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ABSTRACT

Effective information extraction has long been a central challenge in Computer
Vision (CV). Transformer- and Mamba-based backbones have significantly ad-
vanced this field by providing powerful long-range modeling capability, even
though they are initially developed for Natural Language Processing (NLP). Re-
cent progress has highlighted the potential of Fourier Neural Operator (FNO),
which, with its favorable quasi-linear complexity and strong global modeling ca-
pacity, offers a promising alternative for visual representation learning. However,
FNO exhibits a fundamental limitation in capturing local high-frequency patterns
due to the over-smoothing effect and bandwidth bottleneck. To address this limita-
tion, we propose Vision Filter (ViF), as a generic backbone for CV, consisting of
two complementary components: adaptive modulation for enhancing sensitivity to
high-frequency component in the frequency domain, and selective activation for
balancing local time-domain and global frequency-domain information flow. Ex-
tensive experiments reveal that ViF consistently outperforms prominent variants
of Transformer- and Mamba-based backbones across diverse visual tasks, includ-
ing image classification, object detection, and semantic segmentation. ViF demon-
strates lower computational complexity than Transformer-based models and better
structural modeling than Mamba-based models, which suffer from spatial disrup-
tion due to their directional scanning mechanism. The joint time- and frequency-
domain mechanism introduced in ViF may establish a promising paradigm for
designing effective visual representation learning, bridging local high-frequency
information with global low-frequency information.

1 INTRODUCTION
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Figure 1: Model Efficiency Comparison on
ImageNet-1k. For throughput testing, we employ
a H100 GPU with a batch size of 128 and an input
resolution of 224 × 224.

Computer Vision (CV) has witnessed re-
markable progress in developing archi-
tectures capable of extracting meaningful
visual information. The evolution from
foundational Convolutional Neural Net-
work (CNN) Krizhevsky et al. (2012);
Simonyan & Zisserman (2015); He et al.
(2016); Liu et al. (2022b) to more com-
plex architectures has been motivated by
the essential challenge of balancing com-
putational efficiency with representational
capacity Vaswani et al. (2017); Katharopoulos
et al. (2020). The introduction of Vision
Transformer (ViT) Dosovitskiy et al. (2020) fundamentally changed visual representation learning
by adapting the Transformer backbone from Natural Language Processing (NLP) to CV. By
enabling each local patch to dynamically attend to the global context, ViT successfully transcended
the inherent local receptive field constraints of traditional convolutional approaches, achieving
exceptional model performance across various visual tasks Liu et al. (2021). However, the quadratic
computational complexity of Transformer poses significant scalability challenges, particularly
when processing high-resolution visual tasks, which has driven researchers to explore alternative
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backbones that preserve global modeling capability while achieving superior computational
efficiency Touvron et al. (2021); Chu et al. (2021).

The introduction of Mamba has emerged as a compelling solution to address these scalability con-
cerns Gu & Dao (2023); Dao & Gu (2024), sparking considerable research interest and inspiring
the development of numerous variants of Vision Mamba (ViM) Zhu et al. (2024); Liu et al. (2024).
These approaches have shown promising results across diverse visual tasks, including image restora-
tion Guo et al. (2024) and video understanding Li et al. (2024a). However, these approaches en-
counter fundamental limitation in preserving the inherent spatial structure of 2D visual information,
with the principal challenge arising from directional scanning strategy that inevitably lead to spatial
disruption Yu & Wang (2024); Han et al. (2024). Recent work Li et al. (2024b) has begun exploring
how to construct a more robust scanning mechanism to incorporate spatial-specific inductive biases
to improve the representation learning capability of ViM.

Fourier Neural Operator (FNO) Li et al. (2021) offers an alternative paradigm that naturally operates
in the 2D frequency domain, providing quasi-linear computational complexity of OpN logNq

while preserving strong global modeling capacity. Unlike Transformer and Mamba-based models
that require converting 2D visual representations into 1D sequences, FNO directly processes spatial
information in its native 2D frequency-domain representation, avoiding the associated spatial distor-
tion. However, FNO exhibits fundamental limitations in modeling local high-frequency patterns Liu-
Schiaffini et al. (2024) due to the over-smoothing effect and bandwidth bottleneck Rahaman et al.
(2019). This inspires the development of more effective Fourier-based backbones.

To address these challenges, we propose Fourier Neural Filter (FNF), a novel nonlinear integral
kernel operator that integrates spatial-specific inductive biases directly into the backbone design.
Mathematically, FNF extends the standard FNO Li et al. (2021) by introducing an input-dependent
kernel function that enables selective activation of local time-domain and global frequency-domain
information flow through Hadamard product operations, making it particularly effective for captur-
ing the unique properties of 2D visual information. This input-dependent gated global convolution
substantially addresses the bandwidth bottleneck by preserving informative mid-/high-frequency
components while suppressing redundant ones. On the other hand, to mitigate over-smoothing ef-
fect, we incorporate adaptive modulation following complex operation, enabling non-uniform am-
plification and attenuation of specific frequency bands under stability constraints.

Building upon FNF, we construct Vision Filter (ViF) as a generic backbone for CV. Our ex-
tensive experiments demonstrate that ViF consistently outperforms prominent variants of both
Transformer- and Mamba-based backbones across diverse visual tasks, including image classifi-
cation on ImageNet-1K Deng et al. (2009), as shown in Fig. 1, object detection on COCO Lin et al.
(2014), and semantic segmentation on ADE20K Zhou et al. (2019).

Our contributions are as follows: (1) We propose FNF, the first unified backbone that couples time-
domain and frequency-domain analysis, inherently preserving the spatial structure of 2D visual
representation; (2) We theoretically and empirically demonstrate that our proposed FNF resolves
the inherent over-smoothing effect and bandwidth bottleneck of the original FNO; (3) The proposed
model ViF achieves state-of-the-art performance on three mainstream visual tasks.

2 RELATED WORK

Vision Transformer Building on the success of Vision Transformer (ViT) Dosovitskiy et al.
(2020), subsequent developments have focused on making it more efficient and effective through
various techniques. These include hierarchical designs like Swin Transformer Liu et al. (2021),
PVT Wang et al. (2021), and NAT Hassani et al. (2023), hybrid approaches combining CNN with
Transformers like CMT Guo et al. (2022), CrossViT Chen et al. (2021), MaxVit Tu et al. (2022),
and FasterViT Hatamizadeh et al. (2023), and large-scale self-supervised pre-training models like
MAE He et al. (2022) and BEIT Bao et al. (2022). These innovations have collectively established
ViT as a fundamental architecture for diverse visual tasks.

Vision Mamba Recent work on Vision Mamba (ViM) is aiming to overcome the fundamental
limitations of its directional scanning strategy for 2D visual information processing, including bi-
directional Zhu et al. (2024) and quad-directional Liu et al. (2024) scanning, and other approaches
capable of balancing both local and global information extraction Pei et al. (2024); Huang et al.
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(2024); Xiao et al. (2024). These advances collectively improve representation learning and spatial
understanding of ViM by addressing the inherent challenges of applying autoregressive models to
2D visual information while maintaining computational efficiency.

Fourier Transform for Vision Previous work has successfully integrated Fourier transform into
deep learning system Lee-Thorp et al. (2021). GFNet Rao et al. (2021) achieves competitive per-
formance with logarithmic linear complexity by replacing the self-attention mechanism in the ViT
backbone with 2D discrete Fourier transform and learnable global filter. FourCastNet Pathak et al.
(2022); Kurth et al. (2023), developed based on AFNO Guibas et al. (2022), generates one-week
global weather forecasting within 2 seconds—several orders of magnitude faster than traditional nu-
merical weather forecasting models Pathak et al. (2022). Recent extensions include SFNO Bonev
et al. (2023), which incorporates spherical harmonic transforms into atmospheric modeling to enable
stable year-round weather forecasting on spherical geometry Bonev et al. (2025).

3 METHODOLOGY

In this section, we theoretically analyze the limitations of Fourier Neural Operator (FNO) and intro-
duce the fundamentals of our proposed Fourier Neural Filter (FNF).

3.1 LIMITATIONS OF FOURIER NEURAL OPERATOR (FNO)

Proposition 1 (Bandwidth Bottleneck.) Consider a periodic functions v expanded in a Fourier
series. Let PK denote the projection onto Fourier modes t|k| ď Ku. Any FNO layer FKpvq with
fixed bandwidth K depends only on PK . If v is non-bandlimited, and the operator T is not strictly
low-pass, leading to an irreducible truncation error in the frequency domain:

inf
FK

›

›FKpvq ´ T pvq
›

› ě
›

›PK
K T pvq

›

›. (1)

Proof sketch. FNO applies a fixed spectral map on t|k| ď Ku and discards t|k| ą Ku. There-
fore, two inputs with identical PK cannot be distinguished. The error lower bound follows from
orthogonal decomposition into PK and PK

K components.

Proposition 2 (Over-smoothing Effect.) Let Mℓpkq be the per-layer spectral multipliers on t|k| ď

Ku. If there exists ρ P p0, 1q and k0 ď K such that |Mℓpkq| ď ρ for all |k| ě k0 and all layers
ℓ, then the overall frequency response HLpkq “

śL
ℓ“1 Mℓpkq can satisfy |HLpkq| ď ρL Ñ 0 on

t|k| ě k0u as L Ñ 8, leading to an over-smoothing spatial representation.

Proof sketch. Multiplicative contraction on the mid-/high-frequency modes accumulates exponen-
tially with depth; coupled with the hard truncation outside t|k| ď Ku, the output energy is concen-
trated in the low-frequency modes, while the high-frequency modes are progressively suppressed.

3.2 FUNDAMENTALS OF FOURIER NEURAL FILTER (FNF)

Global Conv

Input Output

Complex 
Transform

Adaptive 
M odulator

FNF M odule

Input Output

Global Convolution

Local 
Conv

Local 
Conv

Figure 2: Schematic diagram of our proposed
Fourier Neural Filter (FNF) backbone.

While FNO Li et al. (2021) has demonstrated
remarkable effectiveness in modeling complex
dynamic systems and solving partial differen-
tial equations through fixed integral kernel, our
proposed FNF (Fig. 2) makes a critical leap
forward: introducing an input-dependent inte-
gral kernel that can allow for adaptive and dy-
namic information flow between the time and
frequency domains, thereby constructing a uni-
fied time-frequency representation space. Intu-
itively, if FNO applies a fixed lens to process
all input signals, then FNF continuously adjusts
the lens based on the preceding scene, achiev-
ing more detailed information extraction and
more robust pattern recognition. We analyze the theoretical underpinnings of FNF by examining

3
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integral kernel, global convolution, selective activation, complex transform, and adaptive modula-
tion.

3.2.1 INTEGRAL KERNEL

Definition 1 FNO is defined via a fixed integral kernel operator:

pKvqpxq “

ż

D

κpx, yqvpyq dy, (2)

where κ : D ˆ D Ñ R is the kernel function and v : D Ñ R is the input function. Through the
Fourier transform, FNO can be formulated in the frequency domain as:

pKvqpxq “ F´1pRϕ ¨ Fpvqqpxq, (3)
where Rϕ “ Fpκq denotes the parameterized frequency-domain kernel.

Definition 2 FNF can be defined through an adaptive integral kernel operator:

pKvqpxq “

ż

D

κpx, y; vqvpyq dy, (4)

where κpx, y; vq is the input-dependent kernel function. In the implementation, FNF can also be
formulated as:

pKvqpxq “ T pGpvq d P pvqqpxq, (5)

P pvqpxq “ F´1pRϕ ¨ FpHpvqqpxq, (6)

where Gpvq, Hpvq, and T pvq denote the linear transform used for expansion or compression, and d

is the Hadamard product operation.

Remark 1 The fundamental distinction between FNO and FNF lies in their kernel functions: FNO
employs a fixed kernel κpx, yq, whereas FNF applies an input-dependent kernel κpx, y; vq, enabling
adaptive information flow modulation between time-domain and frequency-domain, constructing a
unified time-frequency representation space.

3.2.2 GLOBAL CONVOLUTION

Definition 3 When the kernel function κpx, yq “ κpx ´ yq exhibits translation invariance, the
fixed integral kernel operator in FNO reduces to a global convolution Li et al. (2021):

pKvqpxq “

ż

D

κpx ´ yqvpyq dy “ pκ ˚ vqpxq. (7)

Definition 4 Similarly, when the kernel function κpx, y; vq “ κpx ´ y; vq maintains translation
invariance, the adaptive integral kernel operator in FNF becomes a gated global convolution:

pKvqpxq “

ż

D

κ̃px ´ y; vqvpyq dy “ pκ̃p¨; vq ˚ vqpxq. (8)

Remark 2 Translation invariance enables efficient computation of integral operator through
Fourier transform in both FNO and FNF. Beyond this shared efficiency, the gated global convolu-
tion in FNF significantly enhances representation capacity by employing an input-dependent kernel
κ̃p¨; vq, which adaptively modulates filtering behavior while preserving computational efficiency.

3.2.3 SELECTIVE ACTIVATION

Definition 5 The selective activation operates an element-wise multiplication in the time domain;
in the frequency domain, this operation is mathematically equivalent to the convolution operation
between Gpvqpxq and P pvqpxq:

FpGpvq d P pvqq pωq “
`

Ĝpvq ˚ P̂ pvq
˘

pωq. (9)
This formula can be viewed as approximate magnitude modulation and phase addition when the
signal Gpvq is relatively smooth or narrow:

pGpvq d P pvqqi « |Gpvqi| ¨ |P pvqi| ¨ eipθGpvqi
`θP pvqi

q, (10)
where |Gpvqi| and |P pvqi| represent magnitudes, and θGpvqi and θP pvqi represent phases.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Remark 3 This formulation reveals how selective activation effectively achieves joint
time–frequency modulation: it enhances informative mid-/high-frequency components while sup-
pressing redundant low-frequency ones on the magnitude side, and simultaneously provides flexible
alignment on the phase side. This design alleviates the well-known over-smoothing effect and band-
width bottleneck Rahaman et al. (2019) of FNO and improves the representation learning capability.

3.2.4 COMPLEX TRANSFORM

Definition 6 The complex transform operates on the complex-valued input z “ zr ` izi with
complex weights W “ Wr ` iWi and biases b “ br ` ibi:

Lpzq “ pWrzr ´ Wizi ` brq ` ipWrzi ` Wizr ` biq. (11)

Remark 4 To reduce the parameter count, we adopt the block-diagonal structure for the
weights Guibas et al. (2022) and implement two complex transform layers equipped with the GELU
activation function Hendrycks & Gimpel (2016).

3.2.5 ADAPTIVE MODULATION

Definition 7 The adaptive modulation operates through an amplitude-sensitive weighting function
to achieve frequency balancing Liu & Tang (2025):

Mpzq “ z d rβ ¨ }z}αs , (12)
where }z} represent the magnitude of complex-valued input z, and α, β are learnable parameters, d

is the Hadamard product operation.

Remark 5 When α ă 1, the power-law weighting compresses the dynamic range between fre-
quency components, effectively attenuating dominant low-frequency components while relatively
enhancing weak high-frequency components. On the other hand, the adaptive parameter β provides
global scaling control to achieve optimal frequency balance.

4 MODEL
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Figure 3: Schematic diagram of our proposed Vision Filter (ViF) architecture. Architecture details can be
found in the Appendix.

Overall Architecture Our ViF model is structured into four hierarchical stages, as shown in
Fig. 3, mirroring the design principles of established vision backbones in previous works Liu et al.
(2021; 2022b; 2024). Specifically, an input image I P RHˆWˆ3 is initially processed through an
overlapped stem layer to obtain a 2D feature map with dimension of H

4 ˆ W
4 ˆC. This feature map

is subsequently fed into four successive stages, where each stage comprises multiple ViF blocks
followed by down-sampling layer with reduction factor of 2 (excluding the final stage). The head
layer processes the feature map to obtain the spatial representation tailored for specific downstream
tasks. More details can be found in the Appendix.
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Block Design The ViF block serves as the fundamental construction unit of our architecture, in-
cluding the FNF and Feed-Forward Network (FFN) modules with residual skip connection He et al.
(2016), as shown in the lower-left corner of Fig. 3. Our FNF module, illustrated in the bottom
lower-right corner of Fig. 3, has two branches: one branch contains a local convolution and a global
convolution enabling to capture effective spatial information through progressive learning from lo-
cal to global representation, the other branch contains a local convolution enabling to achieve ef-
fective fusion of global frequency-domain information and local time-domain information through
Hadamard product operation. Additionally, FFN module is added subsequent to the FNF module to
promote information flow interaction across channels and to maintain alignment with the settings
of classical ViTs. Furthermore, Local Perception Unit (LPU) Guo et al. (2022) is employed before
both the FNF and FFN module to incorporate local inductive biases.

5 EXPERIMENT

In this section, to validate the effectiveness of our proposed ViF, we conduct extensive experiments
on a variety of visual tasks, including image classification, object detection, and semantic segmen-
tation. Following the previous works Liu et al. (2021; 2024), we train three variants of ViF, called
ViF-T, ViF-S and ViF-B, as shown in Tab. 1.

Table 1: Model Description of ViF variants.

Models Blocks Channels Heads

ViF-Tiny [2, 4, 8, 4] [64, 128, 256, 512] [2, 4, 8, 16]
ViF-Small [2, 5, 19, 5] [64, 128, 256, 512] [2, 4, 8, 16]
ViF-Base [2, 5, 19, 5] [96, 192, 384, 768] [3, 6, 12, 24]

5.1 IMAGE CLASSIFICATION ON IMAGENET-1K

Settings We conduct a comprehensive evaluation of ViF on image classification using ImageNet-
1K dataset Deng et al. (2009). Our experimental setup follows the configurations established in the
previous works Liu et al. (2021; 2024), with complete implementation details provided in the Ap-
pendix. We compare our model with other state-of-the-art models, including CNN-based models
(RegNetY Radosavovic et al. (2020), ConvNeXt Liu et al. (2022b), and MambaOut Yu & Wang
(2024)), Transformer-based models (ViT Dosovitskiy et al. (2020), DeiT Touvron et al. (2021),
Swin Liu et al. (2021), SwinV2 Liu et al. (2022a), Twins Chu et al. (2021), and NAT Hassani
et al. (2023)), Mamba-based models (ViM Zhu et al. (2024), VMamba Liu et al. (2024), LocalV-
Mamba Huang et al. (2024), EfficientVMamba Pei et al. (2024), and MambaVision Hatamizadeh &
Kautz (2025)), and Fourier-based models (GFNet and GFNetV2 Rao et al. (2021)).

Results The experimental results on ImageNet-1K image classification are reported in Tab. 2.
Compared to Transformer-based models, ViF-T exceeds Swin-T by 2.3% and NAT-T by
0.6%. In comparison with Mamba-based models, ViF-T outperforms VMamba-T by 1.3% and
LocalVMamba-T by 1.1%. Among Fourier-based models, ViF demonstrates substantial improve-
ments over existing approaches: ViF-T surpasses GFNet-S by 3.8% and GFNetV2-B by 1.7%,
showcasing the superiority of our proposed architecture design. For larger variants, ViF-S and ViF-
B achieve the accuracy of 84.5% and 85.2%, respectively, significantly outperforming GFNetV2-S
by 2.8% and GFNetV2-B by 3.1%, while surpassing NAT-S and NAT-B by 1.5% and 0.9%, and
VMamba-S and VMamba-B by 0.9% and 1.3%. These comprehensive results demonstrate that ViF
achieves outstanding model performance across different model sizes while maintaining competitive
computational efficiency.

5.2 OBJECT DETECTION ON COCO

Settings We conduct a comprehensive evaluation of ViF on object detection using COCO 2017
dataset Deng et al. (2009) and MMDetection library. We adopt Mask R-CNN He et al. (2017) as
detector, and apply the pre-trained ViF-T/S/B as backbone. Following the previous work Liu et al.
(2021; 2024), we fine-tune the pre-trained models on the COCO dataset for single-scale training (1ˆ

schedule) and multi-scale training (3ˆ schedule).
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Table 2: Comparison of image classification performance on ImageNet-1K.

Architecture Method Image Size Params (M) FLOPs (G) Top-1 (%)

CNN

RegNetY-4G 2242 21 4.0 80.0
RegNetY-8G 2242 39 8.0 81.7
RegNetY-16G 2242 84 16.0 82.9
ConvNeXt-T 2242 29 4.5 82.1
ConvNeXt-S 2242 50 8.7 83.1
ConvNeXt-B 2242 89 15.4 83.8
MambaOut-T 2242 27 4.5 82.7
MambaOut-S 2242 48 9.0 84.1
MambaOut-B 2242 85 15.8 84.2

Transformer

ViT-B/16 3842 86 55.4 77.9
DeiT-S 2242 22 4.6 79.8
DeiT-B 2242 87 16.9 81.8
Swin-T 2242 28 4.5 81.3
Swin-S 2242 50 8.7 83.0
Swin-B 2242 88 15.4 83.5
SwinV2-T 2562 28 4.8 82.7
SwinV2-S 2562 50 8.5 83.5
SwinV2-B 2562 88 15.1 84.6
Twins-S 2242 24 2.8 81.7
Twins-B 2242 56 8.3 83.1
NAT-T 2242 28 4.3 83.2
NAT-S 2242 51 7.8 83.0
NAT-B 2242 90 13.7 84.3

Mamba

ViM-S/16 2242 26 5.1 80.3
VMamba-T 2242 30 4.9 82.6
VMamba-S 2242 50 8.7 83.6
VMamba-B 2242 89 15.4 83.9
LocalVMamba-T 2242 26 5.7 82.7
LocalVMamba-S 2242 50 11.4 83.7
EfficientVMamba-S 2242 11 1.3 78.7
EfficientVMamba-B 2242 33 4.0 81.8
MambaVision-T 2242 32 4.4 82.3
MambaVision-S 2242 50 7.5 83.3
MambaVision-B 2242 98 15.0 84.2

Fourier

GFNet-S 2242 25 4.5 80.0
GFNet-B 2242 43 7.9 80.7
GFNetV2-S 3842 28 13.2 81.7
GFNetV2-B 3842 47 23.3 82.1
ViF-T 2242 29 5.1 83.8
ViF-S 2242 45 7.8 84.5
ViF-B 2242 96 16.7 85.2

Results The experimental results on COCO object detection are reported in Tab. 3. Under the
single-scale training, ViF-T achieves a box mAP of 47.7 and a mask mAP of 43.0, surpassing Swin-
T by 5.0 and 3.7, respectively, while using comparable computational costs (48M parameters and
272G FLOPs vs. 48M parameters and 267G FLOPs). Compared to VMamba-T, ViF-T shows com-
petitive performance with improvement of 0.4 in box mAP and 0.3 in mask mAP, while maintaining
similar computational costs. For larger variants, ViF-S achieves 49.1 box mAP and 44.0 mask mAP,
outperforming VMamba-S by 0.4 and 0.3, respectively, with reduced computational costs (64M pa-
rameters and 328G FLOPs vs. 70M parameters and 349G FLOPs). Under the multi-scale training
schedule, these performance advantages are maintained and even enhanced. ViF-T achieves 48.9
box mAP and 43.4 mask mAP, while ViF-S reaches the highest performance with 50.1 box mAP
and 44.4 mask mAP, outperforming VMamba-S by 0.2 and 0.2, respectively. These comprehensive
results demonstrate the effectiveness and robustness of ViF architectures for dense prediction tasks.

7
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Table 3: Comparison of object detection performance on COCO with Mask R-CNN He et al. (2017)
detector. FLOPs are calculated with input resolution of 1280 ˆ 800.

Mask R-CNN 1ˆ schedule

Backbone APb Ò APb
50Ò APb

75Ò APm Ò APm
50Ò APm

75Ò Params FLOPs

ResNet-50 38.2 58.8 41.4 34.7 55.7 37.2 44M 260G
Swin-T 42.7 65.2 46.8 39.3 62.2 42.2 48M 267G

ConvNeXt-T 44.2 66.6 48.3 40.1 63.3 42.8 48M 262G
PVTv2-B2 45.3 66.1 49.6 41.2 64.2 44.4 45M 309G

ViT-Adapter-S 44.7 65.8 48.3 39.9 62.5 42.8 48M 403G
MambaOut-T 45.1 67.3 49.6 41.0 64.1 44.1 43M 262G
VMamba-T 47.3 69.3 52.0 42.7 66.4 45.9 50M 271G

LocalVMamba-T 46.7 68.7 50.8 42.2 65.7 45.5 45M 291G
ViF-T 47.7 70.0 52.1 43.0 66.7 46.5 48M 272G

ResNet-101 38.2 58.8 41.4 34.7 55.7 37.2 63M 336G
Swin-S 44.8 68.6 49.4 40.9 65.3 44.2 69M 354G

ConvNeXt-S 45.4 67.9 50.0 41.8 65.2 45.1 70M 348G
PVTv2-B3 47.0 68.1 51.7 42.5 65.2 45.7 63M 397G

MambaOut-S 47.4 69.1 52.4 42.7 66.1 46.2 65M 354G
VMamba-S 48.7 70.0 53.4 43.7 67.3 47.0 70M 349G

LocalVMamba-S 48.4 69.9 52.7 43.2 66.7 46.5 69M 414G
ViF-S 49.1 70.4 53.5 44.0 67.6 47.5 64M 328G

Swin-B 46.9 - - 42.3 66.3 46.0 88M 496G
ConvNeXt-B 47.0 69.4 51.7 42.7 66.3 46.0 107M 486G
PVTv2-B5 47.4 68.6 51.9 42.5 65.7 46.0 102M 557G

ViT-Adapter-B 47.0 68.2 51.4 41.8 65.1 44.9 102M 557G
MambaOut-B 47.4 69.3 52.2 43.0 66.4 46.3 100M 495G
VMamba-B 49.2 71.4 54.0 44.1 68.3 47.7 108M 485G

ViF-B 50.1 71.3 54.8 44.6 68.5 48.1 120M 517G
Mask R-CNN 3ˆ MS schedule

Backbone APb Ò APb
50Ò APb

75Ò APm Ò APm
50Ò APm

75Ò #Param. FLOPs

Swin-T 46.0 68.1 50.3 41.6 65.1 44.9 48M 267G
ConvNeXt-T 46.2 67.9 50.8 41.7 65.0 44.9 48M 262G

NAT-T 47.7 69.0 52.6 42.6 66.1 45.9 48M 258G
VMamba-T 48.8 70.4 53.5 43.7 67.4 47.0 50M 271G

LocalVMamba-T 48.7 70.1 53.0 43.4 67.0 46.4 45M 291G
ViF-T 48.9 70.3 53.6 43.4 67.5 46.5 48M 272G

Swin-S 48.2 69.8 52.8 43.2 67.0 46.1 69M 354G
ConvNeXt-S 47.9 70.0 52.7 42.9 66.9 46.2 70M 348G

NAT-S 48.4 69.8 53.2 43.2 66.9 46.5 70M 330G
VMamba-S 49.9 70.9 54.7 44.2 68.2 47.7 70M 349G

LocalVMamba-S 49.9 70.5 54.4 44.1 67.8 47.4 69M 414G
ViF-S 50.1 71.4 54.9 44.4 68.3 47.9 64M 328G

5.3 SEMANTIC SEGMENTATION ON ADE20K

Settings We conduct a comprehensive evaluation of ViF on semantic segmentation using ADE20K
dataset Zhou et al. (2019) and MMSegmenation toolkit. We adopt UPerNet Xiao et al. (2018) as
segmentor, and apply pre-trained ViF-T/S/B as backbone. Consistent with the previous work Liu
et al. (2021; 2024), we fine-tune the pre-trained models on the ADE20K dataset for both both single-
scale and multi-scale testing.

Results The experimental results on ADE20K semantic segmentation are reported in Tab. 4. Un-
der the single-scale testing, ViF-T achieves a single-scale mIoU of 48.7 and a multi-scale mIoU of
49.6, representing significant improvements of 1.6 mIoU over NAT-T and 0.7 mIoU over VMamba-
T, respectively. Under multi-scale testing, ViF-T maintains its competitive advantage with im-
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Table 4: Comparison of semantic segmentation on ADE20K with UPerNet Xiao et al. (2018) segmentor.
FLOPs are calculated with input resolution of 512 ˆ 2048.

Method Crop size mIoU (SS) Ò mIoU (MS) Ò Params. FLOPs

DeiT-S + MLN 5122 43.1 43.8 58M 1217G
Swin-T 5122 44.4 45.8 60M 945G

ConvNeXt-T 5122 46.0 46.7 60M 939G
NAT-T 5122 47.1 48.4 58M 934G

MambaOut-T 5122 47.4 48.6 54M 938G
VMamba-T 5122 48.0 48.8 62M 949G

LocalVMamba-T 5122 47.9 49.1 57M 970G
ViF-T 5122 48.7 49.6 58M 948G

DeiT-B + MLN 5122 45.5 47.2 144M 2007G
Swin-S 5122 47.6 49.5 81M 1039G

ConvNeXt-S 5122 48.7 49.6 82M 1027G
NAT-S 5122 48.0 49.5 82M 1010G

MambaOut-S 5122 49.5 50.6 76M 1032G
VMamba-S 5122 50.6 51.2 82M 1028G

LocalVMamba-S 5122 50.0 51.0 81M 1095G
ViF-S 5122 50.5 51.3 76M 1009G

Swin-B 5122 48.1 49.7 121M 1188G
ConvNeXt-B 5122 49.1 49.9 122M 1170G

NAT-B 5122 48.5 49.7 123M 1137G
MambaOut-B 5122 49.6 51.0 112M 1178G
VMamba-B 5122 51.0 51.6 122M 1170G

ViF-B 5122 51.3 52.3 131M 1200G

provements of 1.2 mIoU over NAT-T and 0.8 mIoU over VMamba-T. For larger variants, ViF-S
shows superior performance with 50.5 single-scale mIoU and 51.3 multi-scale mIoU, outperform-
ing VMamba-S while using fewer computational costs (76M parameters and 1009G FLOPs vs. 82M
parameters and 1028G FLOPs). Notably, ViF-B achieve a single-scale mIoU of 51.3 and multi-scale
mIoU of 52.3, surpassing VMamba-B by 0.3 and 0.7, respectively.

Table 5: Ablation study. Our ViF-T model is highlighted.

Model Top-1 Params(M) FLOPs(G) Throughput

w/o LC-1 83.6 28 5.0 1585
w/o LC-2 83.4 28 5.0 1589

w/o AM 83.5 29 5.1 1667
w/o SA 83.1 25 4.6 1689
ViF-T 83.8 29 5.1 1549

Ablation Study To validate the ef-
fectiveness of each component in our
model, we conduct a comprehensive
ablation study, as shown in Tab. 5.
Removing LC-1 drops accuracy to
83.6% and removing LC-2 further
decreases accuracy to 83.4%, both
showing their importance. Eliminat-
ing adaptive modulation (AM) leads
to 83.5% accuracy, while removing selective activation (SA) has the largest impact, with accuracy
dropping to 83.3%. These results demonstrate the significant impact of each component on model
performance, with SA proving most critical for maintaining accuracy.

6 CONCLUSION

Limitations While our ViF model outperforms baselines on ImageNet-1K, three key limitations
exist: (1) marginal performance gains compared to other ViM models on downstream tasks, (2)
significant performance gap against ViT variants on downstream tasks Fan et al. (2024); Shi (2024),
and (3) lack of scalability evaluation on larger models and datasets (e.g., ImageNet-22K).

Broader Impact Our ViF model offers significant potential benefits for efficient visual repre-
sentation learning. However, potential risks include accessibility barriers due to frequency-domain
operations and possible perpetuation of biases present in training data. We encourage responsible
deployment and ongoing research to address these considerations.
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pliance issues. The research methodology and findings do not pose ethical concerns that require
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8 REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, we provide the following resources: (1) complete imple-
mentation details and hyperparameters are described in Section 5 and Appendix C; (2) all datasets
used in our experiments are publicly available and properly cited with access information provided
in Section 5; (3) theoretical proofs and derivations are included in Section 3; and (5) source code
will be made available upon publication to facilitate replication of our experimental results.
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