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ABSTRACT

Large Language Models (LLMs) have achieved strong performance in domains
like mathematics, factual question answering, and code generation, yet their ability
to reason on these tasks in different languages remains underdeveloped. Especially
for low-resource languages such as Swahili or Thai, LLMs can often misinterpret
prompts or default to reasoning in English. This implicit bias toward high-resource
languages undermines factual accuracy, interpretability, and trust. We propose
M2A, a novel method that combines multi-scale multilingual alignment with
language-consistency rewards on machine-translated questions, training models to
reason directly and accurately in the target language. Furthermore, existing multi-
lingual benchmarks only evaluate on final answers, overlooking whether reasoning
occurs in the intended language. To close this gap, we introduce GEOFACT-X, a
geography-based multilingual factual reasoning benchmark together with reasoning
traces in five languages: English, Hindi, Japanese, Swahili, and Thai. Our results
show that M2A significantly enhances multilingual reasoning fidelity in both math-
ematical and factual reasoning tasks, highlighting that reasoning-aware multilingual
reinforcement learning is crucial for robust cross-lingual generalization.

1 INTRODUCTION

Large Language Models (LLMs) have made remarkable progress in reasoning tasks, such as mathe-
matics (Liu et al., 2024; Shao et al., 2024), code generation (Jain et al., 2024; Team et al., 2025), and
factual QA (Achiam et al., 2023; Guo et al., 2025; Qwen et al., 2025; Wang et al., 2024), primarily
in English. Yet, their reasoning capabilities remain underdeveloped in low-resource languages such
as Swahili, Marathi, or Thai (Cahyawijaya et al., 2024; Nguyen et al., 2023). This performance
disparity undermines the trustworthiness of LLMs in these languages since users cannot check the
reasoning traces to verify the answer. For this purpose, both the final answer and the intermediate
reasoning should ideally be expressed in the question language to ensure interpretability, i.e., users
can directly follow the reasoning in their own language. The central issue is not only whether LLMs
can provide correct answers, but whether they can think in the language of the question. When they
cannot, translation of reasoning traces offers only a partial solution and one that often fails on cultural
and linguistic nuance. Recent studies (Aggarwal et al., 2025; Yao et al., 2024) suggest that both
LLMs and machine translation systems struggle with cultural and linguistic nuances. For example,
culturally grounded concepts such as Chinese Guānxi (系), Japanese Wa (和), and Korean Jeong (정)
remain difficult to capture faithfully.

In this work, we conduct the first comprehensive study of multilingual reasoning: assessing whether
LLMs can not only answer questions correctly, but also reason in the same language as the question.
Prior multilingual benchmarks primarily assess the final accuracy (Ponti et al., 2020; Shi et al.,
2023; Xuan et al., 2025), overlooking the language of the reasoning traces. By evaluating reasoning
traces directly on MGSM (Shi et al., 2023), we found that models often revert to English reasoning
even under non-English prompts. This gap between the prompt language and the reasoning process
underscores a broader problem that LLMs can appear correct while failing to reason in a language.
Ensuring both accuracy and language-consistent reasoning is essential for globally inclusive and
interpretable AI.

To tackle this challenge, we introduce M2A (Multi-Scale Multilingual Alignment), an efficient
approach that explicitly enforces language-consistent reasoning while retaining factual correctness.
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A: EvergladesQ: What is the name of the large swamp 
located in southern Florida?

Q: Ngoma ya nguvu inayofanywa
kitamaduni na watu wa Maasai inaitwaje? A: Adumu

GeoFact-X DatasetPropose a Novel Method

$2019^8 + 1$ の最⼩の奇
数素因数を⾒つけます。

Find the least odd prime 
factor of $2019^8 + 1$.

Multi-Scale Multilingual Alignment

さて、\(2019^8 + 1\) の
最小の奇数素因数を求め
ましょう。
まずは、問題が何を問わ
れているのか理解するこ
とから始めましょう。....

Okay, so I need to find the 
least odd prime factor of 
\(2019^8 + 1\). 
Alright, let's start by 
understanding what the 
problem is asking. ....

Ground-Truth LLM output

Language Consistency

$2019^8 + 1$ の最⼩の奇
数素因数を⾒つけます。

さて、\(2019^8 + 1\) の最小
の奇数素因数を求めまし…

Japanese
Q: What is the name of the powerful dance 

traditionally performed by the Maasai people?
A: Adumu

Evaluation

दांडी माच) के दौरान 
भारतीय रा234य कां5ेस 
के नेता कौन थे? 

9:न दांडी माच) के दौरान 
भारतीय रा234य कां5ेस के 
नेता के बारे म< पूछता है।… 

The question asks about 
the leader of the Indian 
National Congress (INC) 
during Dandi March. ....

Fact/Math

Language

Step

Context

M2A

Figure 1: Illustration of Contributions We propose M2A, a new method that utilizes multi-scale
multilingual alignment and language consistency rewards from a given machine-translated question,
enabling reasoning in the question language. We also introduce GEOFACT-X, a new multilingual
factual reasoning benchmark which includes training datasets and step-by-step reasoning traces across
five languages. We propose an automatic evaluation protocol to assess whether a model reasons in
the question language and the correctness of reasoning via language identifier or LLM-as-a-judge.

The key idea is to combine multi-scale multilingual reasoning alignment with a language-consistency
reward, providing reinforcement-learning signals that encourage reasoning traces to remain in the
question language, enabling reasoning capabilities to be learned without ground-truth supervision
in that language. We jointly employ supervised fine-tuning and group relative policy optimization
(GRPO) to integrate supervised learning on ground-truth reasoning traces with reinforcement-based
refinement. Unlike prior work (Guo et al., 2025; Liu et al., 2025; Ranaldi & Pucci, 2025) that
optimizes only for correctness or formality, our method targets the alignment of reasoning itself.

Despite recent progress in multilingual LLMs (Ahuja et al., 2023; Qin et al., 2025), their ability
to perform factual reasoning across cultural contexts remains largely unevaluated. We introduce
GEOFACT-X, a benchmark of culturally grounded questions localized to five countries (USA, India,
Japan, Kenya, Thailand) in their predominant languages (English, Hindi, Japanese, Swahili, Thai).
By grounding evaluation in country-specific knowledge, GEOFACT-X enables systematic assessment
of whether LLMs can reason faithfully within linguistically and culturally contextualized spaces.

We train M2A on the s1K-1.1 (Muennighoff et al., 2023) dataset and GEOFACT-X train set for
mathematical and factual reasoning, respectively. Our experiments demonstrate that M2A yields
significant improvement on multilingual reasoning in both cases while reasoning in the question
languages. Figure 1 summarizes our key contributions. Together with the release of our code, data,
and evaluation protocols, our work provides a foundation for future work on multilingual reasoning.

2 RELATED WORK

2.1 MULTILINGUALISM IN LARGE LANGUAGE MODELS

Recent advances in multilingual large language models (LLMs) mark a shift from monolingual
dominance to more inclusive cross-lingual capabilities. Two perspectives frame much of this dis-
course. The scaling view holds that increasing the volume and diversity of multilingual data during
pretraining enhances cross-lingual generalization (Xue et al., 2021; Conneau et al., 2020; Chang
et al., 2023; Gurgurov et al., 2024), though it faces the curse of multilinguality, where accommo-
dating many languages dilutes performance in individual ones due to limited parameter capacity.
The optimization view emphasizes careful fine-tuning as a means of preserving and amplifying
multilingual knowledge (Devlin et al., 2019; Conneau et al., 2020; Luo et al., 2023; Zhai et al., 2023),
yet aggressive post-training risks catastrophic forgetting by overwriting deeply embedded linguistic
priors. Beyond scaling and optimization, Schut et al. (2025) and Zhong et al. (2025) analyzed the
internal representations of multilingual models, while Yong et al. (2025) proposed test-time strategies
for improving cross-lingual reasoning. Notably, Schut et al. (2025) found that multilingual LLMs
often perform intermediate reasoning in English, but their scope was limited to internal representation
analysis rather than generated reasoning traces. More recently, post-training alignment techniques

2
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!గ#$ తన ()* +ం- ./రక2 ప*4 5ారం 2 
8ా9: ల <=ప> ? ఉపABCDాE డG. ఒక <=ప> 

8ా9: లJ 30 MీO ల <=ప> ఉనPటR+Sే, అతడG 
ప*4WXలY ఎ?P MీO ల <=ప> ? ఉపABCDాE డG?

Miguel uses 2 pads of paper a 
week for his drawing. If there are 
30 sheets of paper on a pad of 
paper, how many sheets of 
paper does he use every month?

'"గ$% తన )*+ ,ం. /0రక3 ప+5 6ారం 2 
9ా:;cల =>ప?@A ఉపCD@సుG ంHI. ఒక 9ా:; …
ఒక 6ారం 7 దశల6ారOలPను ఉంటR,. 
అందువలU , ప+5WXలంలY ఉపCD@సుG నA ZీటU  
సంఖ::7 × 60 = 420 Zీట^U …

Migul uses 2 pads paper every week 
for its drawing. One pad has 30 sheets 
of paper. There are 7 steps a week. 
Therefore, the number of sheets used 
in each month: 7 × 60 = 420 sheets …

let me try to figure this out. The question 
is about Migil … using drawing papers. 
The problem says he uses 2 pads every 
week, and each pad has 30 sheets…. 
Assuming a month has 4 weeks, then 
per month: 60 * 4 = 240 sheets.

ప+శA/ారOడ` నమbకం ప+5 6ారం 2 9ా:డU  
)*+ ,ం. /0రక3 ఉపCD@cాG డ`. ఒక 9ా:)ోU  30 
ZీటU  =>పg ఉW*Aయ. … దశల6ా?iDా 
సమjk*నం /lరక3 ప+5WXలంలY ఉపCD@ంmే 
ZీటU  సంఖ:Wo ప+5WXలంలY 60*4=240 Zీp
=>ప?@A ఉపCD@cాG డ`. … 

The questioner believes in the 
drawing of 2 pads every week. There 
are 30 sheets of paper in a pad. …  
This means that he uses 60*4 = 240 
sheet paper every month. …

Incorrect Response in Telugu

Correct Response but in English

Correct Response in Telugu

LLM

LLM

LLM

Base

SFT

M2A

Question in Telngu

Figure 2: Example of outputs from a Telugu question from three different models. Base LLM
and supervised fine-tuned models (SFT) are correct only in either answer or language, whereas our
M2A is correct in both answer and language.

such as Direct Preference Optimization (DPO) (Rafailov et al., 2023) have been applied to embed
multilingual reasoning (Dang et al., 2024; Ranaldi & Pucci, 2025). Similarly, we employ Group
Relative Policy Optimization (GRPO) (Guo et al., 2025; Shao et al., 2024) with multi-scale multilin-
gual alignment and language consistency rewards, leveraging explicit reasoning traces in the original
languages to build stronger multilingual reasoning capabilities.

2.2 EVALUATION OF MULTILINGUAL REASONING CAPABILITIES

Instruction-tuning datasets such as Bactrian (Li et al., 2023), Aya (Singh et al., 2024), Multilingual
Alpaca (Chen et al., 2023), and SphinX (Ahuja et al., 2024) have improved performance across high-
and low-resource languages by emphasizing diversity and cultural specificity. Complementary to
these efforts, benchmarks like MEGA (Ahuja et al., 2023) provide broad multilingual coverage across
70 languages and 16 NLP tasks, but primarily evaluate task-level accuracy rather than reasoning
processes. Other multilingual reasoning benchmarks, including XCOPA (Ponti et al., 2020), XWino-
grad (Tikhonov & Ryabinin, 2021), and XStoryCloze (Lin et al., 2022), adopt multiple-choice formats
that permit shallow guessing and suffer from translation artifacts (Li et al., 2024). In contrast, our
benchmark directly targets multilingual reasoning by evaluating free-form, step-by-step generation
with explicit reasoning traces. This design enables more faithful assessment of both reasoning quality
and language alignment, providing a sharper diagnostic tool for multilingual LLMs.

3 M2A: MULTI-SCALE MULTILINGUAL ALIGNMENT

We propose a new method to enrich existing English-based reasoning models with multilingual
reasoning capabilities. Our approach combines the complementary strengths of supervised fine-
tuning (SFT) and reinforcement learning (RL). While SFT enables base reasoning capabilities
in English, we find that these models struggle with multilingual reasoning during test time as
shown in Figure 2. To that end, we propose a new test-time RL method for multilingual reasoning.
Key to this new approach is defining the right set of rewards that incentivize the model to reason
consistently across different languages. We first translate each question into multiple languages
by using Google Translate, allowing the model to generate outputs conditioned on the translated
inputs. We then define a set of multi-scale rewards across different multilingual granularities. A
context alignment reward measures multilingual alignment across the entire reasoning context with
the original ground-truth reasoning trace. This is followed by a reasoning-step alignment reward that
aligns each individual reasoning step to capture fine-grained correspondence. Finally, a language
consistency reward explicitly enforces reasoning in the question language.

3
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Okay, so I need to find the least odd 
prime factor of \(2019^8 + 1\). ....

さて、\(2019^8 + 1\) の最小の
奇数素因数を求めましょう。....

f( ^Ietd, f+ a edfers es Ot h9lroe)kt2 
onoo 18oia n  pia\ dm c01dt\. Y …

素奇まの\2てさのう1め+し求\9 )数
1^( を 80⼩、数最ょ因…

Shuffled
Prediction

GT

Prediction

closer

farther
Shuffled

GT

Similarity Matrix

Split into each Reasoning Step

Okay, so I need to find the least odd 
prime factor of \(2019^8 + 1\)./ ....

さて、\(2019^8 + 1\) の最小の
奇数素因数を求めましょう。/....

(a) (b)

Maximize(               )
Sentence Matching

Figure 3: Overview of M2A. (a) Multilingual Context Alignment enforces global similarity between
generated and reference responses while discouraging trivial matches via shuffled negatives. (b)
Multilingual Reasoning-Step Alignment provides finer-grained supervision by aligning individual
reasoning steps with ground-truth traces using dynamic programming.

Problem Setup. Given the question sampled from the question dataset, q ∼ P (Q) and its corre-
sponding ground-truth response y, we translate each question to the target language l, q′ by using
a machine translator (e.g., Google Translate). GRPO generates a group of outputs {o1, o2, ..., oG}
from the translated question. The reward rt is calculated based on each output ot.

Multilingual Context Alignment. We first encode both output and the ground-truth with the
encoder, ϕ, zo = ϕ(o) and zy = ϕ(y). We utilize mT5 (Xue et al., 2021) for encoding texts. The
alignment reward can be the cosine similarity between two embeddings, cos(zo, zy). However, it is
maximized when the generated output o is identical to y, ignoring the question language. To address
this, we introduce negative samples by shuffling both outputs and ground-truth responses with the
same permutation, z̃o = ϕ(ψ(o)) and z̃y = ϕ(ψ(y)), where ψ denotes the shuffle function. Inspired
by Schroff et al. (2015), the multilingual context alignment maximizes similarity between positive
samples and minimizes similarity between negative samples, enforcing a margin, α, between these
similarities:

cos(z̃o, z̃y) + α < cos(zo, zy). (1)

The final context alignment reward is defined as:

rcontext-align = max(cos(zo, zy)− cos(z̃o, z̃y) + α, 0), (2)

where α denotes the margin, set to 1, the maximum possible value of cosine similarity.

Multilingual Reasoning-Step Alignment. We further introduce a multilingual reasoning-step
alignment to provide finer-grained matching. Given the split output sentences, o = (o(1), . . . , o(N))
and ground-truth sentences y = (y(1), . . . , y(M)), each output sentence, o(i) is aligned with a ground-
truth sentence, y(ji). Since the number of output and reference sentences (N and M ) may differ, we
use dynamic programming to maximize the total similarity between the pairs while preserving order:

max
1≤j1≤...≤jN≤M

N∑
i=1

Ci,ji , (3)

where C ∈ RN×M is the similarity matrix, and Ci,j denotes the similarity score between embeddings
z
(i)
o and z(j)y . We use the same function used in Eq. (2) for C. The multilingual reasoning-step

alignment reward is then defined as the average similarity across aligned pairs:

rstep-algin =
1

N

N∑
i=1

Ci,ji =
1

N

N∑
i=1

max(cos(z(i)o , z(ji)y )− cos(z̃(i)o , z̃(ji)y ) + α, 0). (4)

Language Consistency. We also define a language consistency reward for giving a more direct
incentive to reason in the question language. Given the output o, and language detector f (e.g., Google
Translate, langid (Lui & Baldwin, 2012)), the language consistency reward is defined as 1 if the
detected language in response matches the target language l, 0 if it does not:

rlang = δ[f(o) = lt], (5)
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A:
Everglades

Q: What is the name of the 
large swamp located in 
southern Florida?

Q: Ngoma ya nguvu
inayofanywa kitamaduni na
watu wa Maasai inaitwaje?

A: Adumu

Step 1: Multilingual Question & Answer Generation Step 2: Translation into Other Languages

A:
एवर$ले'स

Q: द"#णी 'लो*रडा म/ ि1थत बड़ े
दलदल का नाम 9या है?

A: อาดมุู

Step 3: Reasoning Traces Generation
Q: What is the name of the 
large swamp located in 
southern Florida?

R: <step> The question asks for the name of a 
large swamp in southern Florida. <step> The 
Everglades is a well-known large natural 
swampy region in southern Florida. Therefore, 
the answer is Everglades.

A:
Everglades

Step 4: Human Verification

Store

Revise

Q: What  
…Florida?

R: <step> The 
…Therefore, 
the answer is 
Everglades.

A: 
Everglades

Q: 1द#$णी 
… (या है?

R: <step> !"न 
द&'णी *लो-रडा 
म2 ि4थत 7वशाल 
दलदल का नाम 
पूछता है।

A: 
एवर1ले4स

Q: Jina la 
…  lipi?

R: <step> 
Swali
linataka
kujua
Florida….

A: 
Everglades

Q: ชื#อของการเต้นรําอนัทรงพลงัที#
ชาวมาไซแสดงแบบดั <งเดมิคืออะไร?

Figure 4: Illustration of GEOFACT-X benchmark construction. (1) Geography-aware multilingual
questions and answers are generated by Gemini 2.0 Flash. (2) The data is translated into other
languages, verifying whether it is back-translatable. (3) The reasoning trace for each question and
answer pair is generated. (4) Native or C1-level speakers verify each data and revise it if needed.

Table 1: Comparison between existing multilingual factual or common-sense benchmark and
GEOFACT-X.

Benchmark Size #Lang. Geo-Aware Train Set Reasoning Eval.

XStoryCloze (Lin et al., 2022) 1872 11 ✓
XWINO (Tikhonov & Ryabinin, 2021) 3961 6
XCOPA(Ponti et al., 2020) 6600 11 ✓(English only)
X-FaKT(Aggarwal et al., 2025) 2362 13
XLQA (Roh et al., 2025) 3000 8 ✓

GEOFACT-X (ours) 12780 5 ✓ ✓ ✓

where δ[·] denotes the indicator function. The final reward is defined as the sum of individual reward:

r = rcontext-align + rstep-align + rlang. (6)

4 GEOFACT-X: GEOGRAPHY-BASED FACTUAL REASONING BENCHMARK

Despite advances in multilingual LLMs (Ahuja et al., 2023; Qin et al., 2025), robust evaluation of
factual reasoning across cultures remains underexplored. We introduce GEOFACT-X, a benchmark of
3,000 culturally grounded questions (about 600 per country) spanning history, politics, geography, art,
and culture, localized to the USA, India, Japan, Kenya, and Thailand in their predominant languages
(English, Hindi, Japanese, Swahili, and Thai). Our goal is to capture country-specific factual knowl-
edge, encouraging language models to reason effectively within culturally contextualized knowledge
spaces. Table 1 compares GEOFACT-X with existing multilingual factual reasoning benchmarks. Our
geography-aware multilingual benchmark has a training set and reasoning evaluations compared to
other benchmarks.

Figure 4 illustrates the process of the dataset construction. We adopt a two-stage validation pipeline
to ensure factual accuracy and dataset quality. Rule-based filters and cross-language checks remove
incorrect or inconsistent pairs. Specifically, we verify cross-language answer consistency by trans-
lating each answer into English via the Google Translate API to identify mismatches. Gemini 2.0
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Flash (Team et al., 2023) then generates structured chain-of-thought reasoning traces for each item,
enhancing interpretability and providing supervision signals. We split the dataset into a train set
(85%) and a test set (15%), ensuring no semantic overlap across splits, even across languages. All test
samples are manually verified by native or C1-level speakers for factual correctness and linguistic
clarity. Figure 6 illustrates an example multilingual question with its reasoning trace and final answer.

For evaluation, we measure answer accuracy and reasoning score. Answer accuracy is computed
by comparing predictions against the reference answers. The reasoning score is assessed by Qwen-
2.5-72B-Instruct (Qwen et al., 2025) as an LLM-as-a-judge, comparing model-generated reasoning
traces against the human-verified reasoning traces in the test set. If a reasoning trace is produced
in a language different from the question, identified by a language detector (Lui & Baldwin, 2012),
its score is set to zero. We validate the reliability of this metric via a human agreement study in
Appendix H. Detailed curation, distribution, and evaluation procedures are provided in Appendix A.

5 REVISITING MULTILINGUAL MATHEMATICAL REASONING BENCHMARK

We investigate whether strong performance on multilingual reasoning benchmarks reliably reflects
reasoning in the question language. As a case study, we use MGSM (Shi et al., 2023), which
evaluates multilingual mathematical reasoning in ten diverse languages and provides chain-of-thought
prompts (Naive-CoT) in each language to enforce reasoning in the language. MGSM reports only
mathematical accuracy, implicitly assuming that high accuracy implies language-consistent reasoning.

To address this, we introduce language accuracy, which measures whether the generated reason-
ing matches the intended question language. Formally, given the language identifier (e.g., Google
Translate, langid (Lui & Baldwin, 2012)), f , language accuracy, Alang is defined as follows:

Alang =
1

N

N∑
n

δ[f(on) = ln], (7)

where N denotes the number of samples in the dataset, and δ[·] is indicator function. on, and ln
mean the generated output and the target question language, respectively. Then, we defined the joint
accuracy of mathematics and language, Ajoint as follows:

Ajoint =
1

N

N∑
n

(δ[f(on) = ln] · δ[ân = an]) , (8)

where ân and an indicate predicted and ground-truth answers for n-th sample, respectively.

We evaluate various recent large language models, including Qwen2.5 (Hui et al., 2024),
Llama3 (Grattafiori et al., 2024), Gemma3 (Team et al., 2025), and DeepSeek-R1 (Guo et al.,
2025), on MGSM (see Appendix B.3 for the full list). Figure 5 illustrates average mathematical
accuracy against joint accuracy across different languages. Ideally, both metrics should be the same
(grey dashed line), yet models such as Qwen2.5-72B-Math-Instruct and Llama-3-70B-Instruct show
large gaps, indicating frequent reasoning in the wrong language. Moreover, the s1 models (orange),
fine-tuned from Qwen2.5-Instruct (green), notably degrade language accuracy while improving math-
ematical performance. These results demonstrate that mathematical accuracy alone overestimates
multilingual reasoning ability, and joint evaluation is essential for assessing true language-consistent
reasoning.

6 EXPERIMENTS

We use Qwen-2.5-7B-Instruct as the backbone for all experiments on mathematical and factual
reasoning. Training and evaluation are conducted on 4 NVIDIA A100 GPUs with DeepSpeed (Rasley
et al., 2020). We use three random seeds to calculate the mean and standard error. Please refer to
Appendix B and the attached codebase for the implementation and training details.

6.1 DATASET

Mathematical Reasoning. The s1K-1.1 dataset (Muennighoff et al., 2025) contains 1,000 curated
math questions with chain-of-thought traces, selected for difficulty, diversity, and quality. To test
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supervised
fine-tuning

Llama-3-Instruct 
(70B)

Qwen2.5
Math-Instruct

(72B)

Multilingual
Reasoning

Ideal

Figure 5: Mathematical accuracy and the joint accuracy of mathematics and language of
various LLMs on MGSM with native Chain-of-Thought. Circle size is proportional to the number
of parameters. The y = x line represents ideal performance, where a model always uses the target
question language in reasoning. Many models, especially the supervised fine-tuned model, s1, fall
significantly below this line, indicating they solve the problem correctly but fail to adhere to the
language prompt.

Table 2: Accuracy of Qwen2.5-7B-Instruct and post-training methods in GSM8K (English) and
MGSM (ten languages). Results are reported for mathematical accuracy (Math.), language accuracy
(Lang.), and joint accuracy (Joint). Bold indicates the best performance in each column.

Method GSM8K MGSM
Math. Lang. Joint Math. Lang. Joint

Qwen-2.5-Instruct 81.2 100 81.2 58.7 99.0 58.1

GRPO 80.4 ± 0.9 100.0 ± 0.0 80.4 ± 0.9 58.8 ± 0.4 95.9 ± 2.9 58.2 ± 0.7
SFT (s1) 87.2 ± 1.6 100.0 ± 0.0 87.2 ± 1.6 66.7 ± 0.1 31.0 ± 0.5 21.9 ± 0.6
SFT on s1K-X 84.3 ± 1.1 66.7 ± 33.3 56.5 ± 28.3 45.2 ± 4.1 99.7 ± 0.1 45.0 ± 4.3
M2A (ours) 87.3 ± 0.1 100.0 ± 0.0 87.3 ± 0.1 59.0 ± 0.3 97.8 ± 0.2 58.1 ± 0.4

multilingual generalization, we additionally construct S1K-X, a multilingual version of s1K-1.1
obtained by translating into ten typologically diverse languages via Google Translate, used for baseline
SFT results. For evaluation, we report results on GSM8K (Cobbe et al., 2021) and its multilingual
counterpart MGSM (Shi et al., 2023) with Native CoT prompts. We also evaluate language accuracy
introduced in Section 5.

Factual Reasoning. We utilize GEOFACT-X (Section 4), which contains culturally grounded factual
QA pairs across five countries (USA, India, Japan, Kenya, Thailand) in five local languages (English,
Hindi, Japanese, Swahili, Thai). Models are trained on the train split and evaluated on the test split.

6.2 MATHEMATICAL REASONING

Table 2 presents the performance of the base model, Qwen2.5-7B-Instruct, and models with post-
training methods, supervised fine-tuning (SFT), GRPO, and M2A. Supervised fine-tuning on s1K-1.1
improves mathematical reasoning performance on GSM8K and MGSM but substantially degrades
multilingual performance in MGSM, leading to lower joint accuracy. Training on the translated
multilingual dataset (s1K-X) preserves language accuracy on MGSM but reduces mathematical
accuracy. GRPO, in contrast, produces little change, likely due to sparse rewards. For instance,
Figure 11 shows that GRPO outputs are identical to the base model, whereas SFT produces an
English response to a Russian query.

M2A outperforms baselines in all metrics on GSM8K and achieves large gains in joint accuracy
on MGSM compared to SFT. Unlike SFT, it preserves reasoning in the query language while
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Table 3: Comparison of model performance on average reasoning score (%), language accuracy (%),
and answer accuracy (%) on GEOFACT-X test set, evaluated across all examples and split by whether
the language is associated with the country (‘Assoc.’) or not (‘Non-Assoc.’). Bold means the best
performance.

Model Average Reasoning Score (%) Average Answer Accuracy (%)
All Assoc. Non-Assoc. All Assoc. Non-Assoc.

DeepSeek-R1-Distill-Llama-8B 13.8 16.7 13.1 8.4 10.8 7.8
DeepSeek-R1-Distill-Qwen-7B 13.8 16.7 13.1 7.2 10.3 6.4
Command R7B 33.1 40.3 31.2 25.8 33.7 23.8

Qwen-2.5-Instruct 30.4 38.5 28.3 26.2 33.7 24.3

GRPO 45.4 ± 0.2 48.1 ± 0.1 44.8 ± 0.3 32.1 ± 0.3 37.6 ± 0.2 30.7 ± 0.3
SFT 47.6 ± 0.1 50.7 ± 0.5 46.9 ± 0.1 29.3 ± 0.2 37.1 ± 1.0 27.3 ± 0.3
SFT + GRPO 26.9 ± 0.9 29.2 ± 0.9 26.4 ± 0.9 10.7 ± 0.9 14.7 ± 1.7 9.7 ± 0.7
M2A (ours) 48.5 ± 0.4 52.6 ± 0.5 47.5 ± 0.3 32.0 ± 0.6 41.3 ± 1.0 29.7 ± 0.5
M2A (ours, Thai only) 49.8 ± 0.3 53.4 ± 0.2 48.8 ± 0.5 32.2 ± 0.4 39.9 ± 0.4 30.2 ± 0.3

Table 4: Machine-translated performance of each model on GEOFACT-X test set. Google Translate is
used to translate the generated output into the question language. Bold means the best performance.

Model with Machine Translation Average Reasoning Score (%) Average Answer Accuracy (%)
All Assoc. Non-Assoc. All Assoc. Non-Assoc.

DeepSeek-R1-Distill-Llama-8B 27.6 29.2 27.2 7.9 11.1 7.1
DeepSeek-R1-Distill-Qwen-7B 33.2 33.9 33.1 8.8 11.1 8.2
Command R7B 44.2 48.5 43.1 25.0 34.1 22.7

Qwen-2.5-Insturct 45.7 49.2 44.8 28.9 36.4 27.0

GRPO 45.7 ± 0.3 48.3 ± 0.3 45.1 ± 0.3 31.9 ± 0.3 37.6 ± 0.8 30.5 ± 0.2
SFT 47.8 ± 0.1 50.9 ± 0.4 47.1 ± 0.1 27.2 ± 0.1 35.8 ± 1.1 25.0 ± 0.3
SFT + GRPO 47.7 ± 0.2 51.1 ± 0.2 46.8 ± 0.3 34.0 ± 0.1 39.1 ± 0.7 32.7 ± 0.1
M2A (ours) 48.7 ± 0.4 52.8 ± 0.5 47.7 ± 0.4 31.8 ± 1.0 41.3 ± 1.2 29.4 ± 0.9
M2A (ours, Thai only) 50.1 ± 0.2 53.1 ± 0.3 49.4 ± 0.3 30.6 ± 0.8 39.1 ± 0.3 28.5 ± 0.9

still improving mathematical correctness. In effect, M2A learns mathematical reasoning without
sacrificing multilingual fidelity, whereas other methods either fail to learn reasoning (GRPO) or lose
multilingualism (SFT). Appendix E further examines a variant of M2A trained with translation into
a single language instead of multiple languages, and detailed per-language results are provided in
Appendix F.

6.3 FACTUAL REASONING

Table 3 summarizes the performance of the base model (Qwen-2.5-Instruct) and the gains obtained
after post-training with GRPO, supervised fine-tuning (SFT), and M2A on GEOFACT-X. For com-
parison, we also illustrate the performance of other pretrained LLMs (Cohere et al., 2025; Guo et al.,
2025). We report reasoning score and answer accuracy. Results are additionally split by whether the
language is associated with the country (assoc.) or not (non-assoc.); for instance, Thai is associated
with Thailand but not with the USA. All pretrained models perform better in associative settings, likely
because pretraining corpora contain more paired examples where language and country co-occur.
This gap underscores the challenge of aligning reasoning across languages and contexts, motivating
methods that explicitly enforce language consistency.

M2A achieves the strongest reasoning performance compared to both pretrained and post-trained
baselines, and it is reinforced when only using Thai for translation. Notably, M2A improves both
settings at a similar rate (4–6% in reasoning score and 20–21% in answer accuracy). A per-language
and per-country breakdown is provided in Appendix G. Figure 12 further illustrates model outputs:
although all systems reason in the question language (Swahili), only M2A predicts the correct answer.

Finally, we apply machine translation as a post-hoc strategy. Table 4 shows that translation via Google
Translate offers no substantial improvements over the direct setting (Table 3), reflecting their weaker
multilingual alignment. This suggests that post-hoc translation provides, at most, a superficial fix and
fails to address the core challenge of multilingual reasoning.
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Table 5: Contribution of individual reward functions to M2A. The evaluation is performed on GSM8K
and MGSM. Bold means the best performance. Lang: Language Consistency, CA: Context Alignment,
RA: Reasoning-Step Alignment.

M2A Variants GSM8K MGSM
Lang CA RA Math. Lang. Joint Math. Lang. Joint

✓ 86.9 ± 0.0 100.0 ± 0.0 86.9 ± 0.0 54.2 ± 0.1 98.3 ± 0.1 53.8 ± 0.1
✓ ✓ 84.7 ± 0.1 100.0 ± 0.0 84.7 ± 0.1 57.8 ± 0.1 99.5 ± 0.1 57.5 ± 0.1
✓ ✓ ✓ 87.3 ± 0.1 100.0 ± 0.0 87.3 ± 0.1 59.0 ± 0.3 97.8 ± 0.2 58.1 ± 0.4

Table 6: Comparison of reward formulation for multilingual alignment rewards of M2A. The evalua-
tion is performed on GSM8K and MGSM. Bold means the best performance.

Reward Formulation GSM8K MGSM
Math. Lang. Joint Math. Lang. Joint

cos(zo, zy) 84.1 ± 0.1 100.0 ± 0.0 84.1 ± 0.1 57.4 ± 0.6 97.4 ± 0.1 56.0 ± 0.2
cos(zo, zy)− cos(z̃o, z̃y) 83.6 ± 0.1 100.0 ± 0.0 83.6 ± 0.1 57.6 ± 0.1 99.6 ± 0.1 57.4 ± 0.1
max(cos(zo, zy)− cos(z̃o, z̃y) + α, 0) (ours) 87.3 ± 0.1 100.0 ± 0.0 87.3 ± 0.1 59.0 ± 0.3 97.8 ± 0.2 58.1 ± 0.4

6.4 ABLATION STUDY

Contribution of Individual Reward Functions. We analyze the effectiveness of individual reward
functions in M2A on the mathematical reasoning task. Table 5 shows that context alignment (CA)
improves multilingual performance on MGSM but slightly lowers GSM8K accuracy, as enforcing
global embedding similarity adds constraints unnecessary for English-only tasks. Reasoning-step
alignment (RA) provides finer supervision by aligning individual reasoning steps, which boosts
multilingual performance and mitigates the small degradation from CA. The full model, combining
language consistency, CA, and RA, achieves the best results on both benchmarks, confirming that
the reward functions are complementary: CA promotes global cross-lingual alignment, while RA
enforces stepwise reasoning fidelity.

Reward Formulations. We compare different formulations of the multilingual alignment reward
used in Eq. (2) and Eq. (4). Table 6 reports results on GSM8K and MGSM. Using vanilla cosine
similarity yields weaker performance, while adding a negative-sample term improves MGSM but
slightly reduces GSM8K. Our margin-based hinge formulation achieves the best results across all
metrics, demonstrating the benefit of combining negative samples with a margin to stabilize alignment.

7 DISCUSSION

We conducted a comprehensive study of whether large language models (LLMs) reason in the
language of the input question. Our findings show that many LLMs predominantly reason in English
or Chinese, even when prompted in other languages, undermining multilingual reasoning quality and
limiting their applicability in culturally and linguistically diverse settings.

To overcome this limitation, we introduce a novel method, M2A, which enforces language-consistent
reasoning while preserving factual correctness. By combining multi-scale alignment rewards with
a language-consistency objective, M2A aligns outputs with ground-truth reasoning traces at both
context and reasoning step levels, encouraging reasoning to remain in the query language.

Robust evaluation of multilingual reasoning is itself difficult, since most benchmarks focus on final
answers rather than reasoning quality or language alignment. We therefore propose GEOFACT-X,
a geography-based factual reasoning benchmark spanning five diverse languages, paired with step-
by-step reasoning traces and a reasoning evaluation protocol including logical structure, factual
correctness, and language consistency.

Our results show that M2A consistently improves multilingual mathematical and factual reasoning
capability while maintaining strong English performance. While our experiments were conducted
on 7B-parameter models, the approach is scalable and provides a practical alternative to massive
multilingual instruction tuning. More broadly, our contributions establish a foundation for training
and evaluating LLMs that reason faithfully across languages, advancing the goal of globally inclusive,
culturally grounded, and interpretable AI.
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Which treaty, signed in 1765, granted 
the British East India Company the 
Diwani rights of Bengal, Bihar, and 

Orissa?

1765 में हस्ताक्ष�रत �कस सं�ध ने �ब्रि�टश 
ईस्ट इं�डया कंपनी को बंगाल, �बहार और 
उड़ीसा के दीवानी अ�धकार प्रदान �कए?

<step> The question asks about 
the treaty signed in 1765 that 
granted the British East India 
Company Diwani rights over 
Bengal, Bihar, and Orissa.\n
<step> Diwani rights refer to the 
right to collect revenue and 
administer civil justice. \n
<step> The Treaty of Allahabad, 
signed in 1765 between Robert 
Clive of the British East India 
Company and Mughal Emperor 
Shah Alam II, officially granted 
these rights to the Company. 
This treaty marked a significant 
turning point in the British East 
India Company's consolidation 
of power in India.

<step> प्रश्न में पूछा गया है �क 1765 
में हस्ताक्ष�रत �कस सं�ध ने �ब्रि�टश 
ईस्ट इं�डया कंपनी को बंगाल, �बहार 
और उड़ीसा के दीवानी अ�धकार �दए।
\n
<step> 'दीवानी अ�धकार' का अथर्ण है 
राजस्व एकत्र करने और नाग�रक 
न्याय प्रशासन का अ�धकार।\n
<step> इलाहाबाद की सं�ध, िजस पर 
1765 में �ब्रि�टश ईस्ट इं�डया कंपनी के 
रॉबटर्ण �लाइव और मगुल सम्राट शाह 
आलम द्�वतीय के बीच हस्ताक्षर �कए 
गए थे, ने आ�धका�रक तौर पर इन 
अ�धकारों को कंपनी को प्रदान �कया। 
इस सं�ध ने भारत में �ब्रि�टश ईस्ट 
इं�डया कंपनी की शि�त के समेकन में 
एक महत्वपूणर्ण मोड़ �दया।

สนธิสัญญาใดที่ลงนามในป 1765 มอบ
สิทธ ิDiwani ของเบงกอล พิหาร และโอ
ริสสาใหแกบริษัท บริติช อีสต อินเดีย

<step> คําถามถามถึงสนธิสัญญาที่
ลงนามในป 1765 ซึ่งมอบสิทธิ 
Diwani เหนือเบงกอล พิหาร และโอริ
สสา ใหแกบริษัท บริติช อีสต อินเดีย
\n
<step> สิทธ ิDiwani หมายถึงสิทธิ
ในการเก็บรายไดและบริหารความ
ยุติธรรมทางแพง\n
<step> สนธิสัญญาอัลลาฮาบาด ซึ่ง
ลงนามในป 1765 ระหวาง โรเบิรต 
ไคลฟ แหงบริษัท บริติช อีสต อินเดีย 
และจักรพรรดิชาหอลัมที่ 2 แหง
ราชวงศโมกุล ไดมอบสิทธิเหลานี้ให
กับบริษัทอยางเปนทางการ 
สนธิสัญญานี้ถือเปนจุดเปลี่ยนที่
สําคัญในการรวมอํานาจของบริษัท 
บริติช อีสต อินเดีย ในอินเดีย

Question

Reasoning 
Traces

Treaty of Allahabad / Allahabad 
Treaty इलाहाबाद  की सं�ध  / इलाहाबाद  सं�ध สนธิสัญญาอัลลาฮาบาด  

Answer 
(with all 
possible 
variants)

Figure 6: A sample from GEOFACT-X in English, Hindi, and Thai. Each presents the same
factual question and answer content translated across languages. These multilingual and semantically
equivalent traces serve as reference reasoning for benchmarking the reasoning quality of other
language models in our evaluation framework.

A DETAILS OF GEOFACT-X

A.1 DATASET COLLECTION

We constructed a multilingual factual QA dataset using Gemini 2.0 Flash. For each country–language
pair (USA–English, India–Hindi, Japan–Japanese, Kenya–Swahili, Thailand–Thai), we generated
600 unique QA pairs (3,000 examples in total) by using prompt templates shown in Figure 7. The
topics spanned ten high-level domains: History, Geography, Politics, Literature, Arts & Culture,
Science & Technology, Sports, Food & Cuisine, Language, and Religion with subcategories such as
Person, Date, and Place (Figure 8). For each subcategory, 20 questions were generated per country.
Translations were produced with Google Translate, and semantic fidelity was checked via back-
translation. Reasoning traces were generated by Gemini 2.0 Flash using Chain-of-Thought prompting
(Fig. 9), with each step explicitly tagged by a ‘<step>’ token.

The dataset is split into training (85%) and test (15%) sets, with no semantic overlap across splits or
languages. Ten percent of the training data and all test data were manually verified by the authors
through cross-referencing with Wikipedia and Google Search. In addition, all test samples were
reviewed by native or C1-level speakers to ensure factual correctness and linguistic clarity and modify
the samples if needed.

A.2 EVALUATION PROTOCOL

The benchmark has three metrics, answer accuracy, and reasoning score. Answer accuracy is computed
by checking whether the model prediction appears in the list of reference answers provided for each
test instance. Reasoning score is evaluated with Qwen-2.5-72B-Instruct (Qwen et al., 2025) as
an LLM-as-a-Judge, which compares model-generated reasoning traces against human-verified
references to measure the quality of generated reasoning. If a reasoning trace is written in a different
language from the question, detected by a language identifier (Lui & Baldwin, 2012), its score is
set to zero. Figure 10 illustrates the prompt structure used for the LLM-as-a-Judge, including the
evaluation instructions and rules applied to model outputs.
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Generate {num_questions} factual questions about {country} focused on the topic of {topic} where the 
answer type is {answer_type}.
Requirements:

1. Each question must have a SINGLE, DEFINITE answer (not subjective or opinion-based).
2. Focus on facts that are well-established and locally known in {country}.
3. For each answer, provide ALL possible correct variants (e.g., full names, common abbreviations, 

alternative names).
4. DO NOT include any ambiguous questions where the answer could be interpreted in multiple ways.
5. Each question should be translated into exactly these languages: English, Hindi, Japanese, Swahili, 

and Thai.

CRITICAL TRANSLATION REQUIREMENTS:
- Ensure HIGHEST QUALITY translations in all languages. Translations must be accurate and natural-

sounding.
- For proper nouns, provide BOTH the transliterated version AND the commonly accepted translation in 

each language.
- Pay special attention to terms that have specific cultural meaning or context.
- Maintain consistent terminology across all translations of the same question/answer.
- For Hindi translations: Follow modern standard Hindi conventions and proper transliteration 

standards.
- For Japanese translations: Use appropriate kanji, hiragana, and katakana. Include both kanji and 

phonetic readings where appropriate.
- For Swahili translations: Use standard Swahili spelling and grammar conventions.
- For Thai translations: Use proper Thai script and formal Thai language.
- When translating names of people, places, or specific terms, include commonly recognized 

translations in each language.
6. For EACH language version, provide ALL possible correct answer variants in that language.
7. Questions should be DIVERSE within the selected topic - avoid redundant or very similar questions.
8. Ensure the answers are SPECIFIC and PRECISE - avoid phrases or long explanations as answers.

Return the data in the following JSON format:
{{

"question_id": "unique_incrementing_number",
"languages": [
{{
"language_code": "en",
"language_name": "English",
"question": "The exact question text in English",
"answers": ["Primary answer", "Alternative form 1", "Alternative form 2"]
}},
{{
"language_code": "hi",
"language_name": "Hindi",
"question": "The exact question text in Hindi",
"answers": ["Primary answer in Hindi", "Alternative form 1 in Hindi", "Alternative form 2 in Hindi"]
}},
// Repeat for Japanese (ja), Swahili (sw), and Thai (th)

],
"topic": "{topic}",
"answer_type": "{answer_type}",
"region": "{country}"
}}
IMPORTANT: Return ONLY valid JSON without any explanations, formatting, or additional text outside 

the JSON structure. Ensure all apostrophes, quotation marks, and special characters are properly 
escaped in the JSON.

Figure 7: Prompt for Generating Multilingual Factual Questions and Answers in GEOFACT-X.
This prompt instructs the LLM to generate diverse, unambiguous factual questions about a specific
country and topic, each with a single, definite answer. The questions and their answers are provided in
five languages, English, Hindi, Japanese, Swahili, and Thai, with strict requirements for high-quality
translations, consistent terminology, and inclusion of all valid answer variants in each language.
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Figure 8: Illustration of the hierarchical distribution of generated factual question categories
by topic and subcategory. Each colored wedge represents a major topic (e.g., History, Geography),
and its outer segments represent specific subcategories (e.g., Person, Place, Treaty). The size of
each segment reflects the proportion of questions allocated to that subcategory within its topic. This
generation schema was applied uniformly across five countries, and all question sets were translated
into five different languages.

A.3 LICENSE

We release the dataset under the MIT License, which permits reuse, modification, and distribution,
provided that the original license and copyright notice are included.

B EXPERIMENTAL DETAILS

B.1 TRAINING

We adopt the hyperparameter configuration from s1 (Muennighoff et al., 2025), with the exception
of batch size, which we reduced from 16 to 8 due to resource constraints. Specifically, the training
hyperparameters are as follows: learning rate of 10−5, minimum learning rate of 0, weight decay of
10−4, total batch size of 8, training conducted for 5 epochs, and a cosine learning rate scheduler with
warmup ratio of 0.05. Adam (Kingma, 2015) is used with β1 = 0.9 and β2 = 0.95. The maximum
sequence and token lengths are set to 20,000. GRPO uses accuracy and format rewards following Guo
et al. (2025). M2A uses a maximum completion length of 1,024 (256) tokens, generates 2 (8)
completions per prompt, and sets the maximum step to 10 due to the resource constraints (parentheses
denote factual reasoning parameters in case of difference). We also use a loss coefficient for GRPO
as 0.01 for mathematical reasoning and 0.5 for factual reasoning. We train the model with three
different random seeds to calculate the standard error. For the s1K-X dataset, we use Google Translate
to translate the s1K-1.1 dataset into multiple languages used in the MGSM benchmark: Bengali,
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You are a multilingual reasoning assistant. For each of the following factual questions about the country,
generate structured output in the following format for all the 5 questions:
{
"question": "",
"answer_list": [""],
"reasoning": "<step> Step-by-step reasoning in the same language as the question, each step starting
with <step>",
"corrected_answer_list": [""],
"topic": "",
"region": "",
"answer_type": ""
}
Instructions:
1. The reasoning must be written strictly in the same language as the question.
2. Each reasoning step must begin with <step>
(e.g., <step> माउंट के)या एक ज ्वालामुखी पवव4त है ...). 
3. Start from relevant background knowledge or interpretation of the question and proceed step-by-step
toward the correct answer.
4. For the corrected_answer_list:
- Review the provided answer_list.
- Remove duplicates (case-insensitive, spacing-normalized).
- Add valid alternative phrasings or translations if any are missing (e.g., transliterations, local variants).
5. The reasoning must be comprehensive and detailed, including:
- Relevant background information and definitions of key terms or entities.
- Historical, cultural, geographical, or scientific context if applicable.
- Logical deductions and connections to prior knowledge.
- Contrast with similar or confusing facts (e.g., common misconceptions).
- Justifications for why incorrect options are incorrect (if multiple answers are possible).
- Step-by-step elimination or validation of answer candidates.
6. Each <step> should be at least 1–2 full sentences and contribute meaningfully to building up the
answer. Do not skip intermediate steps, even if obvious. Think like a teacher explaining to a curious
student

Figure 9: Structured prompt for multilingual factual reasoning generation using Gemini 2.0
Flash on GEOFACT-X. This prompt guides the model to generate step-by-step reasoning and
corrected answers for factual questions about a country, using the same language as the input question.
The output consists of five JSON object strings for the same factual question, each in a different
language.

German, Spanish, French, Japanese, Russian, Swahili, Telugu, Thai, and Chinese. Both codebase and
datasets are attached to the supplementary material for reproducibility.

B.2 EVALUATION

For mathematical reasoning, we employed the lm-evaluation-harness1 library to evaluate each
model. Specifically, we used the MGSM (Shi et al., 2023) Native-CoT setting and the MMLU-
ProX (Xuan et al., 2025) Math category with a 5-shot chain-of-thought prompt to ensure the model
reasons in its native language. langid (Lui & Baldwin, 2012) is used to evaluate language correctness.

B.3 MODELS EVALUATED ON MGSM

Table 7 provides the complete list of models evaluated in Figure 5. All models are sourced from
HuggingFace2, a public repository of large language models. We include Qwen2.5 (Qwen et al.,
2025), s1 (Muennighoff et al., 2025), Llama (Grattafiori et al., 2024), Gemma (Team et al., 2025),
and DeepSeek-R1 (Guo et al., 2025), each with a range of model sizes.

1https://github.com/EleutherAI/lm-evaluation-harness
2https://huggingface.co/
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# Reasoning Quality Evaluation
You are an expert reasoning evaluator tasked with comparing an LLM's reasoning trace against a ground 

truth reasoning trace. Your evaluation must be fair, consistent, and based solely on the quality of 
reasoning, not on superficial similarities.

## Input:
- Question: {question}
- Answer List: {answer_list}
- Ground Truth Reasoning: {ground_truth_reasoning}
- LLM Response: {llm_generation}

## Evaluation Criteria:
Assess the quality of the LLM's reasoning compared to the ground truth on a scale from 0-10 based on 

the following:

1. Logical Structure (40%):
- How well does the reasoning follow a clear, step-by-step logical progression?
- Are the steps in a sensible order that builds toward the answer?

2. Key Insights (30%):
- Does the reasoning identify the same critical insights as the ground truth?
- Are the important clues from the question properly recognized and utilized?

3. Factual Correctness (20%):
- Is the reasoning free from factual errors?
- Does it avoid adding irrelevant information or missing necessary information?

4. Conclusion Validity (10%):
- Does the reasoning correctly lead to the answer?
- Is the link between the reasoning and the conclusion clear?

## Scoring Guide:
0-1: Completely irrelevant or fundamentally flawed reasoning
2-3: Major logical errors or missing critical insights
4-5: Contains some correct elements but misses important aspects
6-7: Good reasoning with minor gaps or imperfections
8-9: Very good reasoning, almost matching ground truth quality
10: Perfect reasoning, capturing all key insights with proper structure

## Your Response (FORMAT STRICTLY REQUIRED):
REASONING_SCORE: [integer between 0-10]
JUSTIFICATION: [Brief explanation of your evaluation, highlighting strengths and weaknesses]

Figure 10: Prompt for LLM-as-a-Judge to Evaluate Reasoning Traces Using Gemini 2.0 Flash.
This prompt guides the evaluation of an LLM-generated reasoning trace against a ground truth using
specific criteria such as logical structure, key insights, factual correctness, and conclusion validity.
The evaluation is performed by Qwen2.5-72B Instruct, acting as the LLM-as-judge, and includes
scoring, language mismatch detection, and answer validation.

C ABLATION STUDY OF TRANSLATION METHOD

To ensure the accessibility and scalability of our pipeline, we prioritize computational efficiency
and broad language coverage. We select Google Translate as our primary translation tool because
it supports over 100 languages—including many low-resource ones—and remains computationally
efficient. This design choice allows researchers to reproduce our method without requiring access to
expensive LLM APIs or high-end GPUs.

To validate this choice, we conduct an ablation study comparing Google Translate against LLM-
based translation methods (specifically GPT-4.1 and GPT-5). As shown in Table 8, we observe no
statistically significant difference in downstream model performance between the translation methods.
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Table 7: List of all models and sizes evaluated on MGSM in Figure 5. All models are sourced from
HuggingFace.

Model Name Model Sizes

Qwen2.5 1.5B, 3B, 7B, 14B, 32B
Qwen2.5-Instruct 1.5B, 3B, 7B, 14B, 32B
Qwen2.5-Instruct-GPTQ-Int4 1.5B, 3B, 7B, 14B, 32B
Qwen2.5-Instruct-GPTQ-Int8 1.5B, 3B, 7B, 14B, 32B
Qwen2.5-Instruct-AWQ 7B, 14B, 32B
Qwen2.5-Instruct-1M 7B, 14B
Qwen2.5-Math 1.5B, 7B, 72B
Qwen2.5-Math-Instruct 1.5B, 7B, 72B

s1 1.5B, 3B, 7B, 14B, 32B

Llama-3-Instruct 8B, 70B
Llama-3.3-Instruct 70B

Gemma-3-PT 1B, 4B, 12B, 27B
Gemma-3-IT 1B, 4B, 12B, 27B

DeepSeek-R1-Distill-Qwen 1.5B, 3B, 7B, 14B, 32B
DeepSeek-R1-Distill-Llama 8B, 70B

Table 8: Comparison of model performance with different translation methods on average reasoning
score (%), language accuracy (%), and answer accuracy (%) on GEOFACT-X test set, evaluated
across all examples and split by whether the language is associated with the country (‘Assoc.’) or not
(‘Non-Assoc.’). Bold means the best performance.

Translation Method Average Reasoning Score (%) Average Answer Accuracy (%)
All Assoc. Non-Assoc. All Assoc. Non-Assoc.

Google Translate 48.5 ± 0.4 52.6 ± 0.6 47.5 ± 0.3 32.0 ± 0.6 41.3 ± 1.0 29.7 ± 0.5
ChatGPT 4.1 48.8 ± 0.1 52.2 ± 0.3 48.0 ± 0.2 33.1 ± 0.3 41.3 ± 1.3 31.0 ± 0.4
ChatGPT 5 49.0 ± 0.1 52.6 ± 0.5 48.1 ± 0.0 32.7 ± 0.3 41.4 ± 1.0 30.5 ± 0.2

These results confirm that our framework is robust to the choice of translator and that the performance
gains stem principally from the M2A objective rather than translation artifacts.

D M2A WITH DIFFERENT BACKBONE ON GEOFACT-X

We use Command R7B (Cohere et al., 2025) as a backbone network for comparing M2A other
baselines. As shown in Table 9, the results are consistent with our main Qwen findings. M2A achieves
the highest performance in both reasoning score and answer accuracy, outperforming SFT and
standard GRPO. This confirms that our method is model-agnostic and effective across different
multilingual architectures.

E M2A WITH DIFFERENT LANGUAGES

In the main paper, we present M2A trained with random translations drawn from the ten MGSM
languages (Bengali, German, Spanish, French, Japanese, Russian, Swahili, Telugu, Thai, and Chinese).
Here, we examine the effect of using a single fixed translation language, as shown in Table 10.
We select Japanese and Swahili as representative examples of high- and low-resource languages,
respectively, following the categorization of Nicholas & Bhatia (2023).

Across both choices, we observe only minor decreases in GSM8K mathematical accuracy and
MGSM language accuracy relative to the multi-language setting. This finding indicates that training
with a single language—even a low-resource one—can still induce strong multilingual reasoning
ability. Nevertheless, randomizing translations across multiple languages yields the strongest overall

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 9: Comparison of model performance on average reasoning score (%), language accuracy (%),
and answer accuracy (%) on GEOFACT-X test set, evaluated across all examples and split by whether
the language is associated with the country (‘Assoc.’) or not (‘Non-Assoc.’). Bold means the best
performance.

Model Average Reasoning Score (%) Average Answer Accuracy (%)
All Assoc. Non-Assoc. All Assoc. Non-Assoc.

Command R7B 44.2 48.5 43.1 25.0 34.1 22.7

GRPO 38.3 ± 0.4 42.4 ± 0.9 37.2 ± 0.4 23.4 ± 3.2 30.5 ± 4.2 21.6 ± 3.0
SFT 46.6 ± 0.0 51.3 ± 0.3 45.4 ± 0.1 28.9 ± 0.3 38.2 ± 0.6 26.6 ± 0.2
SFT + GRPO 44.1 ± 1.4 48.8 ± 1.9 42.9 ± 1.2 21.9 ± 6.8 29.0 ± 8.9 20.1 ± 6.3
M2A 46.8 ± 0.8 50.1 ± 0.9 46.0 ± 0.7 30.9 ± 0.9 38.5 ± 1.3 29.1 ± 0.8

Table 10: Accuracy of M2A trained with various languages. All languages denote that the language
translator randomly translates the question language into ten different languages used in MGSM.
Bold denotes the best performance for each metric.

Translation
Language

GSM8K MGSM
Math. Lang. Joint Math. Lang. Joint

All 87.3 ± 0.1 100.0 ± 0.0 87.3 ± 0.1 59.0 ± 0.3 97.8 ± 0.2 58.1 ± 0.4
Japanese 86.8 ± 0.1 100.0 ± 0.0 86.8 ± 0.1 59.0 ± 0.2 90.7 ± 0.4 56.5 ± 0.1
Swahili 85.3 ± 0.7 100.0 ± 0.0 85.3 ± 0.7 58.4 ± 0.3 96.2 ± 1.0 56.6 ± 0.7

Table 11: Accuracy of base (Qwen2.5-7B-Instruct) model and models fine-tuned with each post-
training method on MGSM. Standard error is not included for readability. Bold means the best
performance.

Model MGSM Question Language
bn de es fr ja ru sw te th zh

Math Performance

Qwen2.5-Instruct 58.7 61.2 72.0 72.8 62.4 70.4 65.6 14.0 29.6 69.6 69.2

GRPO 58.8 59.7 69.7 75.9 65.7 66.9 71.7 12.8 27.7 64.9 72.4
SFT (s1) 66.7 66.4 77.4 78.0 79.6 73.6 83.6 18.6 35.2 74.6 79.8

SFT on s1K-X 45.2 34.7 51.2 60.8 69.3 44.0 52.5 10.4 8.8 64.7 55.1
M2A 59.0 53.3 75.6 75.2 75.7 66.3 80.5 3.7 14.9 66.5 78.3

Language Performance

Qwen2.5-Instruct 99.0 100.0 100.0 100.0 100.0 91.6 100.0 100.0 100.0 98.8 100.0
GRPO 95.9 99.9 100.0 100.0 99.9 100.0 100.0 60.0 100.0 99.6 100.0

SFT (s1) 31.0 13.6 81.4 88.6 5.8 6.0 2.6 0.0 22.8 27.8 62.2
SFT on s1K-X 99.7 100.0 99.9 99.9 99.9 100.0 99.7 99.9 100.0 100.0 98.0

M2A 97.8 99.7 98.0 98.5 94.8 99.9 99.2 88.3 99.9 99.3 100.0
Joint Performance

Qwen2.5-Instruct 58.1 61.2 72.0 72.8 62.4 65.2 65.6 14.0 29.6 68.8 69.2

GRPO 58.2 59.6 69.7 75.9 65.6 66.9 71.7 7.7 27.7 64.5 72.4
SFT (s1) 21.9 5.6 62.8 68.6 4.6 2.4 1.2 0.0 5.8 18.6 49.0

SFT on s1K-X 45.0 34.7 51.2 60.8 69.3 44.0 52.5 10.4 8.8 64.7 53.7
M2A 58.1 53.2 74.1 74.3 71.2 66.3 80.4 2.7 14.9 66.0 78.3

results, suggesting that language diversity provides additional regularization benefits for cross-lingual
alignment.

F MGSM EVALUATION IN EACH LANGUAGE

Table 11 shows individual math and language accuracy change compared to the base model (Qwen2.5-
7B-Instruct) in each language. As we mentioned in Section 6, supervised fine-tuning on s1K-1.1
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Table 12: Average reasoning score (%) by language and region. Reasoning quality is assessed using an
LLM-as-a-judge framework, which evaluates model-generated justifications against reference Gemini
2.0 Flash reasoning traces in the GEOFACT-X dataset. Higher scores indicate more coherent, relevant,
and logically sound reasoning. The gray diagonal entries represent associated language–country pairs.
Bold means the best performance in each pair.

Language Model USA India Japan Kenya Thailand

English Qwen2.5-Instruct 67.5 55.7 62.8 56.6 51.4
GRPO 70.3 ± 1.2 61.8 ± 1.3 58.5 ± 1.2 57.2 ± 0.7 51.9 ± 0.6
SFT 69.2 ± 0.6 62.9 ± 0.7 57.6 ± 0.6 57.4 ± 0.1 51.2 ± 0.7
M2A 69.3 ± 0.5 63.0 ± 0.7 57.8 ± 0.7 57.4 ± 0.2 51.5 ± 0.8

Hindi Qwen2.5-Instruct 39.4 39.0 39.0 35.0 38.6
GRPO 38.7 ± 1.4 36.6 ± 0.9 38.2 ± 0.7 35.5 ± 0.7 38.2 ± 0.9
SFT 36.3 ± 1.0 36.0 ± 0.5 37.7 ± 1.4 42.4 ± 0.5 40.8 ± 0.9
M2A 36.5 ± 1.1 36.0 ± 0.4 38.2 ± 1.1 42.5 ± 0.5 40.8 ± 0.9

Japanese Qwen2.5-Instruct 51.4 43.1 53.2 45.2 40.3
GRPO 50.1 ± 1.4 43.2 ± 0.6 52.3 ± 0.1 47.0 ± 1.2 43.5 ± 0.6
SFT 45.3 ± 1.1 43.0 ± 0.6 52.3 ± 1.3 47.7 ± 0.7 43.0 ± 0.2
M2A 45.5 ± 1.1 43.0 ± 0.5 52.6 ± 1.4 48.1 ± 0.7 43.5 ± 0.3

Swahili Qwen2.5-Instruct 41.4 43.3 39.5 41.3 34.9
GRPO 34.6 ± 0.5 33.2 ± 1.4 31.4 ± 0.6 35.6 ± 1.2 33.8 ± 0.4
SFT 47.9 ± 0.2 49.8 ± 1.3 47.4 ± 0.2 49.6 ± 0.4 47.3 ± 0.7
M2A 48.0 ± 0.3 49.8 ± 1.3 47.5 ± 0.2 49.7 ± 0.4 47.3 ± 0.8

Thai Qwen2.5-Instruct 56.4 44.0 49.0 43.5 45.3
GRPO 54.1 ± 1.4 47.5 ± 0.3 46.7 ± 1.6 47.8 ± 0.6 45.0 ± 0.6
SFT 40.3 ± 0.8 40.2 ± 0.3 47.2 ± 0.6 45.1 ± 0.1 45.5 ± 0.4
M2A 40.3 ± 0.6 40.5 ± 0.3 47.5 ± 0.6 45.5 ± 0.2 45.6 ± 0.4

Table 13: Average answer accuracy by language and region. The gray diagonal entries represent
associated language–country pairs. Bold means the best performance in each pair.

Lang Model USA India Japan Kenya Thailand

English Qwen2.5-Instruct 56.3 32.7 41.9 31.6 24.4
GRPO 74.7 ± 1.1 62.9 ± 2.1 52.0 ± 2.4 49.1 ± 2.1 38.4 ± 0.7
SFT 70.9 ± 1.9 60.2 ± 2.0 47.0 ± 1.3 45.3 ± 0.6 34.5 ± 1.0
M2A 65.6 ± 2.2 59.0 ± 3.0 51.7 ± 2.2 43.1 ± 5.6 31.1 ± 2.3

Hindi Qwen2.5-Instruct 19.5 23.3 16.1 14.3 20.0
GRPO 22.8 ± 1.5 22.1 ± 1.8 11.9 ± 2.0 13.9 ± 1.0 20.8 ± 0.8
SFT 11.4 ± 1.6 14.7 ± 2.1 10.0 ± 0.4 18.3 ± 0.4 15.0 ± 1.4
M2A 15.1 ± 1.8 19.7 ± 1.7 13.3 ± 1.9 19.8 ± 1.2 14.5 ± 2.4

Japanese Qwen2.5-Instruct 36.8 23.0 39.3 20.2 18.9
GRPO 34.6 ± 2.7 25.3 ± 1.8 40.5 ± 2.1 29.0 ± 1.4 26.6 ± 2.4
SFT 32.9 ± 1.3 20.3 ± 0.8 42.1 ± 4.0 29.4 ± 0.8 19.8 ± 1.2
M2A 30.8 ± 2.6 25.1 ± 0.6 42.5 ± 2.0 27.9 ± 3.1 20.3 ± 2.0

Swahili Qwen2.5-Instruct 24.3 32.6 17.6 22.6 13.5
GRPO 29.3 ± 0.9 25.6 ± 1.8 15.5 ± 0.4 19.6 ± 1.7 18.9 ± 0.0
SFT 32.4 ± 2.1 34.5 ± 2.5 21.7 ± 0.8 26.7 ± 1.4 25.7 ± 2.1
M2A 33.3 ± 3.5 33.3 ± 1.1 21.1 ± 1.8 28.3 ± 3.4 22.2 ± 0.7

Thai Qwen2.5-Instruct 31.9 23.8 18.5 20.7 25.7
GRPO 39.6 ± 1.7 29.2 ± 0.8 29.2 ± 1.1 30.1 ± 2.3 29.3 ± 3.2
SFT 15.0 ± 0.5 19.6 ± 1.1 20.6 ± 0.4 19.5 ± 0.7 29.3 ± 0.5
M2A 28.6 ± 3.4 23.3 ± 0.0 27.8 ± 3.6 28.6 ± 2.4 24.3 ± 1.8

improves math performance while losing language performance. Conversely, GRPO rarely changes
performance on both mathematics and language across all languages. M2A generally maintains
language performance. However, its German performance is much lower, which might be related to
the language sampled for translating the question.

We also illustrate an MGSM Russian example response from Qwen2.5-7B-Instruct and SFT, GRPO,
M2A fine-tuned models on Figure 11. All models generate the correct answer from a given question
written in Russian. However, the SFT model uses English instead of Russian, while others reason in
Russian. GRPO has an almost identical reasoning process to the base model, which might explain
why it performs almost the same in any metrics as the base model.
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G GEOFACT-X EVALUATION IN EACH LANGUAGE AND COUNTRY PAIR

Tables 12, and 13 present reasoning score, language accuracy, and answer accuracy for each lan-
guage–country pair. Diagonal entries correspond to associative pairs, while off-diagonal entries
correspond to non-associative pairs. Associative countries consistently achieve higher performance
across all metrics compared to non-associative ones. English (a high-resource language) generally
outperforms other languages. Among non-associative cases, performance for the United States ex-
ceeds that of Kenya and Thailand, which may reflect differences in pre-training and fine-tuning data
exposure. As discussed in Section 6.3, all methods substantially increase language accuracy as the
training dataset includes all five languages. However, no consistent trend is observed in reasoning
score and answer accuracy across language–country pairs.

H HUMAN AGREEMENT FOR LLM-AS-A-JUDGE

We validate the alignment between reasoning score and human judgment through a Human-LLM
agreement study on the English-USA subset of GeoFact-X. A human evaluator (native English
speaker) performs pairwise A/B testing, selecting the superior reasoning trace from two model
outputs and assigning a confidence score on a 1–5 scale. The results demonstrate strong alignment
between the Qwen-based judge and human preference, achieving an agreement rate of 82.9%.

We further observe a strong positive correlation between human reported confidence and the reasoning
score difference assigned by the LLM. Notably, human confidence is significantly higher when
agreeing with the LLM (average confidence 3.3/5) compared to cases of disagreement (average
confidence 2.1/5). This indicates that divergences primarily occur in ambiguous "close calls," whereas
the metric remains highly reliable for clear-cut distinctions. Future work will expand this validation
across all five languages with native speakers to confirm these findings multilingually.

I LLM USAGE

We used LLM to help with paper writing for improving grammar and wording.
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Question
'<|im_start|>system
You are Qwen, created by Alibaba Cloud. You are a helpful 
assistant.<|im_end|>
<|im_start|>user\nЗадача: Утки Дженет несут по 16 яиц в день. Она 
ест три на завтрак каждое утро и печет кексы для своих друзей 
каждый день, используя четыре. Остаток она аждый день продает 
на фермерском рынке по 2 $ за свежее утиное яйцо. Сколько в 
долларах она зарабатывает на фермерском рынке каждый 
день?\nПошаговоерешение:<|im_end|>
<|im_start|>assistant

Supervised Fine-Tuning (s1)
Okay, let's try to figure out how much money Janet's ducks make each 
day from selling eggs at the farmer's market. Let me break down the 
problem step by step.

First, the problem states that Janet's ducks lay 16 eggs each day. That's 
the total production. Then, Janet eats 3 eggs every morning for 
breakfast. So, those 3 eggs are consumed by her. Additionally, she 
uses 4 eggs each day to bake cakes for her friends. So, both her 
consumption and baking take a total of 3 + 4 = 7 eggs per day. 

…
But just to make sure I didn't misread the question. Let me re-read it:

"Утки … день?"

Which translates to: "Janet's ducks lay 16 eggs per day. She eats three 
for breakfast every morning and bakes cakes for her friends using four 
eggs every day. The remainder she sells at the farmer's market for $2 
per fresh duck egg each day. How much does she earn at the farmer's 
market each day in dollars?"

Yes, the question is asking about her daily earnings from the farmer's 
market. So, the calculation is correct.

Therefore, the final answer is \boxed{18}.
<|im_start|>answer
Answer: Janet's ducks lay 16 eggs each day. She eats 3 eggs every 
morning and uses 4 eggs to bake cakes for her friends. The total 
number of eggs used each day is 3 + 4 = 7. The remaining eggs are 16 -
7 = 9. She sells each egg for $2, so her daily earnings are 9 * $2 = $18.

\boxed{18}

M2A
Okay, давайте решим эту задачу шаг за шагом. У нас есть
информация о том, что утки Дженет несут 16 яиц в день. Она сама
ест три яйца на завтрак каждый день и использует еще четыре
яйца для печения кексов для своих друзей. Остаток яиц она
продает на фермерском рынке по 2 доллара за каждое свежее
утиное яйцо. Нам нужно определить, сколько она зарабатывает на
фермерском рынке каждый день.

**Шаг 1: Вычислить количество яиц, которые Дженет использует
на свой завтрак и для кексов.**

Дженет ест 3 яйца на завтрак каждый день. Кроме того, она
использует 4 яйца для кексов для друзей каждый день. Всего яиц, 
которые она использует сама или дает друзьям, будет 3 + 4 = 7 яиц
в день.

**Шаг 2: Вычислить количество оставшихся яиц, которые она
может продать.**

Утки несут 16 яиц в день. Если из них 7 яйца используются Дженет
и ее друзьями, то оставшихся будет 16 - 7 = 9 яиц. Эти 9 яиц она
продает на фермерском рынке.

**Шаг 3: Вычислить доход от продажи оставшихся яиц.**

Каждое яйцо продаётся по 2 доллара. Поэтому, если она продает 9 
яиц по 2 доллара каждое, то доход составит 9 * 2 = 18 долларов.

**Ответ:** Дженет зарабатывает 18 долларов на фермерском
рынке каждый день.

**Проверка:** Давайте проверим свои вычисления. Яйца в день: 
16. Используется на завтрак и кексы: 3 + 4 = 7. Осталось: 16 - 7 = 9. 
Цена: 9 * 2 = 18. Все верно. Ответ: 18 долларов.

**Конечный ответ:** \boxed{18}
<|im_start|>answer
Ответ: Утки Дженет несут 16 яиц в день. Она использует 3 яйца на
завтрак и 4 яйца для кексов, что в сумме составляет 3 + 4 = 7 яиц. 
Остаток яиц, который она продает на фермерском рынке, 
составляет 16 - 7 = 9 яиц. По 2 долларов за каждое яйцо она
зарабатывает 9 * 2 = 18 долларов в день. 

\boxed{18}

GRPO
Давайте решим эту задачу пошагово:

1. Сначала определим, сколько яиц остается после того, как утки
Дженет съедают и используют их для кексов:

- Всего яиц в день: 16
- Яиц, съеденных на завтрак: 3
- Яиц, использованных для кексов: 4
- Остаток яиц: 16 - 3 - 4 = 9

2. Теперь определим, сколько денег Дженет зарабатывает на
продаже оставшихся яиц:

- Цена за одно яйцо: 2 $
- Количество продаваемых яиц: 9
- Общая сумма за день: 9 * 2 = 18 $

Таким образом, Дженет зарабатывает 18 долларов на фермерском
рынке каждый день.

Qwen2.5-7B-Instruct
Давайте решим эту задачу пошагово:
1. Сначала определим, сколько яиц остается после того, как утки 
Дженет съедают и используют их:

- Всего яиц в день: 16
- Яиц на завтрак: 3
- Яиц для кексов: 4
- Остаток: 16 - 3 - 4 = 9 яиц

2. Теперь определим, сколько Дженет продает на фермерском 
рынке:

- Она продает все оставшиеся яйца: 9 яиц

3. Посчитаем, сколько денег она зарабатывает:
- Цена за яйцо: 2 $
- За 9 яиц: 9 * 2 = 18 $

Таким образом, Дженет зарабатывает 18 долларов на фермерском 
рынке каждый день.

Figure 11: Example question and response of each model on MGSM Russian. The question in
English is “Janet’s ducks lay sixteen eggs per day. She eats three for breakfast every morning and
bakes muffins for her friends every day with four. She sells the remainder at the farmers’ market daily
for two dollars per fresh duck egg. How much in dollars does she make every day at the farmers’
market?” All models correctly provide the answer (18), but the SFT model conducts its reasoning
in English. GRPO’s reasoning process is almost identical to that of the base model (Qwen2.5-7B-
Instruct).
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Table 1: Qualitative Results

Model Q: Safari ya Lewis na Clark ilianza wapi? (Where did Lewis and Clark’s journey begin?) A: St. Louis

Base

Swali linauliza kuhusu mahali ambapo safari ya Lewis na Clark ilianza.
>Safari ya Lewis na Clark ilikuwa safari ya kuvuka juu ya maji ya Kimarekani. Ililianza mnamo 1804 na ilishuhudia
kipindi cha kwanza cha Marekani kushoto mashariki.
>Safari hii ilianza Fort Atkinson, ambayo ilikuwa fortuoni ya watalii huko Council Bluffs, Iowa, na Omaha, Nebraska.
Kwa hivyo, majibu yote mawili yanakubalika.
<answer>Fort Atkinson</answer>

Translated Output:
The question asks where the Lewis and Clark expedition began.
>The Lewis and Clark expedition was a voyage across American waters. It began in 1804 and marked the first American
expedition eastward.
>The expedition began at Fort Atkinson, whichwas a tourist fort in Council Bluffs, Iowa, andOmaha, Nebraska. Therefore,
both answers are acceptable.
<answer>Fort Atkinson</answer>

GRPO

Safari ya Lewis na Clark ilianza wapi?
Hii inatafsiriwa kama safari ya kawaida kwa ajili ya kujenga kazi kwa kawaida na kujenga mazingira na kawaida.
Iliopiga safari hili, Lewis na Clark inatafsiriwa kama kawaida kwa ajili ya kujengamazingira na kawaida na kujenga kazi
kwa kawaida.
Safari hili ina kujenga mazingira na kawaida kwa ajili ya kujenga kazi kwa kawaida.
<answer> Safari ya Lewis na Clark ilianza kwa ajili ya kujenga mazingira na kawaida na kujenga kazi kwa kawaida.
</answer>

Translated Output:
The Lewis and Clark expedition began in 1804 and 1806.
To help with births and births and births.
To learn if there are countries with births and births and births and long periods, Lewis and Clark began in 1804 and
1806.
To learn if there are countries with births and births and long periods, Lewis and Clark began in 1804 and 1806.
<answer> The Lewis and Clark expedition began in 1804 and 1806. </answer>

SFT

Swali linauliza kuhusu mahali ambapo safari ya Lewis na Clark ilianza. Safari hii ilikuwa safari ya kuvuka juu ya maji
ya Katika Marekani baada ya ununuzi wa Louisiana.
<step> Meriwether Lewis alikuwa mwanamke mtawalia ambaye aliongoza safari ya Lewis na Clark. Alikuwa pia vice
presidenta wa Theodore Roosevelt.
<step> Safari ya Lewis na Clark ilianza Washington, D.C. Washington, D.C. ndio eneo kuu la bandari nchini Marekani na
linajulikana kwa kuwa kituo cha kikatiba cha Marekani.
<step> Jiji la Washington ni jina lingine la Washington, D.C., hivyo majibu yote mawili ni sahihi.
<answer>Washington, D.C.</answer>

Translated Output:
The question asks where the Lewis and Clark expedition began. This expedition was a journey across the waters of the
United States after the Louisiana Purchase.
<step> Meriwether Lewis was a woman who led the Lewis and Clark expedition. She was also Theodore Roosevelt’s vice
president.
<step> The Lewis and Clark expedition began inWashington, D.C. Washington, D.C. is the largest port in the United States
and is known for being the constitutional capital of the United States.
<step> The city of Washington is another name for Washington, D.C., so both answers are correct.
<answer>Washington, D.C.</answer>

M2A

Swali linauliza kuhusu mahali ambapo safari ya Lewis na Clark ilianza.
Safari ya Lewis na Clark ilikuwa safari ya kuvuka juu ya ardhi ya Amerika Kaskazini ili kuashiria maji ya Missouri na
kubadilisha mapema ya Marekani.
Ilianzishwa mwaka 1804 na ilishirikisha Merikani.
Utafiti wa kihistoria na kuvunjika kwenye muktadha wa safari huo unaonyesha kwamba ilianza St. Louis, Missouri.
St. Louis iko katika jimbo la Missouri, makao ya ardhi ya Missouri.
<answer>St. Louis</answer>

Translated Output:
The question asks where the Lewis and Clark expedition began.
The Lewis and Clark expedition was a journey across the land of North America to chart the course of the Missouri River
and the early development of the United States.
It began in 1804 and involved Americans. Historical research and contextual analysis of the expedition indicate that it
began in St. Louis, Missouri.
St. Louis is located in the state of Missouri, home to the Missouri Territory.
<answer>St. Louis</answer>

1

Figure 12: Generated outputs from a given question written in Swahili on GEOFACT-X. All
models use Swahili, but only M2A generates the correct answer, St Louis.
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