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Abstract

We address the problem of exploration in model-based reinforcement learning
(MBRL). We present Model-Corrective eXploration (MCX) a novel approach to
exploration in MBRL that is both agnostic to the model representation and scalable
to complex environments. MCX learns to generalise model prediction errors in
order to make hypotheses about how the model might else be wrong, and uses
such hypotheses for performing planning to facilitate exploration. We demonstrate
the efficacy of our method in visual control tasks with the state-of-the-art MBRL
algorithm, DreamerV3.

1 Introduction

The ability to efficiently explore an environment is critical to the success of a reinforcement learning
(RL) agent, and it has been an intensively studied area since the inception of RL. When no knowledge
about the environment is available, most methods rely almost entirely on randomness, the prototypical
example being e-greedy. In model-based RL (MBRL), the agent learns an explicit representation of
the world, in the form of a model, and exploration strategies can therefore leverage such knowledge.
The predominant insight underpinning model-based exploration is to use uncertainty within said
model to guide the agent toward parts of the state space in which the model is less confident. The
prototypical example is Upper Confidence Bounds (Auer et al., |2002) and its adaptations to Markov
Decision Processes (MDPs) (Auer and Ortner, [2006).

We explore a third reason to try an action—not randomly, and not because the model has low
confidence (but high hope) in its outcome—the agent makes hypotheses based on planning, computing
that if the action had a different but reasonable outcome, it would lead to higher value, and therefore it
is worth trying. Without a definition of a reasonable hypothesis, the agent would always hypothesise
that every action leads directly to the state of highest reward, and the method would explore similarly
to R-MAX (Brafman and Tennenholtz, 2002). To determine what is reasonable to try, in this context,
the agent learns a correction model, that is, a model that learns ways in which the primary model has
been mistaken before, and it uses it to hypothesise that it could be similarly mistaken elsewhere.

We refer to this approach as Model-Corrective eXploration (MCX). MCX generalises observed
model errors into hypotheses about other potential inaccuracies in the model, which guide exploration
towards regions where correcting such errors could yield higher returns. To the best of our knowledge,
this is the first exploration method to exploit model errors in this manner.

To illustrate the core ideas behind MCX, consider the grid world in Figure [Ta] which also shows
the trajectory induced by an optimal policy. The agent starts in the bottom left and must reach the
goal state, shaded in green. The gray shaded cells represent obstacles, which the agent cannot enter.
The red sinusoidal lines represent an upwind, which allows the agent to move two cells upwards
instead of one. The agent’s initial model is shown in Figure [Tb] along with the trajectory induced
by a corresponding optimal policy. Initially, the agent is unaware of the wind, and thus its model is
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incorrect and policy suboptimal. Upon executing this policy in the environment, it encounters the
upwind on the right side of the grid (Figure [Ic), realises that its model is inaccurate, and updates
it accordingly (Figure[Id). In the following episode, the agent again finds itself in the bottom left
cell (Figure|[Ta)). At this point, its model correctly represents the wind on the right-hand side of the
grid, but the trajectory induced by the policy remains mostly unchanged. However, it recalls when
previously its model was incorrect about the presence of the wind, and hypothesises a correction to the
model that incorporates the wind in the start state. If this correction were true, it would accommodate
a shorter path (Figure[Ie). The agent acts on this hypothesis and discovers that it is actually true
(Figure|[Tf), it then updates its model accordingly (Figure[Ig)).
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Figure 1: and[1f] with green borders, are environment representations. and[lg} with

red borders, are model representations. The agent is represented by a blue circle. The shaded cells
are obstacles, which the agent cannot enter. The red sinusoidal lines represent an upwind, which
allows the agent to move up two cells instead of one. The goal is represented by the shaded green
cell. The reward function encourages the agent to find the shortest path. The blue arrows represent
the trajectory induced by the optimal policy. Hypotheses are indicated in green.

The main contribution of this work is a novel method for exploration in model-based RL, which
uses observed model errors, rather than uncertainty, to explicitly generate hypotheses about how the
model may further be incorrect, and direct exploration. While, in this paper, we evaluate the effect
of this strategy in isolation, it is, in principle, possible to combine it with other forms of directed
exploration, such as intrinsic motivation and uncertainty-based exploration. Additionally, we provide
a formulation for how this method may be implemented with a state-of-the-art model-based RL
algorithm, DreamerV3 (Hafner et al., 2025)), and provide experimental results demonstrating its
effectiveness. We evaluate our method on a set of continuous control tasks from pixel observations;
our results show that exploiting corrections in this way improves sample efficiency and, in some
cases, asymptotic performance, and in general does not degrade performance.

2 Preliminaries

2.1 Reinforcement learning

We consider the canonical RL setting, modelled as a Markov Decision Process (MDP). An MDP
is characterised by a tuple M = (S, A, P, R,~, fi9). Where S and A denote the state and action
spaces respectively, P : S X A x S — [0, 1] is the transition function, where P(s’ | s, a) denotes the
probability of transitioning to state s’ after taking action a in state s. R : S x A — R is the reward
function, which returns a scalar reward signal r received after taking action a in state s. y € [0, 1)
represents the discount factor and 1o : S — [0, 1] denotes the start state distribution, that is the



probability of the agent starting an episode in a state s € S. The agent’s behaviour is governed
by a probabilistic policy 7 : S x A — [0, 1], which maps states to a probability distribution over
actions. The goal of the agent is to learn an optimal policy 7* that maximises the expected return,

G, =E, [Zfzt i yk_t_lrk}. The value function V™ : S — R gives the expected return when

starting from state s and following policy 7. The @, or action-value, function, @™ : S x A — R
gives the expected return when taking action a in state s and following 7 thereafter.

Within model-based RL (MBRL), the agent learns a model of the environments dynamics and reward
function from experience. Formally, it learns a model M, which approximates the transition function
and reward function. Py, and Rj, represent the transition and reward functions learned under M
respectively. M is used for planning, which in the context of MBRL typically involves simulating
trajectories under the learned model to evaluate candidate policies (Hafner et al., 2025} |Janner et al.|
2019).

2.2 DreamerV3

We implement our proposed exploration method within DreamerV3 (Hafner et al., 2025)), hereafter
referred to as Dreamer, which is a state-of-the-art MBRL algorithm. We now briefly summarise the
components of Dreamer that are relevant to our approach. The backbone of Dreamer is a Recurrent
State Space Model (RSSM) (Hafner et al.l [2019). The RSSM learns a latent state representation
st := (hy, 2¢) consisting of a deterministic and stochastic component. The deterministic component,
h¢, is modelled using a Recurrent Neural Network (RNN), which captures the history:

het1 :f¢(ht,2t,at)- (D

The stochastic component, z;, is modelled by a Multi-Layer Perceptron (MLP) that parametrises a
discrete distribution. Dreamer maintains a prior and posterior distribution over z;. The prior, 2; is
used for planning within the world model, and is conditioned solely on the history:

Zip1 ~ Do (Zig1 | hegr)s 2)

while the posterior, z; is additionally conditioned on an observation from the environment:

Zt41 ™~ (]¢(Zt+1 \ ht+1,$t+1)~ 3)

Training of the world model encourages the prior to accurately approximate the posterior by min-
imising the KL divergence between the two. Dreamer uses the prior to learn a policy within the
world model and incorporates an entropy regularisation objective to encourage stochasticity in the
policy. Dreamer’s exploration strategy involves sampling from this learned stochastic policy whilst
interacting with the environment.

3 Related work

Exploration in model-based RL has been studied extensively, both theoretically and empirically, with
a plethora of methods proposed. We briefly review common approaches to exploration in MBRL and
relate them to our proposed method.

Random exploration Despite the vast body of research within exploration in model-based RL,
in practice, heuristic methods predominantly based on randomness are employed, such as e-greedy
(Sutton and Bartol 2018)), additive Gaussian noise (Lillicrap et al.|[2016)), and entropy regularisation
(Haarnoja et al., |2018)), combined with millions of environment samples. This is even the case in state-
of-the-art model-based RL (Hafner et al., 2025} Janner et al.,2019)). Random exploration is undirected,
and therefore inherently sample-inefficient, often wasting environment interactions in uninformative
states. While randomness is a natural by-product of deep RL with function approximation — such
as from stochastic gradient descent — our method does not predominantly rely on it for exploration,
instead directing exploration through hypothesised model corrections that have the potential to
improve performance.

Greedy exploitation The simplest form of performing directed exploration is to act greedily with
respect to the current model (Deisenroth and Rasmussen, |2011} |Chua et al.| |2018)). This process
naturally induces exploration, since the model can be arbitrarily wrong at any given time. However,



this is not an effective exploration method on its own, and can, in many cases, result in the agent
getting stuck in local optima. When the model is perfect, exploration is unnecessary and greedy
exploitation is optimal. Therefore, in environments where an accurate model is easy to acquire,
greedy policies are sufficient. Our method leverages this observation, and utilises greedy exploitation
when hypothesised corrections seem to provide no benefit.

Optimistic exploration Optimistic methods are grounded in the principle of optimism in the face
of uncertainty (OFU), which assumes that uncertain aspects of the environment are better than they
currently appear. In RL, this translates to the estimated value function upper bounding the true
value function. Optimistic exploration is central to many theoretical results in MBRL, such as those
providing PAC guarantees or regret bounds. R-MAX (Brafman and Tennenholtz, 2002) is a classical
method for exploration in MBRL. R-MAX assumes that uncertain transitions, measured through
visitation counts, lead to a Garden of Eden state that returns the maximal possible reward. This
often leads to over-optimism with the agent exploring all possible transitions. Moreover, R-MAX
is limited to discrete state and action spaces. Whilst extensions to continuous domains have been
proposed (Jong and Stone|, [2007; |Jung and Stone, [2010), they rely on assumptions of discretisation
and local smoothness of dynamics, which limits their applicability. Upper-Confidence RL (UCRL)
algorithms (Auer and Ortner, |2006; Bartlett and Tewari, |2009; Jaksch et al.| 2010 Filippi et al.,|2010;
Azar et al.||2017; [Fruit et al.,|2018} |/Ayoub et al.,|2020)) instantiate optimism by constructing upper
confidence bounds on the approximated transition function. Policies are computed by maximising
expected value jointly over the space of policies and statistically plausible models. Whilst theoretically
sound, these methods lack scalability due to the need to maintain state-visitation counts or solve
a joint maximisation problem, which becomes intractable beyond tabular settings. H-UCRL (Curi
et al., 2020) reduces the UCRL objective to greedy exploitation through a reparameterisation trick:
hallucinated actions are introduced for each state dimension, allowing the agent to optimistically
select one-step transition dynamics within modelled epistemic uncertainty. Whilst this work scales
the UCRL paradigm to the deep MBRL setting, it significantly expands the action space, which
hinders applicability in high-dimensional domains. DOVE (Seyde et al.| [2020) generalises UCRL
to deep MBRL by approximating epistemic uncertainty through disagreement among an ensemble
of latent dynamics models — this enables scalability as visitation counts are no longer required.
NARL (Pacchiano et al.||2021)) similarly applies UCRL to deep MBRL by reducing the continuous
uncertainty set of models to a discrete set, consisting of ensemble members. OMBRL (Sukhija et al.|
2025) shift uncertainty from the extrinsic reward into an intrinsic reward — eliminating the need to
sample from or maximise over model uncertainty, and thus accommodating scalability. Our method
is optimistic with respect to observed model errors, rather than explicitly modelled uncertainty.
Additionally, unlike typical optimistic approaches, we do not incorporate optimism into the learning
objective — thus, there is reduced computational overhead. Rather, we apply one-step optimistic
updates based on hypotheses about how the model may be wrong. To the best of our knowledge, this
is the first use of optimism driven by hypothesised model error rather than uncertainty estimation.

Intrinsic motivation Intrinsically motivated exploration occurs when the agent optimises an
intrinsic reward that it generates for itself, rather than directly optimising for the extrinsic reward,
which comes from the environment. Intrinsic motivation is most frequently deployed in the context of
unsupervised MBRL, where the agent must learn a model of an unknown environment that provides
no extrinsic reward signal. In this setting, intrinsic motivation can provide incentive to explore beyond
taking random actions. However, intrinsic rewards may be deployed in the traditional, supervised
RL setting, which we consider within this work. VIME (Houthooft et al.,[2016) derives an intrinsic
reward using variational inference within a Bayesian MBRL setting, aiming to maximise information
gain about the agent’s belief of the environment’s dynamics. Pathak et al.|(2017)) propose generating
intrinsic rewards through prediction errors between a forward and inverse dynamics model in feature
space. However, these intrinsic rewards are used to incentivise exploration in a model-free agent.
MAX (Shyam et al.,[2019)) derives intrinsic reward through a measure of novelty from disagreement
among an ensemble of forward models. This results in the agent planning to observe novel events.
Similarly, Plan2Explore (Sekar et al.,2020) derives an intrinsic reward from disagreement among an
ensemble of one-step latent dynamics models; however, this ensemble is not directly used for planning.
LEXA (Mendonca et al.l | 2021)) trains two policies: an explorer policy that maximises intrinsic reward
— derived from ensemble disagreement — and a goal-conditioned achiever policy which is trained to
reliably reach states discovered by the explorer. LEXA alternates between collecting data with the
exploration policy, and sampling a goal, and collecting data with the achiever policy. PEG (Hu et al.|



2023)) is an extension of LEXA, which instead selects goals to maximise expected exploration value,
and then applying a Go-Explore-style approach (Ecoffet et al.| | 2021): first reaching the goal and
then exploring from there using the explorer policy. These methods aim to learn an accurate model
of the environment by exploring areas of the state space with high uncertainty or model error. This
often results in exploring everywhere, even areas of the state space irrelevant to any downstream
reward function. This is the case regardless of whether intrinsic rewards are used alone or as a bonus.
Contrary to such methods, our method doesn’t necessarily encourage exploration towards where the
model is uncertain or wrong, but instead hypothesises plausible model errors which would benefit the
agent. Since these hypotheses are local to the policy, our method could result in under-exploration in
some scenarios. Combining intrinsic motivation, as a bonus term, with our method could mitigate
this by promoting global exploration.

Posterior sampling Posterior Sampling for Reinforcement Learning (PSRL) (Osband et al.| [2013)
is a Bayesian approach to exploration in tabular MBRL, with strong theoretical guarantees. PSRL
maintains a posterior distribution over plausible models. Each episode, a model is sampled from
the posterior which is used for computing a policy. The policy is followed for the episode, and the
posterior distribution is updated based on the observed trajectory. This process naturally induces
exploration, which decreases over time as more models are sampled. PSRL is difficult to scale to
beyond small tabular MDPs since a posterior distribution over potentially complex models needs
to be maintained and updated. Moreover, each time a model is sampled, the policy needs to be
recomputed, which can be computationally expensive. There have been several works which attempt
to scale PSRL beyond tabular settings (Tziortziotis et al.| [2013; [Fan and Ming, [2021)), but they rely
on the dynamics being linear in a learned feature space; this limits scalability to high-dimensional or
non-linear domains. Most recently, [Sasso et al.| (2023)) proposed PSDRL, which attempts to scale
PSRL to the deep MBRL setting. PSDRL combines a neural-linear approach with a latent dynamics
model to accommodate efficient sampling of models. Additionally, PSDRL uses a learned value
network, which is updated from all sampled models, to bootstrap the planning process for new
models, reducing the cost of computing a new policy. Our approach is less computationally intensive
than posterior sampling methods. Firstly, it does not require maintaining a posterior distribution
over plausible models or model parameters. Secondly, our method does not require planning from
scratch at each episode; rather, the model and policy are incrementally updated. Planning within our
approach is a one-step process that is performed online, and only in select states. Whilst this does
introduce an additional computational overhead, it is less expensive than computing a new policy at
every episode.

4 Methodology

In this section we introduce our proposed method for exploration in MBRL, MCX. MCX is agnostic
to the underlying model representation and supplements the standard MBRL loop with a mechanism
for performing directed exploration.

We begin with a high-level overview of the general algorithm (Algorithm T). The agent proceeds in
episodes, collecting trajectories in a replay buffer, D, which is used to learn a primary model, M.
The primary model is then used to derive a greedy policy, 7*, which is optimal with respect to said
model, and corresponding value function, Vy;. Within this setup, exploration involves two decisions:
when to explore, and how to explore. For simplicity, in this paper, we use an e-greedy strategy to
determine when to explore. The main technical contribution of MCX is in how to explore, which
forms the remainder of this section.

To determine how to explore, MCX hypothesises plausible ways in which the primary model may be
inaccurate, and could be corrected. To constrain such hypotheses (which can otherwise be arbitrarily
optimistic, to the point of being ineffective), we learn a correction model (Line[I). The correction
model is trained exclusively on transitions that the primary model failed to predict correctly. During
exploration, the agent identifies, through planning, actions that would yield greater returns if the
hypothesised corrections were to be true.

The correction model, denoted M, is a one-step dynamics model. To decide on which samples the
correction model should be trained, we introduce an indicator function, f, which determines whether
the primary model, M, was incorrect in its predictions about a particular transition. Transitions
which are incorrectly predicted, where f evaluates to 1, are stored in the correction buffer (Lines|1|&



Algorithm 1 Episodic Model-Corrective eXploration (MCX)

1: initialise primary model, M, correction model, M, policy, 7*, value function V7, fixed-length
replay buffer, D, fixed-length correction buffer, D

2: for each episode do

3: s« env.reset(), 7+« {}

4:  while not done do

s explore(s), with probability e

“ {TF* (s), otherwise

6: §',r,done + env.step(a)

7: T.append((s, a, s’, r,done))

8.

9

{Explore using Equation 1}

s

: end while
10:  D.extend(r)
11:  Update M using D
12:  Update 7*, Vy; via rollouts from M
13:  D.extend({t : t € 7|f(t) = 1})
14:  Update M on D
15: end for

[13), from which the correction model is trained (Line[14). Let (s, a, s’) be an observed transition
when acting in the environment, then f evaluates to:

o 1, if M incorrectly predicts (s, a, s’)
~ 10, otherwise.

The definition of f depends on the model architecture, as incorrectness is model-specific. For
example, consider a model that parametrises a Gaussian distribution over possible next states, as in
MBPO (Janner et al.,[2019)), a possible instantiation of f is whether or not the observed next state
lies within a standard deviation of the mean of the predicted next state distribution. We provide an
additional formulation of f specific to DreamerV3 in Section4.1]

When given the opportunity to explore, the agent plans using the correction model over a one-step
horizon, producing a corrected action, a. To guide this selection, we introduce a corrected Q-value,
Q7 (s, a), which denotes the expected value of the next state distribution induced by M under 7* in
M, for a given state-action pair:

Qi (s,a) ::[SPNI(S’|S,a)V1*W(s’)dS’. “4)

In other words, @7 is the expected value of taking action a in state s when the first transition takes

place according to M and all the following transitions according to M with actions selected by 7*. In
practice, we approximate this expectation by sampling from Py;. The corrected action, a, is chosen
to maximise the corrected action value function Q ;:

a = argmax Q (s, a’). 5)
a’'eA

If the corrected action is strictly better than following the greedy policy, then it is executed, otherwise
the greedy action is executed:

- {d, if Qi (s,a) > Vy(s) ©)

7*(s), otherwise.

This ensures that corrections which are not beneficial are ignored, and only strict policy improvements
are enforced. This forms the action selection procedure of MCX (Line[3).

Computationally, MCX adds the learning of the correction model M and the single step optimisation
in Equation [5] Both are standard computations for MBRL, and therefore scale to any domain to
which the underlying MBRL system also scales.



In summary, MCX is a simple approach to exploration in MBRL which requires minimal changes to
the underlying algorithm, assuming only that it learn a model which may be used for planning. MCX
trains a correction model to generalise from observed transitions which the primary model failed
to predict into hypotheses about other potential inaccuracies. It then reasons, through planning, to
identify hypotheses that, if true, would be beneficial, and selects exploratory actions accordingly.

4.1 Application to Dreamer

We implement the correction model with Dreamer as a one-step latent dynamics model, which
predicts corrections to both the deterministic, i1, and stochastic, z;41, components of the latent
state. The deterministic correction model:

}Nlt—&-l = fw(htaztaat)a

is trained to minimise the mean-squared error between the deterministic correction, Bt+1, and the next
deterministic state, /41, produced by the RNN (Equation|[I). Additionally, the stochastic correction
model:

Py (Zeg1 | hes 2t, at),
is trained to minimise the KL divergence between the corrected stochastic distribution,
Py (Zit1|he, 2, ar), and the posterior distribution, g4 (z¢+1|hi+1,%i+1), produced by the encoder
(Equation 3. Both the deterministic and stochastic corrections are implemented as MLPs. The full
correction loss is:

L correction = Hilt+1 - Sg(ht+1)||2 + DKL(Sg(Qqs(ZtH | ht+17$t+1))”pw(5t+1\ht, Ztvat))v
where sg(-) is the stop-gradient operator, which prevents backpropagation through the DreamerV3
world model.

Since the dynamics are latent, and there is no ground-truth latent state, the definition of the model
being wrong is non-trivial to define. However, the dissimilarity between the prior (Equation [2)) and
the posterior (Equation 3 distributions provide a natural mechanism for evaluating the correctness of
predictions made by the model. If the prior produces a distribution that is very different compared to
the posterior — which is conditioned on the true observation — this suggests that the model did not
capture that transition well.

We consider the set of incorrect transitions to be those that the prior predicts least accurately, that
is, those that produce the highest KL divergence. Dreamer trains the world model on batches of
size B, which consist of sequences of length T'. We select the k transitions with the highest losses
in each batch to train the correction model. We consider transition tuples of the form vy =
(Sb,t, @bty b 1415 46 (26,441 | Pb.t+1, To,e+1)). Each tuple comes from the b-th sequence in a batch and
contains the latent state and action taken at time step ¢, as well as the next hidden state and posterior
distribution at time ¢ + 1. We compute the KL divergence between the prior and posterior for each
batch element b and time step ¢:

KLy = Drr(qs(2,elho,e, o) ||Dg (20, o))
‘We now define our indicator function as follows:
Fons) = {1, if KLy, isintopk Vb € BandVt € T
’ 0, otherwise.

5 Experimental evaluation

We evaluate our method on five domains from the DeepMind control suite. Further information about
the experimental setup can be found in Appendix [A.T|and[A.2]

5.1 Environments

The DeepMind control suite (Tunyasuvunakool et al.,|2020) consists of visual control tasks of varying
difficulties. In these environments, the agent must learn to control robots of various embodiments
directly from high-dimensional pixel observations. We now introduce the particular environments
that we experiment within. The budget for learning in these environments is 1 million timesteps, with
each episode lasting 1,000 time steps. Additionally, there are no terminal states and the maximal
possible cumulative reward per episode is 1, 000.



V4

(a) Acrobot swingup (b) Finger spin (c) Hopper hop

(d) Pendulum swingup (e) Reacher hard

Figure 2: Five different environments from the DeepMind control suite.

Acrobot swingup This task consists of an underactuated double pendulum, with torques being
applied only to the second joint (Firgure2a). The goal is to swing the pendulum upward and balance
vertically. The reward is dense, with the agent receiving a reward of 1 when the system is exactly
upright, with the reward decaying smoothly as the pendulum becomes less upright.

Finger spin This task consists of a planar 3-DoF finger, which must spin a rigid body on an
unactuated hinge (Figure[2b). The reward is sparse, with the agent only receiving a reward of 1 when
the hinge’s angular velocity is above a specified threshold.

Hopper hop This task consists of a planar one-legged hopper, which must learn to hop forwards
whilst remaining balanced (Figure 2c). The reward is dense, with the agent receiving reward based
on it’s torso height and forward velocity.

Pendulum swingup This task consists of an inverted pendulum, which must be swung up vertically
(Figure[2d). The reward is sparse, with the agent only receiving a reward of 1 when the pole it is
within a specified angular distance of the vertical position.

Reacher hard This task consists of a two-link planar robot, which must reach a randomised target
in each episode (Figure [2¢). The hard variant of the task, which we consider, consists of a smaller
target than the easy variant. The reward is sparse, with the agent only receiving a reward of 1 when it
comes within a specified distance of the target.

5.2 Results

We compare our approach against Dreamer’s built-in exploration mechanism, as detailed in Section
We adhere to the following evaluation protocol: every 10, 000 environment steps, we freeze the
model parameters and perform 10 evaluation episodes, where the agent acts greedily with respect to
the learned model’s optimal policy. We repeat this process across 10 random seeds. The resultant plots
report the mean and standard deviation over these seeds, as shown in FigureEl Here Dreamer-MCX
denotes the implementation of our method with Dreamer. We find that in Finger spin, Reacher hard
and Pendulum swingup, Dreamer-MCX outperforms Dreamer. In Pendulum swingup, Dreamer-MCX
quickly converges to much better performance than Dreamer. In Hopper hop, and Acrobot swingup,
we find that Dreamer-MCX performs on par with Dreamer.
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Figure 3: Learning curves for visual control tasks. The x-axis represents environment steps, and the
y-axis the mean episode reward over 10 evaluation episodes. Each line is the mean of 10 seeds, and
the shaded areas are one standard deviation.

6 Conclusions and future work

We proposed MCX, a novel exploration method for model-based reinforcement learning, which is
scalable to complex model architectures and environments. We provided a formulation of MCX
within the state-of-the-art model-based RL algorithm DreamerV3, and find that, from our preliminary
experiments, it performs on par with or better than DreamerV3’s built-in exploration mechanism.

In future work, we will perform further rigorous experiments, across a wider range of domains and
model architectures, to further evaluate the benefits of MCX. Additionally, we intend to investigate
principled definitions of model correctness, possibly to a wide range of model architectures. We
also intend to explore how corrections can be applied to other model components beyond transition
dynamics, such as the reward model, as well as principled methods for choosing when to explore in
this paradigm.
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A Additional Experimental Details

A.1 Dreamer

In our experiments, we use the implementation of DreamerV3 from NM512 (https://github,
com/NM512/dreamerv3-torch). We use the 12M parameter model size of DreamerV3 — as in the
preprint (Hafner et al., 2023)) — with an action repeat of 2, replay ratio of 256, 12 parallel environment
instances, a batch size of 16 and a batch length of 64.

A.2 Dreamer-MCX

In our experiments, we use k = 64 and ¢ = 0.5. Additionally, we use a learning rate of 1e — 3 for the
correction model. The correction model consists of 2 MLPs, each with 2 layers, for the deterministic
and stochastic components respectively. Each MLP uses the same number of hidden units as in the
12M parameter model of DreamerV3. Equation []is computed through sampling n = 1000 latent
states, computing their values under the greedy policy, and taking the mean. Equation [5]is computed
by n = 200 steps of gradient descent, with a learning rate of le — 2.

Our implementation of Dreamer-MCX is open-sourced here: (https://github.com/jws-1/
dreamer-mcx).
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