
Two Are Better than One: Context Window Extension with Multi-Grained
Self-Injection

Anonymous ACL submission

Abstract001

The limited context window of contempo-002
rary large language models (LLMs) hin-003
ders broader application. In this work,004
we present SharedLLM, a novel approach005
grounded in the design philosophy of multi-006
grained context compression and query-aware007
information retrieval. SharedLLM is composed008
of two short-context LLMs: a lower moel009
(compressor) and an upper model (decoder).010
The lower model compresses context informa-011
tion, while the upper model processes com-012
pressed, context information from the lower013
model and performs context-aware modeling.014
Information transfer between the compressor015
and decoder occurs only at the lowest lay-016
ers to reduce redundant computation. Based017
on this architecture, we introduce a special-018
ized tree-style data structure to efficiently en-019
code, store and retrieve multi-grained contex-020
tual information from text chunks. This en-021
tire process, wherein the sender and receiver022
are derived from the same LLM layer, is re-023
ferred to as self-injection. In our evaluation on024
long-context modeling and understanding tasks,025
SharedLLM achieves superior or comparable026
results to several strong baselines, striking an027
effective balance between efficiency and perfor-028
mance. Meanwhile, with the aforementioned029
design choices, SharedLLM can greatly reduce030
memory consumption, and demonstrates sub-031
stantial speed-ups over other advanced base-032
lines (2× over streaming, 3× over encoder-033
decoder architectures). The core code of our034
implementation along with training and evalu-035
ation is available in appendix and supplemen-036
tary.037

1 Introduction038

Since the release of GPT-3 (Brown, 2020), the039

rapid advancement of large language models040

(LLMs) (Chowdhery et al., 2022; Achiam et al.,041

2023; Touvron et al., 2023a,b; Dubey et al., 2024)042

has revolutionized the NLP research community043

and transformed various workflows. Pretrained 044

on trillions of tokens, these models exhibit excep- 045

tional capabilities, such as completing unfinished 046

text or code and following human instructions to 047

perform designated tasks after minimal supervised 048

fine-tuning (Wei et al., 2021; Chung et al., 2024). 049

Despite their impressive abilities, several fac- 050

tors limit their broader application. One major 051

constraint is the context window size (Hsieh et al., 052

2024), which refers to the maximum number of 053

tokens an LLM can process at once. The con- 054

text window length is implicitly determined during 055

pretraining; for instance, LLaMA and LLaMA-2 056

have context windows of 2,048 and 4,096 tokens, 057

respectively. When input text exceeds this limit, 058

LLMs may exhibit erratic behavior during infer- 059

ence. Unfortunately, due to GPU memory con- 060

straints, high training costs, and the scarcity of 061

long-context training data, LLMs are often pre- 062

trained with relatively short context windows. This 063

limitation severely restricts their applicability in 064

tasks requiring longer context windows, such as 065

long-document summarization and information re- 066

trieval, where much longer windows are necessary. 067

Many researchers strive to extend the context 068

window of LLMs while minimizing the time, mem- 069

ory, and training costs during both training and 070

inference. One common approach involves post- 071

pretraining LLMs on long-context corpora using 072

hundreds of GPUs (TogetherAI, 2023; Xiong et al., 073

2024). Another line of work explores position in- 074

terpolation (Chen et al., 2023; Peng et al., 2023), 075

which rescales the RoPE (Rotary Position Embed- 076

ding) frequency and attention scores. While this 077

method is widely used, it still requires long-context 078

continual pretraining. For example, YaRN (Peng 079

et al., 2023) extends LLaMA’s context length to 080

128K tokens by continuing pretraining on 64K- 081

token sequences using full attention. The combina- 082

tion of parameter-efficient fine-tuning (PEFT) and 083

sparse attention (Chen et al., 2024) accelerates tun- 084

1

ing but faces challenges with extrapolation. Other085

approaches like streaming-style architectures (Xiao086

et al., 2024b; Zhang et al., 2024a; Yen et al., 2024),087

maintain a constant-sized memory that operates as088

a sliding window. While this design significantly089

reduces memory usage, its specialized attention pat-090

tern causes incompatibility with high-performance091

attention implementations like FlashAttention (Dao092

et al., 2022; Dao, 2023), potentially leading to093

slower inference speeds. Context compression094

techniques are also widely explored (Zhang et al.,095

2024a; Yen et al., 2024). Although they offer high096

parallelism, improving speed, they tend to consume097

significant memory, greatly limiting their real ap-098

plications.099

2 Related Work100

Long-context Language Models. There are two101

prevalent routines to build LLMs that are capa-102

ble of processing extremely long text: directly103

pretraining on large corpus of targeted context104

length from scratch (Touvron et al., 2023a; Dubey105

et al., 2024; Jiang et al., 2023; GLM et al.,106

2024) or adapting short context-window LLMs to107

longer context lengths via combined various tech-108

niques (Tworkowski et al., 2024). The former ap-109

proach consumes tremendous data and computa-110

tional resources, while the latter allows for more111

convenience and flexibility for researchers and de-112

velopers to explore potential optimization to the113

default settings (Fu et al., 2024). The core idea114

behind these adaptations is to mimic short input115

scenarios (i.e., length within the model’s text win-116

dow) when the input length exceeds window size.117

Attention map manipulation is the most common118

approach for this goal, which can be realized via119

positional encoding (PE) rescaling, such as AL-120

iBi (Press et al., 2021), positional interpolation121

(PI) (Chen et al., 2023) and YaRN (Peng et al.,122

2023), or positional index rearranging (Xiao et al.,123

2024b; Ding et al., 2023; An et al., 2024; He et al.,124

2024). Both directly or indirectly adjust attention125

scores to be similar as the short-input scenarios126

so that the model can handily deal with. Another127

line of works compress past tokens sequentially128

into dense representations (Chevalier et al., 2023;129

Zhang et al., 2024a) as input at the next step or130

store them in an external retrievable memory (Wu131

et al., 2022; Xiao et al., 2024a) to reduce the input132

lengths. (Yen et al., 2024) utilizes small model such133

as RoBERTa (Liu, 2019) for context encoding to134

boost speed and enable higher parallelism. How- 135

ever, this heterogeneous architecture necessitates 136

meticulous task design for the extra pretraining and 137

warmup stages to stabilize the fine-tuning process. 138

In contrast to these works, our method directly 139

tunes off-the-shelf models to compress context into 140

structural representations for query-aware retrieval. 141

Powered by efficient architecture design and a fast- 142

forwarding mechanism, the whole procedure can 143

be fully paralleled online without excessive mem- 144

ory usage, which greatly cuts down the latency 145

during inference time. 146

Efficient Methods for Long-context Modeling. 147

In vanilla self-attention, the space and time com- 148

plexity grows quadratically (O(L2)) with the input 149

sequence length L, which can cause out-of-memory 150

(OOM) issues on GPU clusters. A straightforward 151

solution is to add parameter efficient fine-tuning 152

(PEFT) modules (Chen et al., 2024; Zhang et al., 153

2024a,b) to shrink the size of gradient tensors dur- 154

ing backward propagation. Many works strive to 155

reduce the memory footprint of attention compu- 156

tation to enhance computational efficiency. Long- 157

former (Beltagy et al., 2020) introduces a hybrid 158

attention pattern to capture local and global seman- 159

tic features concurrently. (Katharopoulos et al., 160

2020) designs linearized attention that merely de- 161

mands O(L) space to accomplish attention com- 162

putation. FlashAttention (Dao et al., 2022; Dao, 163

2023) and PagedAttention (Kwon et al., 2023) max- 164

imize the memory efficiency from system’s per- 165

spective. More recently, (Xiao et al., 2024b) discov- 166

ers the “attention sink" phenomenon and proposes 167

streaming-llm to address high perplexity issue in 168

generation under window-attention. Our work basi- 169

cally follows the efficient design principle in three 170

aspects: 1) lightweight architecture through lower 171

layer self-injection; 2) compact structural repre- 172

sentations via structural information extraction and 173

compression; 3) efficient construction and retrieval 174

algorithm based on the proposed context tree struc- 175

ture. 176

3 Method 177

In this section, we first introduce the overall archi- 178

tecture of our proposed SharedLLM in Sec. 3.1, 179

and then elaborate on its two main components, 180

lower model and upper model in Sec. 3.2 and 3.3. 181

2

Figure 1: Overview of SharedLLM. It resembles general encoder-decoder architecture like T5 (Raffel et al., 2020).
However, the interaction between lower and upper model occurs in the bottom M layers through shared KV states
which are encoded and compressed from the context tree nodes (subsequences). The orange arrows mark the paths
through which KV states from lower model’s self-attention layers are dispatched to the upper model’s corresponding
cross-attention layers, i.e., the process of self-injection.

3.1 Overview182

As illustrated in Figure 1, SharedLLM adopts a183

hierarchical architecture, akin but not identical184

to classical encoder-decoder models. The lower185

model, or the “compressor", breaks down the long186

input context XC into smaller chunks that can be187

processed within limited GPU memory. It then188

uses the same LLM model to compress each con-189

text chunk into compact and structured representa-190

tions in parallel. The upper model, or the “decoder",191

takes the rear part of the input text (the running con-192

text, such as questions) as input, then integrates the193

compressed information from the lower model, and194

finally predicts future tokens in an auto-regressive195

manner.196

The lower and upper models are interconnected197

through shared key-value (KV) states and cross-198

attention modules between the corresponding lay-199

ers. To enable efficient and effective information200

retrieval and integration, the context information201

processed by the lower model is organized into a202

binary tree, referred to as the context tree, which203

stores multi-grained information at different levels.204

This structure allows the upper model to leverage205

its processed running text to efficiently retrieve rel-206

evant information from the binary tree based on a207

depth-first search algorithm. The retrieved infor- 208

mation is then integrated with the input through 209

cross-attention, enabling the model to answer ques- 210

tions or perform language modeling. 211

In the following, we elaborate on the lower and 212

upper model. To begin with, we first define some 213

notations to enhance clarity and readability. Let 214

X = {x1, x2, ..., xT } represent the entire input 215

sequence, where T denotes the sequence length. 216

In accordance with previous setting (Yen et al., 217

2024), we split these tokens into contiguous parts: 218

X = concat([XC ;XD]), where the past context 219

XC and the running text XD serve as inputs to the 220

lower and upper models, respectively. Furthermore, 221

the past context XC is partioned into n smaller and 222

non-overlapping chunks denoted by C1, C2, ..., Cn, 223

namely, where C1 ∪ C2 ∪ ... ∪ Cn = XC and 224

Ci ∩ Cj = ∅,∀i ̸= j. The chunk size is con- 225

trolled to fit within the lower model’s context win- 226

dow—e.g., 4,096 tokens for LLaMA-2-7B (Tou- 227

vron et al., 2023b)—enabling the lower model to 228

fully utilize its encoding capacity. 229

3.2 Lower Model 230

The lower model is a small pretrained LLM, imple- 231

mented as the first M shallow layers of LLaMA- 232

3

Figure 2: An running example of our tree (depth=3).
The digits mark the step indices in the split-and-search
procedure.

2. It independently encodes and compresses each233

past context chunk Ci from the set of chunks234

{Ci}ni=1, and constructs a context tree that stores235

multi-grained information at different levels. The236

encoding for all chunks {Ci}ni=1 is fully paral-237

leled to boost the speed. Below, we detail the238

context tree structure and its efficiency-enhanced239

query-dependent dynamic construction, and the240

tree search process.241

Context Tree. The motivation behind building242

the context tree is both intuitive and problem-243

driven. Given a text chunk Ci and a task-specific244

query, task-related information is often distributed245

unevenly across the chunk. For instance, to summa-246

rize a given passage, one should focus more on the247

topic sentences, extract key messages from them,248

and rephrase to produce the answer, rather than249

focusing on narrative details. Whereas in the task250

of passkey finding, detailed relations are more im-251

portant than theme paragraphs. To this end, we aim252

for the contextual representations to capture fine-253

grained details for the relevant portions of the text,254

while encoding only coarse-grained information for255

the less relevant parts. The tree structure is ideal256

for simulating this process: the splitting of nodes257

resembles splitting larger text chunks into smaller258

ones, from which more fine-grained information259

can be extracted.260

In the context tree, its root node contains the261

entire chunk Ci = {xs, ..., xt} , where xp (s ≤262

p ≤ t) denotes a token, s and t are the start and end263

index of that chunk; and each other node consists of264

a subsequence of the chunk Ci. Then we introduce265

how to build the child nodes from a parent node.266

Specifically, for any non-leaf node that contains l267

tokens {xu+1, ..., xu+l}, at training phase, we split268

it into two sub-sequences for constructing its left 269

child and right child as: 270

Cparent = {xu+k}lk=1 (1) 271

Cleft = {xu+k}bk=1, Cright = {xu+k}lk=b+1

(2)
272

Here we adopt a random splitting by setting b = 273

⌊ l
2 − ϵ⌋ and ϵ ∼ N (0, σ2) where σ is a predefined 274

hyperparameter, since random lengths can slightly 275

improve the performance as concluded in (Zhang 276

et al., 2024a). At test time, the noise ϵ is fixed to 277

zero. One can continue this process until arriving 278

at the limited tree depth. Next, building upon this 279

static tree, we construct a more efficient query- 280

dependent dynamic tree. 281

Query-Dependent Dynamic Tree Construction 282

and Search. A task-specific query is typically 283

highly relevant to certain tree nodes, while be- 284

ing less relevant to others. For highly relevant 285

nodes, further expansion is necessary to extract 286

fine-grained information. However, for less rele- 287

vant nodes, expansion is unnecessary. Thus, in- 288

stead of building an entire static context tree as 289

mentioned above, we build a query-dependent dy- 290

namic tree that expands only the relevant nodes, as 291

shown in Figure 2, significantly saving both GPU 292

memory and time. 293

Starting from the root node, we perform a depth- 294

first splitting and search process. Each node se- 295

quence is first divided into two subsequences ac- 296

cording to Eq. (1). We then use a non-parametric 297

policy π to decide the next selected node based on 298

the two subsequences, xleft and xright, and a 299

query sequence y: 300

π((xleft,xright),y) → left or right, (3) 301

Here the policy π determines whether the left or 302

right child of a node will be selected. The unse- 303

lected sibling node is marked as “preserved" and 304

will not be expanded further. Note that the root 305

node is always selected to ensure expansion. For 306

policy π, it is task-specific. Specifically, regarding 307

language modeling task, since there are no explicit 308

queries (i.e., y = ∅), we simply set π to be deter- 309

ministic: 310

π((xleft,xright),y) ≡ right. (4) 311

For instruction-following tasks, such as question- 312

answering, where queries like questions are avail- 313

able, π selects the node with higher similarity to 314

4

the query in the hidden space:315

π((xleft,xright),y) =316

argmax
ϕ∈{left,right}

(sim(hxϕ
,hy)), (5)317

where sim(·, ·) represents the cosine similarity318

between two vectors. The hidden vector h at the319

last position of a sequence is embedded by the320

lower or upper model. Specifically, this involves a321

short forward pass through one self-attention layer322

in the lower model for hxϕ
and the upper model323

for hy. Once the selected node is determined, the324

process proceeds with that node, repeating until the325

leaf nodes are reached. At this point, both the left326

and right child are marked as “preserved" and will327

not be expanded further.328

For each preserved node, we feed its associated329

context into the lower model to obtain a collection330

of key-value (KV) states from all M layers, de-331

noted as S = {K,V}, where K,V ∈ RM×l×d332

represent the key and value states for all M lay-333

ers. Here, l is the sequence length, and d is the334

hidden dimension. Next, we perform a uniform335

downsampling along the length dimension to re-336

tain only a portion of the KV states, resulting in337

S′ = {K′,V′}, where K′,V′ ∈ RM×l′×d and338

l′ is the downsampled length. The compression339

ratio α for the node is defined as α = l/l′. For340

the context tree, we apply a constant compression341

ratio αw for all preserved nodes at level w, but342

the ratio decreases progressively from top to bot-343

tom, i.e., αw > αw+1. In our implementation,344

we set αw = 2αw+1. The specific value of αw345

can be found in Appendix A.1. This approach346

creates a coarse-to-fine distribution of semantic in-347

formation from top to down: nodes at higher levels348

possess longer subsequences and are compressed349

with a higher compression ratio, corresponding350

to more coarse-grained information. In contrast,351

nodes closer to the bottom store finer-grained infor-352

mation.353

The overall compression ratio β of a tree is de-354

fined as the ratio of the chunk length |C| to the total355

length of the compressed KV states:356

β =

∑
lwnw∑
l′wnw

=
|C|∑
l′wnw

(6)357

where nw is the number of preserved nodes at358

level w, and l′w is the compressed length of each359

preserved node at level w. For the convenience360

of parallel processing, we set β same for all n361

context trees. Experimental results in Section 4 362

demonstrate that this compression ratio can reach 363

as high as 8, significantly improving efficiency. 364

3.3 Upper Model 365

The upper model primarily inherits from the 366

LLaMA architecture, which consists of N (32 367

for LLaMA-2-7B) self-attention layers with slight 368

modifications. As illustrated in Figure 1, for 369

each one of the M shallow layers, we add a 370

cross-attention module on top of the standard self- 371

attention layer for information fusion. 372

Position-aware Cross-attention on the Context 373

Tree. In Section 3.2, we obtain a sequence of tree- 374

structured representations S ′ = {S′
1, ...,S

′
n} for 375

n chunks {Ci}ni=1, where S′
i = {K′

i,V
′
i} stands 376

for the representations of chunk Ci. Since the se- 377

quence of chunk keys K = {K′
1; ...,K

′
n} is pro- 378

duced from ordered chunks {C1, ..., Cn}, their po- 379

sitional information should be perceived at chunk 380

level by the query. We assign the following chunk- 381

level positional indices to Q and K: 382

PQ = {n, ..., n︸ ︷︷ ︸
|XD|

}, 383

PK = {0, ..., 0︸ ︷︷ ︸
|C1|/β

, 1, ..., 1︸ ︷︷ ︸
|C2|/β

, n− 1, ..., n− 1︸ ︷︷ ︸
|Cn|/β

} (7) 384

Here we treat the upper model’s query Q as one 385

chunk and assign it the largest positional index, 386

because Q is encoded from XD, which appears 387

after all the context chunks XC in the raw input 388

sequence X . We will show in Section 4.3 that this 389

setting also facilitates chunk-level extrapolation 390

and answer text production in downstream tasks. 391

We then conduct cross-attention between the 392

query Q and the concatenated KVs to integrate 393

their carried context information into the running 394

context for more coherent language modeling: 395

O = cross_attn(Q,concat([K′
1; ...;K

′
n]), 396

concat([V′
1; ...;V

′
n])). (8) 397

Training We leverage the standard language 398

modeling loss during training, which maximizes 399

the log probability of the ground-truth tokens in the 400

target sequences Xtar, conditioned on the context 401

XC and all preceding tokens x<t from XD: 402

L = −
∑

xt∈Xtar

logP (xt|XC ;x<t). (9) 403

5

For language modeling data, Xtar = XD, i.e.,404

the target tokens are all tokens in XD, excluding the405

first token. For instruction-following data, XD in-406

cludes both the instruction Xinst and the annotated407

response Xres. In this case, we set Xtar = Xres,408

meaning that we optimize only for the response409

tokens, while the instruction text is masked during410

loss calculation.411

4 Experiments412

4.1 Setup413

Base Model We select LLaMA-2-7B and414

LLaMA-3-8B as the base models. Both the up-415

per and lower model are initialized with part of or416

the whole checkpoint in post-pretraining and with417

corresponding instruction-tuned version in super-418

vised fine-tuning (SFT), in consistent with previous419

works (Chen et al., 2024; Yen et al., 2024; Zhang420

et al., 2024a). We set M = 4 in language modeling421

and M = 16 in SFT for lower model.422

Training Dataset In continual pretraining, we423

follow (Yen et al., 2024) to prepare the training424

data by sampling a subset of 20B (1%) tokens from425

RedPajama’s all 7 domains (Together, 2023). Due426

to the copyright issue, the books3 subset in Books427

domain (books3 + PG19) is unavailable and thus428

excluded from our training set, yet we do not renor-429

malize sampling probability across domains. The430

sampled texts are truncated to 8,192 tokens to form431

the input. In SFT, we use a mixed dataset, where432

the input length is filtered to range between 1200433

to 8192 tokens, following Zhang et al. (2024a).434

Training Details We train SharedLLM on an 8×435

A800 GPU machine. The batch size is set to 1436

per GPU with gradient accumulation of 16 steps437

(global batch size is 128) for continual pretraining438

and 1 step (global batch size is 8) for SFT. The439

chunk size is set to 1,024 for language modeling440

or 512 in SFT, with tree height h = 3 and com-441

pression ratio β = 8. For other configurations and442

hyperparameters, please refer to Appendix A.1 for443

more details.444

Evaluation Tasks We assess our method on two445

typical evaluation tasks in the long-context field:446

language modeling and long document question–447

answering. The evaluation on language model-448

ing is performed on the test set of RedPajama,449

while for long document question–answering we450

test SharedLLM on three benchmarks. In language451

modeling task, we measure perplexity of target 452

models on sequence lengths ranging from 4K to 453

128K using a single A800 80GB GPU. The eval- 454

uation covers four datasets: ArXiv, PG19 (Rae 455

et al., 2020), ProofPile (Azerbayev et al., 2024), 456

and CodeParrot (Tunstall et al., 2022) under two 457

settings that utilize different training datasets. Un- 458

der each setting we test on three out of the four 459

datasets, respectively. The results are posted on Ta- 460

ble 1 and 2. All perplexity values in these tables are 461

averaged over 100 examples except for the 128K 462

length, on which we test only 10 examples due to 463

the data scarcity (Yen et al., 2024; Zhang et al., 464

2024a). For the experiments on encoder-decoder 465

and hierarchical models at 4K length, the input is 466

divided by half (2K/2K) and fed separately into 467

their two submodules. 468

4.2 Main Results 469

Language Modeling. SharedLLM exhibits 470

strong extrapolation capability on both base 471

models—it avoids perplexity explosion even tested 472

on 128K-token length through having seen only 473

at most 8K-length sequences before. In Table 1, 474

SharedLLM almost outperforms other baselines 475

trained on mixed dataset 3-10% under both base 476

models. In Table 2, SharedLLM outperforms 477

CEPE in nearly all cases except 128K context 478

length on ProofPile, showcasing the effectiveness 479

of structural self-injection mechanism. Between 480

the two settings, the improvement over Activation- 481

Beacon is more pronounced than over CEPE, 482

because CEPE experiences an extra pretraining 483

stage to adapt the RoBERTa encoder to the 484

RedPajama corpus and a warmup stage to align 485

the hidden space between encoder and decoder. 486

In contrast, SharedLLM can directly be finetuned 487

from publicly available off-the-shelf checkpoints, 488

which saves a great amount of training effort. 489

Long-context Understanding Benchmarks. We 490

continue to test the supervised fine-tuned ver- 491

sion of SharedLLM on many downstream tasks 492

from InfiniBench (Zhang et al., 2024c) and Long- 493

Bench (Bai et al., 2023). Both benchmarks consist 494

of a variety of long-context tasks established from 495

raw and synthetic datasets. 496

On InfiniBench, we are concentrate on the fol- 497

lowing tasks: Math.Find asks a model to retrieve 498

a special value specified in the prompt (e.g., mini- 499

mum, maximum, medium, etc.), which examines 500

both the precise retrieval and query understanding 501

6

Base Model Method
PG19 ProofPile CodeParrot

4K 16K 32K 100K 4K 16K 32K 100K 4K 16K 32K 100K

LLaMA-2

StreamingLLM 9.21 9.25 9.24 9.32 3.47 3.51 3.50 3.55 2.55 2.60 2.54 2.56
LongAlpaca-16K 9.96 9.83 - OOM 3.82 3.37 - OOM 2.81 2.54 - OOM
Activation Beacon 9.21 8.34 8.27 8.50 3.47 3.34 3.32 3.31 2.55 2.43 2.41 2.62
SharedLLM 8.68 8.01 7.96 8.24 3.36 3.24 3.21 3.19 2.33 2.25 2.23 2.36

LLaMA-3

StreamingLLM 8.75 8.81 8.83 8.87 3.29 3.38 3.40 3.44 2.39 2.48 2.43 2.46
LongAlpaca-16K 8.58 8.71 - OOM 3.26 3.34 - OOM 2.48 2.46 - OOM
Activation Beacon 8.50 8.62 8.47 8.51 3.18 3.05 3.07 3.10 2.35 2.27 2.29 2.43
SharedLLM 8.32 8.37 8.19 8.21 3.03 2.94 2.98 3.10 2.29 2.18 2.21 2.33

Table 1: Perplexity when models are trained on mixed dataset. “OOM" means out-of-memory exception raised
during inference. Excessively large perplexities (> 102) are hidden with a dash (“-").

Base Model
Arxiv PG19 ProofPile

4K 8K 32K 128K 4K 8K 32K 128K 4K 8K 32K 128K

LLaMA-2 2.60 - - OOM 6.49 - - OOM 2.28 - - OOM
Positional Interpolation 3.49 3.21 2.77 OOM 6.97 6.77 6.89 OOM 2.77 2.64 2.51 OOM
YaRN-2-128K 3.35 3.09 2.58 OOM 6.85 6.62 6.91 OOM 2.82 2.56 2.47 OOM
CEPE 3.03 3.02 2.51 2.97 6.69 6.40 6.80 6.10 2.38 2.43 2.45 2.39
SharedLLM 2.99 2.97 2.46 2.91 6.55 6.28 6.65 5.96 2.33 2.34 2.38 2.40

Table 2: Perplexity of models after continual-pretraining on downsampled RedPajama. Best results on context-
extended models are marked in bold. Perplexity higher than 102 are denoted by dash ("-")

Base Model Method Math.Find En.MC Ret.Num

LLaMA-2

LM-Infinite 5.71 30.57 4.95
Str-LLM 6.00 32.31 5.23
InfLLM 11.14 31.44 80.58
SharedLLM 13.58 33.65 82.79

LLaMA-3

LM-Infinite 22.45 45.72 7.92
Str-LLM 21.89 39.95 8.17
InfLLM 23.95 43.58 98.85
SharedLLM 25.57 47.92 99.27

Table 3: Evaluation of different methods on tasks from
InfiniBench.

abilities of the model. En.MC instructs a model502

to collect key information from a extremely long503

passage and choose the correct answer from many504

candidate options. Ret.Num demands locating re-505

peated hidden numbers in a noisy long context.506

We compare SharedLLM with advanced baselines507

capable of extremely long inputs, as shown in Ta-508

ble 3. SharedLLM surpasses many strong baselines509

on both tasks (2.44/1.62 points on Math.Find, 1.34510

points or 4.1% on En.MC, 2.21/0.41 points over511

state-of-the-arts), showing excellent capabilities in512

tackling extremely long input.513

For LongBench, we report the categorical scores514

over all 14 English tasks in 5 categories, including515

single-document QA (SD-QA), multi-document516

QA (MD-QA), summarization (Sum), few-shot517

task (FS) and code-completion (Code), as shown in 518

Table 4. SharedLLM outperforms or matches other 519

advanced instruction-tuned long-context baselines 520

across all five categories. Note that for SharedLLM 521

we feed the model with the entire document while 522

for other models documents are truncated from 523

the middle to fit their context length as the code 524

suggests—such an action could “improve" the 525

performance (Zhang et al., 2024a), especially on 526

decoder-only models, as relevant information for 527

many tasks is located at the beginning or end of the 528

entire text rather than the middle part. 529

4.3 Ablation Studies 530

We consider the following ablative settings to 531

verify the rationale of the design considerations 532

in SharedLLM: 1) tree depth; 2) compression ratio; 533

3) the collection of context information injection 534

layers; 4) other configurations, including the ef- 535

fect from retrieval policy π (only for instruction- 536

following task), the noise in node splitting, and the 537

addition of chunk-level positional indices during 538

cross-attention. 539

The results are displayed in Table 5, from which 540

we find that both tree depth and compression ratio 541

should be set appropriately to achieve near-optimal 542

performance. For example, SharedLLM performs 543

7

Base Model Method SD-QA MD-QA Sum FS Code Avg

LLaMA-2

Base 24.90 22.60 24.70 60.00 48.10 35.20
LongAlpaca-16K 28.70 28.10 27.80 63.70 56.00 39.78
YaRN-128K 24.03 24.11 19.82 60.00 62.73 36.38
Activation Beacon 28.27 28.44 25.15 61.00 57.75 38.86
SharedLLM 28.43 30.93 25.63 63.98 59.15 40.37

LLaMA-3

Base 15.12 7.95 26.13 68.75 56.04 33.28
LongAlpaca-16K 21.41 12.45 27.74 70.72 60.05 36.93
YaRN-128K 17.24 10.58 22.53 69.41 63.80 34.78
Activation Beacon 22.08 13.75 29.06 70.67 61.14 37.78
SharedLLM 22.62 14.32 28.94 71.45 63.57 38.51

Table 4: Evaluation of different methods on LongBench. For each base model and each task, best results are
highlighted in bold and second best results are underlined.

best when the tree height is 3. If the height is544

too small, i.e., the tree is undersplit and the chunk545

size is excessively large so that only coarse-grained546

context information is retained while task-related547

fine-grained information is not explicit, or too large,548

i.e., the tree is oversplit and the leaves carry frag-549

mented information which can hardly provide valu-550

able clues for task solving, performance degrades551

accordingly. A similar trend can be viewed on552

global compression ratio β. While abandoning553

downsampling KV (β = 1) may bring decline in554

perplexity, its query-aware information retrieval555

ability deteriorates. In terms of injection layer556

selection, our implementation, which is refer to557

as continuous bottom, injects the context informa-558

tion in the bottom M layers. In contrary, Continu-559

ous top injects context information at the topmost560

M layers (from layer N−M+1 to layer N). Inter-561

leaving applies cross-attention at regular intervals,562

such as layer 4, 8, 12, 16... Among these configu-563

rations, SharedLLM wins over continuous top and564

interleaving on both tasks, indicating the correct-565

ness of injection layer selection in SharedLLM.566

For other settings, as shown in the bottom rows,567

removing either of them causes performance drop568

compared to the default setting, which reveals the569

contributions of the three design considerations570

to model’s performance. Among these items, the571

query-aware information retrieval is the core com-572

ponent for the context-tree so that the performance573

on MD-QA drops mostly after removing it from the574

network. The sequential order is similarly impor-575

tant and should be perceived during cross-attention576

to organize the answer accordingly.577

Besides the effect on task performance, we also578

perform more experiments to explore how these579

Item Configuration Arxiv (32K) MD-QA

Tree Height
2 2.51 30.15
3 2.46 30.93
4 2.57 29.47

Compression Ratio β

1 2.43 30.55
4 2.48 30.28
8 2.46 30.93
16 2.52 29.81

Injection Layers
Continuous Bottom 2.46 30.93

Continuous Top 2.61 28.66
Interleaving 2.57 29.15

Other Settings

Default 2.46 30.93
w/o retrieval - 29.27

w/o noise 2.51 30.08
w/o chunk-level pid 2.49 29.81

Table 5: Ablative Studies on different configurations of
structural information injection. The best values in each
category and settings consistent with our defaults are
highlighted in bold.

configurations impact speed and memory in Ap- 580

pendix C. 581

5 Conclusion 582

In this work, we present SharedLLM, which lever- 583

ages a self-injection mechanism to adapt a pair 584

of short-context LLMs for efficient long-context 585

modeling. By integrating the operations of con- 586

text compression and key information retrieval into 587

a dedicated binary-tree structure, SharedLLM ex- 588

cels in language modeling and various downstream 589

instruction-following tasks, while maintaining ex- 590

cellent memory and time efficiency. Besides, 591

SharedLLM is directly trained from off-the-shelf 592

LLMs, eliminating the need for additional feature 593

alignment steps and making implementation easier. 594

We hope this learning paradigm can be generalized 595

to other short-context LLMs, offering a scalable 596

approach for a context-window extension to an ar- 597

bitrary length. 598

8

Limitations599

While SharedLLM demonstrates superior perfor-600

mance on both language modeling and long-601

context benchmarks, as well as high efficiency in602

terms of time and memory, there are still some limi-603

tations. First, although this work strikes a relatively604

good balance between efficiency and performance605

at the model architecture level, further improve-606

ments could be achieved by optimizing at the sys-607

tem and hardware levels. Second, while a simple608

and effective retrieval mechanism is implemented609

in this work, more advanced retrieval techniques,610

such as BM25 (Robertson et al., 2009) and Graph-611

RAG (Edge et al., 2024), were not explored and612

may further enhance performance. We aim to pur-613

sue these improvements in future research.614

References615

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama616
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,617
Diogo Almeida, Janko Altenschmidt, Sam Altman,618
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.619
arXiv preprint arXiv:2303.08774.620

Chenxin An, Fei Huang, Jun Zhang, Shansan Gong,621
Xipeng Qiu, Chang Zhou, and Lingpeng Kong. 2024.622
Training-free long-context scaling of large language623
models. In Forty-first International Conference on624
Machine Learning.625

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster,626
Marco Dos Santos, Stephen Marcus McAleer, Al-627
bert Q Jiang, Jia Deng, Stella Biderman, and Sean628
Welleck. 2024. Llemma: An open language model629
for mathematics. In The Twelfth International Con-630
ference on Learning Representations.631

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,632
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao633
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,634
and Juanzi Li. 2023. Longbench: A bilingual, mul-635
titask benchmark for long context understanding.636
arXiv preprint arXiv:2308.14508.637

Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020.638
Longformer: The long-document transformer. arXiv639
preprint arXiv:2004.05150.640

Tom B Brown. 2020. Language models are few-shot641
learners. arXiv preprint arXiv:2005.14165.642

Shouyuan Chen, Sherman Wong, Liangjian Chen, and643
Yuandong Tian. 2023. Extending context window of644
large language models via positional interpolation.645
arXiv preprint arXiv:2306.15595.646

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai,647
Zhijian Liu, Song Han, and Jiaya Jia. 2024. Longlora:648
Efficient fine-tuning of long-context large language649

models. In The Twelfth International Conference on 650
Learning Representations. 651

Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and 652
Danqi Chen. 2023. Adapting language models to 653
compress contexts. In Proceedings of the 2023 Con- 654
ference on Empirical Methods in Natural Language 655
Processing, pages 3829–3846. 656

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, 657
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul 658
Barham, Hyung Won Chung, Charles Sutton, Sebas- 659
tian Gehrmann, et al. 2022. Palm: Scaling language 660
modeling with pathways. arxiv 2022. arXiv preprint 661
arXiv:2204.02311, 10. 662

Hyung Won Chung, Le Hou, Shayne Longpre, Barret 663
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi 664
Wang, Mostafa Dehghani, Siddhartha Brahma, et al. 665
2024. Scaling instruction-finetuned language models. 666
Journal of Machine Learning Research, 25(70):1–53. 667

Tri Dao. 2023. Flashattention-2: Faster attention with 668
better parallelism and work partitioning. In The 669
Twelfth International Conference on Learning Repre- 670
sentations. 671

Tri Dao, Daniel Y Fu, Stefano Ermon, Atri Rudra, 672
and Christopher Ré. 2022. Flashattention: Fast and 673
memory-efficient exact attention with io-awareness. 674
In Proceedings of the 35th Neural Information Pro- 675
cessing Systems Conference (NeurIPS). 676

Jiayu Ding, Shuming Ma, Li Dong, Xingxing Zhang, 677
Shaohan Huang, Wenhui Wang, Nanning Zheng, 678
and Furu Wei. 2023. Longnet: Scaling trans- 679
formers to 1,000,000,000 tokens. arXiv preprint 680
arXiv:2307.02486. 681

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 682
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 683
Akhil Mathur, Alan Schelten, Amy Yang, Angela 684
Fan, et al. 2024. The llama 3 herd of models. arXiv 685
preprint arXiv:2407.21783. 686

Darren Edge, Ha Trinh, Newman Cheng, Joshua 687
Bradley, Alex Chao, Apurva Mody, Steven Truitt, 688
and Jonathan Larson. 2024. From local to global: A 689
graph rag approach to query-focused summarization. 690
arXiv preprint arXiv:2404.16130. 691

Yao Fu, Rameswar Panda, Xinyao Niu, Xiang Yue, Han- 692
naneh Hajishirzi, Yoon Kim, and Hao Peng. 2024. 693
Data engineering for scaling language models to 128k 694
context. arXiv preprint arXiv:2402.10171. 695

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chen- 696
hui Zhang, Da Yin, Diego Rojas, Guanyu Feng, Han- 697
lin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Ji- 698
adai Sun, Jiajie Zhang, Jiale Cheng, Jiayi Gui, Jie 699
Tang, Jing Zhang, Juanzi Li, Lei Zhao, Lindong Wu, 700
Lucen Zhong, Mingdao Liu, Minlie Huang, Peng 701
Zhang, Qinkai Zheng, Rui Lu, Shuaiqi Duan, Shu- 702
dan Zhang, Shulin Cao, Shuxun Yang, Weng Lam 703
Tam, Wenyi Zhao, Xiao Liu, Xiao Xia, Xiaohan 704
Zhang, Xiaotao Gu, Xin Lv, Xinghan Liu, Xinyi Liu, 705

9

Xinyue Yang, Xixuan Song, Xunkai Zhang, Yifan706
An, Yifan Xu, Yilin Niu, Yuantao Yang, Yueyan Li,707
Yushi Bai, Yuxiao Dong, Zehan Qi, Zhaoyu Wang,708
Zhen Yang, Zhengxiao Du, Zhenyu Hou, and Zihan709
Wang. 2024. Chatglm: A family of large language710
models from glm-130b to glm-4 all tools. Preprint,711
arXiv:2406.12793.712

Zhenyu He, Guhao Feng, Shengjie Luo, Kai Yang, Li-713
wei Wang, Jingjing Xu, Zhi Zhang, Hongxia Yang,714
and Di He. 2024. Two stones hit one bird: Bilevel715
positional encoding for better length extrapolation.716
In Forty-first International Conference on Machine717
Learning.718

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shan-719
tanu Acharya, Dima Rekesh, Fei Jia, and Boris Gins-720
burg. 2024. Ruler: What’s the real context size of721
your long-context language models? arXiv preprint722
arXiv:2404.06654.723

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-724
sch, Chris Bamford, Devendra Singh Chaplot, Diego725
de las Casas, Florian Bressand, Gianna Lengyel, Guil-726
laume Lample, Lucile Saulnier, et al. 2023. Mistral727
7b. arXiv preprint arXiv:2310.06825.728

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pap-729
pas, and François Fleuret. 2020. Transformers are730
rnns: Fast autoregressive transformers with linear731
attention. In International conference on machine732
learning, pages 5156–5165. PMLR.733

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying734
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-735
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient736
memory management for large language model serv-737
ing with pagedattention. In Proceedings of the 29th738
Symposium on Operating Systems Principles, pages739
611–626.740

Yinhan Liu. 2019. Roberta: A robustly opti-741
mized bert pretraining approach. arXiv preprint742
arXiv:1907.11692.743

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and En-744
rico Shippole. 2023. Yarn: Efficient context window745
extension of large language models. arXiv preprint746
arXiv:2309.00071.747

Ofir Press, Noah A Smith, and Mike Lewis. 2021.748
Train short, test long: Attention with linear biases749
enables input length extrapolation. arXiv preprint750
arXiv:2108.12409.751

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar,752
Chloe Hillier, and Timothy P Lillicrap. 2020. Com-753
pressive transformers for long-range sequence mod-754
elling. In International Conference on Learning Rep-755
resentations.756

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine757
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,758
Wei Li, and Peter J Liu. 2020. Exploring the lim-759
its of transfer learning with a unified text-to-text760
transformer. Journal of machine learning research,761
21(140):1–67.762

Stephen Robertson, Hugo Zaragoza, et al. 2009. The 763
probabilistic relevance framework: Bm25 and be- 764
yond. Foundations and Trends® in Information Re- 765
trieval, 3(4):333–389. 766

Together. 2023. Redpajama: An open source recipe to 767
reproduce llama training dataset. 768

TogetherAI. 2023. Llama-2-7b-32k-instruct - and fine- 769
tuning for llama-2 models with together api. 770

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 771
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 772
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 773
Bhosale, et al. 2023a. Llama 2: Open founda- 774
tion and fine-tuned chat models. arXiv preprint 775
arXiv:2307.09288. 776

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 777
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 778
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 779
Bhosale, et al. 2023b. Llama 2: Open founda- 780
tion and fine-tuned chat models. arXiv preprint 781
arXiv:2307.09288. 782

Lewis Tunstall, Leandro Von Werra, and Thomas Wolf. 783
2022. Natural language processing with transform- 784
ers. " O’Reilly Media, Inc.". 785

Szymon Tworkowski, Konrad Staniszewski, Mikołaj 786
Pacek, Yuhuai Wu, Henryk Michalewski, and Piotr 787
Miłoś. 2024. Focused transformer: Contrastive train- 788
ing for context scaling. Advances in Neural Informa- 789
tion Processing Systems, 36. 790

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, 791
Adams Wei Yu, Brian Lester, Nan Du, Andrew M 792
Dai, and Quoc V Le. 2021. Finetuned language mod- 793
els are zero-shot learners. In International Confer- 794
ence on Learning Representations. 795

Yuhuai Wu, Markus Norman Rabe, DeLesley Hutchins, 796
and Christian Szegedy. 2022. Memorizing transform- 797
ers. In International Conference on Learning Repre- 798
sentations. 799

Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan Xiao, 800
Yankai Lin, Zhengyan Zhang, Zhiyuan Liu, Song 801
Han, and Maosong Sun. 2024a. Infllm: Unveiling the 802
intrinsic capacity of llms for understanding extremely 803
long sequences with training-free memory. arXiv 804
preprint arXiv:2402.04617. 805

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song 806
Han, and Mike Lewis. 2024b. Efficient streaming 807
language models with attention sinks. In The Twelfth 808
International Conference on Learning Representa- 809
tions. 810

Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang, 811
Prajjwal Bhargava, Rui Hou, Louis Martin, Rashi 812
Rungta, Karthik Abinav Sankararaman, Barlas Oguz, 813
Madian Khabsa, Han Fang, Yashar Mehdad, Sharan 814
Narang, Kshitiz Malik, Angela Fan, Shruti Bhosale, 815
Sergey Edunov, Mike Lewis, Sinong Wang, and Hao 816

10

https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2406.12793
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://www.together.ai/blog/llama-2-7b-32k-instruct
https://www.together.ai/blog/llama-2-7b-32k-instruct
https://www.together.ai/blog/llama-2-7b-32k-instruct

Ma. 2024. Effective long-context scaling of founda-817
tion models. In Proceedings of the 2024 Conference818
of the North American Chapter of the Association for819
Computational Linguistics: Human Language Tech-820
nologies (Volume 1: Long Papers), pages 4643–4663,821
Mexico City, Mexico. Association for Computational822
Linguistics.823

Howard Yen, Tianyu Gao, and Danqi Chen. 2024. Long-824
context language modeling with parallel context en-825
coding. In Proceedings of the 62nd Annual Meeting826
of the Association for Computational Linguistics (Vol-827
ume 1: Long Papers), pages 2588–2610, Bangkok,828
Thailand. Association for Computational Linguistics.829

Peitian Zhang, Zheng Liu, Shitao Xiao, Ninglu Shao,830
Qiwei Ye, and Zhicheng Dou. 2024a. Soaring from831
4k to 400k: Extending llm’s context with activation832
beacon. arXiv preprint arXiv:2401.03462.833

Peitian Zhang, Ninglu Shao, Zheng Liu, Shitao Xiao,834
Hongjin Qian, Qiwei Ye, and Zhicheng Dou. 2024b.835
Extending llama-3’s context ten-fold overnight.836
Preprint, arXiv:2404.19553.837

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang838
Xu, Junhao Chen, Moo Hao, Xu Han, Zhen Thai,839
Shuo Wang, Zhiyuan Liu, and Maosong Sun. 2024c.840
∞Bench: Extending long context evaluation beyond841
100K tokens. In Proceedings of the 62nd Annual842
Meeting of the Association for Computational Lin-843
guistics (Volume 1: Long Papers), pages 15262–844
15277, Bangkok, Thailand. Association for Compu-845
tational Linguistics.846

11

https://doi.org/10.18653/v1/2024.naacl-long.260
https://doi.org/10.18653/v1/2024.naacl-long.260
https://doi.org/10.18653/v1/2024.naacl-long.260
https://aclanthology.org/2024.acl-long.142
https://aclanthology.org/2024.acl-long.142
https://aclanthology.org/2024.acl-long.142
https://aclanthology.org/2024.acl-long.142
https://aclanthology.org/2024.acl-long.142
https://arxiv.org/abs/2404.19553
https://aclanthology.org/2024.acl-long.814
https://aclanthology.org/2024.acl-long.814
https://aclanthology.org/2024.acl-long.814

A More Implementation Details847

A.1 Training Configurations848

Zero Redundancy Optimizer (ZeRO) stage 3 from849

DeepSpeed without offload is enabled in both train-850

ing to distribute the memory allocation among851

GPUs. The cross-attention layers remain fully852

tunable, while we opt to train upper model’s top853

N − M self-attention layers in language model-854

ing as post-injection aggregation for faster conver-855

gence. No parameter efficient fine-tuning (PEFT)856

techniques, such as LoRA, are applied during857

the training time, as PEFT seriously slows down858

model’s convergence (Chen et al., 2024). , which859

actually requires longer tuning time than partial860

parameter fine-tuning to reach the optimum. We861

adopt AdamW optimizer with the starting learning862

rate 1e−5 and cosine scheduler during training.863

We list more training configurations that are not864

specified in the main text in Table 6. The sequential865

values of α are level-wise compression ratio, from866

level 1 to level 3.867

Table 6: Configurations for training on both tasks.

Item Language Modeling Supervised Fine-tuning

training epoch 1 2
warmup ratio 0.01 0.001

σ l/5 l/10
chunk size 1024 512

α 1/16, 1/8, 1/4
AdamW (β1, β2) 0.9, 0.999

A.2 Online Split-and-Search Algorithm868

We provide the pseudo code for the online split-and-869

search algorithm introduced in Section 3.2, from870

the splitting of root node till collecting all key-value871

states for all preserved nodes and all M layers.872

The code snippet in the entire model.py file can be873

found in the supplementary material.874

A.3 Dataset Statistics875

Downsampled Redpajama. We follow (Yen876

et al., 2024) and (Touvron et al., 2023b) to prepare877

our training set. The proportions of data regarding878

seven domains in the resulted training set are listed879

in Table 7.880

Mixed Dataset in SFT. This dataset is directly881

picked from (Zhang et al., 2024a), which is a mix-882

ture of RedPajama and LongAlpaca (Chen et al.,883

2024). We follow (Zhang et al., 2024a) to only884

filter samples whose lengths range from 1K to 8K.885

The distribution of samples in terms of lengths is 886

below. 887

A.4 Details of Test Benchmarks 888

RedPajama In the test of long-context model- 889

ing capability, we use a tiny proportion of corpus 890

which has never been seen by the model during the 891

training time as the test set. The test set is sampled 892

at the same time of sampling for the training set. 893

The sampled passages are ensured to match the 894

corresponding test lengths. 895

Long Bench (Bai et al., 2023) is the first bilin- 896

gual (English and Chinese), multi-task benchmark 897

for long context understanding. It comprises 21 898

datasets across 6 subcategories, which aims for a 899

more rigorous evaluation of long context under- 900

standing. These cateogries encompass single docu- 901

ment QA, multi-document QA, summarization, few- 902

shot learning, synthetic tasks, and code completion. 903

The average length of documents is 6,711 words in 904

English and 13,386 characters in Chinese. 905

Infinity-Bench (Zhang et al., 2024c) extends 906

context lengths in previous long-context bench- 907

marks from 10K to more than 100K tokens. The 908

benchmark is composed of both synthetic and real- 909

istic tasks spanning diverse domains and bilingual 910

(Chinese and English). Specifically, the task cate- 911

gories in ∞BENCH include retrival (Ret.), summa- 912

rization (sum), question answering (QA), code and 913

math. 914

B More Experiments 915

B.1 Passkey Retrieval 916

We further assess the retrieval capability of 917

SharedLLM on passkey retrieval task, as known 918

as needle-in-haystack (NIAH). Following the set- 919

tings in Yen et al. (2024), we train a new version of 920

SharedLLM that can perform accurate passkey re- 921

trieval from the haystacks of surrounded nonsense. 922

We follow the examples in Chen et al. (2024) to 923

set up the single key-value pair test cases. The re- 924

sults averaged on 10 random generated NIAH test 925

samples are shown in Figure 3. It can be observed 926

that SharedLLM enjoys the minimal accuracy de- 927

cay as length extends compared to other baselines, 928

although it has only seen context within 8K length. 929

B.2 Other Base Models 930

Apart from LLaMA series, we also test our ap- 931

proach on Mistral-7B model. The results are shown 932

12

N: number of trees; L: chunk size

depth: tree depth; chunk_ids: the entire input ids for chunk in shape (N, L)
gamma: a hyper-parameter to adjust the variance of the gaussian sampling

selected_input_ids = chunk_ids
selected_length = chunk_ids.shape[-1]
all_kvs = []

for i in range(depth):
sample lengths of left and right child
if i < depth - 1:

half_length = last_length // 2
sigma = half_length / gamma
delta = random.randn(1) * sigma
l_left, l_right = half_length - int(delta), half_length + int(delta)

split the node into two children
left_input_ids, right_input_ids = input_ids[:l_left], input_ids[-l_right:]
query_aware is a flag indicating if the selected nodes are determined on query
if query_aware:

short forward (1-layer) to get representation vectors for the query and two nodes
h_q = upper_model(query, 1)
h_left, h_right = lower_model(left_input_ids, 1), lower_model(right_input_ids, 1)
selected = argmax(sim(h_q, h_left), sim(h_q, h_right)

else:
selected = 1 # deterministic example, can change to 0 or random selection

selected_input_ids = [left_input_ids, right_input_ids][selected]
selected_length = [l_left, l_right][selected]

preserved_input_ids = [left_input_ids, right_input_ids][1 - selected]
else:

preserved_input_ids = cat(last_input_ids.chunk(2, -1), 0)

cur_level_kvs = lower_model(preserved_input_ids).past_key_values
cur_level_kvs = downsample(cur_level_kvs)
all_kvs.append(cur_level_kvs)

Algorithm 1: Pseudo code of dynamic Construction-and-Search.

Table 7: Dataset composition in our downsampled Red-
pajama (20B) tokens.

Domain Proportion (%)

Arxiv 2.5
Books (w/o S3) 4.5
C4 15.0
CommonCrawl 67.0
Github 4.5
StackExchange 2.0
Wikipedia 4.5

Table 8: Proportion of samples within each length inter-
val.

Length <2K 2∼4K 4∼6K 6∼8K

Proportion 47% 29% 8% 16%

in Table 9. Still, SharedLLM outperforms all base-933

lines on average after changing the base model,934

which reveals the model generalizability of our pro-935

posed method.936

C Time and Memory Efficiency937

Apart from strong performance on downstream938

tasks, SharedLLM demonstrates high computa-939

Figure 3: Accuracy comparison on passkey retrieval
(single key-value pair) task.

tional efficiency in terms of both inference speed 940

and GPU memory utilization. We compare these 941

metrics produced by SharedLLM against other 942

representative models of streaming (Zhang et al., 943

2024a), encoder-decoder (Yen et al., 2024) and 944

vanilla (Peng et al., 2023) architectures that have 945

shown competitive performance in prior evalua- 946

tions. The results are visualized in Figure 4. 947

YaRN (Peng et al., 2023), which exploits the 948

same fully attention as vanilla auto-regressive 949

LLaMA, has O(L2) time and space complexity. 950

The squared complexity makes it the only model 951

that triggers out-of-memory exception at 128K 952

length. Activation Beacon (Zhang et al., 2024a), 953

which adopts the streaming processing paradigm, 954

maintains a minimum constant memory O(l) under 955

13

Method SD-QA MD-QA Sum FS Code Avg

Base 23.10 16.20 23.17 48.20 46.10 30.30
StreamingLLM 27.19 18.15 25.37 51.85 48.98 33.26
CEPE 25.36 19.03 26.83 52.79 47.80 33.40
Activation Beacon 29.89 18.04 25.92 52.36 52.70 34.57
SharedLLM 29.71 19.57 27.25 54.86 52.39 35.63

Table 9: Results on LongBench with Mistral-7B as the base model. Best results are highlighted in bold, while
second best results are underlined.

different input lengths L, where l is the sliding win-956

dow length. However, Activation Beacon is incom-957

patible with FlashAttention (Dao, 2023) also due958

to its specialized attention paradigm, which causes959

a sharp increment in inference time as input size960

grows. CEPE can process past context chunks in961

parallel, but these chunks must be passed through962

all its encoder layers (24-layer RoBERTa in CEPE)963

and layer-wise linear projections to obtain the final964

hidden states for cross-attention, leading to even965

slower inference speed than non-parallel Activation966

Beacon. In contrast, SharedLLM avoids such re-967

dundancy through shallow-layer compression and968

injection, which exhibits significant speed-up and969

limited memory consumption.970

We have explained the outstanding efficiency971

of our model by comparing the memory usage972

and inference speed with other competitors. In973

this section, we give a more comprehensive anal-974

ysis towards the inherent factors that may impact975

model’s efficiency, including compression ratio β,976

tree height h, the number of shared layers M and977

the retrieval-based policy which requires an addi-978

tional short forward pass.979

M 1 2 4 8 16

Time (s) 6.78 9.35 11.81 16.81 25.85
Memory (GB) 21.04 21.50 22.39 24.08 27.82

Table 10: Inference time under various M with constant
h = 3 and β = 8. Our default setting is highlighted in
bold.

We rerun our experiments to measure the for-980

ward time and memory cost from language model-981

ing on 8K tokens, adjusting one variable at a time982

while keeping others at their default values. The983

results are shown in Table 10, 11 and 12. Among984

these factors, the number of injection layers, M ,985

has the most significant impact on both speed and986

memory: both memory and latency grows as M987

increases. As an opposite, compression ratio β and 988

tree height h produces nuances effect on both met- 989

rics. For example, if we decreases β from 64 to 1 990

(preserve all KVs), the inference time increases by 991

6.7% while memory increases by 3%. A similar 992

trend is observed on experiments with tree height 993

h. We speculate that the reason behind these out- 994

comes are partly from the internal optimization in 995

FlashAttention, which efficiently computes atten- 996

tion blockwisely. When the configuration meets its 997

requirement for block size and hidden dimension 998

(e.g., length is divisible by 256), 999

β 64 32 16 8 4 2 1

Time (s) 11.68 11.73 11.78 11.81 11.87 12.04 12.47
Memory (GB) 22.20 22.20 22.20 22.39 22.40 22.35 22.97

Table 11: Inference time under various β with constant
h = 3 and M = 4. Our default setting is highlighted in
bold. For β ∈ {1, 2}, we are not able to set levelwise
compression ratios and thus we set the compression
ratio same as the β for every level of the tree.

Table 12: Inference time under various h with constant
β = 8 and M = 4. Our default setting is highlighted in
bold.

h 1 2 3 4

Time (s) 11.16 11.55 11.81 11.86
Memory (GB) 19.72 22.42 22.39 22.41

We further investigate the potential overhead 1000

caused by the extra short forward path query-aware 1001

splitting-and-search algorithm. As shown in Ta- 1002

ble 13, we observe it incurs around 15% overhead 1003

in both time and space. We believe this type of over- 1004

head can be further eliminated with more careful 1005

optimization to the implementation details. 1006

14

Figure 4: Comparison of memory usage (left) and total inference time on 100 examples (right) be-
tween SharedLLM and other recent baselines. The data is collected by running a tiny experiment on 100 examples
in corresponding lengths. “OOM" means out-of-memory exception triggered during test time.

Table 13: Comparison of time and memory consumption
when query-based retrieval is incorporated/not incorpo-
rated in SharedLLM. h, M and β are fixed at the default
values.

Setting Time Memory

w/o query-aware retrieval 11.81 22.39
w query-aware retrieval 13.18 25.44

15

	Introduction
	Related Work
	Method
	Overview
	Lower Model
	Upper Model

	Experiments
	Setup
	Main Results
	Ablation Studies

	Conclusion
	More Implementation Details
	Training Configurations
	Online Split-and-Search Algorithm
	Dataset Statistics
	Details of Test Benchmarks

	More Experiments
	Passkey Retrieval
	Other Base Models

	Time and Memory Efficiency

