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ABSTRACT

The Platonic Representation Hypothesis posits that behind different modalities of
data (what we sense or detect), there exists a universal, modality-independent rep-
resentation of reality. Inspired by this, we treat each neuron as a system, where we
can detect the neuron’s multi-segment activity data under different peripheral con-
ditions. We believe that, similar to the Platonic idea, there exists a time-invariant
representation behind the different segments of the same neuron, which reflects
the intrinsic properties of the neuron’s system. Intrinsic properties include the
molecular profiles, location within brain regions and morphological structure, etc.
The optimization objective for obtaining the intrinsic representation of neurons
should satisfy two criteria: (I) different recording segment from the same neu-
ron should have a higher similarity than segments from different neurons; (II) the
representations should generalize well to out-of-domain data. To achieve this, we
propose the NeurPIR (Neuron Platonic Intrinsic Representation) framework, em-
ploying contrastive learning and treating different segments from the same neuron
as positive pairs and segments from different neurons as negative pairs. During
the implementation, we chose the VICReg, which uses only positive pairs for
optimization but indirectly separates dissimilar samples via regularization terms.
To validate the efficacy of our method, we first applied it to simulated neuron
population dynamics data generated using the Izhikevich model. We success-
fully confirmed that our approach captures the type of each neuron as defined by
preset hyperparameters. We then applied our method to two real-world neuron
dynamics datasets, including spatial transcriptomics-derived neuron type annota-
tions and the location within brain regions where each neuron is located. The
learned representations from our model not only predict neuron type and location
but also show robustness when tested on out-of-domain data (unseen animals).
This demonstrates the potential of our approach in advancing the understanding
of neuronal systems and offers valuable insights for future neuroscience research.

1 INTRODUCTION

Unraveling the intricacies of neuronal activity and the information encoded within neural dynamics
stands as a monumental challenge in the field of neuroscience. Plato’s cave allegory and Platonic
Representation Hypothesis suggests the existence of a universal, modality-independent representa-
tion of world that transcends the modalities through which we perceive it. Drawing inspiration from
this philosophical concept, we propose a novel perspective on neuronal activity, treating each neu-
ron as a distinct ’world’ capable of generating multi-segment activity data under various peripheral
conditions, the multi-segment activity data of individual neuron as what we perceive.

Our approach NeurPIR is predicated on the belief that, akin to the Platonic ideal, there exists a time-
invariant representation that underlies the diverse segments of activity within the same neuron. This
representation is posited to encapsulate the intrinsic properties of the neuron’s system, providing a
stable and consistent framework for understanding neuronal function.

To extract this intrinsic representation, we have formulated an optimization objective that adheres
to two criteria. Firstly, segments of activity from the same neuron should exhibit a higher degree of
similarity compared to segments from different neurons. This criterion ensures that our method can
effectively distinguish between the unique signatures of individual neurons. Secondly, the represen-
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tations derived from our method should possess a high degree of generalizability, extending their
applicability to out-of-domain data, which includes neuronal activity data from different species or
experimental conditions that were not part of the training set.

To achieve these objectives, we have employed contrastive learning, a powerful technique in ma-
chine learning that involves treating segments from the same neuron as positive pairs and seg-
ments from different neurons as negative pairs. This method leverages the contrast between sim-
ilar and dissimilar samples to learn an effective representation. In our implementation, we have
chosen VICReg, a variant of contrastive learning that optimizes solely on positive pairs but incorpo-
rates regularization terms to indirectly separate dissimilar samples. This approach ensures that the
learned representations are not only discriminative but also robust to variations in the data. How-
ever, achieving the above requires the following two innovative designs for neuron data: Firstly, we
use CEBRASchneider et al. (2023b) to integrate the single neuronal peripheral information (such as
activity of neighboring neuronal populations and behavioral data for each segment of a single neu-
ron). This process encodes the peripheral information associated with each segment of an individual
neuron. CEBRA, which has been widely demonstrated to provide high-performance learnable la-
tent embeddings for joint representation of surrounding neuronal data and external information, but
before, it was applied to groups of neurons instead of considering it from the perspective of a single
neuron. Secondly, aims to output a consistent representation of a neuron’s identity across varying
experimental conditions, utilizing these conditions as positive instances in a contrastive learning
paradigm. While multi-session data can readily supply such instances, the reality is that many neu-
rons are recorded in a single session only. To address this issue, we design a data augmentation
method specific to neuronal data. This method involves extracting segments of varying lengths from
the same session to serve as positive sample pairs. In this way, the learned representation can capture
intrinsic properties across different time scales.

To rigorously assess the effectiveness of the representations learned by NeurPIR, we model neuron
population dynamic data using the Izhikevich model Izhikevich (2003), where different neurons are
assigned distinct hyperparameters representing different firing modes as intrinsic properties. These
neurons are randomly connected to form a network, and after stimulating the network, we obtain
neuron population data. The representations learned by through self-supervised learning on this
neuron population data have been confirmed to contain hyperparameter information. In recognition
of the noise and complexity in real-world neuronal datasets, we turn to a publicly available dataset
of mouse brain neuron populations. These neurons, after recording dynamic activities, are separated
and labeled with cell type annotations using transcriptomics. The representations learned by on
this dataset can be efficiently utilized for downstream cell type prediction tasks. In addition, using
another real public dataset containing ten mice and 39 datasets, we demonstrate that the intrinsic
information contained in the representation obtained by is consistent across animals, and that this
representation has strong cross-domain capability when performing downstream tasks.

2 RELATED WORK

Single Neuron Models: Single neuron models are essential in understanding the fundamental prop-
erties of neuronal dynamics and behavior. The Leaky Integrate-and-Fire model Liu & Wang (2001),
developed in the 1950s, is a minimalistic model that simulates the integration of synaptic inputs and
the leakage of membrane potential over time. The Hodgkin-Huxley model Nelson & Rinzel (1995),
introduced in 1952, provides a detailed description of action potential generation using complex
equations to represent ionic currents across the neuronal membrane, offering deep insights into neu-
ronal excitability. The FitzHugh-Nagumo model Izhikevich & FitzHugh (2006), proposed in 1961,
simplifies the Hodgkin-Huxley model to focus on excitability and action potential dynamics while
reducing computational complexity. Finally, the Izhikevich model, developed in 2003, combines
simplicity with versatility, effectively capturing a wide range of neuronal firing patterns and bal-
ancing computational efficiency with biological realism. The hyperparameters set for these models
can be viewed as prior assumptions about the inherent properties of the neurons. In the subsequent
sections, we select the Izhikevich model to generate a synthetic dataset for testing , using the set
hyperparameters as the true labels.

Neural Latent Representation Learning: Neural Latent Representation Learning has been piv-
otal in transforming high-dimensional neuronal data into lower-dimensional embeddings that en-
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capsulate instantaneous information Bengio et al. (2013). A remarkable impact has been made
in neuroscience —from the linear dimensionality reduction techniques such as Principal Compo-
nent Analysis (PCA) Maćkiewicz & Ratajczak (1993)—to the non-linear visualization methods like
Uniform Manifold Approximation and Projection (UMAP) McInnes et al. (2018) and t-Distributed
Stochastic Neighbor Embedding (t-SNE) Kobak & Berens (2019)—and most recently, to the ad-
vanced, data-driven deep learning strategies. The focus was first on reducing the dimensionality
of neuronal data alone. It later expanded to include joint dimensionality reduction with behavioral
information and external stimuli (e.g., pi-VAE Prakash (2024)). CEBRA represents a culmination
of these advancements, integrating various techniques into a unified framework. CEBRA is used in
this study to integrate the stimuli information experienced by each neuron as input for . Neuprint is a
method used to extract invariant information from neurons Mi et al. (2023); however, it still adheres
to traditional neuron modeling approaches, which can only implicitly represent neurons. This results
in challenging training processes and suboptimal representation performance.

Contrastive Learning for Voice Representations: The basic approach of the solution presented
in this paper draws inspiration from similar tasks, such as extracting inherent representations of
speakers from voice data Torres et al. (2024). This type of work has been implemented on song-
singer datasets, where contrastive learning is used to bring together the voices of the same singer
while pushing apart the voices of different singers. However, while we borrowed the underlying
idea, the specific methods had to be uniquely designed to accommodate the characteristics of neural
data.

3 METHOD

3.1 GOAL

Our goal is to develop a method for learning intrinsic neuron representations on neuron population
data. These representations should fulfill three key criteria: (I) Neurons with similar functional
roles should exhibit higher similarity in their representations compared to those with different roles;
(II) The learned representations should be robust to variations in neuronal activity patterns due to
different stimuli or environmental conditions; and (III) The representations should be adaptable and
generalize effectively to new and unseen neuronal activity patterns.

3.2 ARCHITECHTURE

The ideal embedding space for neuron representations should cluster recording segments of the
same neuron while also ensuring semantic consistency by placing similar neurons close to each other
within the space. In line with the criteria outlined in Section 3.1, We conducted advanced contrastive
learning loss functions, VICReg Bardes et al. (2021). We also carefully designed the data sampling
methods to generate multi-segments activity data for each neuron for training purposes.

Data sampling: Without loss of generality, we take bi-segment data as an example. Consider two
scenarios: 1) If a neuron has recordings from multiple sessions, we randomly extract two segments
(Xseg, X

′
seg) from different sessions. 2) If a neuron has recordings from only a single session, we

randomly extract two non-overlapping segments (Xseg, X
′
seg) from that session. We repeat this

process B times for a batch size of B, obtaining a positive pair batch (X
(1)
seg, X

(2)
seg).

Model: We should integrate surrounding information into each segment. In neurobiology, the stim-
ulation received by the neuron corresponding to a segment (Xst), the animal’s behavior at the corre-
sponding time (Xbe), and the session information (Xse) are all the surrounding information (SI) of
this segment. CEBRA is a self-supervised learning algorithm designed to obtain interpretable and
consistent embeddings of high-dimensional recordings using auxiliary variables. In simple terms,
it serves as an encoder for the dynamic activity information of neuronal populations. Its advantage
lies in its ability to encode both neuronal activity data (N*T) and corresponding auxiliary variables,
such as behavior and external stimuli (M*T), into a lower-dimensional representation (D*T), where
D represents the latent space dimensions. In CEBRA, D does not correspond to individual neurons,
but rather provides a dimensionality reduction method that combines high-dimensional temporal
activity data of neuronal populations with corresponding auxiliary variable information, aiming to
uncover the relationships between neuronal activity and these variables. Our work focuses on ob-
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Figure 1: Optimization objective for obtaining intrinsic representations of neurons as follows:
clips(segments) from the same neuron should have a higher average similarity than clips from dif-
ferent neurons. Figure 1 illustrates how this objective can be achieved using a contrastive learning
approach, where different recording segments from the same neuron are treated as positive pairs
and segments from different neurons are treated as negative pairs. Each neuron is considered sep-
arately, and the Stimulus, Behavior and Session treated as surrounding information(SI), which acts
as auxiliary variables. The surrounding information for each neuron is processed and encoded using
CEBRA.

taining time-invariant representations for individual neurons. We cleverly utilize CEBRA from a
different perspective as a preprocessing step for our input data. From the viewpoint of individual
neurons, we use CEBRA to integrate the single neuronal peripheral information (such as activity of
neighboring neuronal populations and behavioral data) for each segment of a single neuron.

Xsi = CEBRA(Xst, Xbe, Xse) (1)

We then denote the pair (Xsi, Xseg)for the same time as X in the following sections. The encoder
G(·) maps the extracted input X into a latent representation H ′, which is then aggregated into time-
invariant feature embeddings H using adaptive average pooling. These embeddings H are further
mapped into a lower-dimensional space Z by a projection layer P (·). The full model F (·) combines
feature extraction, encoding, and projection. During training, F (X) produces the projections Z.
After training, the projection layer is removed, retaining only the embeddings H . The similarity
between embeddings is measured using cosine similarity.

Contrastive Learning - VICReg: VICReg aims to enhance the quality of learned embeddings by
incorporating three types of losses: variance loss, invariance loss, and covariance loss.
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The invariance loss, ensures that embeddings of segments from the same neuron are close:

Linvar(Z
(1), Z(2)) =

1

N

∑
i

∥∥∥Z(1)
i − Z

(2)
i

∥∥∥2 , (2)

The variance loss regularizes the standard deviation of the embeddings to be near a target value µ,
which helps prevent embedding dimensions from becoming non-informative. Given dj(z) ∈ RB , a
vector of batch values at dimension j, the variance loss is defined as:

Lvar(z) =
1

D

D∑
j=1

max (0, µ− S (dj(z), ϵ)) , (3)

where D represents the number of dimensions in z, and S denotes the regularized standard deviation,
S(x, ϵ) =

√
Var(x) + ϵ.

The covariance loss promotes orthogonality among embedding dimensions by decorrelating them:

Lcov(z) =
1

Dz

∑
i ̸=j

(C(z))2i,j , (4)

where C(z) = 1
N−1

∑N
i=1 (zi − z̄) (zi − z̄)

T is the covariance matrix of z, and z̄ = 1
N

∑N
i=1 zi.

4 EXPERIMENTS

4.1 DATA

Simulated Data: Since the neuron intrinsic property is hardly available in vivo neuronal recordings,
we applied to synthetic data where we can access the ground-truth intrinsic property. To make the
synthetic data exhibit dynamics similar to that of real neurons, we simulated the data following the
Izhikevich model. The Izhikevich model is a spiking neuron model that combines biological realism
with computational efficiency. It is designed to capture the rich dynamics of real neurons while
remaining computationally simple. The model is defined by the following differential equations:

dV

dt
= 0.04V 2 + 5V + 140− u+ I, (5)

du

dt
= a(bV − u), (6)

where V is the membrane potential of the neuron, u is a recovery variable, I is the input current,
and a, b, and c are hyperparameters. The model also includes a spike-reset mechanism:

if V ≥ 30 mV, then
{
V ← c

u← u+ d
(7)

a , b , c and d can be regarded as intrinsic properties of each neuron.

Real Data - Bugeon: We utilized a rare, real-world multimodal dataset Bugeon et al. (2022) to test
, which comprises two main components: 1) in vivo long-term recordings of multiple neurons in the
mouse primary visual cortex using two-photon imaging technology, and 2) spatial transcriptomics
of ex vivo slices from the recorded brain tissue to measure the expression levels of 72 selected
genes in these neurons. Based on gene expression levels, neurons were assigned two main types of
labels: (i) excitatory and inhibitory classification, and (ii) subclass labels (Lamp5, Pvalb, Vip, Sncg,
and Sst) for some inhibitory neurons. This dataset contains recordings from four mice (Mouse
A, B, C, and D). Mouse A has data from 6 sessions, Mouse B from 3 sessions, Mouse C from 5
sessions, and Mouse D from 3 sessions. During each session, the mice were exposed to three types
of visual stimuli: Blank, Drifting Gratings, and Natural Scenes. A total of 9,278 unique neurons
were recorded in the dataset.

Real Data - Steinmetz: The Steinmetz dataset comprises 39 Neuropixels recordings, capturing
data from 400 to 700 neurons across various regions of the mouse brain of 10 mice during a vi-
sual behavior task Steinmetz et al. (2019). This dataset is excellent for exploratory analyses and is
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well-supported by extensive tutorial resources 1, alongside a wealth of experimental and behavioral
variables included within.

4.2 EVALUATION

Evaluation on Simulated Data: The process is divided into two steps: (i) Using , perform self-
supervised contrastive learning on the dynamic data of all neurons to obtain a representation for each
neuron. (ii) Employ a 5-fold cross-validation approach to use these neuron representations as input
to a classifier for predicting the pre-defined neuron type labels from the simulation.

Evaluation on Real Data - Bugeon: The process is divided into three steps: (i) perform self-
supervised contrastive learning on the dynamic data of all neurons from four mouse in the real
dataset to obtain a representation for each neuron; (ii) Based on neurobiological prior knowledge
and spatial transcriptomic gene expression information, assign cell type labels to each neuron. The
labels fall into two categories: (a) excitatory and inhibitory, and (b) Lamp5, Pvalb, Vip, Sncg, and
Sst; (iii) Implement a 4-fold (with the folds based on the identity of the mice) cross-validation
approach where the neuron representations are used as input to a classifier to predict the neuron’s
type labels for both categories (a) and (b).

Out-of-Domain Evaluation - Steinmetz dataset: The process is divided into three steps: (i)
Perform self-supervised contrastive learning on the dynamic data of all neurons from all mice in the
real dataset to obtain a representation for each neuron. (ii): As before, assign location within brain
regions labels to the neurons. (iii): Implement a 10-fold (with the folds based on the identity of the
mice) cross-validation approach where the neuron representations are used as input to a classifier
to predict the neuron’s location. It is worth noting that the location of the brain region where the
neuron is located is an external property, which itself cannot be regarded as a intrinsic property, but
we assume that this external property is constant in the short experimental time range, indirectly as
an intrinsic property of the neuron.

4.3 COMPARISON OF METHODS

LOLCAT: This methodSchneider et al. (2023a) follows a supervised learning paradigm. It directly
uses activity data from a subset of neurons to train a classifier to predict neuron labels, and then
validates on the remaining neurons. Consequently, the representations learned in the intermediate
layers of the model contain only label information and do not fully capture the intrinsic properties
of the neurons.

PCA: This method employs a self-supervised approach. Principal Component Analysis (PCA) re-
duces the dimensionality of each neuron’s activity data by projecting it onto a lower-dimensional
space, thereby providing a representation based on the most significant components of the activity
data.

UMAP: Similar to PCA, Uniform Manifold Approximation and Projection (UMAP) is a self-
supervised method that reduces the dimensionality of each neuron’s activity data. UMAP preserves
local and global structures in the data to create a meaningful lower-dimensional representation.

NeurPrint: This self-supervised method involves implicit representation learning through back-
propagation. Due to its implicit nature, the model can be difficult to converge and may require
substantial training data and time to achieve effective results, and the representations may not align
well with the Platonic Representation Hypothesis.

5 RESULTS

5.1 RESULTS ON SIMULATED DATA

In order to prove that representations learned only from neuronal activity contain invariant proper-
ties information, we designed to verify with the help of simulation data, we set the time-invariant
hyperparameters of neurons as their intrinsic properties based on the Izhikevich model , and then

1https://www.youtube.com/watch?v=WXn4-FpVaOo
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Figure 2: a: the hyperparameters of five firing modes of neurons when simulating data; b: the neuron
firing: the index of regular spiking (RS) is 0-400, the index of intrinsically bursting (IB) is 400-800,
the index of chattering (CH) is 800-1200, the index of fast spiking (FS) is 1200-1600, the index of
low-threshold spiking (LTS) is 1600-2000; c: the results of the visualization of neuronal activity
data using UMAP.

gave stimulation to obtain activity data (Figure 2). Our model uses only the activity data to perform
time-invariant representations of neurons, and validates them by demonstrating that representations
can be used to distinguish predefined intrinsic hyperparameters. We evaluate the effectiveness of
our proposed method, , for intrinsic hyperparameters (five categories, representing five firing modes
of neurons) classification using the obtained intrinsic representation, comparing it with four differ-
ent algorithms: PCA, UMAP, NeuPRINT, and LOLCAT. The classification performance is assessed
across multiple neuron types using three common metrics: Precision, Recall, and F1-score. Higher
values of these metrics indicate better classification performance.

From the results presented in the Table 5.1, we observe that: i) consistently achieves the highest per-
formance across most neuron firing modes, especially in the Regular Spiking (RS) and fast spiking
(FS) categories, where it significantly outperforms all baselines with F1-scores of 0.884 and 0.881,
respectively; ii) Although some baselines, such as LOLCAT and NeuPRINT, demonstrate competi-
tive results in certain neuron firing modes like low-threshold spiking (LTS), their performance falls
short when compared to NeurPIR. For example, in the case of Chattering (CH) neurons, achieves an
F1-score of 0.671, outperforming LOLCAT’s 0.652 and NeuPRINT’s 0.611. These results highlight
the robustness and accuracy of across varying neuron firing modes, making it the most effective
method in this comparison. These neuron Firing Modes are determined by preset hyperparameters,
which alse proves that the neuron intrinsic representation from captures hyperparameter information.

5.2 REAL DATA - NEURON PLATONIC INTRINSIC REPRESENTATION CONTAINS
MOLECULAR INFORMATION

In this section, we utilize a public multimodal dataset, as described Bugeon, to train and evaluate our
model. We present the performance metrics of neuron type classification for three methodologies:
NeuPRINT, LOLCAT, and the proposed NeurPIR(PCA and UMAP cannot handle the processing
of behavioral information so they are excluded). The metrics assessed include precision (Prec.),

7
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Firing Modes Metric PCA UMAP NeuPRINT LOLCAT NeurPIR
Prec. 0.689 0.473 0.836 0.783 0.872

regular spiking (RS) Rec. 0.918 0.590 0.908 0.910 0.898
F1. 0.786 0.525 0.870 0.841 0.884

Prec. 0.534 0.332 0.646 0.681 0.678
intrinsically bursting (IB) Rec. 0.375 0.310 0.645 0.573 0.693

F1. 0.440 0.320 0.644 0.620 0.684
Prec. 0.506 0.335 0.648 0.616 0.722

chattering (CH) Rec. 0.603 0.248 0.580 0.698 0.630
F1. 0.548 0.285 0.611 0.652 0.671

Prec. 0.778 0.602 0.826 0.853 0.853
fast spiking (FS) Rec. 0.620 0.638 0.820 0.733 0.913

F1. 0.689 0.618 0.823 0.787 0.881
Prec. 0.970 0.944 0.968 0.993 0.990

low-threshold spiking (LTS) Rec. 0.935 0.965 0.993 0.983 0.990
F1. 0.952 0.954 0.980 0.988 0.990

Table 1: This table presents the performance metrics—precision (Prec.), recall (Rec.), and F1
score—across five methods (PCA, UMAP, NeurPrint, LOLCAT, and NeurPIR) for different neu-
ron types: regular spiking (RS), intrinsically bursting (IB), chattering (CH), fast spiking (FS), and
low-threshold spiking (LTS). The results indicate that and NeurPrint consistently achieve higher
precision and F1 scores for most neuron types, while UMAP shows relatively lower performance,
particularly for IB and CH neurons.

recall (Rec.), and F1 score, which are critical for evaluating the effectiveness of classification across
various neuron types categorized into subclasses and classes.

The results for the subclasses LAMP5, Vip, Pvalb, and Sst are summarized in Table 5.2. For the
LAMP5 subclass, F1 score, which balances precision and recall, was highest for NeurPIR (0.569 ±
0.014), indicating a more balanced approach to classification. In the Vip subclass, NeurPIR again
led in F1 score (0.662 ± 0.035), suggesting its superior ability to classify Vip neurons accurately.
For Pvalb neurons, The F1 score was highest for NeurPIR (0.604 ± 0.043), indicating its effective-
ness in classifying Pvalb neurons. In the Sst subclass, NeuPRINT showed the highest precision
(0.704 ± 0.168), but this was accompanied by a large standard deviation, indicating variability in
performance. The F1 score was highest for NeurPIR (0.492 ± 0.080), despite the challenges in
classifying Sst neurons. Overall, the results highlight the effectiveness of NeurPIR in accurately
classifying distinct neuronal subtypes, offering improved precision and F1 scores in comparison to
existing methodologies. These findings underscore that the neuron representation obtained by our
method clearly contains neuron type information. The neuron type here is determined by molecular
information, so it can be said that the intrinsic representation contains molecular information.

5.3 REAL DATA - SHOWS ROBUSTNESS ON OUT-OF-DOMAIN (UNSEEN ANIMAL) DATA

In this section, our main focus is to validate the consistency of the intrinsic representations obtained
by the model across different animals. The Steinmetz dataset comprises neural activity data from
ten rats, with each neuron labeled by the brain region it is in. It can be intuitively seen from Figure
4 that the response patterns of neurons in the same brain area are significantly different in different
mice, but we hope that the representation we obtain through the model still contains consistent
information and contains consistent brain area information. This corresponds to the evaluation of
the generalizability of the representations obtained by the model on cross-modal (here, cross-animal)
data in deep learning. We use a task of classifying location within brain regions to validate the
intrinsic representations. We use NeurPIR to perform self-supervised training on all the neurons
from the all mice to obtain the intrinsic representations. For the downstream task of brain region
classification, we used 10-fold cross-validation (with folds based on the identity of the mice).

As shown in Figure 5.2, the model’s generalizability is evaluated through brain region classification
across different neural representations. In-domain validation results demonstrate that consistently
outperforms other methods like NeuPRINT and NeuPRINT across all location within brain regions,
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Neuron Type Metric NeuPRINT LOLCAT NeurPIR
Subclass

Prec. 0.481 ± 0.035 0.344 ± 0.023 0.487 ± 0.007
LAMP5 Rec. 0.667 ± 0.037 0.694 ± 0.033 0.684 ± 0.028

F1. 0.559 ± 0.036 0.460 ± 0.024 0.569 ± 0.014
Prec. 0.614 ± 0.044 0.592 ± 0.078 0.657 ± 0.048

Vip Rec. 0.652 ± 0.034 0.406 ± 0.028 0.668 ± 0.027
F1. 0.632 ± 0.034 0.480 ± 0.042 0.662 ± 0.035

Prec. 0.559 ± 0.046 0.428 ± 0.026 0.602 ± 0.042
Pvalb Rec. 0.604 ± 0.017 0.403 ± 0.017 0.607 ± 0.055

F1. 0.580 ± 0.032 0.415 ± 0.019 0.604 ± 0.043
Prec. 0.704 ± 0.168 0.477 ± 0.130 0.681 ± 0.072

Sst Rec. 0.323 ± 0.084 0.170 ± 0.077 0.388 ± 0.080
F1. 0.441 ± 0.105 0.248 ± 0.100 0.492 ± 0.080

Class
Prec. 0.685 ± 0.050 0.555 ± 0.010 0.720 ± 0.025

Ex Rec. 0.774 ± 0.020 0.854 ± 0.009 0.817 ± 0.031
F1. 0.726 ± 0.036 0.673 ± 0.008 0.765 ± 0.009

Prec. 0.737 ± 0.037 0.682 ± 0.020 0.790 ± 0.020
In Rec. 0.640 ± 0.073 0.314 ± 0.027 0.680 ± 0.048

F1. 0.685 ± 0.058 0.430 ± 0.028 0.729 ± 0.023

Table 2: Performance metrics for neuron type classification, 4-fold cross-validation was used, with
the folds based on the identity of the mice This table delineates the precision (Prec.), recall (Rec.),
and F1 score for various neuron types categorized into subclasses (LAMP5, Vip, Pvalb, Sst) and
classes (Ex, In). The metrics demonstrate the comparative performance of these methods in identi-
fying and classifying distinct neuronal subtypes.

including visual cortex (vis ctx), thalamus (thal), hippocampus (hipp), and midbrain. Specifically,
achieves validation Precision close to 0.80 in most regions, with NeuPRINT slightly trailing behind.

When examining out-of-domain performance (cross-animal), we notice a general drop in accuracy
for all methods. , however, still retains a higher degree of accuracy across all location within brain
regions compared to NeuPRINT and LOLCAT, showing the model’s ability to capture more ro-
bust intrinsic representations across different animals. This consistent outperformance across both
in-domain and out-of-domain tests suggests that the representations obtained by better generalize
across animals while still preserving critical brain region information.

6 CONCLUSION AND DISCUSSION

In this paper, provides a novel, scalable approach for extracting and leveraging intrinsic neuronal
properties, offering significant potential for re-evaluating existing neuroscience data and advancing
our understanding of neural computation. Future work may focus on further refining ’s ability to
handle even more diverse datasets, as well as applying it to other domains where extracting intrinsic
properties from complex systems is crucial. Limitations: (1) The representation learned by our
method can only distinguish neurons with large differences in essential attributes. For example, if
neurons consider more refined brain area labels, it is difficult to distinguish them, which requires
more data to support training. (2) The learned neurons represent that only data collected from the
same technology are supported, and the generalization of cross-platform data, such as two-photon
data and neurpixel data, remains to be explored. (3) Considering very long timescales, it is possible
that some of the short-term invariant properties of neurons may change, which can be used to study
changes in neuronal properties during the development of diseases such as Alzheimer’s disease.

7 REPRODUCIBILITY STATEMENT

To enhance the reproducibility of this study, we provide an Appendix section comprising 4 sub-
sections that offer detailed supplementary information. Appendix A.1 presents the pseudo-code of
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Region Method Precision Recall F1

Vis
NeuPrint 0.923 ± 0.029 0.614 ± 0.052 0.736 ± 0.042

0.751 ± 0.047 0.467 ± 0.105 0.572 ± 0.086
LOLCAT 0.836 ± 0.049 0.450 ± 0.059 0.584 ± 0.060

0.775 ± 0.014 0.425 ± 0.053 0.547 ± 0.043
NeurPIR 0.900 ± 0.016 0.652 ± 0.024 0.756 ± 0.013

0.825 ± 0.017 0.514 ± 0.012 0.633 ± 0.013

Thal
NeuPrint 0.758 ± 0.025 0.762 ± 0.005 0.760 ± 0.013

0.669 ± 0.025 0.724 ± 0.019 0.695 ± 0.016
LOLCAT 0.717 ± 0.047 0.738 ± 0.013 0.726 ± 0.025

0.698 ± 0.073 0.681 ± 0.010 0.688 ± 0.040
NeurPIR 0.765 ± 0.025 0.772 ± 0.018 0.768 ± 0.015

0.725 ± 0.049 0.761 ± 0.027 0.742 ± 0.034

Hipp
NeuPrint 0.708 ± 0.033 0.785 ± 0.013 0.744 ± 0.023

0.626 ± 0.026 0.671 ± 0.022 0.647 ± 0.016
LOLCAT 0.668 ± 0.034 0.742 ± 0.018 0.703 ± 0.027

0.595 ± 0.028 0.703 ± 0.026 0.644 ± 0.020
NeurPIR 0.723 ± 0.018 0.782 ± 0.019 0.751 ± 0.013

0.644 ± 0.032 0.743 ± 0.019 0.689 ± 0.017

Mid
NeuPrint 0.669 ± 0.026 0.814 ± 0.005 0.734 ± 0.017

0.611 ± 0.012 0.748 ± 0.031 0.672 ± 0.013
LOLCAT 0.584 ± 0.018 0.768 ± 0.010 0.663 ± 0.013

0.569 ± 0.024 0.726 ± 0.029 0.637 ± 0.009
NeurPIR 0.669 ± 0.028 0.789 ± 0.018 0.724 ± 0.021

0.634 ± 0.027 0.740 ± 0.013 0.683 ± 0.021

Table 3: Performance Comparison of Methods Across location within brain regions (In-Distribution
vs Out-of-Distribution). The upper part of each indicator represents In Domain and the lower part
represents Out of Domain.

Synthetic Data. Appendix A.2 presents python code for downloading and organizing the steinmetz
dataset. Appendix A.3 presents the pseudo-code of sownstream task. Appendix A.4 presents the
Confusion matrices for different models. Appendix A.7 presents Description and Function across
firing types / neuron types / brain regions in this paper
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resentations for individual neurons from population dynamics. Advances in Neural Information
Processing Systems, 36:46007–46026, 2023.

Mark Nelson and John Rinzel. The hodgkin-huxley model. The book of genesis, 2, 1995.

Rohan Prakash. Interpreting latent manifolds of high-dimensional neural activity using pi-vae. Mas-
ter’s thesis, New York University Tandon School of Engineering, 2024.

Aidan Schneider, Mehdi Azabou, Louis McDougall-Vigier, David F Parks, Sahara Ensley, Kiran
Bhaskaran-Nair, Tomasz Nowakowski, Eva L Dyer, and Keith B Hengen. Transcriptomic cell
type structures in vivo neuronal activity across multiple timescales. Cell reports, 42(4), 2023a.

Steffen Schneider, Jin Hwa Lee, and Mackenzie Weygandt Mathis. Learnable latent embeddings for
joint behavioural and neural analysis. Nature, 617(7960):360–368, 2023b.

Nicholas A Steinmetz, Peter Zatka-Haas, Matteo Carandini, and Kenneth D Harris. Distributed
coding of choice, action and engagement across the mouse brain. Nature, 576(7786):266–273,
2019.

Bernardo Torres, Stefan Lattner, and Gael Richard. Singer identity representation learning using
self-supervised techniques. arXiv preprint arXiv:2401.05064, 2024.

A APPENDIX

A.1 SIMULATION OF NEURONAL POPULATION USING THE IZHIKEVICH MODEL

1. Define the Izhikevich model parameters for each neuron type:
• Regular Spiking (RS)
• Intrinsically Bursting (IB)
• Chattering (CH)
• Fast Spiking (FS)
• Low-Threshold Spiking (LTS)

2. Initialize the total number of excitatory (Ne) and inhibitory (Ni) neurons.
3. Assign neuron types to indices:

• 25% Regular Spiking (RS)
• 25% Intrinsically Bursting (IB)
• 25% Chattering (CH)
• 25% Fast Spiking (FS)

4. Initialize synaptic connection matrix S.
5. Set initial values for membrane potential v and recovery variable u.
6. For each time step t from 0 to T :

• Calculate input current I .
• If t > 0, add synaptic contributions from previously fired neurons.
• Update membrane potential v and recovery variable u using Euler’s method.
• Check for spikes and record firing events.
• Reset membrane potential and increment recovery variable for fired neurons.
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• Store current and potentials for analysis.
7. Update neuron activity data.
8. Plot firing events.
9. Print shapes of activity arrays for each neuron type.

A.2 PYTHON CODE FOR DOWNLOADING AND ORGANIZING THE STEINMETZ DATASET

# @title Data retrieval
import os, requests

fname = []
for j in range(3):

fname.append(’steinmetz_part%d.npz’ % j)
url = ["https://osf.io/agvxh/download"]
url.append("https://osf.io/uv3mw/download")
url.append("https://osf.io/ehmw2/download")

for j in range(len(url)):
if not os.path.isfile(fname[j]):

try:
r = requests.get(url[j])

except requests.ConnectionError:
print("!!! Failed to download data !!!")

else:
if r.status_code != requests.codes.ok:

print("!!! Failed to download data !!!")
else:

with open(fname[j], "wb") as fid:
fid.write(r.content)

# @title Data loading
alldat = np.array([])
for j in range(len(fname)):

alldat = np.hstack((alldat,
np.load(’steinmetz_part%d.npz’ % j,

allow_pickle=True)[’dat’]))

12
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A.3 PSEUDO-CODE OF DOWNSTREAM TASK

Algorithm 1 Neural Network Classification with K-Fold Cross-Validation
1: Import necessary libraries: NumPy, scikit-learn, Seaborn, Matplotlib
2: Ignore warnings
3:
4: procedure MAIN
5: Initialize labels as NumPy array
6: Encode labels using LabelEncoder
7: Standardize neuron features using StandardScaler
8:
9: Initialize StratifiedKFold with 5 splits

10: Initialize statistics dictionaries for precision, recall, F1-score
11: Initialize empty list for confusion matrices
12:
13: for each fold in K-Fold do
14: Split data into training and test sets
15: Create MLPClassifier model
16: Fit model to training data
17: Predict labels for test data
18: Generate classification report and confusion matrix
19: Append confusion matrix to list
20:
21: for each cell type in classes do
22: Record precision, recall, and F1-score
23: end for
24: end for
25:
26: for each cell type in classes do
27: Calculate and print average metrics
28: end for
29:
30: Compute cumulative confusion matrix
31: Print cumulative confusion matrix
32:
33: Optional: Plot cumulative confusion matrix using Seaborn
34: end procedure
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A.4 CONFUSION MATRICES FOR DIFFERENT MODELS.

Figure 3: Confusion matrices for different neuron classification models. Each heatmap illustrates
the performance of the respective model in classifying neuron subclasses and excitatory/inhibitory
neurons.

A.5 EXPLANATION OF IZHIKEVICH MODEL HYPERPARAMETERS

These hyperparameters characterize the neuron’s unique dynamics and response characteristics:

• a: Defines the time scale of the recovery variable u, indicating the speed at which the
neuron recovers from spiking events.

• b: Influences the sensitivity of u to the membrane potential V , affecting the neuron’s firing
patterns.

• c: Determines the reset value for V after a spike, specifying the neuron’s post-spike mem-
brane potential.

• d: Indicates the amount by which u is incremented after a spike, shaping the neuron’s
recovery process.
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A.6 STEINMETZ DATASET

Figure 4: a: Steinmetz dataset contains 39 subdataset from 10 mice. Each subdataset records 400-
700 neurons each from across the mouse brain during a visual behavior task. Each neuron with its
brain area label. b: show of part of subdataset3. c: show of part of subdataset26.

A.7 DESCRIPTION AND FUNCTION ACROSS FIRING TYPES / NEURON TYPES / BRAIN
REGIONS IN THIS PAPER

Firing Types:

1. Regular Spiking (RS) Neurons:

- Description: Regular Spiking neurons are characterized by their ability to fire action potentials at
a regular, predictable rate in response to a sustained depolarizing stimulus. These neurons typically
exhibit a linear relationship between input and output, meaning they can respond to small inputs
with a consistent firing pattern.

2. Intrinsically Bursting (IB) Neurons:

- Description: Intrinsically Bursting neurons can produce bursts of action potentials in response to
a depolarizing stimulus, in addition to regular single spikes. This type of neuron displays a unique
pattern of activity where a series of action potentials is generated in quick succession followed by a
period of quiescence.

3. Chattering (CH) Neurons:

- Description: Chattering neurons exhibit a high-frequency, sustained firing pattern. These neu-
rons are characterized by their ability to fire at a high rate in bursts, often exhibiting a very rapid
oscillatory behavior with minimal latency between spikes.

4. Fast Spiking (FS) Neurons:
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- Description: Fast Spiking neurons are a type of inhibitory interneuron known for their ability to
fire action potentials at very high frequencies (often greater than 100 Hz). They exhibit rapid and
precise spiking in response to stimuli and are critical for the regulation of network activity.

5. Low-Threshold Spiking (LTS) Neurons:

- Description: Low-Threshold Spiking neurons are characterized by their ability to fire action po-
tentials at relatively low levels of depolarization. They are often described as having a ”sensitive”
or ”easy-to-trigger” firing threshold, which enables them to respond to subtle changes in membrane
potential.

Neuron Types:

1. LAMP5 Neurons (Lysosomal-Associated Membrane Protein 5):

- Description: LAMP5 neurons are a type of GABAergic interneuron that expresses the LAMP5
protein, which is involved in cellular trafficking and autophagy. These neurons are often found in
regions of the brain involved in cortical circuits, particularly in the cortex.

2. Vip Neurons (Vasoactive Intestinal Peptide-expressing neurons):

- Description: Vip neurons are a type of inhibitory interneuron that express vasoactive intestinal
peptide (VIP), a neuropeptide involved in the modulation of neural circuits. These neurons typically
have broad inhibitory effects in cortical regions and influence the activity of other interneuron types.

3. Pvalb Neurons (Parvalbumin-expressing neurons):

- Description: Pvalb neurons are a subtype of fast-spiking inhibitory interneurons that express the
calcium-binding protein parvalbumin. These neurons are well known for their ability to fire action
potentials at extremely high frequencies with minimal delay.

4. Sst Neurons (Somatostatin-expressing neurons):

- Description: Sst neurons are another type of inhibitory interneuron that express somatostatin, a
neuropeptide that inhibits neurotransmitter release. These neurons are typically involved in modu-
lating cortical circuits and are especially important for regulating synaptic plasticity.

Brain Regions:

1. Vis (Visual Cortex): Occipital lobe, primarily in the calcarine sulcus and surrounding regions.

2. Hipp (Hippocampus): Medial temporal lobe, beneath the cerebral cortex.

3. Thal (Thalamus): Deep within the brain, just above the brainstem, near the center.

4. Mid (Midbrain): Between the forebrain and hindbrain, just above the pons and below the thala-
mus.
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