

FOURIER NEURAL FILTER AS GENERIC VISION BACKBONE

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

ABSTRACT

Effective information extraction has long been a central challenge in Computer Vision (CV). Transformer- and Mamba-based backbones have significantly advanced this field by providing powerful long-range modeling capability, even though they are initially developed for Natural Language Processing (NLP). Recent progress has highlighted the potential of Fourier Neural Operator (FNO), which, with its favorable quasi-linear complexity and strong global modeling capacity, offers a promising alternative for visual representation learning. However, FNO exhibits a fundamental limitation in capturing local high-frequency patterns due to the over-smoothing effect and bandwidth bottleneck. To address this limitation, we propose Vision Filter (ViF), as a generic backbone for CV, consisting of two complementary components: adaptive modulation for enhancing sensitivity to high-frequency component in the frequency domain, and selective activation for balancing local time-domain and global frequency-domain information flow. Extensive experiments reveal that ViF consistently outperforms prominent variants of Transformer- and Mamba-based backbones across diverse visual tasks, including image classification, object detection, and semantic segmentation. ViF demonstrates lower computational complexity than Transformer-based models and better structural modeling than Mamba-based models, which suffer from spatial disruption due to their directional scanning mechanism. The joint time- and frequency-domain mechanism introduced in ViF may establish a promising paradigm for designing effective visual representation learning, bridging local high-frequency information with global low-frequency information.

1 INTRODUCTION

Computer Vision (CV) has witnessed remarkable progress in developing architectures capable of extracting meaningful visual information. The evolution from foundational Convolutional Neural Network (CNN) Krizhevsky et al. (2012); Simonyan & Zisserman (2015); He et al. (2016); Liu et al. (2022b) to more complex architectures has been motivated by the essential challenge of balancing computational efficiency with representational capacity Vaswani et al. (2017); Katharopoulos et al. (2020). The introduction of Vision Transformer (ViT) Dosovitskiy et al. (2020) fundamentally changed visual representation learning by adapting the Transformer backbone from Natural Language Processing (NLP) to CV. By enabling each local patch to dynamically attend to the global context, ViT successfully transcended the inherent local receptive field constraints of traditional convolutional approaches, achieving exceptional model performance across various visual tasks Liu et al. (2021). However, the quadratic computational complexity of Transformer poses significant scalability challenges, particularly when processing high-resolution visual tasks, which has driven researchers to explore alternative

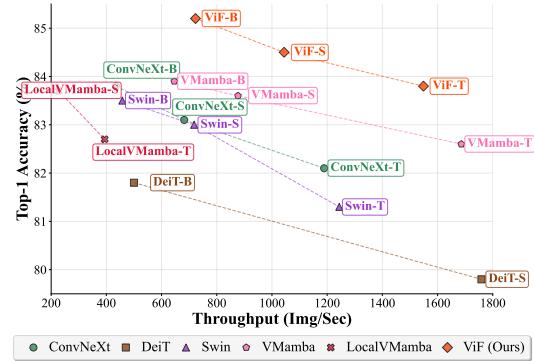


Figure 1: **Model Efficiency Comparison on ImageNet-1k.** For throughput testing, we employ a H100 GPU with a batch size of 128 and an input resolution of 224×224 .

054 backbones that preserve global modeling capability while achieving superior computational
 055 efficiency [Touvron et al. \(2021\)](#); [Chu et al. \(2021\)](#).

056 The introduction of Mamba has emerged as a compelling solution to address these scalability con-
 057 cerns [Gu & Dao \(2023\)](#); [Dao & Gu \(2024\)](#), sparking considerable research interest and inspiring
 058 the development of numerous variants of Vision Mamba (ViM) [Zhu et al. \(2024\)](#); [Liu et al. \(2024\)](#).
 059 These approaches have shown promising results across diverse visual tasks, including image restora-
 060 tion [Guo et al. \(2024\)](#) and video understanding [Li et al. \(2024a\)](#). However, these approaches en-
 061 counter fundamental limitation in preserving the inherent spatial structure of 2D visual information,
 062 with the principal challenge arising from directional scanning strategy that inevitably lead to spatial
 063 disruption [Yu & Wang \(2024\)](#); [Han et al. \(2024\)](#). Recent work [Li et al. \(2024b\)](#) has begun exploring
 064 how to construct a more robust scanning mechanism to incorporate spatial-specific inductive biases
 065 to improve the representation learning capability of ViM.

066 Fourier Neural Operator (FNO) [Li et al. \(2021\)](#) offers an alternative paradigm that naturally operates
 067 in the 2D frequency domain, providing **quasi-linear computational complexity** of $O(N \log N)$
 068 while preserving strong global modeling capacity. Unlike Transformer and Mamba-based models
 069 that require converting 2D visual representations into 1D sequences, FNO directly processes spatial
 070 information in its native 2D frequency-domain representation, avoiding the associated spatial distor-
 071 tion. However, FNO exhibits fundamental limitations in modeling local high-frequency patterns [Liu](#)
 072 [Schiaffini et al. \(2024\)](#) due to the over-smoothing effect and bandwidth bottleneck [Rahaman et al.](#)
 073 [\(2019\)](#). This inspires the development of more effective Fourier-based backbones.

074 To address these challenges, we propose **Fourier Neural Filter (FNF)**, a novel nonlinear integral
 075 kernel operator that integrates spatial-specific inductive biases directly into the backbone design.
 076 Mathematically, FNF extends the standard FNO [Li et al. \(2021\)](#) by introducing an input-dependent
 077 kernel function that enables selective activation of local time-domain and global frequency-domain
 078 information flow through Hadamard product operations, making it particularly effective for captur-
 079 ing the unique properties of 2D visual information. This input-dependent gated global convolution
 080 substantially addresses the bandwidth bottleneck by preserving informative mid-/high-frequency
 081 components while suppressing redundant ones. On the other hand, to mitigate over-smoothing ef-
 082 fect, we incorporate adaptive modulation following complex operation, enabling non-uniform am-
 083 plification and attenuation of specific frequency bands under stability constraints.

084 Building upon FNF, we construct **Vision Filter (ViF)** as a generic backbone for CV. Our ex-
 085 tensive experiments demonstrate that ViF consistently outperforms prominent variants of both
 086 Transformer- and Mamba-based backbones across diverse visual tasks, including image classifi-
 087 cation on ImageNet-1K [Deng et al. \(2009\)](#), as shown in [Fig. 1](#), object detection on COCO [Lin et al.](#)
 088 [\(2014\)](#), and semantic segmentation on ADE20K [Zhou et al. \(2019\)](#).

089 Our contributions are as follows: (1) We propose FNF, the first unified backbone that couples time-
 090 domain and frequency-domain analysis, inherently preserving the spatial structure of 2D visual
 091 representation; (2) We theoretically and empirically demonstrate that our proposed FNF resolves
 092 the inherent over-smoothing effect and bandwidth bottleneck of the original FNO; (3) The proposed
 093 model ViF achieves state-of-the-art performance on three mainstream visual tasks.

095 2 RELATED WORK

097 **Vision Transformer** Building on the success of Vision Transformer (ViT) [Dosovitskiy et al.](#)
 098 [\(2020\)](#), subsequent developments have focused on making it more efficient and effective through
 099 various techniques. These include hierarchical designs like Swin Transformer [Liu et al. \(2021\)](#),
 100 PVT [Wang et al. \(2021\)](#), and NAT [Hassani et al. \(2023\)](#), hybrid approaches combining CNN with
 101 Transformers like CMT [Guo et al. \(2022\)](#), CrossViT [Chen et al. \(2021\)](#), MaxViT [Tu et al. \(2022\)](#),
 102 and FasterViT [Hatamizadeh et al. \(2023\)](#), and large-scale self-supervised pre-training models like
 103 MAE [He et al. \(2022\)](#) and BEIT [Bao et al. \(2022\)](#). These innovations have collectively established
 104 ViT as a fundamental architecture for diverse visual tasks.

105 **Vision Mamba** Recent work on Vision Mamba (ViM) is aiming to overcome the fundamental
 106 limitations of its directional scanning strategy for 2D visual information processing, including bi-
 107 directional [Zhu et al. \(2024\)](#) and quad-directional [Liu et al. \(2024\)](#) scanning, and other approaches
 capable of balancing both local and global information extraction [Pei et al. \(2024\)](#); [Huang et al.](#)

(2024); Xiao et al. (2024). These advances collectively improve representation learning and spatial understanding of ViM by addressing the inherent challenges of applying autoregressive models to 2D visual information while maintaining computational efficiency.

Fourier Transform for Vision Previous work has successfully integrated Fourier transform into deep learning system Lee-Thorp et al. (2021). GFNet Rao et al. (2021) achieves competitive performance with logarithmic linear complexity by replacing the self-attention mechanism in the ViT backbone with 2D discrete Fourier transform and learnable global filter. FourCastNet Pathak et al. (2022); Kurth et al. (2023), developed based on AFNO Guibas et al. (2022), generates one-week global weather forecasting within 2 seconds—several orders of magnitude faster than traditional numerical weather forecasting models Pathak et al. (2022). Recent extensions include SFNO Bonev et al. (2023), which incorporates spherical harmonic transforms into atmospheric modeling to enable stable year-round weather forecasting on spherical geometry Bonev et al. (2025).

3 METHODOLOGY

In this section, we theoretically analyze the limitations of Fourier Neural Operator (FNO) and introduce the fundamentals of our proposed Fourier Neural Filter (FNF).

3.1 LIMITATIONS OF FOURIER NEURAL OPERATOR (FNO)

Proposition 1 (Bandwidth Bottleneck.) Consider a periodic functions v expanded in a Fourier series. Let P_K denote the projection onto Fourier modes $\{|k| \leq K\}$. Any FNO layer $F_K(v)$ with fixed bandwidth K depends only on P_K . If v is non-bandlimited, and the operator \mathcal{T} is not strictly low-pass, leading to an irreducible *truncation error* in the frequency domain:

$$\inf_{F_K} \|F_K(v) - \mathcal{T}(v)\| \geq \|P_K^\perp \mathcal{T}(v)\|. \quad (1)$$

Proof sketch. FNO applies a fixed spectral map on $\{|k| \leq K\}$ and discards $\{|k| > K\}$. Therefore, two inputs with identical P_K cannot be distinguished. The error lower bound follows from orthogonal decomposition into P_K and P_K^\perp components.

Proposition 2 (Over-smoothing Effect.) Let $M_\ell(k)$ be the per-layer spectral multipliers on $\{|k| \leq K\}$. If there exists $\rho \in (0, 1)$ and $k_0 \leq K$ such that $|M_\ell(k)| \leq \rho$ for all $|k| \geq k_0$ and all layers ℓ , then the overall frequency response $H_L(k) = \prod_{\ell=1}^L M_\ell(k)$ can satisfy $|H_L(k)| \leq \rho^L \rightarrow 0$ on $\{|k| \geq k_0\}$ as $L \rightarrow \infty$, leading to an *over-smoothing* spatial representation.

Proof sketch. Multiplicative contraction on the mid-/high-frequency modes accumulates exponentially with depth; coupled with the hard truncation outside $\{|k| \leq K\}$, the output energy is concentrated in the low-frequency modes, while the high-frequency modes are progressively suppressed.

3.2 FUNDAMENTALS OF FOURIER NEURAL FILTER (FNF)

While FNO Li et al. (2021) has demonstrated remarkable effectiveness in modeling complex dynamic systems and solving partial differential equations through fixed integral kernel, our proposed FNF (Fig. 2) makes a critical leap forward: introducing an input-dependent integral kernel that can allow for adaptive and dynamic information flow between the time and frequency domains, thereby constructing a unified time-frequency representation space. Intuitively, if FNO applies a fixed lens to process all input signals, then FNF continuously adjusts the lens based on the preceding scene, achieving more detailed information extraction and more robust pattern recognition. We analyze the theoretical underpinnings of FNF by examining

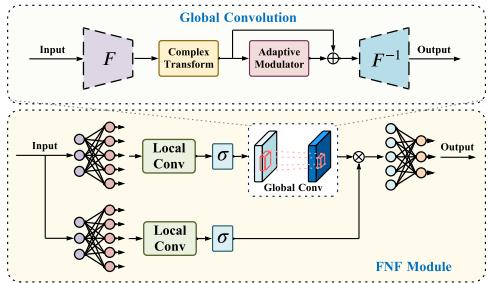


Figure 2: Schematic diagram of our proposed Fourier Neural Filter (FNF) backbone.

162 integral kernel, global convolution, selective activation, complex transform, and adaptive modulation.
 163

164
 165 3.2.1 INTEGRAL KERNEL
 166

167 **Definition 1** FNO is defined via a fixed integral kernel operator:

$$(Kv)(x) = \int_D \kappa(x, y)v(y) dy, \quad (2)$$

170 where $\kappa : D \times D \rightarrow \mathbb{R}$ is the kernel function and $v : D \rightarrow \mathbb{R}$ is the input function. Through the
 171 Fourier transform, FNO can be formulated in the frequency domain as:

$$(Kv)(x) = \mathcal{F}^{-1}(R_\phi \cdot \mathcal{F}(v))(x), \quad (3)$$

172 where $R_\phi = \mathcal{F}(\kappa)$ denotes the parameterized frequency-domain kernel.
 173

174 **Definition 2** FNF can be defined through an adaptive integral kernel operator:

$$(Kv)(x) = \int_D \kappa(x, y; v)v(y) dy, \quad (4)$$

175 where $\kappa(x, y; v)$ is the input-dependent kernel function. In the implementation, FNF can also be
 176 formulated as:
 177

$$(Kv)(x) = T(G(v) \odot P(v))(x), \quad (5)$$

$$P(v)(x) = \mathcal{F}^{-1}(R_\phi \cdot \mathcal{F}(H(v)))(x), \quad (6)$$

180 where $G(v)$, $H(v)$, and $T(v)$ denote the linear transform used for expansion or compression, and \odot
 181 is the Hadamard product operation.
 182

183 **Remark 1** The fundamental distinction between FNO and FNF lies in their kernel functions: FNO
 184 employs a fixed kernel $\kappa(x, y)$, whereas FNF applies an input-dependent kernel $\kappa(x, y; v)$, enabling
 185 adaptive information flow modulation between time-domain and frequency-domain, constructing a
 186 unified time-frequency representation space.
 187

188 3.2.2 GLOBAL CONVOLUTION
 189

190 **Definition 3** When the kernel function $\kappa(x, y) = \kappa(x - y)$ exhibits translation invariance, the
 191 fixed integral kernel operator in FNO reduces to a global convolution [Li et al. \(2021\)](#):

$$(Kv)(x) = \int_D \kappa(x - y)v(y) dy = (\kappa * v)(x). \quad (7)$$

192 **Definition 4** Similarly, when the kernel function $\kappa(x, y; v) = \kappa(x - y; v)$ maintains translation
 193 invariance, the adaptive integral kernel operator in FNF becomes a gated global convolution:

$$(Kv)(x) = \int_D \tilde{\kappa}(x - y; v)v(y) dy = (\tilde{\kappa}(\cdot; v) * v)(x). \quad (8)$$

194 **Remark 2** Translation invariance enables efficient computation of integral operator through
 195 Fourier transform in both FNO and FNF. Beyond this shared efficiency, the gated global convolution
 196 in FNF significantly enhances representation capacity by employing an input-dependent kernel
 197 $\tilde{\kappa}(\cdot; v)$, which adaptively modulates filtering behavior while preserving computational efficiency.
 198

199 3.2.3 SELECTIVE ACTIVATION
 200

201 **Definition 5** The selective activation operates an element-wise multiplication in the time domain;
 202 in the frequency domain, this operation is mathematically equivalent to the convolution operation
 203 between $G(v)(x)$ and $P(v)(x)$:

$$\mathcal{F}(G(v) \odot P(v))(\omega) = (\hat{G}(v) * \hat{P}(v))(\omega). \quad (9)$$

204 This formula can be viewed as approximate magnitude modulation and phase addition when the
 205 signal $G(v)$ is relatively smooth or narrow:
 206

$$(G(v) \odot P(v))_i \approx |G(v)_i| \cdot |P(v)_i| \cdot e^{i(\theta_{G(v)_i} + \theta_{P(v)_i})}, \quad (10)$$

207 where $|G(v)_i|$ and $|P(v)_i|$ represent magnitudes, and $\theta_{G(v)_i}$ and $\theta_{P(v)_i}$ represent phases.
 208

216 **Remark 3** This formulation reveals how selective activation effectively achieves joint
 217 time-frequency modulation: it enhances informative mid-/high-frequency components while sup-
 218 pressing redundant low-frequency ones on the magnitude side, and simultaneously provides flexible
 219 alignment on the phase side. This design alleviates the well-known over-smoothing effect and band-
 220 width bottleneck [Rahaman et al. \(2019\)](#) of FNO and improves the representation learning capability.
 221

222 3.2.4 COMPLEX TRANSFORM

224 **Definition 6** The complex transform operates on the complex-valued input $z = z_r + iz_i$ with
 225 complex weights $W = W_r + iW_i$ and biases $b = b_r + ib_i$:

$$226 \quad L(z) = (W_r z_r - W_i z_i + b_r) + i(W_r z_i + W_i z_r + b_i). \quad (11)$$

227 **Remark 4** To reduce the parameter count, we adopt the block-diagonal structure for the
 228 weights [Guibas et al. \(2022\)](#) and implement two complex transform layers equipped with the GELU
 229 activation function [Hendrycks & Gimpel \(2016\)](#).

231 3.2.5 ADAPTIVE MODULATION

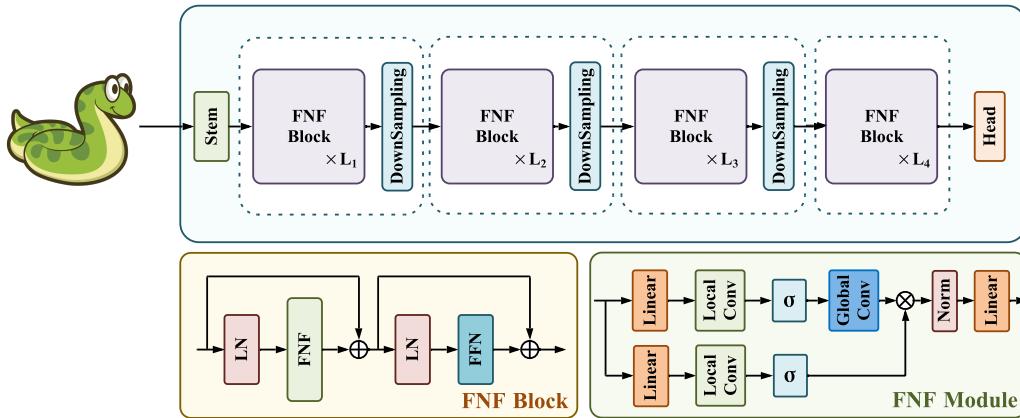
233 **Definition 7** The adaptive modulation operates through an amplitude-sensitive weighting function
 234 to achieve frequency balancing [Liu & Tang \(2025\)](#):

$$235 \quad \mathcal{M}(z) = z \odot [\beta \cdot \|z\|^\alpha], \quad (12)$$

236 where $\|z\|$ represent the magnitude of complex-valued input z , and α, β are learnable parameters, \odot
 237 is the Hadamard product operation.

238 **Remark 5** When $\alpha < 1$, the power-law weighting compresses the dynamic range between fre-
 239 quency components, effectively attenuating dominant low-frequency components while relatively
 240 enhancing weak high-frequency components. On the other hand, the adaptive parameter β provides
 241 global scaling control to achieve optimal frequency balance.

243 4 MODEL



260 **Figure 3: Schematic diagram of our proposed Vision Filter (ViF) architecture.** Architecture details can be
 261 found in the Appendix.

263 **Overall Architecture** Our ViF model is structured into four hierarchical stages, as shown in
 264 [Fig. 3](#), mirroring the design principles of established vision backbones in previous works [Liu et al.](#)
 265 ([2021; 2022b; 2024](#)). Specifically, an input image $\mathbf{I} \in \mathbb{R}^{H \times W \times 3}$ is initially processed through an
 266 overlapped stem layer to obtain a 2D feature map with dimension of $\frac{H}{4} \times \frac{W}{4} \times C$. This feature map
 267 is subsequently fed into four successive stages, where each stage comprises multiple ViF blocks
 268 followed by down-sampling layer with reduction factor of 2 (excluding the final stage). The head
 269 layer processes the feature map to obtain the spatial representation tailored for specific downstream
 tasks. More details can be found in the Appendix.

270 **Block Design** The ViF block serves as the fundamental construction unit of our architecture, in-
 271 cluding the FNF and Feed-Forward Network (FFN) modules with residual skip connection [He et al.](#)
 272 (2016), as shown in the lower-left corner of [Fig. 3](#). Our FNF module, illustrated in the bottom
 273 lower-right corner of [Fig. 3](#), has two branches: one branch contains a local convolution and a global
 274 convolution enabling to capture effective spatial information through progressive learning from lo-
 275 cal to global representation, the other branch contains a local convolution enabling to achieve ef-
 276 fective fusion of global frequency-domain information and local time-domain information through
 277 Hadamard product operation. Additionally, FFN module is added subsequent to the FNF module to
 278 promote information flow interaction across channels and to maintain alignment with the settings
 279 of classical ViTs. Furthermore, Local Perception Unit (LPU) [Guo et al.](#) (2022) is employed before
 280 both the FNF and FFN module to incorporate local inductive biases.

281 5 EXPERIMENT

284 In this section, to validate the effectiveness of our proposed ViF, we conduct extensive experiments
 285 on a variety of visual tasks, including image classification, object detection, and semantic segmen-
 286 tation. Following the previous works [Liu et al.](#) (2021; 2024), we train three variants of ViF, called
 287 ViF-T, ViF-S and ViF-B, as shown in [Tab. 1](#).

288 Table 1: Model Description of ViF variants.

290 Models	291 Blocks	292 Channels	293 Heads
294 ViF-Tiny	295 [2, 4, 8, 4]	296 [64, 128, 256, 512]	297 [2, 4, 8, 16]
298 ViF-Small	299 [2, 5, 19, 5]	300 [64, 128, 256, 512]	301 [2, 4, 8, 16]
302 ViF-Base	303 [2, 5, 19, 5]	304 [96, 192, 384, 768]	305 [3, 6, 12, 24]

310 5.1 IMAGE CLASSIFICATION ON IMAGENET-1K

312 **Settings** We conduct a comprehensive evaluation of ViF on image classification using ImageNet-
 313 1K dataset [Deng et al.](#) (2009). Our experimental setup follows the configurations established in the
 314 previous works [Liu et al.](#) (2021; 2024), with complete implementation details provided in the Ap-
 315 pendix. We compare our model with other state-of-the-art models, including CNN-based models
 316 (RegNetY [Radosavovic et al.](#) (2020), ConvNeXt [Liu et al.](#) (2022b), and MambaOut [Yu & Wang](#)
 317 (2024)), Transformer-based models (ViT [Dosovitskiy et al.](#) (2020), DeiT [Touvron et al.](#) (2021),
 318 Swin [Liu et al.](#) (2021), SwinV2 [Liu et al.](#) (2022a), Twins [Chu et al.](#) (2021), and NAT [Hassani](#)
 319 et al. (2023)), Mamba-based models (ViM [Zhu et al.](#) (2024), VMamba [Liu et al.](#) (2024), LocalV-
 320 Mamba [Huang et al.](#) (2024), EfficientVMamba [Pei et al.](#) (2024), and MambaVision [Hatamizadeh &](#)
 321 [Kautz](#) (2025)), and Fourier-based models (GFNet and GFNetV2 [Rao et al.](#) (2021)).

322 **Results** The experimental results on ImageNet-1K image classification are reported in [Tab. 2](#).
 323 Compared to Transformer-based models, ViF-T exceeds Swin-T by 2.3% and NAT-T by 0.6%. In comparison with Mamba-based models, ViF-T outperforms VMamba-T by 1.3% and
 324 LocalVMamba-T by 1.1%. Among Fourier-based models, ViF demonstrates substantial improve-
 325 ments over existing approaches: ViF-T surpasses GFNet-S by 3.8% and GFNetV2-B by 1.7%,
 326 showcasing the superiority of our proposed architecture design. For larger variants, ViF-S and ViF-
 327 B achieve the accuracy of 84.5% and 85.2%, respectively, significantly outperforming GFNetV2-S
 328 by 2.8% and GFNetV2-B by 3.1%, while surpassing NAT-S and NAT-B by 1.5% and 0.9%, and
 329 VMamba-S and VMamba-B by 0.9% and 1.3%. These comprehensive results demonstrate that ViF
 330 achieves outstanding model performance across different model sizes while maintaining competitive
 331 computational efficiency.

332 5.2 OBJECT DETECTION ON COCO

334 **Settings** We conduct a comprehensive evaluation of ViF on object detection using COCO 2017
 335 dataset [Deng et al.](#) (2009) and MMDetection library. We adopt Mask R-CNN [He et al.](#) (2017) as
 336 detector, and apply the pre-trained ViF-T/S/B as backbone. Following the previous work [Liu et al.](#)
 337 (2021; 2024), we fine-tune the pre-trained models on the COCO dataset for single-scale training (1×
 338 schedule) and multi-scale training (3× schedule).

324
325
326 Table 2: Comparison of image classification performance on ImageNet-1K.
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367

Architecture	Method	Image Size	Params (M)	FLOPs (G)	Top-1 (%)
CNN	RegNetY-4G	224 ²	21	4.0	80.0
	RegNetY-8G	224 ²	39	8.0	81.7
	RegNetY-16G	224 ²	84	16.0	82.9
	ConvNeXt-T	224 ²	29	4.5	82.1
	ConvNeXt-S	224 ²	50	8.7	83.1
	ConvNeXt-B	224 ²	89	15.4	83.8
	MambaOut-T	224 ²	27	4.5	82.7
	MambaOut-S	224 ²	48	9.0	84.1
	MambaOut-B	224 ²	85	15.8	84.2
Transformer	ViT-B/16	384 ²	86	55.4	77.9
	DeiT-S	224 ²	22	4.6	79.8
	DeiT-B	224 ²	87	16.9	81.8
	Swin-T	224 ²	28	4.5	81.3
	Swin-S	224 ²	50	8.7	83.0
	Swin-B	224 ²	88	15.4	83.5
	SwinV2-T	256 ²	28	4.8	82.7
	SwinV2-S	256 ²	50	8.5	83.5
	SwinV2-B	256 ²	88	15.1	84.6
	Twins-S	224 ²	24	2.8	81.7
	Twins-B	224 ²	56	8.3	83.1
	NAT-T	224 ²	28	4.3	83.2
Mamba	NAT-S	224 ²	51	7.8	83.0
	NAT-B	224 ²	90	13.7	84.3
	ViM-S/16	224 ²	26	5.1	80.3
	VMamba-T	224 ²	30	4.9	82.6
	VMamba-S	224 ²	50	8.7	83.6
	VMamba-B	224 ²	89	15.4	83.9
	LocalVMamba-T	224 ²	26	5.7	82.7
	LocalVMamba-S	224 ²	50	11.4	83.7
	EfficientVMamba-S	224 ²	11	1.3	78.7
	EfficientVMamba-B	224 ²	33	4.0	81.8
	MambaVision-T	224 ²	32	4.4	82.3
	MambaVision-S	224 ²	50	7.5	83.3
Fourier	MambaVision-B	224 ²	98	15.0	84.2
	GFNet-S	224 ²	25	4.5	80.0
	GFNet-B	224 ²	43	7.9	80.7
	GFNetV2-S	384 ²	28	13.2	81.7
	GFNetV2-B	384 ²	47	23.3	82.1
	ViF-T	224 ²	29	5.1	83.8
	ViF-S	224 ²	45	7.8	84.5
	ViF-B	224 ²	96	16.7	85.2

Results The experimental results on COCO object detection are reported in Tab. 3. Under the single-scale training, ViF-T achieves a box mAP of 47.7 and a mask mAP of 43.0, surpassing Swin-T by 5.0 and 3.7, respectively, while using comparable computational costs (48M parameters and 272G FLOPs vs. 48M parameters and 267G FLOPs). Compared to VMamba-T, ViF-T shows competitive performance with improvement of 0.4 in box mAP and 0.3 in mask mAP, while maintaining similar computational costs. For larger variants, ViF-S achieves 49.1 box mAP and 44.0 mask mAP, outperforming VMamba-S by 0.4 and 0.3, respectively, with reduced computational costs (64M parameters and 328G FLOPs vs. 70M parameters and 349G FLOPs). Under the multi-scale training schedule, these performance advantages are maintained and even enhanced. ViF-T achieves 48.9 box mAP and 43.4 mask mAP, while ViF-S reaches the highest performance with 50.1 box mAP and 44.4 mask mAP, outperforming VMamba-S by 0.2 and 0.2, respectively. These comprehensive results demonstrate the effectiveness and robustness of ViF architectures for dense prediction tasks.

378
379 Table 3: **Comparison of object detection performance on COCO with Mask R-CNN He et al. (2017)**
380 **detector.** FLOPs are calculated with input resolution of 1280×800 .

Mask R-CNN 1× schedule								
Backbone	AP ^b ↑	AP ^b ₅₀ ↑	AP ^b ₇₅ ↑	AP ^m ↑	AP ^m ₅₀ ↑	AP ^m ₇₅ ↑	Params	FLOPs
ResNet-50	38.2	58.8	41.4	34.7	55.7	37.2	44M	260G
Swin-T	42.7	65.2	46.8	39.3	62.2	42.2	48M	267G
ConvNeXt-T	44.2	66.6	48.3	40.1	63.3	42.8	48M	262G
PVTv2-B2	45.3	66.1	49.6	41.2	64.2	44.4	45M	309G
ViT-Adapter-S	44.7	65.8	48.3	39.9	62.5	42.8	48M	403G
MambaOut-T	45.1	67.3	49.6	41.0	64.1	44.1	43M	262G
VMamba-T	47.3	69.3	52.0	42.7	66.4	45.9	50M	271G
LocalVMamba-T	46.7	68.7	50.8	42.2	65.7	45.5	45M	291G
ViF-T	47.7	70.0	52.1	43.0	66.7	46.5	48M	272G
ResNet-101	38.2	58.8	41.4	34.7	55.7	37.2	63M	336G
Swin-S	44.8	68.6	49.4	40.9	65.3	44.2	69M	354G
ConvNeXt-S	45.4	67.9	50.0	41.8	65.2	45.1	70M	348G
PVTv2-B3	47.0	68.1	51.7	42.5	65.2	45.7	63M	397G
MambaOut-S	47.4	69.1	52.4	42.7	66.1	46.2	65M	354G
VMamba-S	48.7	70.0	53.4	43.7	67.3	47.0	70M	349G
LocalVMamba-S	48.4	69.9	52.7	43.2	66.7	46.5	69M	414G
ViF-S	49.1	70.4	53.5	44.0	67.6	47.5	64M	328G
Swin-B	46.9	-	-	42.3	66.3	46.0	88M	496G
ConvNeXt-B	47.0	69.4	51.7	42.7	66.3	46.0	107M	486G
PVTv2-B5	47.4	68.6	51.9	42.5	65.7	46.0	102M	557G
ViT-Adapter-B	47.0	68.2	51.4	41.8	65.1	44.9	102M	557G
MambaOut-B	47.4	69.3	52.2	43.0	66.4	46.3	100M	495G
VMamba-B	49.2	71.4	54.0	44.1	68.3	47.7	108M	485G
ViF-B	50.1	71.3	54.8	44.6	68.5	48.1	120M	517G
Mask R-CNN 3× MS schedule								
Backbone	AP ^b ↑	AP ^b ₅₀ ↑	AP ^b ₇₅ ↑	AP ^m ↑	AP ^m ₅₀ ↑	AP ^m ₇₅ ↑	#Param.	FLOPs
Swin-T	46.0	68.1	50.3	41.6	65.1	44.9	48M	267G
ConvNeXt-T	46.2	67.9	50.8	41.7	65.0	44.9	48M	262G
NAT-T	47.7	69.0	52.6	42.6	66.1	45.9	48M	258G
VMamba-T	48.8	70.4	53.5	43.7	67.4	47.0	50M	271G
LocalVMamba-T	48.7	70.1	53.0	43.4	67.0	46.4	45M	291G
ViF-T	48.9	70.3	53.6	43.4	67.5	46.5	48M	272G
Swin-S	48.2	69.8	52.8	43.2	67.0	46.1	69M	354G
ConvNeXt-S	47.9	70.0	52.7	42.9	66.9	46.2	70M	348G
NAT-S	48.4	69.8	53.2	43.2	66.9	46.5	70M	330G
VMamba-S	49.9	70.9	54.7	44.2	68.2	47.7	70M	349G
LocalVMamba-S	49.9	70.5	54.4	44.1	67.8	47.4	69M	414G
ViF-S	50.1	71.4	54.9	44.4	68.3	47.9	64M	328G

5.3 SEMANTIC SEGMENTATION ON ADE20K

Settings We conduct a comprehensive evaluation of ViF on semantic segmentation using ADE20K dataset Zhou et al. (2019) and MMSegmenation toolkit. We adopt UPerNet Xiao et al. (2018) as segmentor, and apply pre-trained ViF-T/S/B as backbone. Consistent with the previous work Liu et al. (2021; 2024), we fine-tune the pre-trained models on the ADE20K dataset for both both single-scale and multi-scale testing.

Results The experimental results on ADE20K semantic segmentation are reported in Tab. 4. Under the single-scale testing, ViF-T achieves a single-scale mIoU of 48.7 and a multi-scale mIoU of 49.6, representing significant improvements of 1.6 mIoU over NAT-T and 0.7 mIoU over VMamba-T, respectively. Under multi-scale testing, ViF-T maintains its competitive advantage with im-

432 Table 4: **Comparison of semantic segmentation on ADE20K with UPerNet** [Xiao et al. \(2018\)](#) segmentor.
 433 FLOPs are calculated with input resolution of 512×2048 .

Method	Crop size	mIoU (SS) \uparrow	mIoU (MS) \uparrow	Params.	FLOPs
DeiT-S + MLN	512^2	43.1	43.8	58M	1217G
Swin-T	512^2	44.4	45.8	60M	945G
ConvNeXt-T	512^2	46.0	46.7	60M	939G
NAT-T	512^2	47.1	48.4	58M	934G
MambaOut-T	512^2	47.4	48.6	54M	938G
VMamba-T	512^2	48.0	48.8	62M	949G
LocalVMamba-T	512^2	47.9	49.1	57M	970G
ViF-T	512^2	48.7	49.6	58M	948G
DeiT-B + MLN	512^2	45.5	47.2	144M	2007G
Swin-S	512^2	47.6	49.5	81M	1039G
ConvNeXt-S	512^2	48.7	49.6	82M	1027G
NAT-S	512^2	48.0	49.5	82M	1010G
MambaOut-S	512^2	49.5	50.6	76M	1032G
VMamba-S	512^2	50.6	51.2	82M	1028G
LocalVMamba-S	512^2	50.0	51.0	81M	1095G
ViF-S	512^2	50.5	51.3	76M	1009G
Swin-B	512^2	48.1	49.7	121M	1188G
ConvNeXt-B	512^2	49.1	49.9	122M	1170G
NAT-B	512^2	48.5	49.7	123M	1137G
MambaOut-B	512^2	49.6	51.0	112M	1178G
VMamba-B	512^2	51.0	51.6	122M	1170G
ViF-B	512^2	51.3	52.3	131M	1200G

459 provevements of 1.2 mIoU over NAT-T and 0.8 mIoU over VMamba-T. For larger variants, ViF-S
 460 shows superior performance with 50.5 single-scale mIoU and 51.3 multi-scale mIoU, outperforming
 461 VMamba-S while using fewer computational costs (76M parameters and 1009G FLOPs vs. 82M
 462 parameters and 1028G FLOPs). Notably, ViF-B achieve a single-scale mIoU of 51.3 and multi-scale
 463 mIoU of 52.3, surpassing VMamba-B by 0.3 and 0.7, respectively.

464 **Ablation Study** To validate the effectiveness of each component in our
 465 model, we conduct a comprehensive ablation study, as shown in [Tab. 5](#).
 466 Removing LC-1 drops accuracy to 83.6% and removing LC-2 further
 467 decreases accuracy to 83.4%, both showing their importance. Eliminating
 468 adaptive modulation (AM) leads to 83.5% accuracy, while removing selective activation (SA) has the largest impact, with accuracy
 469 dropping to 83.3%. These results demonstrate the significant impact of each component on model
 470 performance, with SA proving most critical for maintaining accuracy.

Table 5: **Ablation study**. Our ViF-T model is highlighted.

Model	Top-1	Params(M)	FLOPs(G)	Throughput
w/o LC-1	83.6	28	5.0	1585
w/o LC-2	83.4	28	5.0	1589
w/o AM	83.5	29	5.1	1667
w/o SA	83.1	25	4.6	1689
ViF-T	83.8	29	5.1	1549

6 CONCLUSION

479 **Limitations** While our ViF model outperforms baselines on ImageNet-1K, three key limitations
 480 exist: (1) marginal performance gains compared to other ViM models on downstream tasks, (2)
 481 significant performance gap against ViT variants on downstream tasks [Fan et al. \(2024\)](#); [Shi \(2024\)](#),
 482 and (3) lack of scalability evaluation on larger models and datasets (e.g., ImageNet-22K).

483 **Broader Impact** Our ViF model offers significant potential benefits for efficient visual repre-
 484 sentation learning. However, potential risks include accessibility barriers due to frequency-domain
 485 operations and possible perpetuation of biases present in training data. We encourage responsible
 deployment and ongoing research to address these considerations.

486 7 ETHICS STATEMENT
487488 This work does not involve human subjects, does not raise concerns regarding data privacy, bias,
489 fairness, or potential harmful applications, and does not present conflicts of interest or legal com-
490 pliance issues. The research methodology and findings do not pose ethical concerns that require
491 additional consideration beyond standard academic practices.
492493 8 REPRODUCIBILITY STATEMENT
494495 To ensure reproducibility of our results, we provide the following resources: (1) complete imple-
496 mentation details and hyperparameters are described in Section 5 and Appendix C; (2) all datasets
497 used in our experiments are publicly available and properly cited with access information provided
498 in Section 5; (3) theoretical proofs and derivations are included in Section 3; and (5) source code
499 will be made available upon publication to facilitate replication of our experimental results.
500501 REFERENCES
502503 Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of image transformers.
504 In *Proceedings of International Conference on Learning Representations (ICLR)*, 2022. 2505 Boris Bonev, Thorsten Kurth, Christian Hundt, Jaideep Pathak, Maximilian Baust, Karthik
506 Kashinath, and Anima Anandkumar. Spherical fourier neural operators: Learning stable dynamics
507 on the sphere. In *Proceedings of International Conference on Machine Learning (ICML)*, 2023.
508 3509 Boris Bonev, Thorsten Kurth, Ankur Mahesh, Mauro Bisson, Jean Kossaifi, Karthik Kashinath, An-
510 anima Anandkumar, William D Collins, Michael S Pritchard, and Alexander Keller. Fourcastnet
511 3: A geometric approach to probabilistic machine-learning weather forecasting at scale. *arXiv*
512 preprint *arXiv:2507.12144*, 2025. 3513 Chun-Fu Richard Chen, Quanfu Fan, and Rameswar Panda. Crossvit: Cross-attention multi-scale
514 vision transformer for image classification. In *Proceedings of International Conference on Com-
515 puter Vision (ICCV)*, 2021. 2516 Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haibing Ren, Xiaolin Wei, Huaxia Xia, and
517 Chunhua Shen. Twins: Revisiting the design of spatial attention in vision transformers. In *Pro-
518 ceedings of Advances in Neural Information Processing Systems (NeurIPS)*, 2021. 2, 6519 Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
520 structured state space duality. In *Proceedings of International Conference on Machine Learning
521 (ICML)*, 2024. 2522 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
523 erarchical image database. In *Proceedings of Conference on Computer Vision and Pattern Recog-
524 nition (CVPR)*, 2009. 2, 6525 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
526 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
527 is worth 16x16 words: Transformers for image recognition at scale. *Proceedings of International
528 Conference on Learning Representations (ICLR)*, 2020. 1, 2, 6529 Qihang Fan, Huabo Huang, Mingrui Chen, Hongmin Liu, and Ran He. Rmt: Retentive networks
530 meet vision transformers. In *Proceedings of Conference on Computer Vision and Pattern Recog-
531 nition (CVPR)*, 2024. 9532 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In
533 *Conference on Language Modeling (COLM)*, 2023. 2534 John Guibas, Morteza Mardani, Zongyi Li, Andrew Tao, Anima Anandkumar, and Bryan Catanzaro.
535 Adaptive fourier neural operators: Efficient token mixers for transformers. In *Proceedings of
536 International Conference on Learning Representations (ICLR)*, 2022. 3, 5

540 Hang Guo, Jinmin Li, Tao Dai, Zhihao Ouyang, Xudong Ren, and Shu-Tao Xia. Mambair: A simple
 541 baseline for image restoration with state-space model. In *Proceedings of European Conference*
 542 *on Computer Vision (ECCV)*, 2024. 2

543

544 Jianyuan Guo, Kai Han, Han Wu, Yehui Tang, Xinghao Chen, Yunhe Wang, and Chang Xu. Cmt:
 545 Convolutional neural networks meet vision transformers. In *Proceedings of Conference on Com-*
 546 *puter Vision and Pattern Recognition (CVPR)*, 2022. 2, 6

547 Dongchen Han, Ziyi Wang, Zhuofan Xia, Yizeng Han, Yifan Pu, Chunjiang Ge, Jun Song, Shiji
 548 Song, Bo Zheng, and Gao Huang. Demystify mamba in vision: A linear attention perspective. In
 549 *Proceedings of Advances in Neural Information Processing Systems (NeurIPS)*, 2024. 2

550

551 Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi. Neighborhood attention trans-
 552 former. In *Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR)*,
 553 2023. 2, 6

554

555 Ali Hatamizadeh and Jan Kautz. Mambavision: A hybrid mamba-transformer vision backbone. In
 556 *Proceedings of the Computer Vision and Pattern Recognition Conference*, 2025. 6

557

558 Ali Hatamizadeh, Greg Heinrich, Hongxu Yin, Andrew Tao, Jose M Alvarez, Jan Kautz, and Pavlo
 559 Molchanov. Fastervit: Fast vision transformers with hierarchical attention. In *Proceedings of*
 560 *International Conference on Learning Representations (ICLR)*, 2023. 2

561

562 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 563 nition. In *Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR)*, 2016.
 1, 6

564

565 Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In *Proceedings of*
 566 *International Conference on Computer Vision (ICCV)*, 2017. 6, 8

567

568 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
 569 autoencoders are scalable vision learners. In *Proceedings of Conference on Computer Vision and*
 570 *Pattern Recognition (CVPR)*, 2022. 2

571

572 Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). *arXiv preprint*
 arXiv:1606.08415, 2016. 5

573

574 Tao Huang, Xiaohuan Pei, Shan You, Fei Wang, Chen Qian, and Chang Xu. Localmamba: Visual
 575 state space model with windowed selective scan. In *Proceedings of European Conference on*
 576 *Computer Vision (ECCV)*, 2024. 2, 6

577

578 Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
 579 rnns: Fast autoregressive transformers with linear attention. In *Proceedings of International Con-*
 580 *ference on Machine Learning (ICML)*, 2020. 1

581

582 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
 583 lutional neural networks. In *Proceedings of Advances in Neural Information Processing Systems*
 (NeurIPS), 2012. 1

584

585 Thorsten Kurth, Shashank Subramanian, Peter Harrington, Jaideep Pathak, Morteza Mardani, David
 586 Hall, Andrea Miele, Karthik Kashinath, and Anima Anandkumar. Forecastnet: Accelerating
 587 global high-resolution weather forecasting using adaptive fourier neural operators. In *Proceedings*
 588 *of the Platform for Advanced Scientific Computing Conference (PASC)*, 2023. 3

589

590 James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, and Santiago Ontanon. Fnet: Mixing tokens with
 591 fourier transforms. In *North American Chapter of the Association for Computational Linguistics:*
 592 *Human Language Technologies (NAACL-HLT)*, 2021. 3

593

Kunchang Li, Xinhao Li, Yi Wang, Yinan He, Yali Wang, Limin Wang, and Yu Qiao. Videomamba:
 State space model for efficient video understanding. In *Proceedings of European Conference on*
 594 *Computer Vision (ECCV)*, 2024a. 2

594 Shufan Li, Harkanwar Singh, and Aditya Grover. Mamba-nd: Selective state space modeling for
 595 multi-dimensional data. In *Proceedings of European Conference on Computer Vision (ECCV)*,
 596 2024b. 2

597 Zongyi Li, Nikola B. Kovachki, Kamyr Azizzadenesheli, Kaushik Bhattacharya, Andrew Stuart,
 598 and Anima Anandkumar. Fourier neural operator for parametric partial differential equations. In
 599 *Proceedings of International Conference on Learning Representations (ICLR)*, 2021. 2, 3, 4

600 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 601 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *Proceedings of*
 602 *European Conference on Computer Vision (ECCV)*, 2014. 2

603 Xiaoyi Liu and Hao Tang. Diffno: Diffusion fourier neural operator. In *Proceedings of Conference*
 604 *on Computer Vision and Pattern Recognition (CVPR)*, 2025. 5

605 Yue Liu, Yunjie Tian, Yuzhong Zhao, Hongtian Yu, Lingxi Xie, Yaowei Wang, Qixiang Ye, and Yun-
 606 fan Liu. Vmamba: Visual state space model. In *Proceedings of Advances in Neural Information*
 607 *Processing Systems (NeurIPS)*, 2024. 2, 5, 6, 8

608 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
 609 Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of*
 610 *European Conference on Computer Vision (ECCV)*, 2021. 1, 2, 5, 6, 8

611 Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng
 612 Zhang, Li Dong, et al. Swin transformer v2: Scaling up capacity and resolution. In *Proceedings*
 613 *of Conference on Computer Vision and Pattern Recognition (CVPR)*, 2022a. 6

614 Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
 615 A convnet for the 2020s. In *Proceedings of Conference on Computer Vision and Pattern Recog-*
 616 *nition (CVPR)*, 2022b. 1, 5, 6

617 Miguel Liu-Schiaffini, Julius Berner, Boris Bonev, Thorsten Kurth, Kamyr Azizzadenesheli, and
 618 Anima Anandkumar. Neural operators with localized integral and differential kernels. In *Pro-*
 619 *ceedings of International Conference on Machine Learning (ICML)*, 2024. 2

620 Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,
 621 Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyr Azizzadenesheli, et al. Four-
 622 castnet: A global data-driven high-resolution weather model using adaptive fourier neural opera-
 623 tors. *arXiv preprint arXiv:2202.11214*, 2022. 3

624 Xiaohuan Pei, Tao Huang, Chang Huang, Zhenyu Xu, Gao Zhang, Gang Li, Yu Qiao, and Junjie
 625 Yan. Efficientvmamba: Atrous selective scan for light weight visual mamba. In *Proceedings of*
 626 *AAAI Conference on Artificial Intelligence (AAAI)*, 2024. 2, 6

627 Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. Designing
 628 network design spaces. In *Proceedings of Conference on Computer Vision and Pattern Recog-*
 629 *nition (CVPR)*, 2020. 6

630 Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
 631 Bengio, and Aaron Courville. On the spectral bias of neural networks. In *Proceedings of Inter-*
 632 *national Conference on Machine Learning (ICML)*, 2019. 2, 5

633 Yongming Rao, Wenliang Zhao, Zheng Zhu, Jiwen Lu, and Jie Zhou. Global filter networks for
 634 image classification. In *Proceedings of Advances in Neural Information Processing Systems*
 635 *(NeurIPS)*, 2021. 3, 6

636 Dai Shi. Transnext: Robust foveal visual perception for vision transformers. In *Proceedings of*
 637 *Conference on Computer Vision and Pattern Recognition (CVPR)*, 2024. 9

638 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
 639 recognition. In *Proceedings of International Conference on Learning Representations (ICLR)*,
 640 2015. 1

648 Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
 649 Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
 650 *Proceedings of International Conference on Machine Learning (ICML)*, 2021. 2, 6

651

652 Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang, Peyman Milanfar, Alan Bovik, and Yinxiao
 653 Li. Maxvit: Multi-axis vision transformer. In *Proceedings of European Conference on Computer
 654 Vision (ECCV)*, 2022. 2

655 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 656 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Proceedings of Advances
 657 in Neural Information Processing Systems (NeurIPS)*, 2017. 1

658

659 Wenhui Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo,
 660 and Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction with-
 661 out convolutions. In *Proceedings of Conference on Computer Vision and Pattern Recognition
 (CVPR)*, 2021. 2

662

663 Chaodong Xiao, Minghan Li, Zhengqiang ZHANG, Deyu Meng, and Lei Zhang. Spatial-mamba:
 664 Effective visual state space models via structure-aware state fusion. In *Proceedings of Interna-
 665 tional Conference on Learning Representations (ICLR)*, 2024. 3

666

667 Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun. Unified perceptual parsing for
 668 scene understanding. In *Proceedings of European Conference on Computer Vision (ECCV)*, 2018.
 8, 9

669

670 Weihao Yu and Xinchao Wang. Mambaout: Do we really need mamba for vision? In *Proceedings
 671 of Conference on Computer Vision and Pattern Recognition (CVPR)*, 2024. 2, 6

672

673 Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, and Antonio Torralba.
 674 Semantic understanding of scenes through the ade20k dataset. *International Journal of Computer
 675 Vision*, 127:302–321, 2019. 2, 8

676

677 Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. Vi-
 678 sion mamba: Efficient visual representation learning with bidirectional state space model. In
Proceedings of International Conference on Machine Learning (ICML), 2024. 2, 6

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701