
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MODEL TELLS YOU WHERE TO MERGE:
ADAPTIVE KV CACHE MERGING FOR LLMS ON
LONG-CONTEXT TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Serving LLM inference for long sequences poses significant challenge due to the
enormous memory footprint from key-value (KV) cache. In this paper, we propose
a novel KV cache merging algorithm, KVMerger, to achieve adaptive KV cache
compression for long sequence tasks without significant performance degradation.
Our approach is inspired by the intriguing observation that key states exhibit high
similarity at the token level within a single sequence. Based on the observation, we
develop an effective merging set identification algorithm to identify suitable KV
states for merging and a Gaussian kernel weighted merging algorithm to selec-
tively merge all states within each merging set. Our merging set identification al-
gorithm stimulates the second observation that KV cache sparsity, from similarity
perspective, is independent of the dataset and remains persistent at the model level.
We conduct extensive experiments to demonstrate the effectiveness of KVMerger
for long-context tasks under constrained memory budgets, on Llama2-7B/13B-
chat and Mistral-7B-instruct. Our results show that KVMerger achieves superior
performance across tasks compared to other KV cache compression techniques,
including H2O and CaM on LongBench, ZeroScroll, and Needle-in-a-Haystack
benchmarks, with both 50% and 35% KV cache budgets.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated exceptional performance across a variety of ap-
plications, particularly excelling in long-context scenarios that are increasingly relevant in everyday
life. However, as LLMs process larger volumes of data over extended contexts, KV cache starts to
pose a substantial obstacle to LLM’s performance and scalability. For example, a 175-billion pa-
rameter GPT-3 model, with a batch size of 64 and a sequence length of 4,096 tokens (including both
prefilled and generated tokens), necessitates approximately 1,208 GB of GPU memory (Liu et al.,
2024), which exceeds the memory capacity of most advanced GPUs. Therefore, compressing KV
cache while maintaining LLM accuracy, especially for long-context tasks, becomes quite essential.

Current efforts for KV cache compression can be broadly categorized into three types: quantization,
eviction, and merging, as illustrated in Figure 1. Quantization replaces floating point KV states
(e.g., FP16) with low-bit values to decrease memory usage. Recent advancements, such as Coupled
Quantization (Zhang et al., 2024b) and KIVI (Zirui Liu et al., 2023), have demonstrated that KV
cache can be quantized to 1-bit or 2-bit precision while preserving performance. In contrast, KV
cache eviction methods selectively remove unimportant states based on certain signals from the
model, thereby reducing the memory footprint by limiting the number of key and value states in the
KV cache (Xiao et al., 2024; Liu et al., 2023b; Zhang et al., 2023; Ge et al., 2024). While eviction-
based methods have demonstrated promising results on short context tasks with simple perplexity
metrics, a significant drawback of eviction methods is their potential to accidentally and permanently
remove important tokens, leading to context damage and adversely affecting their effectiveness in
long-context tasks that heavily rely on context information.

Very recently, KV cache merging has emerged a complementary method of eviction (Zhang et al.).
Unlike eviction-based methods, KV cache merging technique does not strictly remove key and value
states. Instead, it involves merging states that are otherwise to be dropped by eviction method into
single token state. By amalgamating states rather than directly evicting them, this method ensures

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

KV Cache MergingKV Cache Eviction

K5 K6K3K2K1 K7 K8 6.9 3.5 1.00.52.05.3 4.2 1.7K4

Retain Top-k

0.6 1.2 0.1 3.4 1.6 5.8 2.0 4.1
Attention Score

K6 K8K4

K5 K6K3K2K1 K7 K8K4

Merging

K5 K6K3K2K1 K7 K8K4

Quantization

KV Cache
Quantization

K5 K6K3K2K1 K7 K8K4

KV Cache Merging

Figure 1: Three categories of KV cache compression techniques: KV cache quantization (left), KV
cache eviction (middle), and KV cache merging (right). For the illustration of KV cache eviction,
we use aggregated attention scores as the eviction signal, and k is set to 3; for KV cache merging,
we illustrate many-to-one merging. The key state in red represents the state which incorporates the
information of other remaining states. Value states are processed in the same way as key states.

that essential information not captured by the attention scores is retained. It is noteworthy that,
although token merging is well-established in computer vision (CV) (Zeng et al., 2022) (Bolya
et al., 2023) (Kim et al., 2023) (Zhang et al., 2024a), the application of key and value states merging
in LLMs has not been extensively explored due to several significant challenges. It is difficult to
choose criteria for identifying sets of states to be merged without losing critical information, given
that LLM KV caches often have to serve long sequences with high dimensionality. Additionally,
even after identifying the sets of states to be merged, it remains challenging to find the optimal
merging policy, given that there are numerous algorithms for creating merged states. Effective
merging techniques must strike a delicate balance between reducing memory usage and preserving
the semantic integrity of the contexts.

To address the aforementioned challenges associated with KV cache merging, we propose an effec-
tive KV cache merging method for improving LLMs’ performance on long-context tasks. We start
by introducing and analyzing an intriguing observation: key states exhibit high cosine similarity at
the token level within a single sequence across different attention heads and model layers. our ob-
servation also opens opportunities for effective merging of key and value states based on their cosine
similarity. Subsequently, we formulate the KV cache merging as a constrained clustering problem,
and propose an effective merging set identification method for KV cache merging. Based on that,
we define KV cache sparsity from the perspective of states similarity. Our finding indicates that KV
cache sparsity is independent of the dataset and remains persistent at the model level. Building on
top of this, we propose a Gaussian kernel weighted merging function to merge states within each
identified merging set. Our contributions can be summarized as follows:

• As one of the pioneering researches concerning KV cache merging for LLMs, we developed
KVMerger, an effective KV cache merging algorithm especially designed for long-context tasks,
including merging set identification and Gaussian kernel weighted merging function.

• We introduce an intriguing observation that key states share a high similarity at the token level
within a single sequence, as an important complementary to the previous observations concerning
high query states similarity (Dai et al., 2024) and intra-layer KV cache similarity (Liu et al., 2024).
We also investigate the root cause of why such phenomenon appears.

• We evaluate KVMerger on diverse long-context tasks including LongBench, ZeroScroll, and
Needle-in-a-Haystack across various models under different KV cache budgets, and the results
show comparable performance or much smaller performance gap compared to full cache budgets.

2 RELATED WORK

KV Cache Quantization. Quantization methods involve converting high-precision numerical val-
ues of key and value states into lower-precision formats, thereby decreasing the storage requirements
within the cache (Hooper et al., 2024; Sheng et al., 2023; Liu et al., 2023a; Zhang et al., 2024c).
Due to the presence of outliers in key and value states, recent works such as KIVI (Zirui Liu et al.,
2023) and Gear (Kang et al., 2024) employ fine-grained group-wise quantization, which quantize
small channel groups within each token. MiKV (Yang et al., 2024) addresses the information loss
introduced by KV cache eviction methods by preserving those KVs in lower precision rather than
directly dropping them. ZipCache (He et al., 2024) proposes an efficient channel-separable quantiza-
tion scheme, disentangling the channel and token dimensions without excessive memory overhead.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Different from quantization, this work studies compression of KV cache via states merging, which
is complementary to quantization.

KV Cache Eviction. KV cache eviction methods focus on retaining those important key-value
pairs and discard those unimportant ones permanently. One of the common selection policies of
key-value pairs is to exploit signals from the attention mechanism of LLMs. For example, H2O
(Zhang et al., 2023), Scissorhands (Liu et al., 2023b), and RoCo (Ren & Zhu, 2024) compress
KV cache by maintaining a small set of KV states whose corresponding tokens are determined by
the ranking of attention scores. StreamingLLM (Xiao et al., 2024) finds that keeping the initial
tokens, called attention sink, together with the recent window tokens is pivotal to maintain LLM’s
performance. More recently, Ge et al. (2024) and Yu et al. (2024) find that attention sinks also occurs
in the middle of the sentences, and Ge et al. (2024) introduces FastGen which can choose the most
appropriate compression strategy for each heads with different attention distribution patterns.

KV Cache Merging. Instead of permanently discarding key and value states, KV cache merging
offers a promising direction for KV cache compression while maintaining the performance of LLMs.
As the first work concerning cache merging, CaM (Zhang et al.) adaptively merges to-be-evicted
value states into the remaining conserved value states, resulting in minimal output perturbation due
to the merging operation. Recently, several concurrent work also propose to merge KV cache. For
example, MiniCache (Liu et al., 2024) finds that KV states of some consecutive layers have high
similarity and proposes an effective intra-layer KV cache merging and restoration algorithms to
reduce memory usage by KV cache. Similarly, D2O Wan et al. (2024) selectively merges both value
and key states to be evicted with those to be conserved using an Exponential Moving Average (EMA)
threshold, and uses weighted merging based on cosine similarity. However, these methods rely
heavily on prior eviction strategies, defining effective KV cache merging algorithms remain open
challenges. This paper is the first one that formally formulates the KV cache merging problem and
conducts in-depth study of this problem via effective merging set identification policy and Gaussian
weighted merging algorithm while exploiting the high similarities among key states.

3 PROBLEM FORMULATION

Formally, we study the performance impact of LLMs after compressing their KV cache. For a
decoder only pre-trained LLM f with l layers, we denote key states and value states for each layer
as K ∈ Rn×d and V ∈ Rn×d, respectively. Let Qt ∈ R1×d denote the query state at time step t.
Then, the output Ot for each attention head at a certain layer of f can be formulated as:

Ot = AtV, At = softmax

(
QtKT

√
dk

)
(1)

Our primary objective is to develop an efficient many-to-one merging algorithm M for KV cache,
which generate merged key states and merged value states, respectively, such that the performance
of f with M remains similar or comparable to f with the original uncompressed KV cache.

Definition 3.1 (KV Cache Merging Problem, informal). Let Ot represent the original output of f ,
and let O∗

t represent the output after merging. M must satisfy the following optimization criterion:

M = argmin
I

∑
l |Fl(I(K))|∑

l |K|
, (2)

subject to |Ot − O∗
t | ≤ ϵ, where ϵ is an acceptable small positive value, ensuring the degradation

in performance is negligible and within acceptable bounds. M also has the following properties:
• |M (K) | / |K| ≤ 1, |M (V) |/ |V| ≤ 1
• |M (K) | / |K| = |M (V) |/ |V| (make sure key and value states have the same compression ratio)
The merging algorithm M consists of two parts: (i) a policy I that identifies sub KV cache sets, and
(ii) a merging function F that maps the states in each merging set to a single state.

KV Cache Merging Sets Identification Policy I . We define the identification policy I as:
• |K| = |Kc|+ |Km|, |V| = |Vc|+ |Vm|
• |Kc| = |Vc|, |Km| = |Vm| (make sure key states and value states come in pair)
where Kc and Km represent the subsets of key states to be conserved and merged, respectively, and
Vc and Vm represent the subsets of value states to be conserved and merged, respectively. The above
definition is a general formulation. For example, when |Kc| and |Vc| are zero, all key and value
states are merged, resulting in a full cache without any states eviction.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: Visualization of the cosine similarity map of key states at the token-wise level produced
by running the inference process on the Llama2-7b-chat model by randomly sampling data from the
SynthWiki dataset. Observations include: (1) Key states share strong similarity within one sequence
across different layers and heads; (2) The similarity between key states has the property of locality,
i.e., adjacent tokens exhibit higher similarity. More visualizations are shown in appendix A.2.

KV Cache Merging Function F . We define the merging function F such that
F : {Si}|Km|

i=1 → {s∗i }
|Km|
i=1 , where F (Si) = s∗i , i = 1, 2, . . . , |Km|

where Si represents each merging set, and s∗i is the merged new state for each merging set. |Km| is
the total number of merging sets as previously defined.

4 OBSERVATIONS

In this section, we present two key observations illustrating that KV cache sparsity is universal for
long-context tasks when viewed from the perspective of state similarity. These observations form
the basis for our development of the adaptive KV cache merging algorithm KVMerger.

4.1 KV CACHE SIMILARITY

Inspired by Dai et al. (2024), which reveals the phenomenon that query states share significant
similarity at the token level in LLMs, we observe for the first time that key states also exhibit very
high similarity at the token level within single sequence. We will first demonstrate the generalization
of this token level similarity in key states and then analyze the potential reasons behind it.

Observation: key states exhibit high, localized token-level similarity. We conduct the infer-
ence process on the Llama2-7b-chat model by randomly sampling data from the SynthWiki dataset
(Peysakhovich & Lerer, 2023) with average sequence length being about 4K. Then, we visualize the
cosine similarity of key states at the token level within a sequence using the following equation:

similarity (ki, kj) =
kik

T
j

||ki|| · ||kj ||
, 1 ≤ i, j ≤ T, (3)

where T is the total length of the sequence. ki represents the i-th key state, and kj represents the j-th
key state. The results are shown in Figure 2. We observe that the similarity maps illustrate a clear
oblique color segmentation. The closer it is to the diagonal, the more intense the color becomes,
indicating that key states exhibit a strong localized similarity as query states do (Dai et al., 2024).
Moreover, we observe from Figure 3(a) that the local similarity between one key state and the other
consecutive key states shows different fluctuations for different attention heads. We also examine
the cosine similarity of value states but do not observe the same property. One interesting question
arises: why do such localized token similarity exhibit in key states, while value states do not?

Analysis. A key difference between key states, query states, and value states is that Rotary Position
Embedding (RoPE) (Su et al., 2023) is applied to the key and query states, but not to the value states.
We hypothesize that this application of RoPE is the primary factor contributing to the observed
differences in token-level similarity. Specifically, by rotating the embeddings in a multi-dimensional
space, RoPE effectively captures the relative positions and order of tokens within a sequence. If we
denote two adjacent input tokens as xm, xn ∈ Rd where m and n are two random integers, and
0 ≤ j ≤ (d − 1)/2. Then the position information of each token is incorporated by RoPE via the
following equations:

km,[2j:2j+1] = Wkxmeimθj , kn,[2j:2j+1] = Wkxne
inθj , θj = b

−2j
d , (4)

where Wk is the matrix for key projection, and einθj is the rotary embedding component. b is called
as the rotary base, which is set to 10000 by default (Su et al., 2023). Then, we introduce two lemmas

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 3: (a): The cosine similarity changes between the current token and its adjacent tokens
across distinct attention heads and layers. We show the above changes for tokens with indices being
2000, 3000, and 4000.(b) The layer-wise compression ratios obtained by our proposed merging
set identification algorithm for different samples and different tasks. (c) The comparison of long-
context performance between H2O and average weighted merging with our proposed merging set
identification algorithm. (d) The illustration of Gaussian kernel function with different values of σ.

that clearly show the conditions under which two token embeddings exhibit high cosine similarity
after the application of the RoPE operation.

Lemma 4.1 (Informal). Consider two vectors km, kn ∈ R1×d. If their cosine similarity is 1, then
the cosine similarity of any 1× 2 vectors, km,j = [km,2j , km,2j+1]

T and kn,j = [kn,2j , kn,2j+1]
T ,

formed by the 2j-th and (2j + 1)-th elements of km and kn, 0 ≤ j ≤ (d− 1)/2, is also equal to 1.

Lemma 4.2 (Informal). Consider integer j such that 0 ≤ j ≤ d−1
2 . Define the vectors km,j and

kn,j as km,j = [km,2j , km,2j+1]
T and kn,j = [kn,2j , kn,2j+1]

T , and define the vectors k
′

m,j and
k

′

n,j as k
′

m,j = km,j/e
imθj and k

′

n,j = kn,j/e
inθj . If similarity (km,j ,kn,j) = 1, we have:

cos (m− n) <
⟨k′

m,j ,k
′

n,j⟩
∥k′

m,j∥ · ∥k
′
n,j∥

≤ 1,

where ⟨k′

m,j ,k
′

n,j⟩ denotes the inner product of k
′

m,j and k
′

n,j , and ∥k′

m,j∥ and ∥k′

n,j∥ denote the
norms of k

′

m,j and k
′

n,j , respectively.

The complete proof of the above lemma is shown in appendix A.1. The conclusions of lemmas 3.1
and 3.2 are the necessary conditions of similarity(km,j ,kn,j) = 1. A cosine similarity of k

′

m,j and
k

′

n,j falling beyond the range (cos (m− n), 1] will result in the failure of similarity(km,j ,kn,j) = 1.
The analysis above clarifies why value states exhibit low similarity at the token level. Without the
RoPE operation, value states are incapable of achieving rotation to comparable angles. The above
analysis also indicates that merging highly similar key states is sensible.

4.2 PERSISTENT KV CACHE SPARSITY

We have shown that key states within a sequence exhibit significant token-level similarity in LLMs.
Leveraging this, we apply a specialized greedy clustering algorithm to group consecutive key states
with similarity values above a certain threshold, processing from the last to the first token. This
yields a set of groups, each containing highly similar consecutive key states, forming a merging set.
The number of this merging set corresponds to the number of key states after merging. Details of
this set identification algorithm will be formally introduced in Section 5.1.

Observation: The KV cache sparsity for different samples are persistent at the model level.
Figure 3(a) shows that the similarity distributions of different tokens vary across distinct attention
heads and layers. The size of each subset of key states is governed by the similarity threshold de-
fined. Lowering the threshold results in the inclusion of a larger number of key states within a single
merging set, thereby leading to varied compression ratios across all attention heads and layers. To
investigate the actual compression ratio achieved by the previous set identification algorithm, we
conduct inference processes on the Llama2-7b-chat model. This involves randomly sampling 200
instances from the subset of LongBench (Bai et al., 2024) tasks and calculating the average com-
pression ratio for each layer, as shown in Figure 3(b). We observe that the layer-wise compression
ratios were highly consistent across different samples from the same task and even across different
tasks. This intriguing finding suggests that the kv cache sparsity, resulting from the high similarity

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 4: The whole framework of KVMerger is comprised of two major modules. The first module
is to identify the merging set. The toy similarity map is used to illustrate this process, and the
threshold for cosine similarity is set to 0.8. The second module is to merge key and value states
within each identified merging set via Gaussian kernel weighted merging. The key state in red color
represents the pivotal key state, where all the remaining key states should be weighted merged to
that one. The values on key states represent the aggregated attention scores.

exhibited by key states, is independent of the dataset and remains persistent at the model level. The
same static KV cache sparsity property can be observed in other models as Appendix A.3 shown.

Insights The observed static KV cache sparsity suggests that it is possible to determine the layer-
wise compression ratios by adjusting the cosine similarity threshold, making it convenient for us to
control the total compression ratio for a certain model, thereby reducing the KV cache memory.

5 PROPOSED ADAPTIVE KV MERGING ALGORITHM

In this section, we propose KVMerger, an adaptive KV merging algorithm, for LLMs based on the
above observations. The whole pipeline of KVMerger is depicted in Figure 4. We first introduce the
merging set identification algorithm in Section 5.1, which can be viewed as solving a constrained
clustering problem. We propose a specialized greedy clustering algorithm to solve this. In Sec-
tion 5.2, we delineate Gaussian kernel weighted merging, which is a many-to-one states merging
algorithm without introducing significant information loss.

5.1 GREEDY POLICY FOR MERGING SET IDENTIFICATION

To solve the merging set identification problem described in Section 3, we regard it as a variant of
clustering problem, which we define below:

Definition 5.1 (Constrained Clustering Problem for KV Cache Merging, formal). Given the key
states to be merged as Km = {k1, k2, . . . , kn} from a certain attention head at a certain layer of f ,
where each kn ∈ R1×d, and a similarity function δ : Km × Km → Rn×n, and a cosine similarity
threshold θ, partition Km into c merging sets {S1,S2, . . . ,Sc} such that the intra-cluster similarity
is maximized and the inter-cluster similarity is minimized, which can be expressed as:

max
S1,S2,...,Sc

 c∑
i=1

∑
ka,kb∈Si

δ(ka, kb)−
c∑

(i,j),i̸=j

∑
ka∈Si,kb∈Sj

δ(ka, kb)

• Each merging set Si should satisfy: Si ∩ Sj = ∅ for i ̸= j, and

⋃c
i=1 Si = Km;

• ∀Si, ∃j such that Si = {kj , kj+1, · · · , kj+|Si|−1}.

The similarity function, δ, we used here is cosine similarity based on the observation in Section
4.1. In order to conserve the locality similarity property of key states, the merging set identification
problem is a constrained clustering problem, meaning that all elements in one cluster are expected
be consecutive, and we do not merge states with high similarity but far away from each other for
simplicity. Then, we propose a specialized greedy clustering algorithm to find all merging sets
shown as Algorithm 1, which follows the above requirements.

KVMerger also retains the KV states whose corresponding aggregated attention scores fall within
the top-k range, including both attention sinks and heavy-hitters, which represent the most impor-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

tant and frequently accessed elements by LLMs. We assume that those key and value states are
quite sensitive to merging and cannot participant in merging process to avoid information damage.

Algorithm 1 Merging Set Identification
1: procedure CLUSTER(Km, δ, θ)
2: Initialize empty lists G and C, j = |Km|
3: Add kj to C
4: for i = j − 1 to 1 do
5: if δ(ki, kj) > θ then
6: Add ki to C
7: else
8: Add C to G, j = i
9: Initialize a new C with kj

10: end if
11: end for
12: return G
13: end procedure

Algorithm 2 Merging Policy
1: procedure MERGE(Sc, A)
2: Compute aggregated attention score for

each state in the merging set Sc:
ai =

∑|Sc|
i=1 A [i, :]

3: Find pivotal state: p = argmax
i∈Sc

(ai)

4: for j = 1 to |Sc| do
5: gpj = G(kp,kj)
6: end for
7: wj = gpj/

∑
gpj

kM =
∑

wjkj
8: return kM
9: end procedure

5.2 GAUSSIAN KERNEL WEIGHTED MERGING

Definition 5.2 (Weighted KV cache Merging, formal). Given identified merging sets of key states
and value states as Sk = {ki, ki+1, . . . , kp, . . . ki+n} and Sv = {vi, vi+1, . . . , vp, . . . vi+n} , where
kp and vp denote the pivotal key state and pivotal value state, respectively. Then, the weighted
merging key states and value states can be defined as:

k∗p = wpkp +
∑

ki∈Sk,i̸=p

wiki, v∗p = wpvp +
∑

vi∈Sv,i̸=p

wivi (5)

where wp and wi denote the weight assigned to the pivotal state and other states in the merging set.

We define the weighted merging function for KV cache merging in Definition 5.2, which follows the
many-to-one merging definitions from Wan et al. (2024). In terms of Definition 5.2, two principal
design factors directly influence merging efficacy. The first factor is the selection of the pivotal state,
to which all other states are merged. The second factor involves the assignment of weights to each
state, with the pivot state having the largest weight to preserve the information.

Selection for Pivotal State We follow previous token eviction methods that using aggregated atten-
tion score to select pivotal token as it indicates the importance of tokens, which can be expressed as:

kp = argmax
i∈Sc

(ai), ai =

|Sc|∑
i=0

A [i, :] , (6)

where A is the attention map of the whole sequence. Note that the index of pivotal token for value
states within each merging set is the same as key states.

Gaussian Kernel Weights Initially, we use average weighted method to merge all states for each
merging set. However, LLM’s performance is sub-optimal via this simple method as shown in Figure
3(c). To reduce the influence of dissimilar or distant states, we utilize Gaussian kernel weighted
merging, which is expressed as:

gpi = G(kp,ki) = exp

(
−||kp − ki||2

2σ2

)
, σ =

∑|Sc|
i=0 ||kp − ki||2√

2|Sc|
. (7)

Gaussian kernel is able to assign greater weight to elements that are nearer to the pivotal state,
offering a smooth and flexible weighting that reduces noise and outlier impact. This local weighting
characteristic ensures that the merged result is significantly shaped by nearby states, maintaining
local structure. Then, the merging weights for key states and value states can be formalized as:

wi =
gpi∑|Sc|
j=0 gpj

, wp =
1∑|Sc|

j=0 gpj

. (8)

As demonstrated in Definition 5.2, the weight assigned to each ki and vi is directly governed by
the squared l2 norm between the pivotal token and the remaining tokens. This indicates that if ki

is close to kp in the Euclidean space, more weight will be assigned to ki as Figure 3(d) illustrates.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: KVMerger for Llama2-7B/13B-chat and Mistral-7B-Instruct on LongBench datasets.
models budget method 2wikimqa gov report narrativeqa pr en multifieldqa en trec multi news triviaqa qasper avg.

100% Full Cache 31.45 26.99 18.74 8.00 36.60 64.00 26.26 83.09 21.83 35.22

H2O 29.96 24.86 17.48 7.00 33.58 63.50 26.00 82.51 21.04 34.00

CaM 30.69 24.46 17.08 6.50 33.98 63.50 24.66 82.17 20.00 33.6750%
KVMerger 32.99 25.31 18.50 7.33 36.89 64.00 26.29 83.62 20.04 35.02

H2O 30.57 24.48 17.85 7.00 32.17 63.00 25.37 80.89 20.04 33.49

CaM 31.06 23.80 18.36 6.00 33.07 62.50 25.23 81.86 18.37 33.36L
la

m
a2

-7
B

-c
ha

t

35%
KVMerger 32.29 25.24 19.12 7.00 33.82 63.50 25.64 82.76 21.09 34.50

100% Full Cache 13.21 27.59 14.42 15.25 27.44 68.50 26.69 87.42 17.15 33.07

H2O 13.39 26.20 15.01 15.50 26.40 68.00 25.35 84.73 17.10 32.40

CaM 13.30 25.88 13.47 15.00 26.96 67.50 26.06 84.65 16.58 32.1650%
KVMerger 13.46 26.63 14.4 16.00 27.29 68.50 26.12 87.48 17.22 33.01

H2O 12.26 25.52 13.14 14.50 25.75 67.50 25.59 83.53 16.35 31.57

CaM 13.43 25.37 13.58 12.50 25.70 67.50 25.04 84.95 16.34 31.60

L
la

m
a2

-1
3B

-c
ha

t

35%
KVMerger 12.61 26.12 13.60 14.00 26.75 68.00 26.32 86.76 16.24 32.27

100% Full Cache 31.47 26.55 21.96 25.00 39.50 61.00 26.44 83.89 30.12 38.44

H2O 29.21 19.91 17.65 8.00 25.50 53.00 19.95 74.55 21.51 29.92

CaM 29.57 22.67 19.43 12.00 28.95 58.00 20.17 81.82 21.87 32.7250%
KVMerger 32.44 24.05 21.85 23.00 31.23 60.00 20.87 84.16 24.52 35.79

H2O 12.30 5.16 3.64 0.62 11.95 37.50 18.99 17.08 14.05 13.48

CaM 28.77 18.70 17.76 8.50 25.31 45.50 19.72 72.88 17.25 28.27

M
is

tr
al

-7
B

-I
ns

tr
uc

t

35%
KVMerger 30.77 20.99 23.58 23.50 28.10 60.5 19.94 83.82 24.13 35.04

Specifically, if σ approaches 0 and ||kp − ki||2 is significantly different from 0, the weight assigned
to ki tends towards 0. We empirically define σ as the mean value of gpi for all tokens within each
merging set to avoid such situation. The complete merging policy is described by Algorithm 2.

6 EXPERIMENT

6.1 EXPERIMENTAL SETTINGS

Models and Tasks We evaluate KVMerger using three models: Llama2-7B/13B-chat (Touvron
et al., 2023) and Mistral-7B-Instruct-v1.0(Jiang et al., 2023). Our evaluation focuses primarily on
instruction-tuned models, as these are meticulously optimized for dialogue use cases and question-
answering scenarios. The above three models are evaluated on two commonly used benchamrks
for long-context scenario, that is, LongBench (Bai et al., 2024) and ZeroScrolls (Shaham et al.,
2023). Specifically, we use nine datasets in LongBench: 2WikiMQA, gov report, NarrativeQA,
passage retrieval en, MultifieldQA en, TREC, multi news, TriviaQA, qasper. We use seven datasets
in ZeroScrolls: gov report, SummScreenFD, QMSum, SQuALITY, Qasper, NarrativeQA, Book-
SumSort. Additionally, we also individually test our methods on RAG tasks with the Needle-in-a-
Haystack test (Guerreiro et al., 2023). The performance of our method for LLMs on all the above
tasks are also compared with existing eviction method H2O and merging method CaM.

Implementation details We test KVMerger in two compression scenarios. The first one is 50%
KV cache budget, where the proportion of recent tokens to be reserved is set to 0.17%, and the
proportion of states not selected for the merging process in terms of aggregated attention scores is
set to 0.12%. The remaining key states and value states participate in the merging process. The
second compression scenario is 35% KV cache budget, where the proportion of recent tokens is set
to 0.08%, and the proportion of states not selected for the merging process is set to 0.02%. The
cosine similarity threshold for both two scenarios is set to 0.75. We conducted our experiments on
a cluster with A100 40GB GPUs and a cluster with A100 80GB GPUs. The evaluation process
for LongBench and ZeroScrolls follows THUDM (2024) and Lab (2024). The implementation of
Needle-in-a-Haystack test follows Kamradt.

6.2 EXPERIMENTAL RESULTS ON LONG-CONTEXT TASKS

LongBench Results The evaluation results of nine selected LongBench datasets on Llama2-
7B/13B-chat and Mistral-7B-Instruct-v1.0 are shown in Table 1. We compare the current KV cache
compression methods, including H2O, CaM, with our proposed KV merging method KVMerger by
preserving both 50% and 35% of contexts in the KV cache. Our results demonstrate that KVMerger

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 5: The visualization of needle-in-a-haystack test on Llama2-7B-chat with different KV cache
compression methods. The x-axis represents the length of contexts, and the y-axis represents the
document depth where the needle is inserted.

consistently outperforms the other KV cache compression techniques across nearly all selected
datasets from LongBench. Notably, the performance gaps between our algorithm and the full KV
cache scenario for both Llama2-7B/13B-chat and Mistral-7B-Instruct-v1.0 are significantly smaller
than the other KV compression methods. Another interesting finding is that the latest value states
merging method, CaM, does not perform well on long-context tasks. This may be attributed to the
information loss results from eviction of key states, despite the merging of value states.

Note that Mistral-7B-Instruct model leverages Grouped-Query-Attention (GQA) to optimize KV
cache memory usage, where each key state corresponds to four query states. When applying H2O
to each key state, rather than duplicating states, we use a single attention map. This attention map
is generated by averaging the values of four attention maps formed by the four query states, which
determines the states to be evicted. For KVMerger, we also utilize the same attention map to select
pivotal states, ensuring a fair comparison. Our results indicate a significant performance drop for
Mistral-7B-Instruct-v1.0 when using H2O. Conversely, KVMerger demonstrates the smallest per-
formance decline under both 35% and 50% KV cache budgets, highlighting its efficiency on GQA.

ZeroScrolls Results We also evaluate Llama2-7B-chat on ZeroScrolls datasets using different KV
cache compression techniques, which are shown as Table 6 in Appendix A.4. Table 6 demonstrates
that our proposed KV cache merging method effectively restores the performance of the Llama2-7B-
chat model across all selected ZeroScrolls datasets under both 35% and 50% cache budgets. This
suggests that KVMerger not only mitigates performance degradation but also optimizes the model’s
handling of extensive data sequences that approach the model’s maximum context window.

Needle In A Haystack Results We also conduct a detailed comparison of KVMerger with other
KV cache compression techniques on retrieval tasks using the needle-in-a-haystack test. This test
involves placing a random fact in the middle of a long context window and assessing the model’s
ability to retrieve this statement across varying document depths and context lengths. Specifically,
we test Llama2-7B-chat on document depths ranging from 5% to 95% and context lengths ranging
from 1000 to 4500 tokens under both 35% and 50% cache budgets. The corresponding results are il-
lustrated as Figure 5. Our findings indicate that both CaM and our merging algorithm outperform the
eviction method H2O. However, our proposed method achieves the highest retrieval performance,
consistently delivering high scores across various context lengths and depth percentages.

Memory Usage Analysis We analyze the inference memory consumption of KVMerger under full
cache, 35%, and 50% KV cache budgets. Specifically, we use the Llama2-7B/13B-chat models
with an input length of 3,900 and generate 1,024 tokens on a single A100 80GB GPU. During
inference, we measure both the peak memory and KV cache memory usage, as presented in Table
2. Our results show that KVMerger intuitively reduces KV cache memory consumption by up to
60% under 35% KV cache budget. Additionally, it also decreases peak memory usage during the
generation process. These findings demonstrate that KVMerger significantly reduces KV cache
memory without incurring any additional memory overhead.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: KV cache and peak memory usage for Llama2 Models
Model Scenario KV Cache Peak Memory

Llama2-7B-chat
Full Cache 2.00 GB 18.83 GB

KVMerger 50% 1.02 GB 17.90 GB
KVMerger 35% 0.65 GB 17.55 GB

Llama2-13B-chat
Full Cache 3.13 GB 32.21 GB

KVMerger 50% 1.56 GB 31.67 GB
KVMerger 35% 1.22 GB 31.30 GB

6.3 ABLATION STUDY

Choice of Pivotal State in Gaussian Kernel Weighted Merging As mentioned in Section 5.2, the
selection of pivotal state for each merging set is directly related to the performance of KVMerger.
To show the significance of defining the pivotal state as our method, we compare it with randomly
selecting pivotal state within each merging set by using Llama2-7B-chat model with 50% cache
budget. The comparison is shown in Table 3, from which we can see that randomly selecting pivotal
states are detrimental to LLMs’ performance on long-context tasks.

Table 3: KVMerger with different methods of pivotal states selection.
Pivotal State 2wikimqa gov report narrativeqa pr en multifieldqa en avg.

Ours 32.99 25.31 18.50 7.33 36.89 24.20
Random 30.01 24.07 17.72 6.50 33.30 22.12

Choice of Merging Policy We also compare our proposed Gaussian weighted merging algorithm
with average weighted merging to illustrate the significance of Gaussian weighted merging. Specifi-
cally, we evaluate LongBench tasks on Llama2-7B-chat model with average weighted merging with
50% cache budget, and the results shown in Table 4. We can see that assigning all states with the
same merging weights dramatically degrade the performance. One reasonable explanation is that
average merging introduces information distortion by treating every states equally.

Table 4: KVMerger with different merging policy.
σ 2wikimqa gov report narrativeqa pr en multifieldqa en avg.

Gaussian 32.99 25.31 18.50 7.33 36.89 24.20
average 27.04 24.96 17.50 6.34 33.37 21.84

Choice of σ in Gaussian Kernel Weights In section 5.2, we set σ as the mean of l2 distance between
the pivotal state and all the remaining states within each merging set. To verify the effectiveness of
the proposed σ computation method, we apply KVMerger on Llama2-7B-chat model with various
σ values, and evaluation results are shown as Table 5. We can find that when σ is computed by
using our method, KVMerger demonstrate the optimal results in terms of the overall performance
compared with other σ values.

Table 5: KVMerger with different σ values under 50% cache budget.
σ 2wikimqa gov report narrativeqa pr en multifieldqa en avg.
1 31.48 25.52 18.98 6.25 36.59 23.76
3 30.84 25.19 18.51 4.67 37.48 23.34

ours 32.99 25.31 18.50 7.33 36.89 24.20
6 31.69 25.39 18.45 7.83 35.82 23.84

7 CONCLUSION

In this paper, we propose KVMerger, an adaptive KV cache merging method inspired by the ob-
servation that key states exhibit high and persistent similarity within each sequence, allowing for
layer-wise KV cache compression. We initially abstract the merging set identification problem as
a constrained clustering problem and introduce a specialized greedy clustering algorithm to iden-
tify merging sets based on cosine similarities between key states. Furthermore, we implement a
Gaussian Kernel weighted merging method to merge key and value states within each merging set.
Compared to other KV cache eviction and merging methods, our approach achieves superior re-
sults on the LongBench and ZeroScrolls benchmark under the same cache budget. Additionally, our
method effectively recovers the model’s long-context retrieval capabilities, as demonstrated by the
needle-in-a-haystack tests.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A bilingual, mul-
titask benchmark for long context understanding, 2024. URL https://arxiv.org/abs/
2308.14508.

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy
Hoffman. Token merging: Your vit but faster, 2023. URL https://arxiv.org/abs/
2210.09461.

Jincheng Dai, Zhuowei Huang, Haiyun Jiang, Chen Chen, Deng Cai, Wei Bi, and Shuming Shi.
Corm: Cache optimization with recent message for large language model inference, 2024. URL
https://arxiv.org/abs/2404.15949.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells you
what to discard: Adaptive kv cache compression for llms, 2024. URL https://arxiv.org/
abs/2310.01801.

Nuno M. Guerreiro, Elena Voita, and André F. T. Martins. Looking for a needle in a haystack:
A comprehensive study of hallucinations in neural machine translation, 2023. URL https:
//arxiv.org/abs/2208.05309.

Yefei He, Luoming Zhang, Weijia Wu, Jing Liu, Hong Zhou, and Bohan Zhuang. Zipcache:
Accurate and efficient kv cache quantization with salient token identification, 2024. URL
https://arxiv.org/abs/2405.14256.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W. Mahoney, Yakun Sophia Shao,
Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length LLM inference
with KV cache quantization. CoRR, abs/2401.18079, 2024.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.

George Kamradt. Llmtest: Needle in a haystack. https://github.com/gkamradt/
LLMTest_NeedleInAHaystack. Accessed: 2024-07-08.

Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa Jeong, Zaoxing Liu, Tushar Krishna, and Tuo
Zhao. Gear: An efficient kv cache compression recipe for near-lossless generative inference of
llm, 2024. URL https://arxiv.org/abs/2403.05527.

Minchul Kim, Shangqian Gao, Yen-Chang Hsu, Yilin Shen, and Hongxia Jin. Token fusion: Bridg-
ing the gap between token pruning and token merging, 2023. URL https://arxiv.org/
abs/2312.01026.

TAU NLP Lab. Zeroscrolls: Zero-shot summarization and reasoning language system. https:
//github.com/tau-nlp/zero_scrolls, 2024. Accessed: 2024-07-02.

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Gholamreza Haffari, and Bohan Zhuang. Minicache:
Kv cache compression in depth dimension for large language models, 2024. URL https:
//arxiv.org/abs/2405.14366.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. LLM-QAT: data-free quantization aware
training for large language models. CoRR, abs/2305.17888, 2023a.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for llm kv cache compression at test time, 2023b. URL https://arxiv.org/
abs/2305.17118.

11

https://arxiv.org/abs/2308.14508
https://arxiv.org/abs/2308.14508
https://arxiv.org/abs/2210.09461
https://arxiv.org/abs/2210.09461
https://arxiv.org/abs/2404.15949
https://arxiv.org/abs/2310.01801
https://arxiv.org/abs/2310.01801
https://arxiv.org/abs/2208.05309
https://arxiv.org/abs/2208.05309
https://arxiv.org/abs/2405.14256
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://arxiv.org/abs/2403.05527
https://arxiv.org/abs/2312.01026
https://arxiv.org/abs/2312.01026
https://github.com/tau-nlp/zero_scrolls
https://github.com/tau-nlp/zero_scrolls
https://arxiv.org/abs/2405.14366
https://arxiv.org/abs/2405.14366
https://arxiv.org/abs/2305.17118
https://arxiv.org/abs/2305.17118

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alexander Peysakhovich and Adam Lerer. Attention sorting combats recency bias in long context
language models, 2023. URL https://arxiv.org/abs/2310.01427.

Siyu Ren and Kenny Q. Zhu. On the efficacy of eviction policy for key-value constrained generative
language model inference, 2024. URL https://arxiv.org/abs/2402.06262.

Uri Shaham, Maor Ivgi, Avia Efrat, Jonathan Berant, and Omer Levy. Zeroscrolls: A zero-shot
benchmark for long text understanding, 2023. URL https://arxiv.org/abs/2305.
14196.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Percy Liang,
Christopher Ré, Ion Stoica, and Ce Zhang. Flexgen: High-throughput generative inference of
large language models with a single GPU. In International Conference on Machine Learning,
ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine
Learning Research, pp. 31094–31116. PMLR, 2023.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding, 2023. URL https://arxiv.org/abs/
2104.09864.

THUDM. Longbench. https://github.com/THUDM/LongBench, 2024. Accessed: 2024-
07-02.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Zhongwei Wan, Xinjian Wu, Yu Zhang, Yi Xin, Chaofan Tao, Zhihong Zhu, Xin Wang, Siqi Luo,
Jing Xiong, and Mi Zhang. D2o: Dynamic discriminative operations for efficient generative
inference of large language models, 2024. URL https://arxiv.org/abs/2406.13035.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming lan-
guage models with attention sinks, 2024. URL https://arxiv.org/abs/2309.17453.

June Yong Yang, Byeongwook Kim, Jeongin Bae, Beomseok Kwon, Gunho Park, Eunho Yang,
Se Jung Kwon, and Dongsoo Lee. No token left behind: Reliable kv cache compression via
importance-aware mixed precision quantization, 2024. URL https://arxiv.org/abs/
2402.18096.

Zhongzhi Yu, Zheng Wang, Yonggan Fu, Huihong Shi, Khalid Shaikh, and Yingyan Celine Lin. Un-
veiling and harnessing hidden attention sinks: Enhancing large language models without training
through attention calibration, 2024. URL https://arxiv.org/abs/2406.15765.

Wang Zeng, Sheng Jin, Wentao Liu, Chen Qian, Ping Luo, Wanli Ouyang, and Xiaogang Wang. Not
all tokens are equal: Human-centric visual analysis via token clustering transformer, 2022. URL
https://arxiv.org/abs/2204.08680.

Liang Zhang, Anwen Hu, Haiyang Xu, Ming Yan, Yichen Xu, Qin Jin, Ji Zhang, and Fei Huang.
Tinychart: Efficient chart understanding with visual token merging and program-of-thoughts
learning, 2024a. URL https://arxiv.org/abs/2404.16635.

Tianyi Zhang, Jonah Yi, Zhaozhuo Xu, and Anshumali Shrivastava. Kv cache is 1 bit per channel:
Efficient large language model inference with coupled quantization, 2024b. URL https://
arxiv.org/abs/2405.03917.

Yuxin Zhang, Yuxuan Du, Gen Luo, Yunshan Zhong, Zhenyu Zhang, Shiwei Liu, and Rongrong Ji.
Cam: Cache merging for memory-efficient llms inference. In Forty-first International Conference
on Machine Learning.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, Zhangyang Wang, and Beidi Chen. H2o: Heavy-
hitter oracle for efficient generative inference of large language models, 2023. URL https:
//arxiv.org/abs/2306.14048.

12

https://arxiv.org/abs/2310.01427
https://arxiv.org/abs/2402.06262
https://arxiv.org/abs/2305.14196
https://arxiv.org/abs/2305.14196
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://github.com/THUDM/LongBench
https://arxiv.org/abs/2406.13035
https://arxiv.org/abs/2309.17453
https://arxiv.org/abs/2402.18096
https://arxiv.org/abs/2402.18096
https://arxiv.org/abs/2406.15765
https://arxiv.org/abs/2204.08680
https://arxiv.org/abs/2404.16635
https://arxiv.org/abs/2405.03917
https://arxiv.org/abs/2405.03917
https://arxiv.org/abs/2306.14048
https://arxiv.org/abs/2306.14048

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zhenyu Zhang, Shiwei Liu, Runjin Chen, Bhavya Kailkhura, Beidi Chen, and Atlas Wang. Q-hitter:
A better token oracle for efficient llm inference via sparse-quantized kv cache. Proceedings of
Machine Learning and Systems, 6:381–394, 2024c.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi : Plug-and-play 2bit kv cache quantization with streaming asymmetric
quantization. 2023. doi: 10.13140/RG.2.2.28167.37282. URL https://rgdoi.net/10.
13140/RG.2.2.28167.37282.

13

https://rgdoi.net/10.13140/RG.2.2.28167.37282
https://rgdoi.net/10.13140/RG.2.2.28167.37282

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 THEORETICAL ANALYSIS

We present the formal and complete proofs of Lemma 4.1 and Lemma 4.2, which establish the
cosine similarity condition for any two key state embeddings prior to the RoPE operation, given that
their cosine similarity is equal to 1.

Lemma 4.1 (Formal version of Lemma 4.1). Consider two vectors km, kn ∈ R1×d. If their
cosine similarity is 1, then the cosine similarity of any 1× 2 vectors, km,j = [km,j , km,2j+1]

T and
kn,j = [kn,2j , kn,2j+1]

T , formed by the 2j-th and (2j+1)-th elements of km and kn, 0 ≤ j ≤ d−1
2 ,

is also equal to 1.

Proof. Since
similarity (km,kn) = 1, (9)

km and kn are collinear. Therefore,
km = αkn, (10)

where α is a scalar. It means
km,2j = αkn,2j , (11)

km,2j+1 = αkn,2j+1. (12)
So,

[km,2j , km,2j+1]
T
= α [kn,2j , kn,2j+1]

T
. (13)

As a result,
similarity (km,j ,kn,j) = 1 (14)

Lemma 4.2 (Formal version of Lemma 4.2). Consider integer j such that 0 ≤ j ≤ d−1
2 . Define the

vectors km,j and kn,j as km,j = [km,2j , km,2j+1]
T and kn,j = [kn,2j , kn,2j+1]

T , and define the
vectors k

′

m,j and k
′

n,j as k
′

m,j = km,j/e
imθj and k

′

n,j = kn,j/e
inθj . If similarity (km,j ,kn,j) =

1, we have:

cos (m− n) <
⟨k′

m,j ,k
′

n,j⟩
∥k′

m,j∥ · ∥k
′
n,j∥

≤ 1,

where ⟨k′

m,j ,k
′

n,j⟩ denotes the inner product of k
′

m,j and k
′

n,j , and ∥k′

m,j∥ and ∥k′

n,j∥ denote the
norms of k

′

m,j and k
′

n,j , respectively.

Proof. Since j is an integer obeying 0 ≤ j ≤ d−1
2 , so

−1 <
−2j

d
≤ 0. (15)

And b is set to be 10000 by default Su et al. (2023). Therefore,
0 < b

−2j
d ≤ 1, (16)

which means
0 < θj ≤ 1. (17)

Now, focus on the similarity between km,j and kn,j , and

⟨km,j ,kn,j⟩
∥km,j∥ · ∥kn,j∥

=
⟨k′

m,je
imθj ,k

′

n,je
inθj ⟩

∥k′
m,je

imθj∥ · ∥k′
n,je

inθj∥
. (18)

It is easy to derive that
∥k

′

m,je
imθj∥ = ∥k

′

m,j∥, (19)

∥k
′

n,je
inθj∥ = ∥k

′

n,j∥, (20)
since the exponential terms do not change the vectors’ magnitude.

Then, substitute the complex forms of k
′

m,j and k
′

n,j , k
′

m,j = k
′

m,2j + ik
′

m,2j+1 and k
′

n,j = k
′

n,2j +

ik
′

n,2j+1, respectively, back into ⟨k′

m,je
imθj ,k

′

n,je
inθj ⟩ and obtain

⟨k
′

m,je
imθj ,k

′

n,je
inθj ⟩ = ⟨

(
k

′

m,2j + ik
′

m,2j+1

)
eimθj ,

(
k

′

n,2j + ik
′

n,2j+1

)
einθj ⟩. (21)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

From Euler equation, Equation 21 can be further expanded as

⟨k
′

m,je
imθj ,k

′

n,je
inθj ⟩

=k
′

m,2jk
′

n,2j cos (mθj) cos (nθj) + k
′

m,2j+1k
′

n,2j+1 sin (mθj) sin (nθj)

− k
′

m,2jk
′

n,2j+1 cos (mθj) sin (nθj)− k
′

m,2j+1k
′

n,2j sin (mθj) cos (nθj)

+ k
′

m,2jk
′

n,2j sin (mθj) sin (nθj) + k
′

m,2j+1k
′

n,2j+1 cos (mθj) cos (nθj)

+ k
′

m,2jk
′

n,2j+1 sin (mθj) cos (nθj) + k
′

m,2j+1k
′

n,2j cos (mθj) sin (nθj)

=k
′

m,2jk
′

n,2j cos [(m− n)θj] + k
′

m,2j+1k
′

n,2j+1 cos [(m− n)θj]

+ k
′

m,2jk
′

n,2j+1 sin [(m− n)θj] + k
′

m,2j+1k
′

n,2j sin [(m− n)θj]. (22)

Substitute Equation 22 back into Equation 18, and

⟨km,j ,kn,j⟩
∥km,j∥ · ∥kn,j∥

=
k

′

m,2jk
′

n,2j + k
′

m,2j+1k
′

n,2j+1

∥k′
m,j∥ · ∥k

′
n,j∥

cos [(m− n)θj]

+
k

′

m,2jk
′

n,2j+1 − k
′

m,2j+1k
′

n,2j

∥k′
m,j∥ · ∥k

′
n,j∥

sin [(m− n)θj]

=
k

′

m,j · k
′

n,j

∥k′
m,j∥ · ∥k

′
n,j∥

cos [(m− n)θj] +
k

′

m,j × k
′

n,j

∥k′
m,j∥ · ∥k

′
n,j∥

sin [(m− n)θj]. (23)

Let ϕ be angle between k
′

m,j and k
′

n,j , then Equation 23 can be rewrite as

⟨km,j ,kn,j⟩
∥km,j∥ · ∥kn,j∥

=cosϕ cos [(m− n)θj] + sinϕ sin [(m− n)θj]

= cos [ϕ− (m− n)θj]. (24)

Since the similarity between km,j and kn,j nearly equals 1 as we assumed, it can be obtained that
ϕ = (m− n) θj . (25)

From Equation 17,
0 <ϕ ≤ m− n, if m > n, (26)

m− n ≤ϕ < 0, if m < n. (27)
As a result,

cos (m− n) <
⟨k′

m,j ,k
′

n,j⟩
∥k′

m,j∥ · ∥k
′
n,j∥

≤ 1. (28)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.2 HIGH COSINE SIMILARITY AMONG KEY STATES

Layer 0 Head 6 Layer 0 Head 14 Layer 0 Head 18 Layer 0 Head 24

Layer 4 Head 1 Layer 4 Head 8 Layer 4 Head 13 Layer 4 Head 24

Layer 8 Head 0 Layer 8 Head 10 Layer 8 Head 19 Layer 8 Head 24

Layer 12 Head 2 Layer 12 Head 4 Layer 12 Head 6 Layer 12 Head 11

Layer 16 Head 12 Layer 16 Head 15 Layer 16 Head 21 Layer 16 Head 27

Layer 20 Head 7 Layer 20 Head 8 Layer 20 Head 18 Layer 20 Head 20

Layer 24 Head 1 Layer 24 Head 3 Layer 24 Head 16 Layer 24 Head 17

Layer 28 Head 11 Layer 28 Head 23 Layer 28 Head 27 Layer 28 Head 28

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 6: Visualization on the cosine similarity map of key states across different layers and attention
heads in Llama2-7B-chat model when processing the input sequence with a total of 3506 tokens.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Layer 16 Head 24 Layer 20 Head 29 Layer 24 Head 18 Layer 32 Head 23

Layer 20 Head 16 Layer 8 Head 1 Layer 32 Head 39 Layer 16 Head 21

Layer 12 Head 27 Layer 4 Head 13 Layer 0 Head 15 Layer 8 Head 28

Layer 36 Head 35 Layer 24 Head 36 Layer 36 Head 29 Layer 12 Head 10

Layer 8 Head 34 Layer 28 Head 24 Layer 4 Head 2 Layer 12 Head 38

Layer 36 Head 3 Layer 24 Head 2 Layer 28 Head 29 Layer 0 Head 6

Layer 0 Head 1 Layer 32 Head 15 Layer 4 Head 5 Layer 32 Head 13

Layer 16 Head 22 Layer 8 Head 38 Layer 20 Head 7 Layer 36 Head 10

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 7: Visualization on the cosine similarity map of key states across different layers and attention
heads in Llama2-13B-chat model when processing the input sequence with a total of 3776 tokens.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Layer 0 Head 0 Layer 0 Head 2 Layer 0 Head 3 Layer 0 Head 5

Layer 4 Head 2 Layer 4 Head 3 Layer 4 Head 5 Layer 4 Head 7

Layer 8 Head 4 Layer 8 Head 5 Layer 8 Head 6 Layer 8 Head 7

Layer 12 Head 0 Layer 12 Head 2 Layer 12 Head 4 Layer 12 Head 6

Layer 16 Head 1 Layer 16 Head 3 Layer 16 Head 4 Layer 16 Head 5

Layer 20 Head 0 Layer 20 Head 1 Layer 20 Head 2 Layer 20 Head 4

Layer 24 Head 0 Layer 24 Head 2 Layer 24 Head 4 Layer 24 Head 6

Layer 28 Head 1 Layer 28 Head 4 Layer 28 Head 5 Layer 28 Head 6

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 8: Visualization on the cosine similarity map of key states across different layers and attention
heads in Mistral-7B-Instruct model when processing the input sequence with a total of 5001 tokens.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.3 STATIC KV CACHE SPARSITY

In section 4.2, we observe that the KV cache sparsity, resulting from the high similarity exhibited
by key states, is independent of the dataset and remains persistent at the model level. To further
illustrate this property, we also visualize the layer-wise compression ratios of Llama2-13B-chat and
Mistral-7B-Instruct obtained by our proposed merging set identification algorithm for some selected
tasks from LongBench, which is shown in Figure 9. We can observe that the static KV cache sparsity
property also holds true for these models, making it convenient for us to set the memory budget for
inference without significant adjustment.

0 10 20 30 40
Layer Index

30

35

40

45

50

55

60

Co
m

pr
es

si
on

 R
at

io
 (

%
)

Llama2-13B-chat

NarrativeQA
GovReport
TriviaQA
2WikiMQA

0 10 20 30
Layer Index

25

30

35

40

45

50

Co
m

pr
es

si
on

 R
at

io
 (

%
)

Mistral-7B-Instruct

NarrativeQA
GovReport
TriviaQA
2WikiMQA

Figure 9: The layer-wise compression ratios of Llama2-13B-chat and Mistral-7B-Instruct obtained
by our proposed merging set identification algorithm for different samples and different tasks.

A.4 ZEROSCROLLS BENCHMARK RESULTS

We provide the evaluation results of Llama2-7B-chat model on ZeroScrolls Benchmark with
KVMerger. From Table 6, we can spot that KVMerger achieves excellent performance compared
to H2O and CaM methods under the same KV cache budget scenarios, with some results even better
than the condition under full cache. This emphasize that KVMerger can effectively maintain the
long-context processing ability of LLMs with compressed KV cache.

Table 6: KVMerger for Llama2-7B-chat on selected ZeroScrolls datasets
cache budget Method gov report SummScreenFD QMSum SQuALITY Qasper NarrativeQA BookSumSort avg.

100% Full Cache 17.40 14.10 15.20 19.50 22.50 15.40 3.00 15.30
H2O 15.40 13.20 14.30 18.30 20.50 15.00 3.80 14.36
CaM 15.60 13.10 13.70 18.50 20.10 15.30 3.40 14.2450%

KVMerger 17.70 13.80 15.10 19.10 22.50 15.20 3.10 15.21
H2O 14.80 11.60 14.20 17.80 17.70 14.70 3.60 13.49
CaM 15.30 11.70 13.90 18.30 17.10 14.50 3.30 13.4435%

KVMerger 16.60 13.80 15.40 18.60 20.40 15.40 3.70 14.84

19

	Introduction
	Related Work
	Problem Formulation
	Observations
	KV cache similarity
	Persistent KV cache sparsity

	Proposed Adaptive KV Merging Algorithm
	Greedy Policy for Merging Set Identification
	Gaussian Kernel Weighted Merging

	Experiment
	Experimental Settings
	Experimental Results on Long-context Tasks
	Ablation Study

	Conclusion
	Appendix
	Theoretical Analysis
	High Cosine Similarity Among Key States
	Static KV Cache Sparsity
	ZeroScrolls Benchmark Results

