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ABSTRACT

In this paper, we propose a framework for efficient Source-Free Domain Adap-
tation (SFDA) in the context of time-series, focusing on enhancing both parame-
ter efficiency and data-sample utilization. Our approach introduces an improved
paradigm for source-model preparation and target-side adaptation, aiming to en-
hance training efficiency during target adaptation. Specifically, we reparameterize
the source model’s weights in a Tucker-style decomposed manner, factorizing the
model into a compact form during the source model preparation phase. During
target-side adaptation, only a subset of these decomposed factors is fine-tuned,
leading to significant improvements in training efficiency. We demonstrate using
PAC Bayesian analysis that this selective fine-tuning strategy implicitly regular-
izes the adaptation process by constraining the model’s learning capacity. Fur-
thermore, this re-parameterization reduces the overall model size and enhances
inference efficiency, making the approach particularly well suited for resource-
constrained devices. Additionally, we demonstrate that our framework is compati-
ble with various SFDA methods and achieves significant computational efficiency,
reducing the number of fine-tuned parameters and inference overhead in terms of
MAC:s by over 90% while maintaining model performance.

1 INTRODUCTION

In a typical Source-Free Domain Adaptation (SFDA) setup, the source-pretrained model must adapt
to the target distribution using unlabeled samples from the target domain. SFDA strategies have
become prevalent due to the restrictive nature of conventional domain adaptation methods (Li et al.,
2024) which require access to both source and target domain data simultaneously and therefore may
not be feasible in real-world scenarios due to privacy and confidentiality concerns. Although SFDA
techniques have been extensively investigated for visual tasks (Liang et al., 2020; 2021; Li et al.,
2020; Yang et al., 2021bsa; 2022; 2023; Kim et al., 2021; Xia et al., 2021; Kundu et al., 2021;
2022b), their application to time series analysis remains relatively nascent (Ragab et al., 2023b;
Gong et al., 2024). Nevertheless, time-series models adaptation is crucial due to the nonstationary
and heterogeneous nature of time-series data (Park et al., 2023), where each user’s data exhibit
distinct patterns, necessitating adaptive models that can learn idiosyncratic features.

Despite growing interest in SFDA, sample and parameter efficiency during adaptation is still largely
unexplored (Karim et al., 2023; Lee et al., 2023). These aspects of SFDA are of particular impor-
tance in situations where there is a large resource disparity between the source and the target. For
instance, a source-pretrained model may be deployed to a resource-constrained target device, render-
ing full model adaptation impractical. Additionally, the target-side often has access to substantially
fewer reliable samples compared to the volume of data used during source pretraining, increasing
the risk of overfitting.

In response to these challenges, we revisit both the source-model preparation and target-side adapta-
tion processes. We demonstrate that disentangling the backbone parameter subspace during source-
model preparation and then fine-tuning a selected subset of those parameters during rarget-side
adaptation leads to a computationally efficient adaptation process, while maintaining superior pre-
dictive performance. Figure 1B illustrates our proposed framework. During source-model prepa-
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ration, we re-parameterize the backbone weights in a low-rank Tucker-style factorized (Tucker,
1966; Lathauwer et al., 2000) way, decomposing the model into compact parameter subspaces.
Tucker-style factorization offers great flexibility and interpretability by breaking down tensors into
a core tensor and factor matrices along each mode, capturing multi-dimensional interactions while
independently reducing dimensionality. This reparameterization results in a model that is both
parameter- and computation-efficient, significantly reducing the model size and inference overhead

in terms of Multiply-Accumulate Operations (MACs).

The re-parameterized source-model
is then deployed to the target side.
During target-side adaptation, we
perform selective fine-tuning (SFT)
within a selected subspace (i.e., the
core tensor) that constitutes a very
small fraction of the total num-
ber of parameters in the backbone.
Our findings show that this strat-
egy not only enhances parameter ef-
ficiency but also serves as a form
of regularization, mitigating overfit-
ting to unreliable target samples by
restricting the model’s learning ca-
pacity. We provide theoretical in-
sights into this regularization effect
using PAC-Bayesian generalization
bounds (McAllester, 1998; 1999; Li
& Zhang, 2021; Wang et al., 2023)
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Figure 1: Prior Paradigm vs. Ours. A. Existing ap-
proaches (Liang et al., 2020; Yang et al., 2021a; 2022;
Ragab et al., 2023b) adapt the entire model to the target
distribution. B. Our method disentangles the backbone pa-
rameters using Tucker-style factorization. Fine-tuning a
small subset of these parameters proves both parameter-
and sample-efficient (¢f. Section 3), while also being robust
against overfitting (c¢f. Figure 2B and Section 3), leading to
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for the fine-tuned target model. superior adaptation to the target distribution.

Empirical results demonstrate that low-rank weight disentanglement during source-model prepara-
tion enables parameter-efficient adaptation on the target side, consistently improving performance
across various SFDA methods (Liang et al., 2020; Yang et al., 2021a; 2022; Ragab et al., 2023b) and
time-series benchmarks (Ragab et al., 2023a;b). It is important to emphasize that our contribution
does not introduce a novel SFDA method for time-series data. Instead, we focus on making the tar-
get adaptation process more parameter- and sample-efficient, and demonstrating that our framework
can be seamlessly integrated with existing, and potentially future, SFDA techniques. In summary,
our key contributions are:

1. We propose a novel strategy for source-model preparation by reparameterizing the back-
bone network’s weights using low-rank Tucker-style factorization. This decomposition into
a core tensor and factor matrices creates a compact parameter subspace representation,
leading to a parameter- and computation-efficient model with reduced size and inference
overhead.

2. During target-side adaptation, we introduce a selective fine-tuning (SFT) approach that
adjusts only a small fraction of the backbone’s parameters (i.e., the core tensor) within the
decomposed subspace. This strategy enhances parameter efficiency and acts as an implicit
regularization mechanism, mitigating the risk of overfitting to unreliable target samples by
limiting the model’s learning capacity.

3. We ground the regularization effect of SFT using the PAC Bayesian generalization bound.
Empirical analyses demonstrate that our proposed framework improves the parameter and
sample efficiency of adaptation process of various existing SFDA methods across the time-
series benchmarks, showcasing its generalizability.

2 RELATED WORK AND OBSERVATIONS

Unsupervised Domain Adaptation in Time Series. Unsupervised Domain Adaptation (UDA)
for time-series data addresses the critical challenge of distribution shifts between the source and
target domains. Discrepancy-based methods, such as those of Cai et al. (2021), Liu & Xue (2021)
and He et al. (2023), align feature representations through statistical measures, while adversarial ap-
proaches (Wilson et al., 2020; 2023; Ragab et al., 2022; Jin et al., 2022; Ozyurt et al., 2023) focus on



Published as a conference paper at ICLR 2025

A HHAR ssc B rmmemew | e
120 ™= Original Dim == Original Dim @
o mmm Effective Rank [ Effective Rank QO 0.14 | . N 0.7
5o c o12] T — ~A— A
3 5 g 0.10 A o
= %_ 0.70 8
o)) S 008 &
g 40 :% 0.06 8 E
20 % 0.04 0.6
0 © 0.02
Ci Cout Cin Cout Ci Cout Ci Cout N 0 5 10 15 20 25 30 35 o
layer-2 layer-3 layer-2 layer-3 epochs

Figure 2: A. Original Dimensions vs. Effective Rank: Comparison of input/output channel di-
mensions (Cy,, Coy) in the last two layers of the source model trained on the HHAR (Stisen et al.,
2015) and SSC (Goldberger et al., 2000) datasets, alongside their effective rank computed via VBMF
(Nakajima et al., 2013). B. Regularization Effect: Training dynamics illustrate the regularization
effect of our source decomposition and selective fine-tuning (SFT) compared to the SHOT (Base-
line) (Liang et al., 2020) on the SSC dataset.

minimizing distributional discrepancies through adversarial training. The comprehensive study by
Ragab et al. (2023a) provides a broad overview of domain adaptation in time series. However, SFDA
assumes access to only the source-pretrained model (Liang et al., 2020; 2021; Li et al., 2020; Yang
etal, 2021a; 2022; 2023; Kim et al., 2021; Xia et al., 2021). In SFDA, one of the most commonly
used strategies is based on unsupervised clustering techniques (Yang et al., 2022; Li et al., 2024),
promoting the discriminability and diversity of feature spaces through information maximization
(Liang et al., 2020), neighborhood clustering (Yang et al., 2021a) or contrastive learning objectives
(Yang et al., 2022). Recent advances incorporate auxiliary tasks, such as masking and imputation, to
enhance SFDA performance, as demonstrated by Ragab et al. (2023b) and Gong et al. (2024), taking
inspiration from Liang et al. (2021) and Kundu et al. (2022a) to include masked reconstruction as
an auxiliary task. However, exploration of SFDA in time series contexts remains limited, especially
with regard to parameter and sample efficiency during target-side adaptation (Ragab et al., 2023a;
Liu et al., 2024; Gong et al., 2024; 2025; Furqon et al., 2025).

Parameter Redundancy and Low-Rank Subspaces. Neural network pruning has demonstrated
that substantial reductions in parameters, often exceeding 90%, can be achieved with minimal ac-
curacy loss, revealing significant redundancy in trained deep networks (LLeCun et al., 1989; Hassibi
& Stork, 1992; Li et al., 2017; Frankle & Carbin, 2018; Sharma et al., 2024). Structured prun-
ing methods, such as those of Molchanov et al. (2017) and Hoefler et al. (2021), have optimized
these reductions to maintain or even improve inference speeds. Low-rank models have played a
crucial role in pruning, with techniques such as Singular Value Decomposition (SVD) (Eckart &
Young, 1936) applied to fully connected layers (Denil et al., 2013) and tensor-train decomposition
used to compress neural networks (Novikov et al., 2015). Methods developed by Jaderberg et al.
(2014), Denton et al. (2014), Tai et al. (2016), and Lebedev et al. (2015) accelerate Convolutional
Neural Networks (CNNs) through low-rank regularization. Decomposition models such as CAN-
DECOMP/PARAFAC (CP) (Carroll & Chang, 1970) and Tucker decomposition (Tucker, 1966) have
effectively reduced the computational complexity of CNNs (Lebedev et al., 2015; Kim et al., 2016).
Recent works have extended these techniques to recurrent and transformer layers (Ye et al., 2018;
Ma et al., 2019), broadening their applicability. In Figure 2A, we identify significant parameter
redundancies in source-pretrained models in terms of effective parameter ranks, revealing low effec-
tive ranks, prompting us to employ Tucker decomposition for reparameterizing the weights. Tucker
decomposition offers several advantages; it naturally accommodates the multi-modal structure of
convolutional weight tensors by disentangling different modes (e.g., temporal and channel dimen-
sions), allows for mode-specific rank selection to capture varying complexities across dimensions,
and enhances interpretability by modeling interactions within the weight tensors effectively. Com-
pared to other methods like CP decomposition, which impose uniform ranks and lack flexibility,
Tucker decomposition better aligns with our goals of parameter and sample efficiency during tar-
get adaptation. We utilize low-rank tensor factorization (Tucker-style decomposition) to disentangle
weight tensors into compact disentangled subspaces, enabling selective fine-tuning during target
adaptation. This strategy enhances the parameter efficiency of the adaptation process and implicitly
mitigates overfitting. As shown in Figure 2B, the validation F1 score for baseline methods declines
over epochs, whereas our proposed SFT method maintains consistent performance, demonstrating
its robustness against overfitting.
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Figure 3: Illustration of Tucker-style factorization (Tucker, 1966; Lathauwer et al., 2000).

3 PROPOSED METHODOLOGY

In this section, we discuss our proposed methodology through several key steps: (1) We begin by
discussing the SFDA setup. (2) We discuss the Tucker-style tensor factorization on the weight ten-
sors of the pre-trained source-model, decomposing them into a core tensor and mode-specific factor
matrices; where we introduce the rank factor (RF') hyperparameter to control the mode ranks in the
decomposition, allowing for flexible trade-offs between model compactness and capacity. (3) Dur-
ing target-side adaptation, we selectively fine-tune the core fensor while keeping the mode factor
matrices fixed, effectively adapting to distributional shifts in the target domain while reduced com-
putational overhead and mitigating overfitting. (4) Finally, we offer theoretical insights grounded in
PAC-Bayesian generalization analysis, demonstrating how source weight decomposition and target-
side selective fine-tuning implicitly regularize the adaptation process, leading to enhanced general-
ization in predictive performance while rendering the process parameter- and sample-efficient.

SFDA Setup. SFDA aims to adapt a pre-trained source model to a target domain without access
to the original source data. Specifically, in a classification problem, we start with a source dataset
Ds = {(zs,ys);xs € Xs,ys € Cq}, where X, denotes the input space, and C, represents the set
of class labels for the goal task in a closed-set setting. On the target side, we have access to an
unlabeled target dataset D; = {z;;2¢ € X;}, where X is the input space for the target domain.
The aim of SFDA is to learn a target function f; : X} — C, that can accurately infer the labels
Y+ € C4 for the samples in D;. f; is obtained using only the unlabeled target samples in D;, and
the source-model fs : Xy — C,, which is pre-trained on the source domain. Each x (either from
the source or target domain) is a sample of multivariate time series, i.e., x € RMXL wwhere L is the
number of time steps (sequence length) and M denotes number of observations (channels) for the
corresponding time step.

Tucker-style Factorization. After the supervised source pre-training (¢f. Appendix A.9 for de-
tails on source pre-training), we adopt Tucker-style factorization (Tucker, 1966; Lathauwer et al.,
2000) of the weight tensors for its effectiveness in capturing multi-way interactions among differ-
ent mode-independent factors. The compact core tensor encapsulates these interactions, and the
factor matrices in the decomposition offer low-dimensional representations for each tensor mode.
As illustrated in Figure 3A, the rank-(R;, R, R3) Tucker-style factorization of the 3-way tensor
A € RI¥I2xIs g represented as:

1 2 3
A=Gx;UD x, UP 53 UO o, Aije=> Y Y Gy UL U UP) (1)

Tl—l ’1"2—1 Tg—

where G € RE1xF2xEs ig referred to as the core tensor, and U € R >xf U@ ¢ RI2xE2 gpd
U®) e RIxEs a5 factor matrices.

Furthermore, the linear operations involved in Tucker-style representation (Equation (1)), which
are primarily mode-independent matrix multiplications between the core tensor and factor matrices,
simplify both mathematical treatment and computational implementation. This linearity ensures that
linear operations (e.g., convolution or linear projection) in deep networks using the complete tensor
can be efficiently represented as sequences of linear suboperations on the core tensor and factor
matrices.

For instance, in one-dimensional convolutional neural networks (1D-CNNs), the convolution oper-

ation transforms an input r (g)resentation I € R%*L into an output representation O € RCoux L’
using a kernel W € RCuxCnxK Here, Ci,, Cou, K, L, and L’ denote the number of input chan-
nels, output channels, kernel size, input sequence length, and output sequence length, respectively.
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The operation is mathematically defined as:

C1in %
Oii=>_ > Wijslji 0]
J=1lg=—1X&

Given that the dimensions of the channels (Ci, and Cyy) are typically much larger than the size
of the kernel (K), we restrict the decomposition to modes 1 and 2 only, focusing on the input and
output channels. The 2-mode decomposition is represented by:

Row Rin

=T 1 VO, VO o, W= 3 Tona Vi VE 3)

1= 1T2 1

where T~ € RFoux EnxK jg the 2-mode decomposed core tensor, and V(1) € RCu > Foi and V() €
R *Fin represent the respective factor matrices, also illustrated in Figure 3B. With this decomposed
form, the convolution operation can be represented as a sequence of the following linear operations:

Lyl = ZV§2T)2 I, (Channel Down-Projection) 4)
rl,l Z Z T rira kZryl—ks (Core Convolution) 5
To= 1k—_7
ROI.“
O = Z V " 7] s (Channel Up-Projection) (6)
= 1

where both the Channel Down-Projection and the Channel Up-Projection operations are imple-
mented as unit window-sized convolution operations.

Building on these insights, we utilize Tucker-style decomposition to reparameterize the weights,
as it allows us to express convolution operations as sequences of linear operations that can each
be implemented using standard convolutional layers. This reparameterization simplifies integration
into existing architectures and leverages efficient convolution computations, facilitating both ease of
implementation, computational efficiency, and overall reduction in the total number of parameters.
We decompose the pre-trained source model weights using Tucker decomposition, optimized via the
Higher-Order Orthogonal Iteration (HOOI) algorithm (De Lathauwer et al., 2000; Kolda & Bader,
2009), an alternating least squares method for low-rank tensor approximation (detailed algorithm in
Appendix A.1). The optimization problem is defined as:

T, VO* V@* = argmin |[W =T x; VU 5, VO | . (7

T VL VE©)
The weight tensor is then re-parameterized with the core tensor 7 € RfowxFinxK and mode factor
matrices V(1D* ¢ RCuxFou and V(2)* ¢ RCnxFin a5 formulated in Equations (4), (5), and (6).

However, the re-parameterization is performed after minimizing the linear reconstruction error of
the weights (Equation 7), which may degrade the predictive performance on the source domain
(Kim et al., 2016). To mitigate this effect, we fine-tune the core tensor and factor matrices using the
source data for an additional 2-3 epochs, prior to deploying the model on the target side. This fine-
tuning effectively restores the original predictive performance, preserving the model’s performance
while leveraging the benefits of fewer parameters (cf. Figure 11). This behavior strongly aligns
with the Lottery Ticket Hypothesis (Frankle & Carbin, 2018), which suggests that compressing and
retraining pre-trained, over-parameterized deep networks can result in superior performance and
storage efficiency compared to training smaller networks from scratch. Similar observations have
been made by Zimmer et al. (2023) in the context of large language model training.

Moreover, we introduce the rank factor (RF'), a hyperparameter to standardize the mode rank anal-

ysis. The mode ranks are set as (R, Rouw) = (LgFJ ; L%F‘J ), where a higher RF results in lower
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mode ranks, and vice versa. Although RF' can be set independently for the input and output chan-
nels, for simplicity in our analysis, we control both R;, and R, with a single hyperparameter, RF'.
This tunable parameter allows for flexible control over the trade-off between parameter reduction

and model capacity.

Target Side Adaptation. The core tensor in our setup
plays a pivotal role by capturing multi-way interactions
between different modes, encoding essential inter-modal
relationships with the factor matrices. Additionally, its
sensitivity to temporal dynamics (c¢f. Equation (5)) makes
it particularly well-suited for addressing distributional
shifts in time-series data, where discrepancies often arise
due to temporal variations (Fan et al., 2023). There-
fore, by selectively fine-tuning the core tensor during tar-
get adaptation, we can effectively adapt to these shifts
while maintaining a compact parameterization. Figure 4
presents a toy experiment that demonstrates how fine-
tuning the core tensor suffices in addressing domain shift,
aligning the model more effectively with the target do-
main. This approach not only ensures that the model
aligns better with the target domain but also enhances pa-
rameter efficiency by reducing the number of parameters
that need to be updated, minimizing computational over-
head. Moreover, selective fine-tuning mitigates the risk of
overfitting, providing a more robust adaptation process, as
shown in Figure 2B. This strategy leverages the expres-
siveness of the core tensor to address temporal domain
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Figure 4: The two columns show the
inputs from MNIST-1D (Greydanus &
Kobak, 2024) and the core tensors for
the source and target domains. The tar-
get domain is generated manually by
vertically flipping (i.e., negating) the
source. Both R;, and R, are set to 1
(cf . Figure 3B) to facilitate visualization
of the core tensors. Domain-invariant
output features are achieved as the core

shifts while maintaining the computational benefits of a

Omp! tensor adapts to the target samples to
structured, low-rank parameterization.

mitigate the domain shift (negation).

Computational and Parameter Efficiency.
eter count from Cyy X Cip, X K to:

Rout X Rin X K+

Core Tensor (77)

The decomposition significantly reduces the param-

Cou X Rowx  +

Factor Matrix (V (1))

Cin X Riy ®)
——

Factor Matrix (V(2))

where Ry, = [g‘;‘J &KL Cyy and Ry, = Lg‘ﬂ < CYy, ensuring substantial parameter savings. Fur-
thermore, since we selectively finetune the core tensor, the parameter efficiency is further enhanced.

In terms of computational efficiency, the factorized convolution reduces the operation count from
O(Coyt x Ciy x K x L) to a series of smaller convolutions with complexity:

O(Ciy X Rin X L) + O(Roye X Rin X K X L")+ O(Coy X Rou x L)

Equation (4)

©))

Equation (5) Equation (6)

resulting in a notable reduction in computational cost, dependent on the values of Ry, and R, (see
Appendix A.2 for a detailed explanation).

Robust Target Adaptation. In this subsection, we aim to uncover the underlying factors con-
tributing to the robustness of the proposed SFT strategy, particularly in terms of sample efficiency
and its implicit regularization effects during adaptation. To achieve this, we leverage the PAC-
Bayesian generalization theory (McAllester, 1998; 1999), which provides a principled framework
for bounding the generalization error in deep neural networks during fine-tuning (Dziugaite & Roy,
2017; Li & Zhang, 2021; Wang et al., 2023). We analyze the generalization error on the network
parameters W = {WW1L ie. L(W) — L(W), where L(W) is the test loss, £L(W) is the
empirical training loss, and D denotes the number of layers.

Theorem 1. (PAC-Bayes generalization bound for fine-tuning) Let W be some hypothesis class
(network parameters). Let P be a prior (source) distribution on W that is independent of the target
training set. Let Q(S) be a posterior (target) distribution on W' that depends on the target training
set S consisting of n number of samples. Suppose the loss function L(.) is bounded by C. If we set
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the prior distribution P = N (W g, 0?1 ), where W g, are the weights of the pre-trained network.
The posterior distribution Q(S) is centered at the fine-tuned model as N'(W ,q, 0*I). Then with

probability 1 — § over the randomness of the training set, the following holds:

Ew~qs) [LW)] < Ew~q(s) [ﬁA(W7 S)} + C\/Zi=1 l

. (10)

Wi w2 k24
+
20%n n

for some §,k,l > 0, where W(i) € Wiy, and ngc) € Wy, V1 < i < D, D denoting the total

trg
number of layers.

Proof. See Appendix A.5 (Theorem 1)
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Figure 5: Layer-wise parameter distance be-

tween the source-pretrained model and the target-
adapted model using the SFT strategy for different
rank-factor values (RF € {2,4,8}) on the SSC
(Goldberger et al., 2000), MFD (Lessmeier et al.,
2016), and HHAR (Stisen et al., 2015) datasets.
The values represent the average parameter dis-
tances across all source-target pairs provided for
the respective datasets. Lower values indicate
smaller parameter distances.
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In Equation (10), the test error (LHS) is
bounded by the empirical training loss and
the divergence between the source pre-trained
weights (W) and the target fine-tuned
weights (W), measured using the layer-wise
Frobenius norm. Motivated by this theoretical
insight, we empirically analyze the layer-wise
parameter distances between the source and tar-
get models in terms of the Frobenius norm. Fig-
ure 5 illustrates these distances for both vanilla
fine-tuning (Baseline: Fine-tuning all parame-
ters) and our SFT approach which selectively
fine-tunes the core subspace, across various
time series datasets, including SSC (Goldberger
etal., 2000), MFD (Lessmeier et al., 2016), and
HHAR (Stisen et al., 2015), for different RF'
values.

The results show that SFT naturally
constrains the parametric distance between the source and target weights, with a higher RF’ exhibit-
ing a greater constraining ability, thus regulating the adaptation process in line with the distance-
based regularization hypothesis of Gouk et al. (2021). Furthermore, in Appendix A.4 (Lemma 2),
we provide a formal bound on the parameter distance in terms of the decomposed ranks of the
weight matrices. This observation reveals a trade-off in the source-target parameter distance; while
a smaller distance tightens the generalization bound, it also limits the model’s capacity, potentially
regularizing or, in extreme cases, hindering adaptability. In Section 4, we use this bound to further
discuss SFT’s sample efficiency.

4 EXPERIMENTS AND ANALYSIS

Datasets and Methods. We utilize the AdaTime benchmarks proposed by Ragab et al. (2023a;b)
to evaluate the SFDA methods: SSC (Goldberger et al., 2000), and MFD (Lessmeier et al., 2016),
HHAR (Stisen et al., 2015), UCIHAR (Anguita et al., 2013), WISDM (Kwapisz et al., 2011). Here
each dataset involves distinct domains based on individual subjects (SSC), devices (HHAR, UCI-
HAR, WISDM) or entities (MFD). For comprehensive dataset descriptions and domain details, refer
to the Appendix A.6. To assess the effectiveness and generalizability of our decomposition frame-
work, we integrate it with prominent SFDA methods: SHOT (Liang et al., 2020), NRC (Yang et al.,
2021a), AAD (Yang et al., 2022), and MAPU (Ragab et al., 2023b) within time-series contexts. For
more details on the adaptation methods we direct readers to Appendix A.7 and A.8.

Experimental Setup. Our experimental setup systematically evaluates the proposed strategy
(SFT) alongside contemporary SFDA methods evaluated by Ragab et al. (2023b); Gong et al. (2024),
including SHOT (Liang et al., 2020), NRC (Yang et al., 2021a), AAD (Yang et al., 2022), and MAPU
(Ragab et al., 2023b). In SFT, the backbone fine-tuning is restricted to the core subspace of the de-
composed parameters, and the hyperparameters for source training and target adaptation are kept
consistent between each vanilla SFDA method and its SFT variant. In addition, we assess the im-
pact of different ranking factors (RF"). For values of RF' greater than 8, we observed a significant
underfitting, leading us to limit our evaluation to RF € {2,4,8}. The experiments are carried
out using the predefined source-target pairs from the AdaTime benchmark (Ragab et al., 2023a).
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Figure 6: Comparison of the predictive performance of our selective fine-tuning (SFT) strategy
w.r.t. F1 score (%) at different target sample ratios against baseline methods (SHOT, NRC, AAD,
MAPU). Adaptations are conducted using 0.5%, 5%, and 100% of the total unlabeled target samples,
randomly sampled in a stratified manner. The figure demonstrates performance differences across
methods as the amount of target data varies, highlighting the sample efficiency of the proposed SFT
strategy. Results are averaged over three runs.

The predictive performance of the methods is evaluated by comparing the average F1 score of the
target-adapted model across all source-target pairs for the respective dataset in the benchmark. Each
experiment is repeated three times with different random seeds to ensure robustness. More details
are provided in Appendix A.9.

Table 1: Performance and efficiency comparison on SSC dataset across SFDA methods, reported as
average F1 score (%) at target sample ratios (0.5%, 5%, 100%), inference MACs (M), and fine-tuned
parameters (K). Highlighted rows show results for SFT, where only the core tensor is fine-tuned at
different RF’ values. Green numbers represent average percentage improvement, while Red numbers
indicate reduction in MACs and fine-tuned parameters. In Appendix A.9 (Table 4), we extend this
analysis to MFD, HHAR, WISDM, and UCIHAR datasets.

F1 Score (%) 1

Methods ‘ RF ‘ 0.5% 5% 100% Average ‘ MACs (M) | ‘ # Params. (K) |
SHOT (Liang et al., 2020) - | 6232157 63.95+1.51 67.95+1.04 64.74 12.92 83.17

8  6253+046 66.55+046 67.50+1.33 65.53(1.22%) | 0.80(93.81%) | 1.38 (98.34%)
SHOT + SFT 4 62.71+0.57 67.16+1.06 68.56+0.44 66.14 (2.16%) | 1.99 (84.60%) | 5.32(93.60%)

2 63.05+032 6544+083 6748+0.89 6532(0.90%) | 5.54(57.12%) | 20.88 (74.89%)
NRC (Yang et al., 2021a) - 15992£1.19 63.56+1.35 65.23+0.59 62.90 12.92 83.17

8  60.65+137 63.60+143 65.05+1.66 63.10(0.32%) | 0.80(93.81%) | 1.38(98.34%)
NRC + SFT 4 61.95+0.62 65.11+134 67.19+0.14 64.75(2.94%) | 1.99 (84.60%) | 5.32(93.60%)

2 60.60+0.58 65.06+0.24 66.83+0.51 64.16 (2.00%) | 5.54 (57.12%) | 20.88 (74.89%)
AAD (Yang et al., 2022) - ]5939+1.80 63.21+1.53 63.71+2.06 62.10 12.92 83.17

8  60.62+140 6538+093 6580+1.17 63.93(2.95%) | 0.80(93.81%) | 1.38 (98.34%)
AAD + SFT 4 61.92+0.68 66.59+0.95 67.14+0.57 65.22(5.02%) | 1.99 (84.60%) | 5.32(93.60%)

2 6059+059 63.96+2.04 6439+145 6298 (1.42%) | 5.54(57.12%) | 20.88 (74.89%)
MAPU (Ragab et al., 2023b) - 16035215 6248+1.57 66.73+0.85 63.19 12.92 83.17

8  6352+124 6477+022 66.09+0.19 64.79 (2.53%) | 0.80 (93.81%) | 1.38(98.34%)
MAPU + SFT 4  62.21+0.88 6520+125 67.40+0.59 64.94(2.77%) | 1.99 (84.60%) | 5.32(93.60%)

2 6225+1.74 66.19+1.02 67.85+0.62 6543 (3.54%) | 5.54 (57.12%) | 20.88 (74.89%)

Sample-efficiency across SFDA Methods and Datasets. We assess the sample efficiency of the
proposed SFT method by evaluating its predictive performance in the low-data regime. To conduct
this analysis, we randomly select 0.5% and 5% of the total available unlabeled target samples in
a stratified manner, utilizing fixed seeds for consistency. These sampled subsets serve exclusively
for the adaptation process. In Figure 6, we present a comparative analysis of the average F1 score
post-adaptation, contrasting SFT with baseline methods (SHOT, NRC, AAD, and MAPU) across
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Method Baseline SFT (RF-2) SFT (RF-4) SFT (RF-8) LoRA-2 LoRA-4 LoRA-8 LoRA-16 LoKrA
MACs (M) | 12.92 5.54 1.99 0.80 12.92 12.92 12.92 12.92 12.92
# Params. (K) | 83.17 20.88 5.32 1.38 0.81 1.94 5.19 15.63 1.84

Figure 7: Comparison of LoRA (Hu et al., 2021) and LoKrA (Edalati et al., 2022; Yeh et al., 2024)
(in Purple) against baseline methods (SHOT, NRC, AAD, MAPU) and our proposed approach (SFT)
on the SSC dataset, evaluated across varying target sample ratios used during adaptation. The table
at the bottom shows the target model’s inference overhead after adaptation in terms of MACs and
the number of parameters finetuned at the time of adaptation.

multiple datasets: SSC, MFD, HHAR, WISDM, and UCIHAR. Notably, our empirical observa-
tions are grounded in the theoretical framework established by Theorem 1, which is encapsulated
in Equation (10). While all SFDA methods aim to minimize the empirical loss on the target do-
main (the first term on the right-hand side of Equation (10)) through their unsupervised objectives
(cf. Appendix A.8), the second term—dependent on both the number of samples and the distance
between parameters—plays a critical role in generalization. In low-data regimes, as the number of
target samples reduces, this second term increases, thereby weakening the generalization bound. As
a result, baseline methods exhibit a noticeable drop in predictive performance, distinctly observed
for the MFD and UCIHAR datasets (Figure 6), when adapting under the low sample ratio setting.
In contrast, SFT effectively mitigates the adverse effects of a small number of samples by implicitly
constraining the parameter distance term (the numerator of the second term on the RHS), as empir-
ically observed in Figure 5, therefore, balancing the overall fraction to not loosen the bound on the
RHS. This renders SFT significantly more sample-efficient, preserving robust generalization even in
low-data regimes. We extend this analysis in Appendix A.9.

Parameter-efficiency across SFDA Methods and Datasets. In addition, Table 1 demonstrates
consistent improvements in the F1 score alongside enhanced parameter efficiency during the adapta-
tion process, as evidenced by the reduced parameter count (# Params.) of the parameters fine-tuned.
As the rank factor (RF") increases, the size of the core subspace decreases (cf. Equation (8)), leading
to fewer parameters that require updates during adaptation. This reduction not only enhances effi-
ciency but also lowers computational costs (MACs) (c¢f. Equation (9)). The observed performance
gains and improved efficiency are consistent across different SFDA methods and datasets, underscor-
ing the robustness, generalizability, and efficiency of our approach across different SFDA methods
and benchmark datasets. In Appendix A.9, we extend this analysis to MFD, HHAR, WISDM and
UCIHAR datasets and observe similar trends.

Comparison with Parameter-efficient Tuning Methods. To further substantiate the robustness
of SFT, we benchmark its performance against Parameter-Efficient Fine-Tuning (PEFT) approaches
(Han et al., 2024; Xin et al., 2024). PEFT methods primarily aim to match the performance of full
model fine-tuning while substantially reducing the number of trainable parameters. Among the most
prominent approaches, Low-Rank Adaptation (LoRA) (Hu et al., 2021) has gained significant trac-
tion in this domain. In Figure 7, we analyze the performance of LoRA at varying intermediate ranks
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Table 2: Ablation studies on finetuning different parameter subspaces during target-side adaptation
on MAPU.

- SSC HHAR
Method ‘ RF ‘ Parameters Finetuned ‘ FI Score (%) 1 MACs (M) # Params. (K) | ‘ FI Score (%) MACs (M) # Params. (K) |
No Adaptation - None 54.96 +0.87 12.92 0 66.67 +1.03 9.04 0
MAPU - Entire Backbone 66.73 % 0.85 12.92 83.17 80.32£ 1.16 9.04 198.21
MAPU 61.07+ 1.58 12.92 0.45 71.40 £ 1.63 9.04 0.64
Factor Matrices (V()), V(2)) | 66.050.75 0.8 3.33 80.42+ 1.51 0.53 7.18
8 Core Tensor (7)) 66.09 % 0.19 0.8 1.38 80.16 +2.38 0.53 3.19
Factor Matrices (V(1), V(2)) 4 Core Tensor (77 ‘ 66.17 £0.53 0.8 4.71 80.29 + 1.04 0.53 10.37
Factor Matrices (V(), V(%)) | 67.600.07 1.99 6.66 79.88 +1.20 1.34 14.35
4 Core Tensor (7)) 67.40 % 0.59 1.9 532 80.24+1.22 134 1253
MAPU + SFT Factor Matrices (V(1), V) + Core Tensor (T) | 67.820.21 1.99 11.98 79.63 % 1.08 134 26.88
Factor Matrices (V()), V() | 67.13+0.69 5.54 1331 80.51+2.41 3.79 28.68
2 Core Tensor (7)) 67.85 % 0.62 5.54 20.88 80.69 +2.45 3.79 49.63
Factor Matrices (V(V), V() + Core Tensor (T) | 67.370.36 5.54 34.19 80.69 +1.26 3.79 78.31

({2, 4, 8, 16}), and Low-Rank Kronecker Adaptation (LoKrA) (Edalati et al., 2022; Yeh et al., 2024)
under its most parameter-efficient configuration, alongside SFT, on the SSC dataset (additional re-
sults are provided in Appendix Figure 12). Remarkably, SFT consistently outperforms across SFDA
tasks, demonstrating superior adaptability and performance. This advantage arises from the struc-
tured decomposition applied during source model preparation, which explicitly disentangles the pa-
rameter subspace. In contrast, LoORA-style methods introduce a residual branch over the pretrained
weights that relies on the fine-tuning objective to uncover the underlying low-rank subspaces (Hu
etal., 2021), which results in weaker control over the adaptation process. It is important to highlight
that PEFT methods can also be seamlessly integrated with SFT during fine-tuning. For instance,
LoRA or LoKrA-style adaptation frameworks can be applied to the core tensor, further enhancing
the efficiency of the adaptation process, which we discuss in detail in Appendix A.11. However,
while LoRA-style methods can effectively adapt model weights to the target domain, they do not
reduce inference overhead, achieving this requires explicit decomposition and reparameterization of
the weights.

Ablation Studies on Fine-tuning different Parameter Subspaces. In Table 2, we present an ab-
lation study evaluating the impact of fine-tuning different components of the decomposed backbone
for MAPU. We compare against baseline methods: (1) fine-tuning the entire backbone and (2) tun-
ing only Batch-Norm (BN) parameters. For our decomposed framework, we assess: 1. Fine-tuning
only the factor matrices: Here, we update the factor matrices while keeping the core tensor fixed,
adjusting directional transformations in the weight space. 2. Fine-tuning only the core tensor: We
freeze the factor matrices and tune only the core tensor, the smallest low-rank subspace, capturing
critical multi-dimensional interactions. This is efficient, especially with a high RF' values, as the
core tensor remains compact, improving performance with fewer parameters and enhancing sample
efficiency. 3. Fine-tuning both the core tensor and factor matrices: Both are updated, offering more
flexibility but introducing more parameters, risking overfitting. Primarily tuning the core tensor is
advantageous due to its compact representation, yielding better generalization, and freezing the fac-
tor matrices preserves mode-specific transformations while optimizing key interactions. We observe
that core tensor fine-tuning strikes an optimal balance between adaptation and parameter efficiency,
delivering strong performance with a minimal computational footprint. Appendix Tables 11, 12, and
13 show the ablation analysis for SHOT, NRC and AAD, respectively.

5 CONCLUSION

In this work, we presented a framework for improving the parameter and sample efficiency of SFDA
methods in time-series data through a low-rank decomposition of source-pretrained models. By
leveraging Tucker-style tensor factorization during the source-model preparation phase, we were
able to reparameterize the backbone of the model into a compact subspace. This enabled selective
fine-tuning (SFT) of the core tensor on the target side, achieving robust adaptation with significantly
fewer parameters. Our empirical results demonstrated that the proposed SFT strategy consistently
outperformed baseline SFDA methods across various datasets, especially in resource-constrained
and low-data scenarios. Theoretical analysis grounded in PAC-Bayesian generalization bounds pro-
vided insights into the regularization effect of SFT, highlighting its ability to mitigate overfitting
by constraining the distance between source and target model parameters. Our ablation studies fur-
ther reinforced the effectiveness of selective finetuning, showing that this approach strikes a balance
between adaptation flexibility and parameter efficiency. In Appendix A.13, we discuss the limita-
tions of the presented work. Overall, our contributions positively complement the SFDA methods,
offering a framework that can be seamlessly integrated with existing SFDA techniques to improve
adaptation efficiency. This lays the groundwork for future research into more resource-efficient and
personalized domain adaptation techniques.
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A APPENDIX

A.1 HIGHER ORDER ORTHOGONAL ITERATION

Algorithm 1: The higher-order orthogonal iteration (HOOI) algorithm. (De Lathauwer et al.,
2000; Kolda & Bader, 2009)
Input: Tensor A € RI1X12>XIN Truncation (Ry, R, . .., Rx), Initial guess
(Ul n=12..N}
Qutput: Core tensor G, Factor matrices {U](:") :n=1,2,...,N}
k + 0;
while not converged do
foralln € {1,2,...,N} do

B Ay (UM DT %o 30t (U)X (U Ty (U T,
B(n) < B in matrix format;

U, 3, VT « truncated rank-R,, SVD of B(,,);

U, U,

k+k+1;

G < XV in tensor format;

A.2 PARAMETER AND COMPUTATIONAL EFFICIENCY WITH TUCKER DECOMPOSITION

A.2.1 TUCKER FACTORIZATION FOR CNN WEIGHTS

Consider a 3D weight tensor W € RCuxCuxK for g 1D convolutional layer, where Cyy and Ci,
represent the output and input channels, and K is the kernel size. Using Tucker factorization, VY can
be decomposed into a core tensor T~ € RF1xF2xK and factor matrices V(1) € RCoutxF1 v (2) ¢
RCn xRz guch that:

W =T x; VI x, v? (1)

Parameter Efficiency. The number of parameters before factorization is:

Paramsoriginal = Cout X Cin X K (12)

After 2-Mode Tucker factorization, the number of parameters become:
ParamSTucker = Rout X Rin x K + C'oul X Rout + Cin X Rin (13)

Given that R, < Cy, and Ry < Coy, the reduction in the number of parameters is significant,
leading to a parameter-efficient model.

Computational Efficiency. The convolution operation requires O(Coy X Cin X K x L) operations,
where L’ is the length of the output feature map. After Tucker factorization, the convolutional
operations become a sequence of smaller convolutions involving the factor matrices and the core
tensor, reducing the computational complexity to:

O(Cin X Rin X L) + O(Roye X Rin X K X L") + O(Cou X Rowe x L") (14)

where L denotes the length of the input sequence. This reduction depends on the rank R;, and Ry,
leading to lower computational costs compared to the original convolution.

A.2.2 TUCKER FACTORIZATION FOR FULLY CONNECTED WEIGHTS

Consider a 2D weight matrix W € RM>*¥ in a fully connected (FC) layer, where M is the input
dimension and N is the output dimension.
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Using Tucker factorization, W can be decomposed into a core matrix G € RF1*%2 and factor
matrices U € RM*R1 gnd U e RV%E2 guch that:

W =UuWGu®)T (15)

Parameter Efficiency. The number of parameters before factorization is:

ParamsSogiginal = M x N (16)

After Tucker factorization, the number of parameters becomes:

ParamsTucker = R1 X R2 + M x R]_ + N x R2 (17)
Again, with R; < M and Ry < N, this leads to a substantial reduction in the number of parame-
ters.
Computational Efficiency. The original matrix multiplication requires O(M x N) operations.

After Tucker factorization, the computation is broken down into smaller matrix multiplications:

O(M X R1) + O(Rl X RQ) + O(R2 X N) (18)

This decomposition reduces the computational cost, particularly when R; and Ry are much smaller
than M and N.

A.2.3 COMPUTATION ANALYSIS

Original Convolutional Layer: Consider a convolutional layer with the following dimensions:

* Input Channels (Cy,): 128

* Output Channels (Cyy): 256

¢ Kernel Size (K): 8

¢ Input Length (L): Length of the input sequence

* Output Length (L'): Length of the output feature map

O(Cou X Cip x K x L') =256 x 128 x 8 x L' = 262,144 x L' (19)

After Tucker Decomposition: We apply Tucker decomposition along the channel dimensions (in-
put and output channels) of the weight tensor. The decomposition factorizes the original weight
tensor into smaller tensors, introducing two rank parameters:

Computations,;yin, =

* Input Rank (Rj,): Reduced dimension for input channels
e QOutput Rank (R,y): Reduced dimension for output channels
The computational complexity after Tucker decomposition becomes:

Computationsy, e = O(Cin X Rin X L) + O(Rout X Rin X K X L") + O(Cout X Row X L)
= Input Projection 4 Core Convolution + Output Projection (20)

Components Computation Explanation:
* Input Projection: Project the input feature maps from Cj, channels to R;, channels:
Input Projection = Cj, X Riy X L =128 X Ry, X L 21
* Core Convolution: Perform convolution using the core tensor of size Roy X Rin X K:

Core Convolution = Ryy X Riy X K X L' = Ry X Rip x 8 x L' (22)
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* Output Projection: Project the result from Ry, channels to Cy, output channels:
Output Projection = Cyy X Rou X L' = 256 X Roy X L' (23)

Computational Efficiency Demonstration: For demonstration purposes, let us assume equal re-
duced ranks for input and output channels: R;, = Ry, = R, where R = 32

Computations After Decomposition:

* Input Projection:

Input Projection = 128 x 32 x L = 4,096 x L 24)

¢ Core Convolution:
Core Convolution = 32 x 32 x 8 x L' = 8,192 x L' (25)

* Output Projection:
Output Projection = 256 x 32 x L' = 8,192 x I’ (26)

Total Computations After Decomposition:

Computations gecomposea = 4,096 X L +8,192 x L' 48,192 x L' = 4,096 x L+ 16,384 x L' (27)
Comparing Computational Costs: Assuming the input and output lengths are approximately equal
(L = L), we can directly compare the total computations.

* Total Computations Before Decomposition:

Computations i, = 262,144 x L' (28)
* Total Computations After Decomposition:
Computations ., = 4,096 x L' + 16,384 x L' = 20,480 x L’ (29)

Computational Reduction:

Computationsp, ., 20,480 x L'
262,144 x L/
This indicates a reduction of approximately 92% in computational cost after Tucker decomposition.
The reduced ranks Rj, and R, lead to a lower computational complexity compared to the original

convolutional layer. The substantial decrease in computations directly results in faster inference
times, as the model performs significantly fewer operations.

Reduction Ratio = ~ 0.078 30)

Computations ;i

In sum, Tucker factorization significantly reduces both the number of parameters and the computa-
tional cost for 1D CNN and FC weights, making it an effective technique for achieving parameter
efficiency and computational efficiency in deep neural networks.

A.3 FORWARD- AND BACKWARD- PASS EQUIVALENCE WITH TUCKER DECOMPOSITION

In the interest of simplicity and ease of explanation, we demonstrate equivalence by conduct-
ing the Tucker decomposition for fully connected weights, i.e., a 2-D matrix, such that, W =
ubGuen)T,

Forward Propagation.

Case 1: Using W = UDG(U®)T directly Let the input to the layer be . Forward propagation
through W is represented as:

z=Wz=UVGU?®)Tz
Case 2: Using UM | G, (U(Q))T separately. We compute the forward pass in steps:
1. Compute y; = (UP) Tz,
2. Compute yo = Gy; = G((U®)Tz),
3. Compute z = UMy, = UD(G((UP)Tz)).
By associativity of matrix multiplication, this is equivalent to:
z=UNGU) Tz =Wz

Hence, forward propagation through UM, G, (U®)T in sequence is equivalent to propagating
through W directly.
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Backward Propagation. Let the gradient of the loss £ with respect to the output z be g—ﬁ = g,.
The task is to propagate this gradient backward.

Case 1: Using W = UNG(UP)T directly. The gradient of the loss with respect to z is:

9z = Wng = (U(l)G(U@))T)TgZ = U(Q)GT(U(I))TQZ~

Case 2: Using UM, G, (UP)T separately.
Backward propagation proceeds as:

1. Compute g,, = (UM)Tg,,

2. Compute g,, = G'g,, =G (UW)Tg,),

3. Compute g, = U®g,, = U (GT (UM)Tg.)).
By the associativity of matrix multiplication, this simplifies to:

g = UPGT (UM Tg, =WTyg,.

Gradients with respect to U, G, (U®)T. The gradients of £ with respect to the parameters
are:

1. Gradient with respect to U(1):

2. Gradient with respect to G:

o = gl = ((UO)7g.) (W)7)
3. Gradient with respect to (U?))T:

e G (RS Ey

In sum, the output z is identical whether computed or via UM, G, (U®)T or via its composed
reconstructed weight W separately. The gradient g, also renders identical whether computed via
U, G, (U(Q))T via W separately. Thus, forward and backward propagation through the decom-
posed factors UM, G, (UP))T is mathematically equivalent to propagating through W directly.

A.4 LEMMAS
Lemma 1. Let W € RM*N pe the initial weight matrix, and W, € RM*N denote the weight
matrix after t iterations of gradient descent with a fixed learning rate 1 > 0. Suppose the gradient

of the loss function L(W) is bounded, such that for all iterations k = 0,1,...,t — 1, we have
IVLWg)|loo < G where G > 0 is a constant.

Then, the Frobenius norm of the difference between the initial weight matrix wo and the weight
matrix wy after t iterations is bounded by:

IW: — Wyllp <ntvVMNG.

Proof. The gradient descent algorithm updates the weight matrix according to the rule:

Wk+1 = Wk — UV[:(Wk).

Starting from the initial weights W, the weights after ¢ iterations are:
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t—1
W, =Wo—n> VL(IW).
k=0

Taking the Frobenius norm of the difference between w; and wg, we have:

t—1
W2 = Wollr = | S VEW)
k=0 F
Using the triangle inequality for norms:
-1
Wi = Wollp <) [[VL(Wy)||p-
k=0
Since the Frobenius norm || - ||p is sub-multiplicative and satisfies ||[VL(Wy)|F

VMN|VL(Wg)| oo, and by the assumption [|[VL(Wg)|leo < G, it follows that:

t—1
S IVL(W)|r < tVMNG.
k=0

Substituting this into the earlier expression, we obtain the bound:

W, — Wyl r < ntVMNG.

Lemma 2. Consider the weight matrices W and W expressed as:

Wy =UVGoUM)T and W, = UG (UM,

IN

where Uél) € RM*xE1 gpg UE)2) € RN* B2 gre fixed matrices, and Gy € R™*"2 and G, € R %72

represent the evolving core matrices. Assume that the entries of Uél) and UBQ)

constants Cy, > 0 and C,, > 0, respectively.

Let the Frobenius norm of the difference between G, and Gy after t iterations of gradient descent

be bounded as:

|Gt — Gollr < nt\/ Ri1R2Gh,

where 11 > 0 is the learning rate, and Gy, > 0 is a constant.

Then, the Frobenius norm of the difference between W and W is bounded by:
||Wt - WO”F S RlRQt’U\/ MN - OquCU.

Proof. Given the case where Wy = USY Go(UP)T and W, = UV G, (UP)T, with UL

are bounded by

nd

Uél) being fixed in both W and W,. Where Uél) and Ué2) are matrices of dimensions M X R,

and N X Rs, respectively, and G and G, are matrices of dimensions R X Rs.

The Frobenius norm of the difference between W; and W, is:

W, — Wolr = [UMNGo(UP)T — UsG (U)o
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Since Uél) and Uéz) are common in both W and W, we can factor them out:
[We = Wollr = [[05(Gr — Go)(Ug) |
Using the sub-multiplicative property of the Frobenius norm:

1 2 1 2
UGy — Go)(U) T < TUS||£)1Gr — Goll£ | US? ||

Since Uél) and Uéz) are of dimensions M x R; and N x Ry, and (G — Gyg) is Ry X Rs.

Assuming the maximum entries of 4 and vy are bounded by constants C', and C,:

Ul < VMR- C,
IG: — Gol|lr < nt-+/ Ry - Rs - Gy (from Lemma 1)

U < VN -R:-C,

Thus:

Wy = Wollp <VM-Ry-Cy-nt-\/Ri-Ry-Gp-\/N-Ry-C,

This simplifies to:

HWt — WO”F S RlRQth MN - CquOU

A.5 PROOF OF THEOREM 1

Background. PAC-Bayesian generalization theory offers an appealing method for incorporating
data-dependent aspects, like noise robustness and sharpness, into generalization bounds. Recent
studies, such as (Bartlett et al., 2017; Neyshabur et al., 2018), have expanded these bounds for deep
neural networks to address the mystery of why such models generalize effectively despite possess-
ing more trainable parameters than training samples. Traditionally, the VC dimension of neural
networks has been approximated by their number of parameters (Bartlett et al., 2019). While these
refined bounds mark a step forward over classical learning theory, questions remain as to whether
they are sufficiently tight or non-vacuous. To address this, Dziugaite & Roy (2017) proposed a com-
putational framework that optimizes the PAC-Bayes bound, resulting in a tighter bound and lower
test error. Zhou et al. (2019) validated this framework in a large-scale study. More recently, Jiang*
et al. (2020) compared different complexity measures and found that PAC-Bayes-based tools align
better with empirical results. Furthermore, [i & Zhang (2021) and Wang et al. (2023) utilized this
bound to motivate their proposed improved regularization and genralization, respectively. Conse-
quently, the classical PAC-Bayesian framework (McAllester, 1998; 1999) provides generalization
guarantees for randomized predictors (McAllester, 2003; Li & Zhang, 2021). In particular, let fy
be any predictor (not necessarily a neural network) learned from the training data and parametrized
by W. We consider the distribution ) over parameters of predictors of the form fy,, where W is a
random variable whose distribution may also depend on the training data. Given a prior distribution
P over the set of predictors that is independent of the training data, S. The PAC-Bayes theorem
states that with probability at least 1 — ¢ over the draw of the training data, the expected error of fyy
can be bounded as follows

KL(Q(S) || P) + kIn g +1

Ew~q(s) [LW)] < Ew~q(s) [f:(st)} + C\/ - . (3D

for some C, k,l > 0. Then based on the above described bound we reduce it for our case, where
the prior distribution on the parameters is centered on source pre-trained weights and the posterior
distribution on the target-adapted model and define Theorem 1.

Theorem 1. (PAC-Bayes generalization bound for fine-tuning) Let W be some hypothesis class
(network parameter). Let P be a prior (source) distribution on W that is independent of the target
training set. Let Q(S) be a posterior (target) distribution on W' that depends on the target training
set S consisting of n number of samples. Suppose the loss function L(.) is bounded by C. If we set
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the prior distribution P = N (W g, 0?1 ), where W g, are the weights of the pre-trained network.
The posterior distribution Q(S) is centered at the fine-tuned model as N'(W ,q, 0*I). Then with
probability 1 — § over the randomness of the training set, the following holds:

D 7 i n
i=1 ”Wl(rg) - Wgrc)‘”%‘ n k1In 5 +1
n

20%n

Ew~qes) [L(W)] < Eweqs) [ﬁ(W7 S)} +C \/ 2 . (32)

() ¢ Wi, V1 < ¢ < D, D denoting the total

src

for some 6, k,l > 0, where Wi ¢ W g, and W

[Vg
number of layers.

It is important to note that the original formulation in (McAllester, 1999) assumes the loss function
is restricted to values between 0 and 1. In contrast, the modified version discussed here extends
the applicability to loss functions that are bounded between 0 and some positive constant C'. This
adjustment is made by rescaling the loss function by a factor of %, which introduces the constant C
in the right-hand side of Equation (31).

Proof. We expand the definition using the density of multivariate normal distributions.

Pr(W ~ Q(S))ﬂ

KL(Q(9) | P) = Ew~q(s) {log( Pr(W ~ P)

Substituting the densities of the Gaussian distributions, this can be written as:

exp (— gz [|[W — Wig?)
KL(Q(S) | P) = Ew~ log A . (33)
( ( )H ) W~Q(S) [ exp (—ﬁ IW_Wsrc||2)
This simplifies to:
1
KL(Q(S) H P) = EEW’VQ(S) “|W - WsrcH2 - HW - Wtrg||2] . (34)

Expanding the squared terms:

1
KL(Q(S) || P) = T‘QEWNQ(S) [Herg - vvsrc”2 + 2<W - Wtrg» Wtrg - Wsrc>] . (35)

Since the expectation Eyy.q(s)[W — Wyg| = 0 (because W is distributed around W), the
cross-term vanishes:

= KL(Q(S) || P) = - |Wu — W7 (36)

1
27|

2w - wi|

202

= KL(Q(S) H P) = |Wtrg - WSrcH% < 37

1
207
where , ng) € Wy, and WSQ € Wgye, V1 < i < D, D denoting the total number of layers.
Then, we can obtain Equation (32) by substituting Equation (37) in Equation (31). ]

We would also like to emphasize that our primary goal is not to introduce a novel theorem but to
utilize established PAC-Bayesian bounds as a theoretical framework to explain our empirical obser-
vations of implicit regularization and sample efficiency (cf. Figure 2B)). The PAC-Bayesian analysis
serves as a tool to provide theoretical insights into why our strategy exhibits improved performance
under sample scarce scenario (discussed in Section 4) in the SFDA setting. By grounding our find-
ings in existing theoretical work, we aim to bridge the gap between empirical results and theoretical
understanding in this specific context.
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Table 3: Dataset Summary (Ragab et al., 2023a).

Dataset | # Users/Domains # Channels # Classes  Sequence Length | Training Set  Testing Set

UCIHAR 30 9 6 128 2300 990
WISDM 36 3 6 128 1350 720
HHAR 9 3 6 128 12716 5218
SSC 20 1 5 3000 14280 6130
MFD 4 1 3 5120 7312 3604

A.6 DATASET DESCRIPTION

We utilize the benchmark datasets provided by AdaTime (Ragab et al.,, 2023a). These datasets
exhibit diverse attributes such as varying complexity, sensor types, sample sizes, class distributions,
and degrees of domain shift, allowing for a comprehensive evaluation across multiple factors.

Table 3 outlines the specific details of each dataset, including the number of domains, sensor chan-
nels, class categories, sample lengths, and the total sample count for both training and testing sets.
A detailed description of the selected datasets is provided below:

e UCIHAR (Anguita et al., 2013): The UCIHAR dataset consists of data collected from
three types of sensors—accelerometer, gyroscope, and body sensors—used on 30 different
subjects. Each subject participated in six distinct activities: walking, walking upstairs,
walking downstairs, standing, sitting, and lying down. Given the variability across subjects,
each individual is considered a separate domain. From the numerous possible cross-domain
combinations, we selected the ten scenarios set by Ragab et al. (2023a).

o WISDM (Kwapisz et al., 2011): The WISDM dataset uses accelerometer sensors to gather
data from 36 subjects engaged in the same activities as those in the UCIHAR dataset.
However, this dataset presents additional challenges due to class imbalance among differ-
ent subjects. Specifically, some subjectsonly contribute samples from a limited set of the
overall activity classes. As with the UCIHAR dataset, each subject is treated as an indi-
vidual domain, and ten cross-domain scenarios set by Ragab et al. (2023a) are used for
evaluation.

« HHAR (Stisen et al., 2015): The Heterogeneity Human Activity Recognition (HHAR)
dataset was collected from 9 subjects using sensor data from both smartphones and smart-
watches. Ragab et al. (2023a) standardized the use of a single device, specifically a Sam-
sung smartphone, across all subjects to minimize variability. Each subject is treated as
an independent domain, and a total of 10 cross-domain scenarios are created by randomly
selecting subjects.

* SSC (Goldberger et al., 2000): The sleep stage classification (SSC) task focuses on cate-
gorizing electroencephalography (EEG) signals into five distinct stages: Wake (W), Non-
Rapid Eye Movement stages (N1, N2, N3), and Rapid Eye Movement (REM). This dataset
is derived the Sleep-EDF dataset, which provides EEG recordings from 20 healthy individ-
uals. Consistent with prior research (Ragab et al., 2023a), we select a single EEG channel
(Fpz-Cz) and ten cross-domain scenarios for evaluation.

e MFD (Lessmeier et al., 2016): The Machine Fault Diagnosis (MFD) dataset has been col-
lected by Paderborn University to identify various types of incipient faults using vibration
signals. The data was collected under four different operating conditions, and in our ex-
periments, each of these conditions was treated as a separate domain. We used twelve
cross-condition scenarios to evaluate the domain adaptation performance. Each sample in
the dataset consists of a single univariate channel.

A.7 SFDA METHODS

* SHOT (Liang et al., 2020; 2021): SHOT optimizes mutual information by minimizing con-
ditional entropy H (Y| X) to enforce unambiguous cluster assignments, while maximizing
marginal entropy H (Y") to ensure uniform cluster sizes, thereby preventing degeneracy.
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A. Baseline (vanilla) architecture
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Figure 8: A. Baseline architecture (Ragab et al., 2023a;b) B. Architecture reprametrization after
Tucker-style factorization of convolution weights. Cj, and K denote the number of input channels

and the filter size, respectively. R(()it) and Rl(lf ) and R(()fl)l, denote the mode ranks for the i layer.

* NRC (Yangetal., 2021a;2023): NRC leverages neighborhood clustering, with an objective
function comprising two main components: a neighborhood clustering term for prediction
consistency and a marginal entropy term H (Y") to promote prediction diversity.

* AAD (Yang et al., 2022): AAD also utilizes neighborhood clustering but incorporates a
contrastive objective similar to InfoNCE (Oord et al., 2018), which attracts predictions of
nearby features in the feature space while dispersing (repelling) those that are farther apart.

* MAPU (Ragab et al., 2023b; Gong et al., 2024): Building on the concepts from Liang et al.
(2021) and Kundu et al. (2022a), and focusing on time-series context, MAPU introduces
masked reconstruction as an auxiliary task to enhance SFDA performance.

A.8 SFDA TARGET ADAPTATION OBJECTIVES

SHOT. The overall objective is given as follows:

K
Lsnor(9t) = Lent(ft; Xe) + Laiv(fe; &) — BE(,, 5, ¢ 2, x5, > g log i (fi(xe),  (38)
k=1

where,
K
Lent(ft; Xt) = —Egjex, Z5k(ft(3€t)) log 0 (fi(z1)), (39)
k=1
K
£-(f-X):ZAloA:D 5115 ) —log K (40)
diviJty At kilpk g Pk KL paK K g4,
in the above equation Dy, stands for the KL divergence. fi(x) = hi(g:(x)) is the K-

dimensional output of each target sample, 1x is a K-dimensional vector with all ones, and
P = Egz,ex,[0(ft(xt))] is the mean output embedding of the whole target domain. Recall that

ok(a) = % represents the k-th element of the softmax output.

Moreover, the j, € ), denotes the pseudo label on for the target samples, based on DeepCluster
(Caron et al., 2018), derived as follows. The centroid for each class in the target domain is obtained,
similar to weighted k-means clustering:

(41)
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where ft = g, o hy denotes the previously learned target hypothesis. These centroids robustly and
reliably characterize the distribution of different categories within the target domain. Then, pseudo
labels are obtained via the nearest centroid classifier:

e = argmin Dy (gi(x2). ;). (“2)

where Dy (a,b) measures the cosine distance between o and b. Then, the target centroids based on
the new pseudo labels are computed:

wzzmm@H@%) )
g ZwteXt (yt = k) ’
O = argmkin Df(gt(act),cl(cl)). (44)

4z denotes the self-supervised pseudo-labels, since they are generated by the centroids obtained in
an unsupervised manner. In practice, the centroids and labels are updated for multiple rounds.

NRC. The NRC adaptation objective leverages reciprocal neighborhood clustering to guide learn-
ing through a combination of losses:

Lnre = Laiv + Ly + L + Lselr. (45)
The approach maintains two memory banks: one for feature representations (F = {z1, z2,...,2n})
and another for prediction scores (S = {p1, pa, - ..,DPn}), Where z; and p; denote the feature and

the probability score of the i-th sample, respectively. These banks are updated per mini-batch by
replacing outdated entries with newly computed values, ensuring efficient and consistent updates.
Nearest neighbors are identified using cosine similarity, and their predictions, weighted by affinity
values, provide a supervision signal:

:_*Z Z Az kSkpzv (46)

i keNK

where A; j, reflects the affinity between a sample z; and its k-th neighbor, Sy, is the stored prediction,
and N denotes the K-nearest neighbors of z;. Neighbors are further classified into reciprocal
(RNN) and non-reciprocal (nRNN) based on mutual membership in each other’s nearest-neighbor
sets. Reciprocal neighbors, being more reliable, are assigned higher affinity values:

1, ifjeNEnieNM
A =17 i i 47
" { 1, otherwise. “7)

This selective weighting ensures that supervision focuses on semantically similar neighbors. To
enhance learning, a self-regularization loss aligns a sample’s current prediction with its stored mem-

ory:
1

L =——§A§i. 48

el w2 i D (48)

Additionally, expanded neighbors, defined as the M -nearest neighbors of K -nearest neighbors, pro-
vide supplementary supervision with reduced affinities to account for potential noise:

=13 Y Y s @
by keNK meE¥,
Finally, the diversity loss Lg;y prevents degenerate solutions by encouraging predictions to span di-

verse clusters. Together, these components enable robust adaptation by combining reliable neighbor
supervision, self-regularization, and expanded relationships.
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Figure 9: A visual representation of the experimental setup used for evaluating the Source-Free
Domain Adaptation (SFDA) frameworks.

AAD. The AAD objective is pretty straingforward as follows

Laap = E[Li(Ci, By)], with Li(Ci, Bi) = = > ppj+ X Y plpm (5)
JeC; meB;

Note the gradient will come from both p; and p,,,. For this objective, there existstwo sets for each
feature z;: close neighbor set C; containing K -nearest neighbors of z; (with distances as cosine sim-
ilarity), and background set B;, which contains the features that are not in C; (features potentially
from different classes). To retrieve nearest neighbors for training, two memory banks are main-
tained to store all rarget features along with their predictions similar to NRC (Yang et al., 2021a;
2023), which is efficient in both memory and computation, since only the features along with their
predictions computed in each mini-batch are used to update the memory bank.

MAPU. Inthe MAPU framework, the SHOT objective serves as the primary adaptation objective.
To further enhance the adaptation process, an auxiliary objective based on masked reconstruction is
used, defined as follows:

Lyaru(gt) = Lsuor(9¢) + Lrecon(9t), (50

where the reconstruction loss, Liecon, 1S given by:

ht(fl?t) - ]s(ht(:it))”g, with ff?t = MASK(II}'t) (51)

Erecon (gt) = Emt €Xs

Here, MASK(-) represents a masking function applied to the input x;, and j is the imputer module.
Importantly, during the adaptation process, the imputer module j; remains frozen. This auxiliary
reconstruction objective guides the target encoder h; to preserve meaningful feature representa-
tions while adapting to the target domain, ensuring alignment with the source representations recon-
structed by js.
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Figure 10: Same experimental analysis as done in Figure 6 with an additional many-to-one SFDA
adaptation experiment on the SSC (SSC*) and the HHAR (HHAR*), marked with an asterisk (*).

A.9 TRAINING DETAILS, EXPERIMENTAL SETUP, AND EXTENDED ANALYSIS

For all datasets, we utilize a simple 3-layer 1D-CNN backbone following (Ragab et al., 2023b),
which has shown superior performance compared to more complex architectures (Donghao & Xue,
2024; Cheng et al., 2024). Figure 8 illustrates both the baseline (vanilla) architecture and the pro-
posed Tucker factorized architecture obtained after reparametrized the weights. The filter size (K)
for the input layers varies across datasets to account for differences in sequence lengths. Specifically,
we set the filter sizes to 25 for SSC, 32 for MFD, 5 for HHAR, 5 for WISDM, and 5 for UCIHAR,
following (Ragab et al., 2023a).

Source Pretraining.  Following Liang et al. (2020; 2021), we pre-train a deep neural network
source model f; : X5 — Cs, where fs = g5 o hg, with hy as the backbone and g, as the classifier.
The model is trained by minimizing the standard cross-entropy loss:

K

src(fs) = (zs,ys)eX xCyq qu logék(fg(xS)) (52)

k=1

where 0y (a) = % represents the k-th element of the softmax output, and ¢ is the one-hot

encoding of the label y,. To enhance the model’s discriminability, we incorporate label smoothing
as described in Miiller et al. (2019). The loss function with label smoothing is:

Elssrc(fé’) = Th(zs,ys)EXXCy Zq log 6, fs(xS)) (53)

where ¢}* = (1 — a)gi + o/ K represents the smoothed label, with the smoothing parameter o set
to 0.1.

Additionally, MAPU (Ragab et al., 2023b) introduces an auxiliary objective optimized alongside the
cross-entropy loss, namely the imputation task loss. This auxiliary task is performed by an imputer
network j,, which takes the output features of the masked input from the backbone and maps them
to the output features of the non-masked input. The imputer network minimizes the following loss:

Lrecon(Js) = E(xsvys)EXsXCg |hs(zs) — Js(hS(iS))”ga where 2, = MASK(zs). (54)

The backbone and classifier weights are optimized using the Adam optimizer (Kingma, 2014) with
a learning rate of le-3. We follow Ragab et al. (2023b) for setting all other hyperparameters.
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Figure 11: Evolution of source empirical risk after backbone decomposition, showing the network
trained on the source domain as it transitions from the freshly reparameterized state (epoch 0) to
progressively recover its original source empirical risk.

Target Adaptation. For target adaptation, we apply the objective functions and training strategies
specific to each SFDA method (detailed in Appendix A.7 and A.8). The backbone weights are
optimized to adapt to the target distribution, with Adam (Kingma, 2014) used as the optimizer to
learn the target-adapted weights. We experiment with a range of learning rates: {5e-4, le-4, 5e-5, le-
5, 5e-6, le-6, 5e-7, le-7} for each method (including the baseline) and report the best performance
achieved.

One-to-One Analysis. In a typical SFDA evaluation setting, a source model is pre-trained using
labeled data from one domain (the source domain) and subsequently adapted to another domain
(the target domain), where it is evaluated using unlabeled target data. This evaluation strategy,
known as One-to-one evaluation, involves a single source domain for pretraining and a single target
domain for adaptation. In this paper, we use multiple source-target pairs derived from the datasets
introduced in (Ragab et al., 2023a;b). Each source-target pair is evaluated separately, and the average
performance across all pairs is reported to assess the effectiveness of the employed SFDA methods.

Many-to-one Analysis. To provide a more comprehensive and realistic evaluation, we also con-
duct an experiment under the many-to-one setting. In this setting, data from all source domains in
the source-target pairs are merged to form a single, larger source domain for pretraining. The pre-
trained model is then adapted to target domains that were not part of the combined source domain.
This many-to-one approach allows for much robust evaluation. Figure 9 visually describes the over-
all evaluation setup. In Figure 10, we extend our analysis from Figure 6 to include results for the
Many-to-one setup of the SSC (Goldberger et al., 2000) and HHAR (Stisen et al., 2015) datasets,
results for the Many-to-one setting are marked with an asterisk (¥).

Comparison with Parameter-Efficient Tuning Methods (Extended Analysis). In Table 4, we
extend the results from Table 1 by including the outcomes for the WISDM and UCIHAR datasets.
Consistent improvements are observed across various sample ratios, along with a significant reduc-
tion in both inference overhead and the number of parameters fine-tuned during adaptation. Ad-
ditionally, we provide the F1 scores for each source-target pair across all the discussed datasets in
Tables 5-9, for a direct comparison with the number reported by Ragab et al. (2023b).
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A.10 COMBINING WITH PARAMETER-EFFICIENT METHODS (EXTENDED ANALYSIS)

Our extended analysis investigates a modified LoRA-style PEFT method, where we freeze the ran-
domly initialized factor and fine-tune only the zero initialized factor; freezing the zero-initialized
factor is infeasible as it results in learning nothing due to its multiplicative zero effect. To evaluate
its performance against the standard LoRA adaptation and our Source-Free Target (SFT) strategy at
different RF' values. However, we observe notable underperformance compared to standard LoRA
adaptation and our proposed method, as shown in Figures 13, 14, and 15. The frozen factor, which
is randomly initialized, imposes arbitrary constraints on the optimization of the fine-tuned factor,
severely restricting its ability to explore the target domain effectively. This leads to a suboptimal
discovery of the ideal subspace for adaptation and results in significant underfitting.

A.11 COMBINING SFT WITH LORA-STYLE PEFT METHODS.

To evaluate the hybrid integration of SFT with LoRA-style PEFT methods, we conducted an in-depth
analysis, applying a range of SFDA approaches—namely SHOT, NRC, AAD, and MAPU—across
the SSC, HHAR, and MFD datasets in the One-to-one and Many-to-one settings (cf. Appendix A.9),
as depicted in Figures 16-20. This evaluation explores the efficacy of combining SFT with LoRA-
like frameworks under different domain adaptation scenarios, offering insights into the trade-offs
between performance and efficiency across a diverse set of tasks. Additionally, Table 10 presents
a detailed comparison of parameter efficiency and inference overhead for all hybrid combinations
tested.

Our results indicate that the parameter efficiency of SFT can be further improved by incorporat-
ing LoRA-style PEFTs during the fine-tuning stage. However, we observed a slight degradation
in predictive performance compared to the vanilla SFT. This decline can likely be attributed to
the compounded effect of low-rank approximations: the initial rank reduction from source model
decomposition, followed by an additional low-rank fine-tuning for target-adaptation, excessively
constrains the model’s learning capacity. Nevertheless, combining SFT with LoRA-style adapta-
tion still outperforms using LoRA alone in terms of predictive performance, while also achieving
superior parameter efficiency, demonstrating the advantage of source model decomposition.

A.12 EXTENDED RELATED WORKS, OBSERVATIONS AND MOTIVATION

Unsupervised Domain Adaptation. Unsupervised Domain Adaptation (UDA) for time-series
data addresses the fundamental challenge posed by distributional discrepancies between source and
target domains, which can lead to significant performance degradation when models are deployed
in new environments. Discrepancy-based methods (Cai et al., 2021; Liu & Xue, 2021; He et al.,
2023) aim to align feature representations by minimizing statistical divergences—such as Maxi-
mum Mean Discrepancy (MMD) or Kullback-Leibler divergence—between the source and target
feature distributions. Adversarial approaches (Wilson et al., 2020; 2023; Ragab et al., 2022; Jin
et al., 2022; Ozyurt et al., 2023) employ adversarial training frameworks where a discriminator is
trained to distinguish between source and target features, and the feature extractor is trained to pro-
duce representations that the discriminator cannot differentiate, thereby promoting domain-invariant
features. The comprehensive survey by Ragab et al. (2023a) provides an extensive overview of these
domain adaptation techniques specific to time-series data. However, conventional domain adapta-
tion methods generally assume access to both source and target domain data during adaptation—an
assumption that is often impractical in real-world scenarios. Source data may be inaccessible due
to privacy concerns, confidentiality agreements, or intellectual property restrictions (Kundu et al.,
2020; 2021). Moreover, transmitting and storing large-scale source datasets on resource-constrained
devices, such as IoT devices or mobile platforms, may be infeasible due to limited computational
resources and storage capacity (Liu et al., 2023).

Source-Free Domain Adaptation. To address the limitations associated with source data acces-
sibility, Source-Free Domain Adaptation (SFDA) has emerged as a compelling alternative. SFDA
operates under the assumption that only a pre-trained source model is available for adaptation to the
target domain, thereby eliminating the need for access to source data (Liang et al., 2020; 2021; Li
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et al., 2020; Yang et al., 2021a; 2022; 2023; Kim et al., 2021; Xia et al., 2021; Ding et al., 2022;
Litrico et al., 2023; Tang et al., 2024b;a). This paradigm has garnered significant attention in com-
puter vision tasks, including image classification (Kundu et al., 2020; Liang et al., 2020), semantic
segmentation (Liu et al., 2021; Bateson et al., 2022), and object detection (Saltori et al., 2020; Xiong
et al., 2022). In SFDA, prominent strategies involve leveraging unsupervised clustering techniques
to refine feature representations. These methods promote the discriminability and diversity of the
feature space through various objectives, such as information maximization (Liang et al., 2020),
which encourages the model to produce confident and diverse predictions; neighborhood clustering
(Yang et al., 202 1a), which clusters target samples based on feature similarity; and contrastive learn-
ing objectives (Yang et al., 2022), which enhance representation learning by contrasting positive
and negative sample pairs. Recent advancements incorporate auxiliary self-supervised tasks, such
as masking and imputation, to improve model adaptation, as demonstrated by Ragab et al. (2023b)
and Gong et al. (2024). These approaches build on earlier works (Liang et al., 2021; Kundu et al.,
2022a) that integrate auxiliary objectives to capture intrinsic data structures and enhance represen-
tation learning. Furthermore, the utilization of pre-trained foundation models (Radford et al., 2021;
Jia et al., 2021) has been explored to guide adaptation by leveraging the extensive knowledge em-
bedded in models trained on large-scale datasets (Tang et al., 2024b). However, the applicability
of such models to specialized domains like healthcare and agriculture remains limited due to do-
main mismatch. Foundation models may fail to capture the specific characteristics inherent in niche
datasets, making the adaptation process inefficient, particularly when a substantial amount of infer-
ence is required through the large foundation model to represent target samples. While foundational
models have recently been developed for time-series data (Gao et al., 2024; Ye et al., 2024), their
applicability to SFDA is yet to be verified. Notably, the exploration of SFDA in time-series con-
texts, especially concerning parameter efficiency and sample efficiency, remains largely unexplored
(Ragab et al., 2023a; Liu et al., 2024; Gong et al., 2024; 2025; Furqon et al., 2025). In this work, we
aim to address these limitations by proposing a strategy to conduct SFDA efficiently in the context
of time-series data utilizing the established framework by Ragab et al. (2023b). We demonstrate that
our approach achieves both parameter efficiency and sample efficiency, providing a unified solution
for these challenges.

Parameter Redundancy and Low-Rank Subspaces. Neural network pruning has demonstrated
that substantial reductions in parameters, often exceeding 90%, can be achieved with minimal ac-
curacy loss, revealing significant redundancy in trained deep networks (LeCun et al., 1989; Hassibi
& Stork, 1992; Li et al., 2017; Frankle & Carbin, 2018; Sharma et al., 2024). Structured pruning
methods, such as those proposed by Molchanov et al. (2017) and Hoefler et al. (2021), have opti-
mized these reductions to maintain or even improve inference speeds. Low-rank models have played
a crucial role in pruning, with techniques such as Singular Value Decomposition (SVD) (Eckart &
Young, 1936) applied to fully connected layers (Denil et al., 2013) and tensor-train decomposition
used to compress neural networks (Novikov et al., 2015). Methods developed by Jaderberg et al.
(2014), Denton et al. (2014), Tai et al. (2016), and Lebedev et al. (2015) accelerate Convolutional
Neural Networks (CNNs) through low-rank regularization. Decomposition models such as CAN-
DECOMP/PARAFAC (CP) (Carroll & Chang, 1970) and Tucker decomposition (Tucker, 1966) have
effectively reduced the computational complexity of CNNs (Lebedev et al., 2015; Kim et al., 2016).
Recent works have extended these techniques to recurrent and transformer layers (Ye et al., 2018; Ma
et al., 2019), broadening their applicability. Meanwhile, Chen et al. (2024b) propose filter subspace
decomposition for CNN weights along the channel and spatial dimensions. This filter subspace de-
composition has shown effectiveness in continual learning (Miao et al., 2022; Chen et al., 2024a),
video representation learning (Miao et al., 2021), graph learning (Cheng et al., 2021), and gener-
ative tasks (Wang et al., 2021). Moreover, recent advances in structured parameterization, such as
Monarch (Dao et al., 2022) and block tensor train (BTT) (Qiu et al., 2024), have further explored
parameter-efficient representations for dense layers. Monarch uses structured matrices to achieve
hardware efficiency and expressiveness in NLP transformer layers, while BTT leverages block ten-
sor train decomposition for computational efficiency in similar settings. However, these methods
primarily target dense layers and remain matrix-based, lacking native support for higher-order ten-
sors, such as convolution filters. In contrast, our work focuses on source-free domain adaptation
(SFDA). Tucker decomposition, central to our approach, natively accommodates higher-order ten-
sors, such as those in convolutional layers, by decoupling the core tensor and factor matrices. This
decoupling enables fine-grained control over adaptation by selectively tuning the core tensor while
freezing the mode factors. For example, as demonstrated in Figure 4, adapting only the core tensor
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allows the model to effectively adjust to the target domain (negating source influences) while main-
taining parameter efficiency. This fine-tuned control over adaptation contrasts with the uniform rank
structures imposed by CP decomposition and the block-wise parameterization of BTT, where it is
not entirely clear what should be fine-tuned at the time of target adaptation.

Compared to Monarch and BTT, our approach offers several unique advantages:

* Parameter Efficiency: By adapting only the tensor core while freezing the mode factors,
our method further minimizes the tunable parameters, achieving computational efficiency
without sacrificing the quality of adaptation. This design is particularly beneficial in low-
resource settings (Ma et al., 2024) often encountered in time-series.

» Sample Efficiency: Beyond computational efficiency, our method excels in sample effi-
ciency, a critical metric in data-scarce scenarios that is central to real-world SFDA applica-
tions. This property of Monarch and BTT explicitly needs further investigation.

* Flexibility Across Modes: Tucker decomposition allows independent rank adjustments
for each mode (e.g., time steps vs. channels), enabling adaptive modeling across diverse
dimensions.

* Interpretability: The factors resulting from Tucker decomposition can provide insights
into domain-specific characteristics, such as temporal correlations or channel-specific im-
portance. This interpretability could be advantageous for analyzing the adaptation dynam-
ics in SFDA (Calvi et al., 2019; Halatsis et al., 2024).

Our Motivation and Link to Time-Series. In this work, we aim to address the simultaneous
challenges of parameter efficiency and sample efficiency in Source-Free Domain Adaptation (SFDA)
for time-series data, leveraging inherent properties of this data type to design a generalizable yet
powerful approach.

A key insight that guided our approach is the observation of significant parameter redundancy along
the channel dimension of source models trained on time-series data. Figure 2A demonstrates this
redundancy, highlighting the inter-channel dependency inherent in multivariate time-series features
as they propagate through deep networks. Prior work (Donghao & Xue, 2024; Lai et al., 2017) has
shown that modeling dependencies among variables through convolutions along the variable dimen-
sion effectively captures these cross-variable relationships. Inspired by this, our method decomposes
the source model along the channel dimension, as described in Equation 3, enabling us to focus on
the most significant channels or variables while maintaining model performance.

By leveraging the inter-variable dependencies inherent in time-series data, our decomposition ap-
proach achieves significant parameter efficiency. Instead of operating on the full channel space, we
focus on the principal channels, which correspond to the most critical variables in the parameter
space. This focus allows for a compact representation of the model, reducing the number of param-
eters without sacrificing performance as we observe empirically. The empirical results in Section 4
highlight the effectiveness of this approach across a variety of settings and datasets, demonstrating
its versatility.

To ensure the generalizability of our method, we refrained from introducing specific inductive biases,
allowing our approach to be applicable across a wide range of SFDA methods. We validated our
method with both prominent generalized SFDA techniques (e.g., SHOT, NRC, AAD) and state-
of-the-art time-series-specific SFDA method (MAPU) introduced by (Ragab et al., 2023b). Our
experiments encompass the five datasets in the AdaTime benchmark (Ragab et al., 2023a)—where
prior works (Ragab et al., 2023b) typically focus on only three—along with ten source-target pairs-
where prior works experiment with five source-target pairs—including many-to-one scenarios where
a source model trained on multiple domains is adapted to new targets.

A.13 LIMITATIONS

The proposed method has a limitation in that it is not rank-adaptive, meaning it does not adjust the
rank based on the intrinsic low-rank structure of the data or model layers. Each dataset and mode
(i.e., training vs. inference) has its own optimal low rank, and this ideal rank can also vary across
different layers of the model (Sharma et al., 2024). When the rank is not appropriately chosen,
the model risks either under-fitting—if the rank is too low and unable to capture the necessary
complexity—or over-fitting—if the rank is too high and introduces unnecessary complexity, leading
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to poor generalization. Since the current method uses a fixed rank for the entire source model, it may
result in suboptimal performance, with inefficiencies in both parameter usage and generalization.
Addressing this limitation by incorporating rank-adaptiveness could allow the model to dynamically
adjust its rank based on the properties of the data and model layers, thereby reducing the risk of
under-fitting and over-fitting and improving overall performance.

Moreover, another limitation of this work is the lack of analysis on the interpretability of the factor
matrices obtained during decomposition. These factors are presumed to capture representations that
generalize across different domains (i.e., source vs. target). However, no effort has been made to
explicitly analyze or interpret what these factors represent, leaving open the question of whether or
how they effectively capture cross-dataset generalization. This important aspect of understanding
the model’s behavior is left for future work and could provide valuable insights into how the method
works across various domains.

A.14 FUTURE WORK

While our method leverages significant parameter redundancy along the channel (or variable) di-
mension in models trained on time-series data (cf. Figure 2), this redundancy highlights substantial
inter-channel dependencies as time-series data propagate through deep networks. To this end, we
propose our method that involves decomposing the backbone. Importantly, we acknowledge that
the core principles of our approach are not inherently limited to this domain, and we plan to explore
whether such properties are also exhibited in other modalities.

In future work, we aim to extend our method to other areas, such as computer vision, adapting it to
handle the distinct characteristics and dependencies of visual data. This exploration will assess the
universality of our method, enhance its broader applicability, and contribute to general adaptation
strategies across various domains beyond time-series data.

Furthermore, a promising direction involves integrating our method with time-series foundation
models (Gao et al., 2024; Ye et al., 2024), which have shown significant potential in capturing
generalized representations across diverse domains. By combining their ability to leverage broad
pretraining with our fine-tuning efficiency approach, we aim to explore how such synergies can
address domain-specific adaptation challenges while maintaining computational feasibility. Inves-
tigating the application of time-series foundation models in source-free domain adaptation would
also provide valuable insights into the role of generalized features in facilitating efficient adaptation
across diverse time-series scenarios.
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Dataset | | Method Bascline SFT (RF2) SFT (RF4) SFT (RF8) LoRA2 LoRA4 LoRA-8 LoRA-16 LoKrA
SSCUSSCr MACs (M) | 12.92 5.54 1.99 0.80 292 1292 1292 1292 1292
#Params. (K) | 8317 2088 53 138 081 194 519 1563 184
MACs (M) | 9.04 3.79 134 0.53 904 904 904 904 9.04
HHARMHAR® | b bme (K) | 19821 49.63 12.53 319 111 2.4 5.46 1362 333
MED MACs (M) | 5818 24.66 8.80 352 5818 5818 5818 5818  58.18
#Params. (K) | 199.3 5018 12.8 333 122 28 718 2050 346

Figure 12: Comparison of LoORA (Hu et al., 2021) and LoKrA (Edalati et al., 2022; Yeh et al., 2024)
(in Purple) against baseline methods (SHOT, NRC, AAD, MAPU) and our proposed approach (SFT)
on the SSC, HHAR and MFD datasets in the One-to-one setting and in the Manu-to-one setting
for SSC (SSC*) and HHAR (HHAR¥), evaluated across varying target sample ratios used during
adaptation. The table at the bottom shows the target model’s inference overhead after adaptation in
terms of MACs and the number of parameters finetuned at the time of adaptation. Extension of the
analysis presented in Figure 7.
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Table 4: Performance and efficiency comparison on SSC, MFD, HHAR, WISDM, and UCIHAR
datasets across SFDA methods, reported as average F1 score (%) at target sample ratios (0.5%,
5%, 100%), inference MACs (M), and fine-tuned parameters (K). Highlighted rows show results
for SFT, where only the core tensor is fine-tuned at different RF' values. Green numbers represent
average percentage improvement, while Red numbers indicate reduction in MACs and fine-tuned
parameters.

F1 Score (%) T
Methods ‘ RF ‘ 0.5% 50 100% Average MACs (M) | # Params. (K) |
SSC

SHOT (Liang et al., 2020) - | 6232+1.57 63.95+1.51 67.95+1.04 64.74 12.92 | 83.17

8 62.53+0.46 66.55+0.46 67.50+1.33  65.53 (1.22%) 0.80 (93.81%) 1.38 (98.34%)
SHOT + SFT 4 62.71+0.57 67.16+1.06 68.56+0.44 66.14 (2.16%) 1.99 (84.60%) 5.32(93.60%)

2 63.05+0.32 6544+083 67482089 65.32(0.90%) . 20.88 (74.89%)
NRC (Yang et al., 2021a) - 5992+ 119 63.56+1.35 65.23+0.59 62.90 12.92 | 83.17

8 60.65+1.37 63.60+143 65 1.66  63.10 (0.32%) 0.80 (93.81%) 1.38 (98.34%)
NRC + SFT 4 61.95+0.62 65.11+1.34 67.19+0.14 64.75 (2.94%) 1.99 (84.60%) 5.32(93.60%)

2 60.60 +£0.58 65.06+0.24 66.83+0.51 64.16 (2.00%) 5.54(57.12%)  20.88 (74.89%)
AAD (Yang et al., 2022) - 15939£1.80 6321+153 63.71+2.06 62.10 12.92 | 83.17

8 60.62+1.40 65.38+093 65.80+1.17 63.93(2.95%) 0.80 (93.81%) 1.38 (98.34%)
AAD + SFT 4 61.92+0.68 66.59+0.95 67.14+0.57 65.22(5.02%) 1.99 (84.60%) 5.32(93.60%)

2 60.59+0.59 63.96+2.04 6439145 6298 (1.42%) 5.54(57.12%)  20.88 (74.89%)
MAPU (Ragab et al., 2023b) - ] 6035£2.15 6248+157 66.73+0.85 63.19 12.92 | 83.17

8 63.52+1.24 64.77+022 66.09+0.19 64.79 (2.53%) 0.80 (93.81%) 1.38 (98.34%)
MAPU + SFT 4 6221 +0.88 6520+1.25 67.40+0.59 64.94(2.77%) 1.99 (84.60%) 5.32 (93.60%)

2 6225+1.74 66.19+1.02 67.85+0.62 6543 (3.54%) 5.54(57.12%)  20.88 (74.89%)

MFD

SHOT (Liang et al., 2020) - 190.74£1.27 91.53+144 9193137 91.40 58.18 |

8 92.14+177 9336053 9313054 92.88(1.62%) | 3.52(93.95%)
SHOT + SFT 4 9298 +1.04 9336+0.75 93.21+0.64 93.18 (1.95%) 8.80 (84.87%)

2 93.01+£0.79 93.40+0.41 9392+0.33 93.44(2.23%) | 24.66 (57.61%)
NRC (Yang et al., 2021a) - [ 89.03£3.84 91.74+131 9220+1.33 90.99 58.18 |

8 92.14+1.77 9336+0.51 93.14+0.7 92.88 (2.08%) 3.52 (93.95%)
NRC + SFT 4 9291+1.05 9325+0.69 92.97+045 93.04 (2.25%) 8.80 (84.87%)

2 9298 +0.78 93.22+0.58 93.86+0.36 93.35(2.59%) | 24.66 (57.61%)
AAD (Yang et al., 2022) - ‘ 89.03+£3.82 91.06+2.21 90.65+2.48 90.25 58.18 ‘ 199.3

8 92.15+1.78 93.36+0.58 93.28+0.55 92.93 (2.97%) 3.52 (93.95%) 3.33 (98.33%)
AAD + SFT 4 92.88+1.12 93.05+0.61 93.67+0.41 93.20(3.27%) 8.80 (84.87%)  12.80 (93.58%)

2 9297+0.79 93.45+0.53 94.41%0.19 93.61 (3.72%) | 24.66 (57.61%) 50.18 (74.82%)
MAPU (Ragab et al., 2023b) - ‘ 85.32+£1.25 8649+1.59 91.71+047 87.84 58.18 ‘ 199.3

8 91.07+1.76 91.58%1.14 92.11+1.56 91.59 (4.27%) 3.52 (93.95%) 3.33(98.33%)
MAPU + SFT 4 91.01 £0.97 92.10+1.02 91.18+1.64 91.43 (4.09%) 8.80 (84.87%)  12.80(93.58%)

2 91.87+285 91.94+144 91.84+185 91.88(4.60%) | 24.66(57.61%) 50.18 (74.82%)

HHAR

SHOT (Liang et al., 2020) - ] 7208£1.20 79.80+1.70 80.12+0.29 7733 9.04 | 198.21

8 73.65+2.39 79.07+1.88 81.73+1.47 78.15(1.06%) 0.53 (94.14%) 3.19 (98.39%)
SHOT + SFT 4 7547+134 79.98+201 81.05+045 78.83(1.94%) | 1.34(85.18%) 12.53(93.68%)

2 75.14+1.85 77.70+1.37 8292+0.27 78.59 (1.63%) 3.79 (58.08%)  49.63 (74.96%)
NRC (Yang et al., 2021a) - ‘ 7238 +0.87 7552+1.15 77.80+0.16 75.23 9.04 ‘ 198.21

8 7141 £0.62 76.15+0.99 80.09+0.56 75.88 (0.86%) 0.53 (94.14%) 3.19 (98.39%)
NRC + SFT 4 72.77+0.43  76.60+197 80.27+0.55 76.55(1.75%) 1.34 (85.18%)  12.53 (93.68%)

2 72.34+0.14 7553131 79.45+1.51 7577 (0.72%) 3.79 (58.08%)  49.63 (74.96%)
AAD (Yang et al., 2022) - | 20184270 76.55+2.17 8225+1.14 59.66 9.04 | 198.21

8 57.93+0.90 78.57+0.74 82.92+1.66 73.14(22.59%) | 0.53 (94.14%) 3.19 (98.39%)
AAD + SFT 4 5443+1.04 7857+0.74 83.15+0.88 72.05(20.77%) | 1.34(85.18%)  12.53 (93.68%)

2 49.46+222 79.31+£0.72 8325+0.34 70.67 (18.45%) | 3.79 (58.08%)  49.63 (74.96%)
MAPU (Ragab et al., 2023b) - | 7118£278 78.67+1.20 80.32+1.16 76.72 9.04 | 198.21

8 73.73+235 78.54+237 80.16+238 77.48 (0.99%) 0.53 (94.14%) 3.19 (98.39%)
MAPU + SFT 4 75.12+0.88 80.04 £0.42 80.24+122 7847 (2.28%) 1.34 (85.18%)  12.53 (93.68%

2 76.06 124 7895+2.04 80.69+245 78.57(2.41%) 3.79 (58.08%)  49.63 (74.96%)

WISDM

SHOT (Liang et al., 2020) - | 57.90£2.07 59.52+275 60.49+1.53 59.3 9.04 | 198.21

8 60.57+0.79 6135191 62.08+2.00 61.33(3.42%) 0.53 (94.14%) 3.19 (98.39%)
SHOT + SFT 4 58.06+3.58 60.79+1.86 61.17+0.32 60.01 (1.20%) 1.34 (85.18%)  12.53 (93.68%)

2 60.01 £0.72 63.03+0.61 62.04+2.75 61.69 (4.03%) 3.79 (58.08%)  49.63 (74.96%)
NRC (Yang et al., 2021a) - | 5358124 5449+085 5864139 55.57 9.04 | 198.21

8 57.08+0.94 57.61+194 60.57+1.63 58.42(5.13%) 0.53 (94.14%) 3.19 (98.39%)
NRC + SFT 4 55.89+298 56.82+1.57 60.57+1.63 57.76 (3.94%) 1.34 (85.18%)  12.53 (93.68%)

2 55.68 £228 55.74+095 59.21+1.18 56.88(2.36%) 3.79 (58.08%)  49.63 (74.96%)
AAD (Yang et al., 2022) - | 5416085 5279+1.17 5633140 54.43 9.04 | 198.21

8  56.65+0.50 57.59+1.67 57.69+2.06 57.31(5.29%) | 0.53 (94.14%)  3.19 (98.39%)
AAD + SFT 4 5590+2.67 56.71 £1.47 58574239 57.06 (4.83%) 1.34 (85.18%)  12.53 (93.68%)

2 55.83+222 5486+125 58.07+275 56.25(3.34%) 3.79 (58.08%)  49.63 (74.96%)
MAPU (Ragab et al., 2023b) - 15633£4.02 5842+339 60.92+1.70 58.56 9.04 | 198.21

8 59.12+3.73 61.50+£223 62.55+2.17 61.06 (4.27%) 0.53 (94. 3.19 (98.39%)
MAPU + SFT 4 62.94+4.08 61.00+1.77 66.01 +3.60 63.32(8.13%) 1.34 (85.18%)  12.53 (93.68%)

2 5936 +5.74 63.25+1.01 6245+£2.66 61.69 (5.34%) 3.79 (58.08%)  49.63 (74.96%)

UCIHAR

SHOT (Liang et al., 2020) - | 89.06+1.17 88.89+1.26 91.49 +0.60 89.81 9.28 | 200.13

8  89.57+044 89.05+0.69 92.60+1.99 90.41(0.67%) | 0.57(93.86%)  3.43 (98.29%)
SHOT + SFT 4 90.02+0.86 89.41 £0.56 92.86+1.02 90.76 (1.06%) 1.41 (84.81%)  13.01 (93.50%)

2 90.61+0.76 9028028 91.65+0.73 90.85(1.16%) | 3.92(57.76%)  50.59 (74.72%)
NRC (Yang et al., 2021a) - | 48.13£243 4778+1.83 91.24+1.08 62.38 9.28 | 200.13

8 86.23+£0.60 86.99+148 91.86+0.85 88.36(41.65%) | 0.57(93.86%) 3.43 (98.29%)
NRC + SFT 4 8521+1.35 8634+1.84 9405+1.01 88.53(41.92%) | 1.41(84.81%) 13.01(93.50%)

2 84.29+121 86.38+£202 91.51+1.65 87.39(40.09%) | 3.92(57.76%)  50.59 (74.72%)
AAD (Yang et al., 2022) - | 57274675 5621+425 91.55+0.42 68.34 9.28 | 200.13

8 86.62+1.20 87.38+£0.17 91.56+0.66 88.52 (29 0.57 (93.86%) 3.43 (98.29%)
AAD + SFT 4 86.73+1.36 87.42+0.64 9224+0.40 88.80(29.949 1.41 (84.81%)  13.01 (93.50%)

2 85.51+£1.69 8553£262 91.60+0.18 87.55(28.11%) | 3.92(57.76%)  50.59 (74.72%)
MAPU (Ragab et al., 2023b) - ‘ 87.65+3.02 86.47+1.46 90.86+1.62 88.33 9.28 ‘ 200.13

8 89.57£0.17 89.10£098 91.93+0.77 90.20 (2.12%) 0.57 (93.86%) 3.43 (98.29%)
MAPU + SFT 4 89.54+£226 89.39+0.72 92.81+1.73 90.58 (2.55%) 1.41 (84.81%)  13.01 (93.50%)

2 89.34+1.74 90.05+0.74 91.46+0.49 90.28 (2.21%) 3.92 (57.76%)  50.59 (74.72%)
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Table 5: F1 scores for each source-target pair, with domain IDs as
(2023a), on the SSC dataset across different SFDA methods.

established by Ragab et al.

Method |RF| 011 1255 13517 16— 1 18— 12 3519 5515 652 7518 9514 Average (%) 1 | MACs (M) | | #Params. (K) |
SHOT | - | 4683158 69.19£528 64.19%0.18 67.99+336 5925+2.53 7531077 7508%1.00 71.52+147 747+054 7539437 6795104 | 1292 83.17
8 | 46.68+381 68.98+256 6683+396 6688508 6274+0.67 7293171 7158543 67.75+078 T459+1.17 76.03+235 67.50+133 080

SHOT +SFT 4 |5132£333 7048+1.16 64.61+0.67 64.81+670 60.05£3.08 7461%1.14 7429+098 7341088 7521047 7683+0.99 68.56%0.44 1.99
2 | 49.06+545 6821277 6567+186 6653480 5856+ 141 7344:083 7481076 7240:042 74.50+043 71.62£9.77 67.48+0.89 554
NRC | - | 4251£443 6593030 6198040 6221£0.71 60.82+2.61 68.09+058 7149£475 7236151 7281085 7416166 6523059 | 1292
8 | 47.14£176 5697£993 6163125 6428+059 6429£205 69.59%0.95 7281367 6583£2.03 7473174 7325£094 6505 1.66 0.80
NRC+SFT 4 | 5101443 6571£233 62.65+0.86 6222+024 6343£2.19 7141169 75.13£3.54 7125155 7453057 74.50% 113  67.19%0.14 1.99
2 | 50.53+421 6457+ 63.93+0.17 60.87£034 6055%1.62 6877608 7694151 7288+0.70 73.93+0.16 7530153 66.83 +0.51 5.54
AAD | - | 47.83£405 60.68£205 57.71£208 63.64%129 5570+250 71.51+081 61461601 73.53+1.08 7373£337 7135525 63712206 | 1292
8 | 47.94+336 6435£271 5885159 6448+0.65 61.13x1.71 71312095 7307457 69.09 = 1.66 72.40 +0.81 0.80
AAD+SFT 4 |4858+564 69.56+2.74 60.04+342 65 9 5944+278 7291+085 7497348 7217111 73.07 117 1.99
2 | 5266+120 64.00£931 6204291 6299:0.77 6147+198 7209+2.10 4876+ 1524 7348+ 1.76 71.91 £2.60 554 20.88
MAPU | - | 4743:231 6824298 60.04%056 61.04+0.86 57.35:098 73.18+026 7635049 6989193 7644056 7733197 6673085 | 1292 83.17
8 | 4672+1.69 68.86£2.64 63.01£096 61.19£037 5920£302 70.19+233 7539345 6624+1.79 7551+037 74.61£231  66.090.19 0.80 138
MAPU +SFT 4 | 4706032 7034+306 63.33+1.38 6490181 5599+£205 7263137 7831121 68.17=171 7547+101 77.83+281 67.40+0.59 1.99 532
2 | 5099+053 71.86+073 6421054 6499+566 5438+1.80 73.65+1.03 77.55+084 6998+ 1.08 7527+0.61 75.62+123 67.85+0.62 554 20.88

Table 6:

F1 scores for each

source-target pair, with domain IDs as

(2023a), on the MFD dataset across different SFDA methods.

established by Ragab et al.

Method ‘ RF ‘ 0—1 02 0—3 10 1—2 1—=3 20 21 23 31 32 Average (%) T | MACs (M) | | # Params. (K) |
SHOT | - | 9826189 86022772 97775240 8756347 ST88£260 99972005 7239%1701 O881£125 99182099 T00.00%0.00 8656326 | 91.93% 137 5818 1993
8 99.19+035 8742+285 9902049 86.57+377 8848170 9997+005 8221£293 9859%1.10 99.21£073 8857£230 100.00+0.00 8831+3.31 | 93.13+0.54 352 333
SHOT + SFT 4 99.59+0.08  86.31+ 1.81 99.73£0.19  8491£3.69 90.67+052 99.97+0.05 83.63+220 97.15+221 99.05£047 87.60+247 100.00£0.00 8988+ 1.16 | 9321 +0.64 8.80 12.80
2 99.87 £0.12 87.05 +£2.89 99.81 £0.13 8572+0.59 91.06+1.00 99.97+0.05 8749+ 1.10 99.19£0.49 99.54+031 8888+0.69 100.00+£0.00 88.48+0.66 | 93.92+0.33 24.66 50.18
NRC ‘ - ‘ 98.10+£244 8500+10.08 98314192 8853+1.73 8850£331 100.00£0.00 7452+20.08 98.64+1.19 99.02£1.00 88.69+1.68 100.00+0.00 87.08+4.27 92.20 + 1.33 58.18
8 9927042  8748+294  99.16+037 86.58+3.62 88.43%1.62 9.97+0.05  81.96+238 9864106 99.32+069 8844£220 100.00+0.00 8843+339 | 93.14+0.70 352
NRC + SFT 4 9956012  8640+196 99.76+022 84.96+391 90.53+£0.74 99.97+005 8091+574 97.15£2.12 99.02£051 87.62£2.65 100.00+ 8977+ 1.10 | 9297045 .
2 9992008 86.77+£3.66 9987009 8570£0.60 91.03+1.15 99.97+0.05 87.02+089 9916040 99.51£0.28 88.88+0.69 100.00£0.00 88.48+0.66 | 93.86+0.36 24.66
AAD ‘ ‘ 9820+232 8504£10.09 9940049 81.12£898 86.88+231 100.00£0.00 6298+1846 9875126 99.16+1.04 8898+1.78 100.00+0.00 87.33+4.4] 48 58.18
8 9987009 88.60+3.10 9987+0.12 84.73+375 8945+135 10000000 8073337 98.97+0.69 99.62+045 87.99+158 100.00+£0.00 89.55+2.86 | 93.28+0.55 352
AAD + SFT 4 99.97 £ 0.05 90.53 + 1.96 99.95+£0.05 84.00+4.74 1.55  100.00 + 81.07+335 98.62£033 9949038 8824+1.67 100.00£0.00 9092142 | 93.67+041 8.80
2 100.00 £ 0.00 175 10000£0.00 8411267 9206+1.52 100.00£0.00 8862+0.52 9948£0.05 99.84+0.08 8880049 100.00£0.00 89.08+0.58 | 94.41+0.19 24.66
MAPU | | 9476108 8753+105 9409%172 8686+039 87.51£172 99.08+091 78.61£375 99.16£038 9870+ 134 8848099 100.00£0.00 8580+2.82 | 91.71+0.47 58.18
8 9485299  86.16+350 94.84+456 84.31+202 86.63+243 99.81+033 8610325 9932£062 99.24+104 8881£128 100.00£0.00 8522+1.66 | 92.11+1.56 352
MAPU + SFT 4 89.45+5.03 85.45+3.94 92.15+£378 8633+£470 8631+0.67 99.67+0.57 8470+ 140 98.23 02 98.42+£197 8821£324 99.84+028 8538+1.02 | 9118+ 1.64 8.80
9239756 8629£4.12 93.62+538 8561£381 8601108 100.00£0.00 8627%136 99.37+038 99.56£0.12 88.18+1.87 100.00+£0.00 8483£0.15 | 91.84+1.85 24.66

Table 7: F1 scores for each source-target pair, with domain IDs as established by Ragab et al.
(2023a), on the HHAR dataset across different SFDA methods.

Method ‘ RF ‘ 02 06 16 217 3-8 45 50 61 T4 83 Average (%) T | MACs (M) | | # Params. (K) |
SHOT | - | 78 136 6294+041 9271072 64.15+082 81.65+0.18 9741+£0.19 3242+0.02 97.58+0.44 9644+1.74 97.14+0.12 80.12+0.29 9.04 198.21

8 76.05+£993 6631 +£643 9297+035 64.59+049 9250+£9.28 97.36+£0.11 34.85+488 97.90+0.12 97.80+0.67 97.01+£0.21 81.73 + 1.47 0.53 3.19
SHOT + SFT 4 78.07£648 6406329 93.04+£0.09 6475£0.19 9259x941 97.60+0.19 3508+4.62 97.88%0.11 97.68+0.24 89.76+1254 81.05+0.45 1.34 12.53

2 81.15+1.21 62984023 92.80+120 65.11+0.17 9891+0.16 9748+0.10 37.59+4.63 98.10+032 98.04+043 97.00+0.00 82.92+0.27 379 49.63
NRC | - | 73.05+0.68 7240129 9296029 61.61+031 80.63+022 97.04+0.30 3377+£2.08 96.03£028 9471£036 7581£031 77.80 +0.16 9.04 198.21

8 7277+025 68.05+507 9320+0.27 5841+9.00 97.03+178 9741+0.19 4283+0.02 9770025 9781+0.12 7571 +0.38 80.09 +0.56 0.53 3.19
NRC + SFT 4 7437+032 7001 +£377 93384039 63274026 9647+027 97.54+0.11 39.73+£258 97.14+0.09 95.19+0.22 75.57+0.33 80.27 +0.55 1.34 1253

2 7479£0.12  68.67+£4.77 93.52+0.28 5829+925 97.83+137 97.66+£0.22 3450£501 97.30+038 96.54+098 75.35x0.13 79.45+1.51 3.79 49.63
AAD | - | 7782933  6486+0.83 93.16+£046 66.14£0.07 97.55+1.71 9789021 31.83+£259 97.58+094 9845+0.10 97.200.00 8225+ 1.14 9.04 198.21

8 78.16+£225 76.63+16.99 92.84+0.56 64.30+0.17 97.73+£1.66 98.12+£0.50 27.98+5.05 97.74+0.53 98.65+0.13 97.09+0.12 8292+ 1.66 0.53 3.19
AAD + SFT 4 77851603 74101941 9268+059 6566+0.36 9727+021 9828048 3228+067 97.79+0.34 98.52+022 97.07£0.11 83.15+0.88 1.34 12.53

2 8272+432 64.89+407 9281+021 6546+0.70 99.23+020 97.87+0.09 3584+502 98.19+0.09 9851+030 97.00+0.00 8! +0.34 379 49.63
MAPU | - | 7526486 62.89+0.65 9549+1.02 6520+051 99.27+0.32 9731021 31.76£4.63 9565+332 98.10+0.12 82.22+13.01 8032+ 1.16 9.04 198.21

8 6840572 74031884 9375+£031 6478£026 9223x11.57 9748+0.13 2924£470 9765025 97.90+0.69 86.18+1872 80.16%2.38 0.53 3.19
MAPU + SFT 4 7485+647  62.81+£0.53 93284022 64.60+025 9333+1044 9748+0.10 30.50+299 97.65+0.50 98.03+0.12 89.89+1229 8024+ 122 1.34 1253

2 75.62+£7.66  63.15+£0.50 9343+£0.11 64.55+£038 99.21+£022 97.54£0.12 30.75+£278 98.32+037 9824+0.12 86.12+18.65 80.69+£245 3.79 49.63
Table 8: F1 scores for each source-target pair, with domain IDs as established by Ragab et al.

(2023a), on the WISDM dataset across different SFDA methods.

Method | RF 17 =23 20— 30 23532 28 -4 211 3312 3531 526 6—19 718 Average (%) T | MACs (M) | | # Params. (K) |
SHOT | - 58584234  7021+129  72.16+9.68 61.68+4.00 7872175 50.70+2.30 6589051 31.20+0.96 7485+497 40.89+992 60.49 £ 1.53 9.04 198.21
8 | 5453+£1859 7203+040 81.69+195 5397+000 72.69+3.82 59.70+1221 64.56+9.23 37244827 7658+081 47824429  62.08+2.00 0.53 3.19
SHOT +SFT 4 | 5346677 7543158 7605£7.35 6235+4.17 7605+374 5038+595 6642+146 3025£050 7742£227 43924509 61.17+032 134 12,53
2 | 58.18£14.69 70.93+2090 80.10£1.56 6046+839 7542+035 61.82+1181 6626+£229 32.85+1.51 8085+822 3349454 62.04+275 3.79 49.63
NRC | - 4723 £11.21 6466+ 145 81.43+265 60.71+11.67 76.62+4.43  5222+3.66 5828+ 10.37 3444275 7861£457 3222£028 58.64 £1.39 9.04 198.21
8 39.61£1.75 6940+7.84 81394158 60.90+£1330 7501+£0.00 60.79+10.03 67584229 40.11+£7.27 77.85+3.01 33.09+1.06 60.57 £ 1.63 0.53 3.19
NRC + SFT 4 4773+738  7593+137 7658877 6432+675 7671+483  4880+491 67.99+202 30.60+0.80 7627 +0. 4171 +6.55  60.66 +0.92 1.34 12.53
2 39.01£1.09 70.63+£544  81.63£1.34 63.71£10.13 7532£0.00 4926£0.70 67.16%1.17 31.44£142 7603x0.13  37.94 +£4.02 59.21£1.18 379 49.63
AAD | - | 56.63+231 6589300 66.63+1244 58244755 7797418 5183347 4796+142 29224066 67.11£568 41.79%670 5633+ 140 9.04 198.21
8 4782+626  71.76+324  66.46+721 65.12+10.69 75.10+5.69 47.25+4.73  67.99+2.02 29.40+0.26 6180+155 44.21+122 57.69 £2.06 0.53 3.19
AAD + SFT 4 52324772 7497+086  66.65+575 68.28+536 685741305 4725+533 6585+1.36 2931+0.13 6823+630 4429+256 58.57+2.39 1.34 12.53
2 | 5236+9.50 70.70+3.96 72384430 6740231 69.02+1395 4421+0.15 69.00%163 3042+145 61.58+164 43.62+242 5807275 379 49.63
MAPU | - | 6536+933  66.00£0.61 73.10%13.28 66.81+10.92 68.50+6.65 58.73+12.04 3 3148+0.16 7944908 3147+1.14 6092+ 1.70 9.04 198.21
8 | 68.09£1085 70.04+4.02 79.14+607 6025+11.34 7288348  59.47+6.28 3.03£7.22  31.35£0.14 7398+3.69 4731%1328 62, 217 0.53 3.19
MAPU + SFT 4 7347+385  69.68+393 8085+0.72 67.60+19.71 73.96+1.82 61.60+9.32 64.94+0.00 3386+1.86 B80.85+822 5331+472 66.01 £ 3.60 1.34 12.53
2 60.04+4.66  72.04+464 6585+1232 61.97+995 75.13+044 6042+ 1041 33.03+£250 81.90+8.84 50.11+1.06  62.45+2.66 379 49.63

Table 9:

F1 scores for each source-target pair, with domain IDs as
(2023a), on the UCIHAR dataset across different SFDA methods.

established by Ragab et al.

Method | RF 12—16 18 =27 205 24 -8 28 —+27 211 30 — 20 6—23 713 9— 18 Average (%) T | MACs (M) | | # Params. (K) |
SHOT | - 53.11+£4.28 100.00£0.00 90.83+£4.60 100.00£0.00 100.00£0.00 100.00£0.00 84.68+509 97.82+1.89 100.00+£0.00 88.48+522  91.49+0.60 9.28 200.13
8 | 54.63+£17.43 100.00+0.00 9583 +4.53 100.00+0.00 100.00+0.00 100.00+0.00 8491+£287 97.82+189 9894+ 1.06 .92+ 696  92.60 + 1.99 0.57 343
SHOT + SFT 4 | 64211140 100.00£0.00 9248943 100.00£0.00 100.00£0.00 100.00£0.00 8540180 9891189 100.00+0.00 87.55+11.89  92.86+1.02 1.41 13.01
2 70974238 10000+ 0.00 8284+1.63 9889£193 100.00+0.00 99.63+0.64 8358+123 97.82+1.89 100.00£0.00 82.74£620 91.65+£0.73 3.92 50.59
NRC | - 56.47£10.19  100.00+0.00 96.10£0.64 9691 £535 100.00 £ 0.00 100.00 £ 0.00 333 97.82+1.89  100.00+0.00 81.65+5.26 91.24 £ 1.08 9.28 200.13
8 66.04+6.76 10000+ 0.00 87.09+1.05 9889+193 100.00+0.00 100.00 +0.00 96.73+0.00 9672+298  8521+096  91.86+0.85 0.57 343
NRC + SFT 4 67.98+2.76  100.00£0.00 9527+0.09 100.00%0.00 100.00 £0.00 100.00 +0.00 96.73+0.00  97.78+£3.85 93.92+696  94.05+ 1.01 1.41 13.01
2 71224280 100.00+0.00 8588 £0.00 100.00£0.00 100.00 £ 0.00 100.00 £ 0.00 96.73+0.00 97.78+3.85 7893+ 12.81 9151+ 1.65 3.92 50.59
AAD | - 7285+2.04 10000000 8588089 96.66+0.00 100.00+0.00 100.00+0.00 8483£3.14 96.73£0.00 9333£0.00 8523£094 91.55£042 9.28 200.13
8 7430+ 008 100.00+0.00 87.69+0.00 98.89+193 100.00+0.00 100.00+0.00 81.61+£549 96.73+£0.00 97.78+385 78.62+£526  91.56+0.66 0.57 3.43
AAD + SFT 4 7405+ 040  100.00+0.00 86.77+0.94 97.77+£193 100.00+0.00 100.00+0.00 8435+565 96.73+£0.00 100.00+£0.00 82.74+620  92.24+0.40 1.41 13.01
2 7330£2.56 10000000 8278276 97.77£193 100.00+0.00 100.00+0.00 79.19£2.13 9891189 9778385 8632000 91.60£0.18 392 50.59
MAPU | - | 6045+859 100.00+0.00 8294206 100.00+0.00 100.00+0.00 100.00+0.00 85.17+0.44 100.00%0.00 100.00+0.00 80.05+13.71  90.86 % 1.62 9.28 200.13
8 60.50 £9.50  100.00 £ 0.00 86.63£8.60 100.00£0.00 100.00£0.00 100.00 £ 0.00 88.76 £ 1.46 82+ .29 86.25+0.13  91.93£0.77 0.57 3.43
MAPU + SFT 4 68.07+473  99.75+043 8829+6.68 99.63+£0.65 100.00+0.00 9926+0.64 89.21+4.08 9891+189 9743+£359 87.55+11.89 91.93+£0.77 1.41 13.01
2 72294293 100.00£0.00 83.47+3.06 100.00+0.00 100.00£0.00 100.00+0.00 87.68+042 9782+1.89 97.78+385 7558+0.00 91.46+0.49 392 50.59
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Figure 16: Performance comparison of SFT with LoRA-style PEFT methods on the MFD dataset
at different sample ratio of target samples used for finetuning, on SHOT, NRC, AAD, and MAPU.
The results highlight the trade-offs between parameter efficiency and predictive performance across
different adaptation methods.
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Figure 17: Performance comparison of SFT with LoRA-style PEFT methods on the HHAR dataset
at different sample ratio of target samples used for finetuning, on SHOT, NRC, AAD, and MAPU.
The results highlight the trade-offs between parameter efficiency and predictive performance across
different adaptation methods.
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Figure 18: Performance comparison of SFT with LoRA-style PEFT methods on the SSC dataset
at different sample ratio of target samples used for finetuning, on SHOT, NRC, AAD, and MAPU.
The results highlight the trade-offs between parameter efficiency and predictive performance across
different adaptation methods.
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Figure 19: Performance comparison of SFT with LoRA-style PEFT methods on the HHAR dataset,
for the Many-to-one setting (noted with an asterisk (¥)), at different sample ratio of target samples
used for finetuning, on SHOT, NRC, AAD, and MAPU. The results highlight the trade-offs between
parameter efficiency and predictive performance across different adaptation methods.
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Figure 20: Performance comparison of SFT with LoRA-style PEFT methods on the SSC dataset,
for the Many-to-one setting (noted with an asterisk (*)), at different sample ratio of target samples
used for finetuning, on SHOT, NRC, AAD, and MAPU. The results highlight the trade-offs between
parameter efficiency and predictive performance across different adaptation methods.
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Table 10: Comparison of inference overhead (measured in MACs) and the number of parameters
fine-tuned during adaptation (# Params.) for various combinations of SFT and LoRA-style PEFT
methods. The table highlights the trade-offs between parameter efficiency and computational cost
across different hybrid configurations.

Method ‘ MFD ‘ HHAR/HHAR#* ‘ SSC/SSC*
| MACs M) | #Params. (K) | | MACs (M) | #Params. (K) | | MACs (M) | # Params. (K) |

Baseline 58.18 199.3 9.04 198.21 12.92 83.17
SFT (RF8) 3.52 3.33 0.53 3.19 0.80 1.38
SFT (RF8) + LoKrA 3.52 0.41 0.53 0.34 0.80 0.26
SFT (RF8) + LoRA-2 3.52 0.32 0.53 0.22 0.80 0.26
SFT (RF8) + LoRA-4 3.52 1.03 0.53 0.60 0.80 0.82
SFT (RF8) + LoRA-8 3.52 3.59 0.53 1.88 0.80 2.95
SFT (RF8) + LoRA-16 3.52 13.33 0.53 6.45 0.80 11.15
SFT (RF4) 8.80 12.80 1.34 12.53 1.99 5.32
SFT (RF4) + LoKrA 8.80 0.93 1.34 0.86 1.99 0.51
SFT (RF4) + LoRA-2 8.80 0.45 1.34 0.35 1.99 0.33
SFT (RF4) + LoRA-4 8.80 1.28 1.34 0.86 1.99 0.98
SFT (RF4) + LoRA-8 8.80 4.10 1.34 2.39 1.99 3.27
SFT (RF2) + LoRA-16 8.80 14.35 1.34 7.47 1.99 11.79
SFT (RF2) 24.66 50.18 3.79 49.63 5.54 20.88
SFT (RF2) + LoKrA 24.66 1.38 3.79 1.24 5.54 0.92
SFT (RF2) + LoRA-2 24.66 0.71 3.79 0.60 5.54 0.49
SFT (RF2) + LoRA-4 24.66 1.80 3.79 1.37 5.54 1.30
SFT (RF2) + LoRA-8 24.66 5.13 3.79 342 5.54 3.91
SFT (RF2) + LoRA-16 24.66 16.40 3.79 9.52 5.54 13.07
LoKrA 58.18 3.46 9.04 3.33 12.92 3.46
LoRA-2 58.18 1.22 9.04 1.11 12.92 1.22
LoRA-4 58.18 2.82 9.04 2.40 12.92 2.82
LoRA-8 58.18 7.18 9.04 5.46 12.92 7.18
LoRA-16 58.18 20.5 9.04 13.62 12.92 20.50

Table 11: Ablation studies on finetuning different parameter subspaces during target-side adaptation
for SHOT. The asterisk (*) on top of the dataset names denote the Many-to-one setting (cf. Appendix
A.9 for reference).

. y 55C HHAR*
Method RE Parameters Finetuned MACs (M) | # Params. (K) | | FI Score (%) T MACs (M) | # Params. (K) | | FI Score (%) T MACs (M) | # Params. (K) L | FIScore (%) T MACs (M) | # Params. (K) |
No Adaptation 1292 0 0 79.03 %122 9.04 0
SHOT 1292 83.17 80.12029 g 198.21 9.94 0.3 9.04 198.21
SHOT 63264097 1292 045 7243083 9.04 0.64 84854425 9.04 064
V) 67.00+0.06 080 333 8178092 053 718 95,55 +3.57 053 718
) 6750133 080 138 8173+ 1.47 053 319 97.88 £ 0.20 053 319
) + Core Tensor (T) | 66.97 +0.69 0.80 471 815133 0.53 10.37 | 95354388 0.53 1037
| Factor Matrices ( | es17203 199 566 S158+088 [ 135 | 9537488 3 3
4 e Tensor (T) 68.56+0.44 199 32 81.05£0.45 134 1253 9534482 134 1253
SHOT + SFT | Factor v or (T) | 67572074 199 1198 8146 2091 134 2688 | 93682682 134 2688
| actor Ma ) | 66962033 S5t 1331 7419509 55 33 S8 %101 379 %868 | 98302006 3 2868
2 Core Tensor (T) 6748 +0.89 554 2088 73.36£0.66 82922027 379 19.63 9830.£0.06 379 49.63
| Factor Matrices (V(!), V(2)) + Core Tensor (T) | 66.29 % 1.25 554 34.19 73842077 554 34.19 82.63 001 379 7831 | 9830011 379 78.31

Table 12: Ablation studies on finetuning different parameter subspaces during target-side adaptation
for NRC. The asterisk (*) on top of the dataset names denote the Many-to-one setting (cf. Appendix
A.9 for reference).

. . . cune. 55C HHAR HHAR®
Method e Parameters Finctuned Fi Score (%) 1 MACs (M) | # Params. (K) | Fl Score (%) 1 MACs (M) | # Params. (K) | MACs (M) | # Params. (K) |
None 1292 0 67412011 9.04 0 9.04 0
Entire Backbone 1292 83.17 7780 0,16 9.04 19821 9.04 19821
NRC BN 1292 0.45 72512081 9.04 0.64 9.04 064
Factor Ma 080 333 7932098 053 7.18 053 718
8 Cor 65. 6 080 138 80.09+0.56 053 319 053 319
| Factor Matrices (V' )+ Core Tensor (7) | 6512+ 1.44 0.0 471 7941 £ 1.02 053 1037 | 5 053 10.37
| Facty | 66.80+0.60 1.99 6.66 72.10£0.79 1.9 6.66 80.07 £ 1.08 134 14.35 | 46 134 1435
e 4 67.19£0.14 199 532 7199+ 0.88 199 532 8027055 134 1253 39 134 1253
NRC +SFT | Factor Matrices (V )+ Core Tensor (T) | 6649 +0.43 199 11.98 720540388 199 1198 8026071 134 2688 | 94042720 134 2688
| Facto Vi, vz | 66.18£042 554 1331 71 138 554 1331 79.72+0.64 379 28.68 | 98.17+0.07 379 28.68
2 Core Tensor (T) 6683 %051 554 2088 72125226 554 2088 7945 151 379 49,63 98.19.£0.04 379 49.63
| Factor Matrices (V(1), V(%) + Core Tensor (T) | 66.84 +0.04 554 34.19 72.05 £ 0.88 554 34.19 79.64£1.33 379 7831 | 95994353 379 7831

Table 13: Ablation studies on finetuning different parameter subspaces during target-side adaptation
for AAD. The asterisk (*) on top of the dataset names denote the Many-to-one setting (cf. Appendix
A.9 for reference).

. y 55C HHAR*
Method R Parameters Finetuned Score (%) 1 MACs (M) | # Params. (K) | | FI Score (%) T MACs (M) | #Params. (K) | | FI Score (%) 1 MACs (M) | # Params. (K) | | FIScore (%) T MACs (M) | # Params. (K) |
No Adaptation 1292 0 0 79.03 %122 9.04 0
AAD 06 1292 83.17 225 114 198.21 7.45 .0 9.04 198.21
AAD 62834093 1292 045 72.35 £ 090 0.64 84124344 9.04 0.64
65.571.05 0.80 333 8346+ 126 053 718 97.93+0.55 053 718
6580 117 080 138 8292+ 1.6 053 319 97.74£0.52 053 319
65364116 050 471 8299194 053 1037 | 97924055 053 1037
| Factor Matrices 000 199 66 52512088 134 143 | 9756+061 3 1235
4 e Tensor (T) 67.14£057 199 32 8315+ 0.8 134 1253 9825029 134 1253
AAD + SFT V@) +C 66.70 +0.45 199 11.98 8280+ 145 134 2688 | 9757067 134 2688
: ) | @s7s2 554 331 02432059 379 %68 | 9828x014 3 2868
2 Core Tensor (T) 6439 145 554 2088 8325034 379 19.63 9836.+0.36 379 49.63
| Factor Matrices (V(!), V(2)) + Core Tensor (T) | 64.16+2.41 554 34.19 83.15+0.03 379 7831 | 98264005 379 7831
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Table 14: Ablation Studies on finetuning different parameter subspaces during target-side adapta-
tion on MAPU. The asterisk (*) on top of the dataset names denote the Many-to-one setting (cf.
Appendix A.9 for reference).

Method R arameters Finetuned 55C 55C* HHAR HHAR*
etho i arameters Finetune Fl Score (%) 7 MACs (M) | # Params. (K) | | F1 Score (%) 1 MACs (M) | # Params. (K) | | F1Score (%) 1 MACs (M) | #Params. (K) | | F1 Score (%) 1 MACs (M) | _# Params. (K) |

No Adapation | - 5496 % 0.87 1292 0 1292 0 66.671.03 9.04 0 8288 % 1.30 9.04 0
MAPU Entire Backbone 66.73+0.85 1292 83.17 1292 83.17 8032116 9.04 198.21 95.16+429 9.04 198.21
MAPU - BN 6107 158 1292 045 1292 045 7140 % 1.63 9.04 0.64 8615371 9.04 0.64
Factor Matrices (V(), V) 66.05+0.75 080 333 0.80 333 8042151 053 98.00+0.04 053 718

re Tensor (7) 66.09+0.19 080 138 68 30 0.80 138 8016+ 238 053 98.1240.04 053 319
| Factor Matrices (V(1), V(2)) + Core Tensor (T) | 66.17+0.53 0.80 471 68.58 +0.96 0.80 47 8029+ 1.04 0.53 | 98.06£0.05 0.53 1037
Factor Matrices (V{1 V@) | 67602007 199 566 7208+ 148 199 666 79882120 [ | 98192010 3 3
4 Core Tensor (T) 67.40£0.59 199 532 7194 % 1.10 199 532 8024+ 122 134 98.25£0.03 134 1253
MAPU + SFT | Factor Matrices (V(1), V() + Core Tensor (T) | 67.82+021 199 11.98 7152094 199 1198 79.63 £ 1.08 134 | 9820008 134 2688
Factor Matrices (V1 V(2)) | 67.13£069 554 1331 2842 115 554 1331 80.51 +2.41 379 | 95.06+5.17 3.79 28.68
2 Core Tensor (T) 6785062 554 2088 72732083 554 2088 80.69£245 379 94.96 £5.18 379 49.63

| Factor Matrices (V(1), V(2) + Core Tensor (T) | 67.37£0.36 554 3419 7293 £0.67 554 3419 8069 £1.26 379 | 9502511 379 7831
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