs take a similar form as the CK matrices,
and (approximately) depend on �a and the activation via �⇤,1,�⇤,2,�⇤,3 and ⇤.

Remark 3 (On centered activation). Given any activation function �̃(·) that satisfies Assumption 2,
a centered activation � can be obtained by simplifying subtracting a constant as �(x) = �̃(x) �

E[�̃(⌧⇤x)] with ⌧⇤ =
q
�2
aE[(�̃(⌧⇤⇠)� E[�̃(⌧⇤⇠)])2] + (1� �2

a)⌧
2
0 .
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3.2 THE EQUIVALENCE BETWEEN IMPLICIT AND EXPLICIT NNS IN HIGH DIMENSIONS

Implicit NNs are known, per its definition in Eq. (2), to be formally equivalent to infinitely deep
explicit NN model (Bai et al., 2020; Xie et al., 2022). In the sequel, we show how our proposed
theoretical results in Theorems 1 and 2 allow one to construct explicit and not-so-deep NN models
that are “equivalent” to a given implicit DEQ model, in the sense that the CK and/or NTK matrices
of the two networks are close in operator norm for n, p large.

Consider the following finitely deep explicit NN model having L layers,

x(l)
i =

1
p
ml

�l(Wlx
(l�1)
i ), for l = 1, · · · , L, (18)

where Wl 2 Rml⇥ml�1 are weight matrices and �l are element-wised activation functions. We
denote X(l) = 1

p
ml

�l(WlX(l�1)) the representations of the input data matrix X 2 Rp⇥n at layer
l 2 {1, · · · , L}. For the fully-connected explicit NN model given in Eq. (18), the corresponding
Explicit-CK matrix ⌃(l) at layer l is defined as (Fan and Wang, 2020)

⌃(l)
ij = Eu,v[�l(u)�l(v)], with (u, v) ⇠ N

 
0,

"
⌃(l�1)

ii ⌃(l�1)
ij

⌃(l�1)
ji ⌃(l�1)

jj

#!
, (19)

and the Explicit-NTK matrix ⇥(l) at layer l is defined as

⇥(l) = ⌃(l) +⇥(l�1)
� ⌃̇(l), ⇥(0) = ⌃(0) = X>X, (20)

where ⌃̇(l) denotes the CK matrix with activation �0

l instead of �l with ⌃̇(l)
ij = Eu,v[�0

l(u)�
0

l(v)]. As
in Assumption 1, we assume that weight matrices Wls have i.i.d. entries of zero mean, unit variance,
and finite fourth-order moment.

The high-dimensional behaviors of both the CK and NTK matrices for the fully-connected explicit
NN model in Eq. (18) have been recently studied in (Gu et al., 2022) using RMT techniques.

In this vein, our Theorems 1 and 2 apply to make an explicit connection between implicit and explicit
NN models. In the following result, we show how to construct a two-hidden-layer explicit NN with
polynomial activation that admits approximately the same CK as a given implicit DEQ.
Corollary 1 (Equivalent poly-ENN). For a given fully-connected implicit NN (denoted INN) with
centered activation such that E[�(⌧⇤⇠)] = 0 for ⇠ ⇠ N (0, 1) and ⌧⇤ in Eq. (11), one is able to
construct a two-hidden-layer “equivalent” explicit NN having quadratic polynomial activations:
�l(x) = alx2 + blx + cl, l = 1, 2 (denoted poly-ENN), in such a way that the two nets have
asymptotically the same CK eigenspectra with kG⇤

� ⌃(2)
k = O(n�1/2), by solving a system of

polynomial equations (see Appendix D for a detailed exposition).

Proof sketch of Corollary 1. The proof of Corollary 1 starts from the observation that the asymptotic
equivalent of the Implicit-CK in Eq. (12) takes a similar form to that of the Explicit-CK as given
in (Gu et al., 2022, Theorem 1), with their coefficients determined by activations. Thus, it suffices
to choose the activations of poly-ENN such that the corresponding Explicit-CK yields the same
coefficients as the Implicit-CK. Please see the complete proof of Corollary 1 in Appendix D.

Corollary 1 provides explicit connections between INNs and ploy-ENNs, as well as a general recipe
to construct a ploy-ENN equivalent to any given INN when measured by their corresponding CK
matrices. Results for NTK matrices can be similarly obtained by combining our Theorem 2 and (Gu
et al., 2022, Theorem 2) and is thus omitted here.

There is of course nothing special about the choice of polynomial activation in the design of “equiv-
alent” explicit NN models in Corollary 1. In the following result, we show that the large family of
implicit NNs (INN) with even or piecewise linear activations can be “imitated” by single-hidden-
layer explicit NNs (denoted L-ReLU-ENN) having Leaky ReLU-type activation (see, e.g., the left
display of Figure 2 for a visualization). We refer the readers to Appendix E for the proof.
Corollary 2 (Equivalent L-ReLU-ENN). For a given fully-connected implicit NN with even or
piecewise linear activation that satisfies E[�(⌧⇤⇠)] = 0 for ⇠ ⇠ N (0, 1), one has that E[�00(x)] = 0

7
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Figure 1: Eigenvalue density of Implicit-CK matrices G⇤ (blue) defined in Eq. (3) (with ex-
pectation estimated from 400 independent realizations of random A and B) and the asymptotic
equivalent matrices G (red) obtained by Theorem 1. (Left): an implicit NN defined in Eq. (2)
with Arc-Tanh activation and �2

a = 0.1, on two-class GMM data, with p = 1000, n = 800,
µa = [08(a�1); 8;0p�8a+7], Ca = (1 + 8(a� 1)/

p
p)Ip, for a 2 {1, 2}, here kG⇤

�Gk ⇡ 0.12;
and (Right): an implicit NN defined in Eq. (2) with Tanh activation and �2

a = 0.1, on two-class
MNIST data (number 6 versus number 8), with p = 784, n = 6000, for which kG⇤

�Gk ⇡ 1.57.

and one is able to construct a single-hidden-layer “equivalent” explicit NN model having biased
Leaky ReLU activation:

'(x) ⌘ max(ax, bx)�
a� b
p
2⇡

⌧0, (21)

in such a way that the two nets have asymptotically the same CK eigenspectra with kG⇤
' �⌃(1)

k =

O(n�1/2), where a > b > 0 is determined by solving the following equations:

(a� b)2 = 4↵2
⇤,1,

(⇡ � 1)(a2 + b2) + ab

2⇡
⌧20 �

(a+ b)2

4
⌧20 = ⌧2

⇤
� ↵⇤,1⌧

2
0 .

4 EXPERIMENTS

In this section, we provide numerical experiments on not-so-high-dimensional data to validate
our proposed theoretical results. We consider both synthetic Gaussian mixture data and samples
drawn from commonly used real-world datasets such as MNIST (LeCun et al., 1998), Fashion-
MNIST (Xiao et al., 2017), and CIFAR-10 (Krizhevsky, 2009).

Figure 1 compares the eigenvalues of Implicit-CKs and their high-dimensional approximation from
Theorem 1, for both synthetic Gaussian mixture and MNIST data. We observe that the proposed
theoretical results, despite derived here for GMM data and in the limit of n, p ! 1, provide
extremely accurate prediction of the Implicit-CK eigenspectral behavior (i) for not-so-large n, p and
(ii) possibly surprisingly, also on realistic MNIST data. We conjecture that this is due to a high-
dimensional universal phenomenon and that our results (on both CK and NTK matrices) hold more
generally beyond the GMM setting, say, for data drawn from the family of concentrated random
vectors (Ledoux, 2005; Louart and Couillet, 2018). We refer the interested readers to (Couillet and
Liao, 2022, Chapter 8) for more discussions on this point.

In Figure 2 we testify the results in Corollary 2 by constructing explicit single-hidden-layer NN
models (L-ReLU-ENN) with Leaky ReLU-type activation that are “equivalent” (in the sense of
CK) to implicit NN (INN) with ReLU activation. We see that, while the two types of NN models
are different in that (i) INN is implicitly defined while L-ReLU-ENN is explicitly defined; and (ii)
INN uses ReLU activation while L-ReLU-ENN uses Leaky ReLU activation. Their CK matrices
establish a surprisingly close eigenspectral behavior as long as the activation of L-ReLU-ENN is
carefully chosen according to our Corollary 2. This observation is again consistent on synthetic
GMM and realistic MNIST data.

To see whether this high-dimensional “equivalence” between implicit and not-so-deep ex-
plicit NN models can be observed more generally across different realistic datasets, we
further compare the classification accuracy of implicit and carefully (or-not) designed ex-
plicit NNs in Figure 3. Implicit and explicit NNs share the same network width m 2

{32, 64, 128, 256, 512, 1 024, 2 048, 4 096, 8 192}. As m increases, the performance of L-ReLU-
ENNs closely matches that of INN, while a noticeable performance gap exists between ReLU-ENN

8
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Figure 2: Visualization and eigenvalues of (top) Implicit-CKs G⇤ with (biased) ReLU activa-
tion (blue) and (bottom) Explicit-CKs ⌃(1) with (biased) Leaky ReLU activation (red) defined
in Eq. (21). (Middle): on two-class GMM data as in Figure 1, with here kG⇤

�⌃(1)
k ⇡ 0.23; and

(Right): on two-class MNIST data (number 6 versus number 8), with p = 784, n = 6000, with
kG⇤

�⌃(1)
k ⇡ 1.83. The expectations are estimated from 400 independent realizations.
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Figure 3: The evolution of classification results w.r.t the width m of implicit ReLU NNs (blue,
INN), the corresponding equivalent single-layer Leaky-ReLU explicit NNs (red, L-ReLU-ENN),
and ReLU explicit NNs (green, ReLU ENN for short) on (a) MNIST, (b) fashion MNIST, and (c)
CIFAR-10. For MNIST datasets, raw data are taken as the network input; for CIFAR-10 dataset,
flattened output of the 16th convolutional layer of VGG-19 are taken as the network input. The last
figure (d) visualizes the gap between the performance of INNs and L-ReLU-ENNs, and the gap
between the performance of INNs and ReLU ENNs.

and INN. This observation substantiates our theory and underscores the practical advantages of our
approach by, e.g., enabling the design of memory-efficient explicit NNs that achieve the performance
of implicit NNs without the computational overhead associated with fixed-point iterations.

5 CONCLUSION

In this paper, we investigate the connection between implicit NNs and explicit NNs. We employ
RMT to analyze the eigenspectra of the NTKs and CKs of implicit NNs. For high-dimensional
Gaussian mixture data, we establish asymptotic equivalents for the NTK and CK of implicit NNs.
Notably, we reveal that the eigenspectra of the NTK and CK of implicit NNs are determined solely
by the variance parameter and the activation function. Based on this observation, we establish the
equivalence between implicit NNs and explicit NNs in high dimensions. We propose a method for
designing activation functions for explicit neural networks to “match” the spectral behavior of the
CK (or NTK) of implicit NNs. Results on synthetic data and real-world data demonstrate that shal-
low explicit NNs with our theoretically designed activation functions achieve comparable accuracy
to implicit NNs, while significantly reducing computational overhead.
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