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ABSTRACT

Ribonucleic acids (RNAs) are essential biomolecules involved in gene regula-
tion and molecular recognition. Designing RNA molecules that can bind specific
protein targets is crucial for therapeutic applications but remains challenging
due to the structural flexibility of RNA and the laborious nature of experimen-
tal techniques. We propose RNA-EFM, a novel Energy-based Flow Matching
framework for protein-conditioned RNA sequence and structure co-design. RNA-
EFM integrates biophysical constraints, including the Lennard-Jones potential
and sequence-derived free energy, to generate low-energy and biologically plau-
sible RNA conformations. By incorporating an idempotent refinement strategy
for iterative structural correction, RNA-EFM consistently outperforms existing
baselines, achieving lower RMSD, higher lDDT, and superior sequence recovery
across multiple evaluation splits.

1 INTRODUCTION

Ribonucleic acids (RNAs) are critical biomolecules that exhibit diverse functional roles in biological
systems, including gene expression regulation, catalysis, and molecular binding. Their structural and
functional versatility has paved the way for applications such as synthetic riboswitches for dynamic
gene modulation and aptamers that target specific proteins (Dykstra et al., 2022; Thavarajah et al.,
2021; Nori & Jin, 2024). However, experimental approaches such as SELEX, a high-throughput RNA
selection technique, are often time-consuming and labor intensive, limiting their scalability for novel
RNA therapeutics (Gold, 2015). This necessitates the development of computational frameworks that
can efficiently design RNA sequences and structures to unlock their therapeutic potential (Sanchez de
Groot et al., 2019).

Recent advancements in generative modeling have significantly impacted RNA design. Early methods
for designing protein-binding RNAs focused on generating numerous candidate sequences followed
by structural filtering or molecular dynamics simulations (Kim et al., 2010; Zhou et al., 2015;
Buglak et al., 2020), which were computationally expensive and constrained by predefined structural
motifs (Nori & Jin, 2024). Classical RNA structure design techniques such as algorithmic folding
methods (Yesselman et al., 2019) have also been explored but lack scalability for complex sequence-
structure co-design tasks. Modern generative approaches using diffusion models such as MMDiff
(Morehead et al., 2023) have demonstrated improved performance for nucleic acid sequence-structure
generation but often struggle with conditional generation and longer RNA sequences. Flow matching
strategies, originally applied in protein structure design (Lipman et al., 2022; Bose et al., 2023),
have shown promise for structure co-design tasks by interpolating between data distributions in a
continuous manner. RNAFlow (Nori & Jin, 2024) builds on this by integrating an RNA inverse
folding model with the pre-trained RF2NA network (Baek et al., 2024) for simultaneous sequence and
structure generation. It models RNA conformational dynamics using inference trajectories, improving
performance over standard methods. However, challenges remain in balancing efficiency and the
accurate modeling of RNA’s dynamic structural flexibility, a critical factor in biological functionality
(Ganser et al., 2019).
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In this paper, we propose RNA-EFM, a novel framework for protein-conditioned RNA sequence-
structure co-design. Our major contributions include: (1). Protein-Conditioned RNA Sequence and
Structure Co-Design: RNA-EFM addresses the task of generating RNA sequences and structures
jointly while being conditioned on protein interactions, enabling the design of functional RNAs
tailored to specific protein targets. (2). Energy-Based Flow Matching Framework: We propose an
energy-based flow matching framework that combines flow matching with an iterative refinement
process based on the idempotent constraint, ensuring the generation of accurate RNA structures
that progressively align better with the target. (3). Incorporation of Biophysical Signals: To
further enhance structural quality and stability, we integrate biophysical constraints by adding the
Lennard-Jones potential and sequence-derived free energy, guiding the model toward lower-energy
RNA conformations while maintaining biological relevance. (4). State-of-the-Art Performance:
RNA-EFM consistently surpasses existing baselines in both structure and sequence generation tasks,
achieving lower RMSD, higher lDDT, and improved sequence recovery rates across multiple datasets.

2 METHODS

2.1 PROBLEM FORMULATION

RNA-EFM aims to generate RNA sequences and structures conditioned on protein backbone struc-
tures. Let the protein backbone atom structure be represented as P ∈ RLp×3×3, where Lp is the
number of residues, and each residue contains backbone atoms N , Cα, and C. The corresponding
protein sequence is p = {pi | i = 0, 1, . . . , Lp − 1}, where pi is a categorical token. The RNA
backbone structure is represented as R ∈ RLr×3×3, where Lr is the number of nucleotides, and each
nucleotide contains backbone atoms P , C ′

4, and N1/N9 (for pyrimidine and purine, respectively).
The RNA sequence is r = {ri | i = 0, 1, . . . , Lr − 1}, where ri is a nucleotide token. The task is to
predict the RNA sequence r and backbone structure R conditioned on the protein structure P and
sequence p.

2.2 OVERVIEW OF THE APPROACH

Our approach combines the principles of flow matching and energy-based refinement to generate
biologically plausible RNA structures (Figure 1). The flow matching objective aligns the predicted
structures with the target RNA backbone distribution, ensuring accurate geometric correspondence.
Additionally, an iterative refinement process integrates biophysical energy constraints, leveraging a
combination of sequence-derived free energy and atomic-level interactions. This approach allows the
model to design RNA structures that are not only geometrically aligned with experimental targets but
also energetically stable and biologically meaningful.

2.3 FLOW MATCHING OBJECTIVE

The RNA-EFM framework adopts flow matching to transform a prior distribution p0(R) into a target
distribution p1(R), where R represents RNA backbone structures following (Nori & Jin, 2024). This
transformation is achieved by parameterizing the flow as a sequence of time-dependent conditional
probability distributions pt(Rt|R1), where t ∈ [0, 1] denotes the interpolation step.

The intermediate RNA backbone structure Rt at any time step t is obtained through linear inter-
polation between a sample from the prior distribution R0 ∼ p0(R) and a sample from the target
distribution R1 ∼ p1(R), given by Rt|R1 = (1 − t)R0 + tR1, where t ∼ U(0, 1) is uniformly
sampled. This interpolation constructs a continuous path from p0 to p1 that the model learns to
approximate. To account for the geometric properties of RNA backbone structures, we utilize the
Kabsch algorithm to align the prior sample R0 with the target structure R1. The Kabsch algorithm
minimizes the root-mean-square deviation (RMSD) between two sets of points, ensuring invari-
ance to rigid transformations such as rotation and translation. The aligned structure is given by
R0

∗ = K(R0,R1), where K(·, ·) denotes the Kabsch alignment operation. The flow matching
objective aims to minimize the discrepancy between the true and predicted vector fields that govern
the transformation from p0 to p1. The true vector field vt(Rt|R1) is defined as:

vt(Rt|R1) =
R1 −Rt

1− t
, (1)
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Figure 1: Overview of the RNA-EFM architecture. The model takes a protein backbone and a noisy
RNA backbone as inputs. The inverse folding denoiser predicts the RNA sequence and this predicted
sequence is passed to the pretrained RF2NA module to predict the RNA backbone structure. The
predicted RNA backbone is refined iteratively by minimizing the Mean Squared Error (MSE) loss
and incorporating the Lennard-Jones potential for structural stability. The predicted sequence is
optimized using a combination of sequence derived free energy and cross-entropy loss, ensuring
biophysically plausible and structurally accurate RNA generation.

while the predicted vector field, parameterized by the neural network R̂1(Rt; θ) which predicts RNA
backbone from a noisy intermediate backbone, is expressed as:

v̂t(Rt; θ) =
R̂1(Rt; θ)−Rt

1− t
. (2)

The flow matching loss LFM is formulated as the expected squared difference between these vector
fields:

LFM = ER1∼p1,Rt∼pt

[
∥v̂t(Rt; θ)− vt(Rt|R1)∥2

]
. (3)

Substituting equation 1 and equation 2 into equation 3, we derive:

LFM = ER1,Rt

[
1

(1− t)2
∥R̂1(Rt; θ)−R1∥2

]
. (4)

Finally, incorporating the Kabsch alignment to ensure invariance to rotational and translational
transformations, the objective becomes:

LFM = ER1,Rt

[
1

(1− t)2
∥R̂1(Rt; θ)−K(R1,Rt)∥2

]
. (5)

After marginalizing over t, the final loss reduces to the Mean Squared Error (MSE) between the
aligned predicted and ground truth backbone structures:

LFM = MSE(R̂1,K(R1, R̂1)). (6)

This formulation ensures that the RNA backbone predictions align accurately with the target structures
while preserving geometric invariance.

3 ENERGY-BASED IDEMPOTENT FLOW MATCHING IN RNA-EFM

To improve the biological plausibility of predicted RNA structures, RNA-EFM incorporates an energy-
based refinement framework following (Zhou et al.) combining flow matching with biophysical
constraints derived from RNA structure and sequence. This ensures that predicted structures align
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both geometrically and energetically with the target. The core idea is to iteratively refine the predicted
RNA backbone structures by minimizing an energy function that penalizes deviations from the target
structure while incorporating physical energy constraints for stability.

The refinement is governed by the conditional probability distribution:

p(R̂1|R1) ∝ exp

(
− 1

2σ2
∥R̂1 −R1∥2 − αU(R̂1, r)

)
, (7)

where R̂1 is the predicted RNA backbone structure, R1 is the target structure, and U(R̂1, r) repre-
sents the physical energy term combining the Lennard-Jones potential and the free energy computed
from the predicted sequence using Vienna RNAfold (Lorenz et al., 2011). The Lennard-Jones
potential is defined as:

ULJ(r) = 4ϵ

[(σ
r

)12

−
(σ
r

)6
]
, (8)

where r is the distance between two atoms, σ is the equilibrium distance where attractive and repulsive
forces balance, and ϵ represents the depth of the potential well, determining interaction strength.

Taking the negative logarithm of the probability distribution in equation 7 results in the energy
function:

E(R̂1) =
1

2σ2
∥R̂1 −R1∥2 + αU(R̂1, r), (9)

which is minimized during refinement. The gradient, used for iterative refinement, is given by:

∇R̂1
E(R̂1) =

1

σ2
(R̂1 −R1) + α∇R̂1

U(R̂1, r). (10)

The refinement process is guided by the idempotent flow matching property, ensuring stabilization of
predicted structures through repeated refinement until convergence. Mathematically, it is expressed
as:

R̂1 = R̂1(R̂1; θ), (11)
indicating the predictor converges to a fixed point on the manifold of stable RNA structures when
applied iteratively. The training objective incorporates both flow matching and biophysical energy
constraints, defined as:

LID = Et∼U(0,1)ERt∼pt

[
∥R̂1(R̂1; θ)−R1∥2 + βU(R̂1, r)

]
, (12)

where the first term minimizes deviation from the target structure while the second term penalizes high-
energy configurations. Minimizing this objective ensures RNA-EFM generates both geometrically
accurate and energetically favorable RNA structures. See Appendix A for detailed training process.

4 EXPERIMENTS

4.1 DATASET

We use the filtered PDBBind dataset for training and evaluation. Protein-RNA complexes are filtered
to ensure at least one protein Cα atom and RNA C’4 atom are within 7 Å, following (Liu et al.,
2017). RNA chains are restricted to lengths between 6 and 96, and protein chains are cropped to a
contiguous length of 50. All experiments were conducted on two splits- sequence similarity split and
RF2NA (RoseTTAFold2NA (Baek et al., 2024)) split. For the sequence similarity split, the dataset
includes 1015 train, 105 validation, and 72 test complexes. The RF2NA split comprises 1059 train,
117 validation, and 16 test complexes.

4.2 BASELINES

To evaluate RNA-EFM, we compare it against multiple baselines for RNA structure and sequence
generation. For structure generation, we consider Conditional MMDiff (Morehead et al., 2023),
an SE(3)-equivariant diffusion model, and RNAFlow (Nori & Jin, 2024), a flow matching-based
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framework, along with its variants. RNAFlow-Base, initializes structure generation using RF2NA by
folding a mock RNA sequence composed entirely of adenines and iteratively refining the predicted
conformation, while RNAFlow-Traj conditions on multiple RNA backbone conformations. RNAFlow-
Base + Rescore and RNAFlow-Traj + Rescore further enhance selection through a rescoring model.
For sequence generation, we include a Random baseline, which selects nucleotides uniformly, an
LSTM-based model that autoregressively predicts RNA sequences (Im et al., 2019), Conditional
MMDiff and RNAFlow along with its variants.

5 RESULTS

Metrics. We evaluate structure generation using RMSD (aligned with the Kabsch algorithm) and
lDDT, both capturing structural accuracy. For sequence generation, we report recovery rate, the
percentage of correctly predicted nucleotides.

Table 1: RNA structure generation results. We report Mean ± SEM for RMSD and IDDT metrics.
Method RF2NA Pre-Training Split Sequence Similarity Split

RMSD IDDT RMSD IDDT

Conditional MMDiff 14.82 ± 1.01 0.34 ± 0.02 17.42 ± 0.86 0.38 ± 0.01
RNAFlow-Base 12.85 ± 0.63 0.51 ± 0.01 14.77 ± 0.34 0.57 ± 0.01
RNAFlow-Traj 13.12 ± 0.64 0.52 ± 0.01 15.11 ± 0.33 0.57 ± 0.00
RNAFlow-Base + Rescore 10.61 ± 1.73 0.53 ± 0.03 14.60 ± 1.05 0.56 ± 0.02
RNAFlow-Traj + Rescore 15.30 ± 1.89 0.52 ± 0.03 15.31 ± 0.93 0.56 ± 0.02
RNA-EFM 10.00 ± 0.50 0.60 ± 0.01 13.00 ± 0.40 0.60 ± 0.01

Table 2: RNA sequence generation results. We report Mean ± SEM for native sequence recovery.
Method RF2NA Pre-Training Split Sequence Similarity Split
Random 0.25 ± 0.00 0.25 ± 0.00
LSTM 0.27 ± 0.01 0.24 ± 0.01
Conditional MMDiff 0.24 ± 0.02 0.22 ± 0.02
RNAFlow-Base 0.30 ± 0.02 0.30 ± 0.01
RNAFlow-Traj 0.31 ± 0.01 0.28 ± 0.01
RNAFlow-Base + Rescore 0.33 ± 0.02 0.32 ± 0.03
RNAFlow-Traj + Rescore 0.37 ± 0.05 0.29 ± 0.02
RNA-EFM 0.40 ± 0.03 0.35 ± 0.02

As shown in Tables 1 and 2, RNA-EFM consistently outperforms all baselines on both structure
and sequence generation tasks. For structure generation, RNA-EFM achieves a 5.75% reduction
in RMSD and a 13.21% improvement in lDDT on the RF2NA split compared to the best baseline.
On the sequence similarity split, RNA-EFM demonstrates a 10.96% reduction in RMSD and a
5.26% improvement in lDDT. For sequence recovery, RNA-EFM shows an 8.11% improvement
on the RF2NA split and a 9.37% improvement on the sequence similarity split compared to the
best-performing RNAFlow baseline. These results validate the effectiveness of RNA-EFM’s energy-
based refinement and idempotent flow matching framework in generating accurate and biologically
plausible RNA structures and sequences.

6 CONCLUSION

In this work, we presented RNA-EFM, a framework for RNA sequence and structure generation con-
ditioned on protein interactions. By integrating biophysical energy-based refinement with idempotent
flow matching, RNA-EFM ensures the generation of geometrically accurate, energetically stable, and
biologically relevant RNA structures. Our results show that RNA-EFM significantly outperforms
baselines in both structure and sequence generation tasks, demonstrating its potential to advance the
design of functional RNAs tailored to protein targets.
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APPENDIX

A TRAINING AND INFERENCE IN RNA-EFM

The idempotent objective in RNA-EFM facilitates iterative refinement of the predicted RNA back-
bone structures, ensuring convergence to stable and biologically plausible configurations. While
theoretically, the structure predictor R̂1(Rt; θ) could refine the predicted structure an infinite number
of times, excessive iterations would lead to increased computational overhead during inference. To
address this, we restrict the refinement process to a single step per iteration during training and
inference, balancing computational efficiency with refinement quality.

In our implementation, following Zhou et al., the refinement framework employs a predictor-refiner
strategy. At each step, the structure predictor generates an initial prediction R̂1, which is then refined
to align with the target structure R1. This approach aligns well with the idempotent property, ensuring
that further refinements stabilize the predicted structure. During training, comprising 50% of the
total iterations, the structure predictor is optimized using the flow matching objective. This phase
ensures that the predictor aligns the predicted backbone structures with the target structures. In the
subsequent 50% of training, the refinement process explicitly incorporates energy based biophysical
constraints, guided by the idempotent loss function defined in equation 12. However, following Nori
& Jin (2024), we employ Noise-to-seq + RF2NA (B) as our predictor where Noise-to-seq predicts
the sequence and pre-trained RF2NA (RoseTTAFold2NA) predicts the backbone. We also add cross
entropy loss between predicted and true nucleotides. We follow the similar inference algorithm like
Nori & Jin (2024). At inference time, the structure predictor outputs refined structures that conform
to both the target geometry and energetically favorable configurations, as defined by the energy-based
refinement framework. Algorithm 1 describes the training process.

B NOISE-TO-SEQ MODULE

We describe the Noise-to-Seq from Nori & Jin (2024) for completeness. Noise-to-Seq is a graph-
based RNA inverse folding model, to predict RNA sequences autoregressively from noised structures.
The model uses an encoder-decoder architecture where the encoder processes a protein-RNA complex
and the decoder predicts a probability distribution over nucleotides for sequence generation.

Graph Representation: Each 3D backbone point cloud (P⃗ , R⃗) is represented as a graph G = (V, E).
Nodes V include amino acids at the Cα coordinates of the protein (P⃗ ) and nucleotides at the C ′
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coordinates of the RNA (R⃗). For each node x⃗i, edges E are drawn to its 10 nearest neighbors within
the same graph and to the 5 nearest neighbors across graphs. Edge features are defined by the
Euclidean distance:

Ei,j = ∥x⃗i − x⃗j∥2. (13)

Node and Edge Features: Node features include unit vectors to neighboring nodes, residue type
(nucleotide or amino acid), and local backbone orientation. Edge features include magnitude and
directional information, as well as indicators for cross-graph edges.

Model Architecture: The encoder applies Geometric Vector Perceptrons (GVPs) to both node and
edge features vi and Ei,j :

hvi = gv(LayerNorm(vi)) (14)
heij = ge(LayerNorm(Eij)) (15)

where gv and ge denote the GVP-based embeddings. Node embeddings are updated using a sequence
of three message-passing GVP layers followed by a residual connection:

mvi =
1

|N (i)|
∑

j∈N (i)

gMSG(hvi , hvj
, heij ) (16)

h′
vi = LayerNorm(hvi + Dropout(mvi)). (17)

where gMSG denotes a sequence of GVP layers and N (i) is the set of neighbors for node i. During
sequence generation, an additional timestep embedding is included. The decoder autoregressively
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predicts nucleotides using a softmax layer, and the model is supervised using a cross-entropy loss
function comparing the predicted and true nucleotide classes:

Lseq = −
∑
i

yi log(ŷi) (18)

where yi is the true nucleotide label and ŷi is the predicted probability for position i.

C ALGORITHM

Algorithm 1 RNA-EFM Training Algorithm
Require: Prior distribution p0, Target distribution p1, Maximum refinement steps Kmax, Weighting

parameter β
0: while Training do
0: Sample prior RNA backbone R0 ∼ N (0, I3)

Lr

0: Sample target RNA sequence and backbone (r, R1) ∼ p1
0: Align R0 with R1 using Kabsch to obtain R∗

0
0: Sample timestep t ∼ Uniform[0, 1]
0: Compute interpolation: Rt ← t ·R1 + (1− t) ·R∗

0
0: Predict RNA sequence and structure:
0: (r̂, R̂1)← R̂1(Rt; θ)
0: Sample decision variable m ∼ Uniform[0, 1]
0: if m ≤ 0.5 then
0: Sample refinement steps k ∼ randint(1,Kmax)

0: Initialize refinement list: R̂list
1 ← ∅

0: for i = 0 to k do
0: R̂1 ← R̂1(R̂1; θ)

0: R̂list
1 ← R̂list

1 ∪ R̂1

0: end for
0: Compute refinement loss:
0: LID ← 1

|R̂list
1 |

∑
R̂1∈R̂list

1
∥R̂1 −R1∥2

+βU(R̂1, r̂) + CrossEntropy(r, r̂)
0: else
0: Compute flow matching loss:
0: LFM ← ∥R̂1 −R1∥2

+CrossEntropy(r, r̂)
0: end if
0: Update model parameters θ
0: end while
0: return Structure predictor R̂1(Rt; θ) =0
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