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ABSTRACT

Effective information extraction has long been a central challenge in Computer
Vision (CV). Transformer- and Mamba-based backbones have significantly ad-
vanced this field by providing powerful long-range modeling capability, even
though they are initially developed for Natural Language Processing (NLP). Re-
cent progress has highlighted the potential of Fourier Neural Operator (FNO),
which, with its favorable quasi-linear complexity and strong global modeling ca-
pacity, offers a promising alternative for visual representation learning. However,
FNO exhibits a fundamental limitation in capturing local high-frequency patterns
due to the over-smoothing effect and bandwidth bottleneck. To address this limita-
tion, we propose Vision Filter (ViF), as a generic backbone for CV, consisting of
two complementary components: adaptive modulation for enhancing sensitivity to
high-frequency component in the frequency domain, and selective activation for
balancing local time-domain and global frequency-domain information flow. Ex-
tensive experiments reveal that ViF consistently outperforms prominent variants
of Transformer- and Mamba-based backbones across diverse visual tasks, includ-
ing image classification, object detection, and semantic segmentation. ViF demon-
strates lower computational complexity than Transformer-based models and better
structural modeling than Mamba-based models, which suffer from spatial disrup-
tion due to their directional scanning mechanism. The joint time- and frequency-
domain mechanism introduced in ViF may establish a promising paradigm for
designing effective visual representation learning, bridging local high-frequency
information with global low-frequency information.
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Transformer (ViT) ( ) fundamentally changed visual representation learning

by adapting the Transformer backbone from Natural Language Processing (NLP) to CV. By
enabling each local patch to dynamically attend to the global context, ViT successfully transcended
the inherent local receptive field constraints of traditional convolutional approaches, achieving
exceptional model performance across various visual tasks ( ). However, the quadratic
computational complexity of Transformer poses significant scalability challenges, particularly
when processing high-resolution visual tasks, which has driven researchers to explore alternative
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backbones that preserve global modeling capability while achieving superior computational
efficiency (2021); (2021).

The introduction of Mamba has emerged as a compelling solution to address these scalability con-
cerns ( ); ( ), sparking considerable research interest and inspiring
the development of numerous variants of Vision Mamba (ViM) ( ); ( ).
These approaches have shown promising results across diverse visual tasks, including image restora-
tion ( ) and video understanding ( ). However, these approaches en-
counter fundamental limitation in preserving the inherent spatial structure of 2D visual information,
with the principal challenge arising from directional scanning strategy that inevitably lead to spatial
disruption ( ); ( ). Recent work ( ) has begun exploring
how to construct a more robust scanning mechanism to incorporate spatial-specific inductive biases
to improve the representation learning capability of ViM.

Fourier Neural Operator (FNO) ( ) offers an alternative paradigm that naturally operates
in the 2D frequency domain, providing quasi-linear computational complexity of O(N log N)
while preserving strong global modeling capacity. Unlike Transformer and Mamba-based models
that require converting 2D visual representations into 1D sequences, FNO directly processes spatial
information in its native 2D frequency-domain representation, avoiding the associated spatial distor-
tion. However, FNO exhibits fundamental limitations in modeling local high-frequency patterns
( ) due to the over-smoothing effect and bandwidth bottleneck
( ). This inspires the development of more effective Fourier-based backbones.

To address these challenges, we propose Fourier Neural Filter (FNF), a novel nonlinear integral
kernel operator that integrates spatial-specific inductive biases directly into the backbone design.
Mathematically, FNF extends the standard FNO ( ) by introducing an input-dependent
kernel function that enables selective activation of local time-domain and global frequency-domain
information flow through Hadamard product operations, making it particularly effective for captur-
ing the unique properties of 2D visual information. This input-dependent gated global convolution
substantially addresses the bandwidth bottleneck by preserving informative mid-/high-frequency
components while suppressing redundant ones. On the other hand, to mitigate over-smoothing ef-
fect, we incorporate adaptive modulation following complex operation, enabling non-uniform am-
plification and attenuation of specific frequency bands under stability constraints.

Building upon FNF, we construct Vision Filter (ViF) as a generic backbone for CV. Our ex-
tensive experiments demonstrate that ViF consistently outperforms prominent variants of both
Transformer- and Mamba-based backbones across diverse visual tasks, including image classifi-
cation on ImageNet-1K ( ), as shown in Fig. 1, object detection on COCO

( ), and semantic segmentation on ADE20K ( ).

Our contributions are as follows: (1) We propose FNF, the first unified backbone that couples time-
domain and frequency-domain analysis, inherently preserving the spatial structure of 2D visual
representation; (2) We theoretically and empirically demonstrate that our proposed FNF resolves
the inherent over-smoothing effect and bandwidth bottleneck of the original FNO; (3) The proposed
model ViF achieves state-of-the-art performance on three mainstream visual tasks.

2 RELATED WORK

Vision Transformer Building on the success of Vision Transformer (ViT)

( ), subsequent developments have focused on making it more efficient and effective through
various techniques. These include hierarchical designs like Swin Transformer ( ),
PVT ( ), and NAT ( ), hybrid approaches combining CNN with
Transformers like CMT ( ), CrossViT ( ), Max Vit ( ),
and FasterViT ( ), and large-scale self-supervised pre-training models like
MAE ( ) and BEIT ( ). These innovations have collectively established

ViT as a fundamental architecture for diverse visual tasks.

Vision Mamba Recent work on Vision Mamba (ViM) is aiming to overcome the fundamental
limitations of its directional scanning strategy for 2D visual information processing, including bi-
directional ( ) and quad-directional ( ) scanning, and other approaches
capable of balancing both local and global information extraction ( );
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( ); ( ). These advances collectively improve representation learning and spatial
understanding of ViM by addressing the inherent challenges of applying autoregressive models to
2D visual information while maintaining computational efficiency.

Fourier Transform for Vision Previous work has successfully integrated Fourier transform into
deep learning system ( ). GFNet ( ) achieves competitive per-
formance with logarithmic linear complexity by replacing the self-attention mechanism in the ViT
backbone with 2D discrete Fourier transform and learnable global filter. FourCastNet
( ); ( ), developed based on AFNO ( ), generates one-week
global weather forecasting within 2 seconds—several orders of magnitude faster than traditional nu-
merical weather forecasting models ( ). Recent extensions include SFNO

( ), which incorporates spherical harmonic transforms into atmospheric modeling to enable
stable year-round weather forecasting on spherical geometry ( ).

3 METHODOLOGY

In this section, we theoretically analyze the limitations of Fourier Neural Operator (FNO) and intro-
duce the fundamentals of our proposed Fourier Neural Filter (FNF).

3.1 LIMITATIONS OF FOURIER NEURAL OPERATOR (FNO)

Proposition 1 (Bandwidth Bottleneck.) Consider a periodic functions v expanded in a Fourier
series. Let Pk denote the projection onto Fourier modes {|k| < K}. Any FNO layer Fx (v) with
fixed bandwidth K depends only on Pk. If v is non-bandlimited, and the operator 7 is not strictly
low-pass, leading to an irreducible truncation error in the frequency domain:

i;le |Fx(v) = T )| = |Px T)| (1)

Proof sketch. FNO applies a fixed spectral map on {|k| < K} and discards {|k| > K}. There-
fore, two inputs with identical Py cannot be distinguished. The error lower bound follows from
orthogonal decomposition into Py and Pj: components.

Proposition 2 (Over-smoothing Effect.) Let M, (k) be the per-layer spectral multipliers on {|k| <
K}. If there exists p € (0,1) and ko < K such that |[M,(k)| < p for all |k| > ko and all layers

¢, then the overall frequency response H (k) = H£=1 My (k) can satisfy |Hz (k)| < p* — 0 on
{|k| = ko} as L — oo, leading to an over-smoothing spatial representation.

Proof sketch. Multiplicative contraction on the mid-/high-frequency modes accumulates exponen-
tially with depth; coupled with the hard truncation outside {|k| < K}, the output energy is concen-
trated in the low-frequency modes, while the high-frequency modes are progressively suppressed.

3.2 FUNDAMENTALS OF FOURIER NEURAL FILTER (FNF)

While FNO ( ) has demonstrated
remarkable effectiveness in modeling complex
dynamic systems and solving partial differen-
tial equations through fixed integral kernel, our
proposed FNF (Fig. 2) makes a critical leap
forward: introducing an input-dependent inte-
gral kernel that can allow for adaptive and dy-
namic information flow between the time and
frequency domains, thereby constructing a uni-
fied time-frequency representation space. Intu-
itively, if FNO applies a fixed lens to process

all input signals, then FNF continuously adjusts  gioyre 2: Schematic diagram of our proposed

the lens based on the preceding scene, achiev-  Fourier Neural Filter (FNF) backbone.
ing more detailed information extraction and

more robust pattern recognition. We analyze the theoretical underpinnings of FNF by examining
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integral kernel, global convolution, selective activation, complex transform, and adaptive modula-
tion.

3.2.1 INTEGRAL KERNEL

Definition 1 FNO is defined via a fixed integral kernel operator:

(Kv)(x) = fD k(9o (y) dy, @)

where k : D x D — R is the kernel function and v : D — R is the input function. Through the
Fourier transform, FNO can be formulated in the frequency domain as:

(Kv)(w) = FH(Ry - F(v))(2), 3)
where R, = F(k) denotes the parameterized frequency-domain kernel.

Definition 2 FNF can be defined through an adaptive integral kernel operator:
(K@) = | wayio)oty)dy, @
D

where k(z,y;v) is the input-dependent kernel function. In the implementation, FNF can also be
formulated as:

(Kv)(z) = T(G(v) © P(v))(x), 5)
P(v)(x) = F~H(Ry - F(H(v))(), (6)

where G(v), H(v), and T'(v) denote the linear transform used for expansion or compression, and ®
is the Hadamard product operation.

Remark 1 The fundamental distinction between FNO and FNF lies in their kernel functions: FNO
employs a fixed kernel x(x, y), whereas FNF applies an input-dependent kernel «(x, y; v), enabling
adaptive information flow modulation between time-domain and frequency-domain, constructing a
unified time-frequency representation space.

3.2.2 GLOBAL CONVOLUTION

Definition 3 When the kernel function x(z,y) = k(xr — y) exhibits translation invariance, the
fixed integral kernel operator in FNO reduces to a global convolution ( ):

(Kv)(x) = L w( — y)oly) dy = (k= v)(x). )

Definition 4 Similarly, when the kernel function x(z,y;v) = k(x — y;v) maintains translation
invariance, the adaptive integral kernel operator in FNF becomes a gated global convolution:

(Ko@) = | #a = g0 dy = (@ 50) ) (o) ®)

D

Remark 2 Translation invariance enables efficient computation of integral operator through
Fourier transform in both FNO and FNF. Beyond this shared efficiency, the gated global convolu-
tion in FNF significantly enhances representation capacity by employing an input-dependent kernel
R(+;v), which adaptively modulates filtering behavior while preserving computational efficiency.

3.2.3 SELECTIVE ACTIVATION

Definition 5 The selective activation operates an element-wise multiplication in the time domain;
in the frequency domain, this operation is mathematically equivalent to the convolution operation
between G (v)(z) and P(v)(x):

F(G) 0 P(v)) (w) = (G(v) * P(v)) (). ©)
This formula can be viewed as approximate magnitude modulation and phase addition when the
signal G(v) is relatively smooth or narrow:

(G(v) © P(v))i ~ |G(v)i] - |P(v)s] - €Ot orwn), (10)
where |G(v);| and | P(v)i| represent magnitudes, and §G(v)i and 8 P(v); represent phases.
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Remark 3 This formulation reveals how selective activation effectively achieves joint
time—frequency modulation: it enhances informative mid-/high-frequency components while sup-
pressing redundant low-frequency ones on the magnitude side, and simultaneously provides flexible
alignment on the phase side. This design alleviates the well-known over-smoothing effect and band-
width bottleneck ( ) of FNO and improves the representation learning capability.

3.2.4 COMPLEX TRANSFORM

Definition 6 The complex transform operates on the complex-valued input z = 2z, + ¢2z; with
complex weights W = W, + ¢{W, and biases b = b,. + ib;:

L(Z) = (W»,«ZT- — Wiz + b,«) + Z(W,«Zl + Wiz, + bl) (11D
Remark 4 To reduce the parameter count, we adopt the block-diagonal structure for the
weights ( ) and implement two complex transform layers equipped with the GELU
activation function ( ).

3.2.5 ADAPTIVE MODULATION

Definition 7 The adaptive modulation operates through an amplitude-sensitive weighting function
to achieve frequency balancing ( ):

M(z) = z0[8- |1, (12)
where | z| represent the magnitude of complex-valued input z, and «, 3 are learnable parameters, ©
is the Hadamard product operation.

Remark 5 When o < 1, the power-law weighting compresses the dynamic range between fre-
quency components, effectively attenuating dominant low-frequency components while relatively
enhancing weak high-frequency components. On the other hand, the adaptive parameter 3 provides
global scaling control to achieve optimal frequency balance.
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Figure 3: Schematic diagram of our proposed Vision Filter (ViF) architecture. Architecture details can be
found in the Appendix.

Overall Architecture Our ViF model is structured into four hierarchical stages, as shown in
Fig. 3 mirroring the design principles of established vision backbones in previous works

( ; ). Specifically, an input image I € RH>*Wx3 jg 1n1t1a‘lﬂ/y processed through an
overlapped stem layer to obtain a 2D feature map with dimension of Z x W x (' This feature map
is subsequently fed into four successive stages, where each stage comprlses multiple ViF blocks
followed by down-sampling layer with reduction factor of 2 (excluding the final stage). The head
layer processes the feature map to obtain the spatial representation tailored for specific downstream
tasks. More details can be found in the Appendix.
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Block Design The ViF block serves as the fundamental construction unit of our architecture, in-
cluding the FNF and Feed-Forward Network (FFN) modules with residual skip connection

( ), as shown in the lower-left corner of Fig. 3. Our FNF module, illustrated in the bottom
lower-right corner of Fig. 3, has two branches: one branch contains a local convolution and a global
convolution enabling to capture effective spatial information through progressive learning from lo-
cal to global representation, the other branch contains a local convolution enabling to achieve ef-
fective fusion of global frequency-domain information and local time-domain information through
Hadamard product operation. Additionally, FFN module is added subsequent to the FNF module to
promote information flow interaction across channels and to maintain alignment with the settings
of classical ViTs. Furthermore, Local Perception Unit (LPU) ( ) is employed before
both the FNF and FFN module to incorporate local inductive biases.

5 EXPERIMENT

In this section, to validate the effectiveness of our proposed ViF, we conduct extensive experiments
on a variety of visual tasks, including image classification, object detection, and semantic segmen-
tation. Following the previous works ( ; ), we train three variants of ViF, called
ViF-T, ViF-S and ViF-B, as shown in Tab. 1.

Table 1: Model Description of ViF variants.

Models Blocks Channels Heads

ViF-Tiny [2,4,8,4] [64, 128,256,512] [2,4,8, 16]
ViF-Small [2,5,19,5] [64, 128,256,512] [2,4,8, 16]
ViF-Base  [2,5,19,5] [96,192,384,768] [3,6,12,24]

5.1 IMAGE CLASSIFICATION ON IMAGENET-1K

Settings We conduct a comprehensive evaluation of ViF on image classification using ImageNet-
1K dataset ( ). Our experimental setup follows the configurations established in the
previous works ( ; ), with complete implementation details provided in the Ap-
pendix. We compare our model with other state-of-the-art models, including CNN-based models
(RegNetY ( ), ConvNeXt ( ), and MambaOut
( )), Transformer-based models (ViT ( ), DeiT ( ),
Swin ( ), SwinV2 ( ), Twins ( ), and NAT

( )), Mamba-based models (ViM ( ), VMamba ( ), Local V-
Mamba ( ), EfficientVMamba ( ), and MambaVision

( )), and Fourier-based models (GFNet and GFNetV2 ( ).

Results The experimental results on ImageNet-1K image classification are reported in Tab. 2.
Compared to Transformer-based models, ViF-T exceeds Swin-T by 2.3% and NAT-T by
0.6%. In comparison with Mamba-based models, ViF-T outperforms VMamba-T by 1.3% and
LocalVMamba-T by 1.1%. Among Fourier-based models, ViF demonstrates substantial improve-
ments over existing approaches: ViF-T surpasses GFNet-S by 3.8% and GFNetV2-B by 1.7%,
showcasing the superiority of our proposed architecture design. For larger variants, ViF-S and ViF-
B achieve the accuracy of 84.5% and 85.2%, respectively, significantly outperforming GFNetV2-S
by 2.8% and GFNetV2-B by 3.1%, while surpassing NAT-S and NAT-B by 1.5% and 0.9%, and
VMamba-S and VMamba-B by 0.9% and 1.3%. These comprehensive results demonstrate that ViF
achieves outstanding model performance across different model sizes while maintaining competitive
computational efficiency.

5.2 OBIJECT DETECTION ON COCO

Settings We conduct a comprehensive evaluation of ViF on object detection using COCO 2017

dataset ( ) and MMDetection library. We adopt Mask R-CNN ( ) as
detector, and apply the pre-trained ViF-T/S/B as backbone. Following the previous work
( ; ), we fine-tune the pre-trained models on the COCO dataset for single-scale training (1 x

schedule) and multi-scale training (3 x schedule).
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Table 2: Comparison of image classification performance on ImageNet-1K.

Architecture  Method Image Size Params (M) FLOPs (G) Top-1(%)
RegNetY-4G 2242 21 4.0 80.0
RegNetY-8G 2247 39 8.0 81.7
RegNetY-16G 2242 84 16.0 82.9
ConvNeXt-T 2242 29 4.5 82.1
CNN ConvNeXt-S 2242 50 8.7 83.1
ConvNeXt-B 2242 89 15.4 83.8
MambaOut-T 2242 27 45 82.7
MambaOut-S 2242 48 9.0 84.1
MambaOut-B 2242 85 15.8 84.2
ViT-B/16 3842 86 55.4 77.9
DeiT-S 2242 22 4.6 79.8
DeiT-B 2242 87 16.9 81.8
Swin-T 2242 28 4.5 81.3
Swin-S 2242 50 8.7 83.0
Swin-B 2242 88 15.4 83.5
Transformer SwinV2-T 2562 28 4.8 82.7
SwinV2-S 2562 50 8.5 83.5
SwinV2-B 2562 88 15.1 84.6
Twins-S 2242 24 2.8 81.7
Twins-B 2242 56 8.3 83.1
NAT-T 2242 28 4.3 83.2
NAT-S 2242 51 7.8 83.0
NAT-B 2242 90 13.7 84.3
ViM-S/16 2242 26 5.1 80.3
VMamba-T 2242 30 4.9 82.6
VMamba-S 2242 50 8.7 83.6
VMamba-B 2242 89 15.4 83.9
LocalVMamba-T 2242 26 5.7 82.7
Mamba LocalVMamba-S 2242 50 11.4 83.7
EfficientVMamba-S 2242 11 1.3 78.7
EfficientVMamba-B 2242 33 4.0 81.8
MambaVision-T 2242 32 4.4 82.3
MambaVision-S 2247 50 7.5 83.3
MambaVision-B 2242 98 15.0 84.2
GFNet-S 2242 25 4.5 80.0
GFNet-B 2242 43 7.9 80.7
GFNetV2-S 3842 28 13.2 81.7
Fourier GFNetV2-B 3842 47 23.3 82.1
ViE-T 2242 29 5.1 83.8
ViF-S 2242 45 7.8 84.5
ViF-B 2242 96 16.7 85.2

Results The experimental results on COCO object detection are reported in Tab. 3. Under the
single-scale training, ViF-T achieves a box mAP of 47.7 and a mask mAP of 43.0, surpassing Swin-
T by 5.0 and 3.7, respectively, while using comparable computational costs (48M parameters and
272G FLOPs vs. 48M parameters and 267G FLOPs). Compared to VMamba-T, ViF-T shows com-
petitive performance with improvement of 0.4 in box mAP and 0.3 in mask mAP, while maintaining
similar computational costs. For larger variants, ViF-S achieves 49.1 box mAP and 44.0 mask mAP,
outperforming VMamba-S by 0.4 and 0.3, respectively, with reduced computational costs (64M pa-
rameters and 328G FLOPs vs. 70M parameters and 349G FLOPs). Under the multi-scale training
schedule, these performance advantages are maintained and even enhanced. ViF-T achieves 48.9
box mAP and 43.4 mask mAP, while ViF-S reaches the highest performance with 50.1 box mAP
and 44.4 mask mAP, outperforming VMamba-S by 0.2 and 0.2, respectively. These comprehensive
results demonstrate the effectiveness and robustness of ViF architectures for dense prediction tasks.
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Table 3: Comparison of object detection performance on COCO with Mask R-CNN ( )
detector. FLOPs are calculated with input resolution of 1280 x 800.

Mask R-CNN 1x schedule
Backbone | AP* 1 AP%1 AP%1 | AP™1 APY? APY1 | Params FLOPs

ResNet-50 382 588 41.4 347 55.7 37.2 44M 260G
Swin-T 42.7 65.2 46.8 39.3 62.2 422 48M 267G
ConvNeXt-T 442  66.6 48.3 40.1 63.3 42.8 48M 262G
PVTv2-B2 45.3 66.1 49.6 41.2 64.2 44.4 45M 309G
ViT-Adapter-S 44.7 65.8 48.3 39.9 62.5 42.8 48M 403G
MambaOut-T 45.1 67.3 49.6 41.0 64.1 44.1 43M 262G
VMamba-T 473 69.3 52.0 427 66.4 45.9 50M 271G
LocalVMamba-T | 46.7 68.7 50.8 422 65.7 45.5 45M 291G

ViF-T 477  70.0 52.1 43.0 66.7 46.5 48M 272G
ResNet-101 382  58.8 41.4 34.7 55.7 37.2 63M 336G
Swin-S 448  68.6 49.4 40.9 65.3 44.2 6OM 354G

ConvNeXt-S 454 679 50.0 41.8 65.2 45.1 70M 348G
PVTv2-B3 47.0  68.1 51.7 42.5 65.2 45.7 63M 397G
MambaOut-S 474  69.1 524 42.7 66.1 46.2 65M 354G
VMamba-S 487  70.0 53.4 43.7 67.3 47.0 70M 349G
LocalVMamba-S | 484  69.9 52.7 43.2 66.7 46.5 69M 414G
ViF-S 491 704 53.5 44.0 67.6 47.5 64M 328G

Swin-B 46.9 - - 423 66.3 46.0 88M 496G
ConvNeXt-B 47.0 694 51.7 42.7 66.3 46.0 107TM 486G
PVTv2-B5 474  68.6 51.9 42.5 65.7 46.0 102M 557G
ViT-Adapter-B 47.0 682 514 41.8 65.1 44.9 102M 557G
MambaOut-B 474 693 52.2 43.0 66.4 46.3 100M 495G
VMamba-B 492 714 54.0 441 68.3 47.7 108M 485G
ViF-B 501 713 54.8 44.6 68.5 48.1 120M 517G

Mask R-CNN 3 x MS schedule
Backbone | AP* 1 APR,t AP2, 1 | AP™ 1 APZ! APZ1 | #Param. FLOPs

Swin-T 46.0 68.1 50.3 41.6 65.1 44.9 48M 267G
ConvNeXt-T 46.2 679 50.8 41.7 65.0 44.9 48M 262G
NAT-T 477  69.0 52.6 42.6 66.1 45.9 48M 258G

VMamba-T 488  70.4 535 43.7 67.4 47.0 50M 271G
LocalVMamba-T | 48.7  70.1 53.0 434 67.0 46.4 45M 291G

ViF-T 489 70.3 53.6 43.4 67.5 46.5 48M 272G
Swin-S 482  69.8 52.8 43.2 67.0 46.1 69M 354G
ConvNeXt-S 479  170.0 52.7 429 66.9 46.2 70M 348G
NAT-S 48.4  69.8 532 43.2 66.9 46.5 70M 330G

VMamba-S 499 709 54.7 44.2 68.2 47.7 70M 349G
LocalVMamba-S | 499  70.5 54.4 441 67.8 47.4 6OM 414G
ViF-S 501 714 54.9 44.4 68.3 47.9 64M 328G

5.3 SEMANTIC SEGMENTATION ON ADE20K

Settings We conduct a comprehensive evaluation of ViF on semantic segmentation using ADE20K

dataset ( ) and MMSegmenation toolkit. We adopt UPerNet ( ) as
segmentor, and apply pre-trained ViF-T/S/B as backbone. Consistent with the previous work
( ; ), we fine-tune the pre-trained models on the ADE20K dataset for both both single-

scale and multi-scale testing.

Results The experimental results on ADE20K semantic segmentation are reported in Tab. 4. Un-
der the single-scale testing, ViF-T achieves a single-scale mIoU of 48.7 and a multi-scale mloU of
49.6, representing significant improvements of 1.6 mloU over NAT-T and 0.7 mIoU over VMamba-
T, respectively. Under multi-scale testing, ViF-T maintains its competitive advantage with im-
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Table 4: Comparison of semantic segmentation on ADE20K with UPerNet ( ) segmentor.
FLOPs are calculated with input resolution of 512 x 2048.

Method | Crop size | mIoU (SS) 1 mloU (MS) 1 | Params. FLOPs
DeiT-S + MLN 5122 43.1 43.8 58M 1217G
Swin-T 5122 44 4 45.8 60M 945G
ConvNeXt-T 5122 46.0 46.7 60M 939G
NAT-T 5122 47.1 48.4 58M 934G
MambaOut-T 5122 47.4 48.6 54M 938G
VMamba-T 5122 48.0 48.8 62M 949G
LocalVMamba-T | 5122 479 49.1 57M 970G
ViE-T 5122 48.7 49.6 58M 948G
DeiT-B + MLN 5122 45.5 47.2 144M  2007G
Swin-S 5122 47.6 49.5 81M 1039G
ConvNeXt-S 5122 48.7 49.6 82M 1027G
NAT-S 5122 48.0 49.5 82M 1010G
MambaOut-S 5122 49.5 50.6 76M 1032G
VMamba-S 5122 50.6 51.2 82M 1028G
LocalVMamba-S 5122 50.0 51.0 81M 1095G
ViF-S 5122 50.5 51.3 76M 1009G
Swin-B 5122 48.1 49.7 121IM  1188G
ConvNeXt-B 5122 49.1 49.9 122M  1170G
NAT-B 5122 48.5 49.7 123M  1137G
MambaOut-B 5122 49.6 51.0 112M  1178G
VMamba-B 5122 51.0 51.6 122M  1170G
ViF-B 5122 51.3 523 13IM  1200G

provements of 1.2 mloU over NAT-T and 0.8 mloU over VMamba-T. For larger variants, ViF-S
shows superior performance with 50.5 single-scale mloU and 51.3 multi-scale mIoU, outperform-
ing VMamba-S while using fewer computational costs (76M parameters and 1009G FLOPs vs. §2M
parameters and 1028G FLOPs). Notably, ViF-B achieve a single-scale mIoU of 51.3 and multi-scale
mloU of 52.3, surpassing VMamba-B by 0.3 and 0.7, respectively.

Ablation Study To validate the ef- Table 5: Ablation study. Our ViF-T model is highlighted.
fectiveness of each component in our

. Model
model, we conduct a comprehensive

Top-1 Params(M) FLOPs(G) Throughput

ablation study, as shown in Tab. 5. w/oLC-1  83.6 28 5.0 1585
Removing LC-1 drops accuracy to wioLC-2 834 28 50 1589
83.6% and removing LC-2 further w/o AM 83.5 29 5.1 1667
decreases accuracy to 83.4%, both w/o SA 83.1 25 4.6 1689
showing their importance. Eliminat-  ViF-T 83.8 29 5.1 1549

ing adaptive modulation (AM) leads
to 83.5% accuracy, while removing selective activation (SA) has the largest impact, with accuracy
dropping to 83.3%. These results demonstrate the significant impact of each component on model
performance, with SA proving most critical for maintaining accuracy.

6 CONCLUSION

Limitations While our ViF model outperforms baselines on ImageNet-1K, three key limitations
exist: (1) marginal performance gains compared to other ViM models on downstream tasks, (2)
significant performance gap against ViT variants on downstream tasks ( ); ( ),
and (3) lack of scalability evaluation on larger models and datasets (e.g., ImageNet-22K).

Broader Impact Our ViF model offers significant potential benefits for efficient visual repre-
sentation learning. However, potential risks include accessibility barriers due to frequency-domain
operations and possible perpetuation of biases present in training data. We encourage responsible
deployment and ongoing research to address these considerations.
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7 ETHICS STATEMENT

This work does not involve human subjects, does not raise concerns regarding data privacy, bias,
fairness, or potential harmful applications, and does not present conflicts of interest or legal com-
pliance issues. The research methodology and findings do not pose ethical concerns that require
additional consideration beyond standard academic practices.

8 REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, we provide the following resources: (1) complete imple-
mentation details and hyperparameters are described in Section 5 and Appendix C; (2) all datasets
used in our experiments are publicly available and properly cited with access information provided
in Section 5; (3) theoretical proofs and derivations are included in Section 3; and (5) source code
will be made available upon publication to facilitate replication of our experimental results.
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