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Abstract

Multi-label text classification (MLTC) aims to
assign multiple labels to a given text. Previ-
ous works have focused on text representation
learning and label correlations modeling using
pre-trained language models (PLMs). How-
ever, studies have shown that PLMs generate
word frequency-oriented text representations,
causing texts with different labels to be closely
distributed in a narrow region, which is diffi-
cult to classify. To address this, we present a
novel framework, CL(Contrastive Learning)-
MIL (Multi-granularity Information Learning),
to refine the text representation for MLTC task.
We first use contrastive learning to generate
uniform initial text representation and incorpo-
rate label frequency implicitly. Then, we de-
sign a multi-task learning module to integrate
multi-granularity (diverse text-labels correla-
tions, label-label relations and label frequency)
information into text representations, enhanc-
ing their discriminative ability. Experimental
results demonstrate the complementarity of the
modules in CL-MIL, improving the quality of
text representations, and yielding stable and
competitive improvements for MLTC.

1 Introduction

Multi-Label Text Classification (MLTC) is a fun-
damental task in the natural language processing
(NLP) field which refers to assigning multiple rel-
evant labels to each text. MLTC has been widely
applied to various real-world scenarios like recom-
mendation system (Guo et al., 2016), sentiment
analysis (Wang et al., 2016) and information re-
trieval (Yang and Gopal, 2012) and others (Jain
et al., 2016; Papanikolaou et al., 2014; Zhang et al.,
2014). In MLTC, there are diverse text-labels cor-
relations. As shown in Figure 1, labels L1, L2 are
directly correlated to specific type of keywords and
phrases (fine-grained) T2, T4, whereas latent cor-
relations are determined by multiple information
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(coarse-grained). For example, L4 is jointly corre-
lated with T2, Tn−2 and Tn.

Previous methods solve MLTC task in diverse
perspectives. Among them, some methods focus
on fine-grained (local semantic features) (Kurata
et al., 2016) and coarse-grained (global semantic
features) textual information (Liu et al., 2016), re-
spectively. Besides, (Wang et al., 2018; Xiao et al.,
2019) utilize joint embedding and label-wise at-
tention to enhance the text-labels correlations, and
other methods learn the correlations between la-
bels (Nam et al., 2017; Yang et al., 2018). These
methods separately utilize information from dif-
ferent granularities to improve the classification
performance. However, learning information on
single granularity is insufficient to derive effective
text representations compared to keeping a proper
balance of multi-granularity information.

Recently, PLMs (Devlin et al., 2019; Peters
et al., 2018) have been proved powerful to generate
high-quality semantic representations. Competi-
tive and strong PLMs based methods (Zhang et al.,
2021; Su et al., 2022) are proposed to explore la-
bels correlations and knowledge between samples.
Yet, (Gao et al., 2019; Zhou et al., 2022; Etha-
yarajh, 2019a) reveal that PLMs appear anisotropy
problem after fine-tuned, leading text representa-
tions collapse into a narrow cone space. Texts
consisting of high-frequency words are gathered
closely, even correlated to extremely low-frequency
labels. When samples with low-frequency labels
concentrate densely, it will become more difficult
to classify and also aggravate the long-tail problem
(Menon et al., 2021) due to the lack of samples.

To address these, we propose a multi-granularity
information enhancement framework to improve
the quality of representations and relieve the
anisotropy problem. We first perform contrastive
learning to implicitly introduce label frequency into
the initial representations and refine the uniformity
of it. It only focuses on target samples (correlated



to low-frequency labels), and push away source
samples that share low label co-occurrence with
labels in target sample according to the label distri-
bution. Moreover, we adopt the Multi-granularity
Information Learning (MIL) module via multi-task
learning to enhance the expressiveness of represen-
tations. Specifically, MIL module explores direct
and latent text-labels correlations through Dual-
grained Interactive Learning (DIL) task and mod-
els relations (strong relate, weak relate and contra-
dict) between labels by Constraint Label Relations
Learning (CLRL) task.

Both tasks share the same encoder that jointly
embeds text and labels to directly introduce la-
bel frequency into representations, which provides
MIL an access to transform the orientation of
anisotropy problem. In DIL, we use two differ-
ent interactive learning tasks to obtain both direct
and latent text-labels correlations. In CLRL, we
utilize label frequency and labels co-occurrence
to explore the constraint relations, since the cor-
relations between labels exists not only in single
instance, predicting the label correlations from one
instance may contradict with the the others.

We illustrate that our method outperforms a se-
ries of competitive baseline on AAPD and RCV1-
V2 datasets by experimental results. We summarize
our contributions as follows:

1. We propose a multi-granularity information
enhancement framework that explores diverse
text-label correlations and label-label relations
to improve the quality of text representations.

2. To alleviate the anisotropy problem, we intro-
duce label frequency into text representations
using contrastive learning and the MIL mod-
ule.

3. Experimental results on two MLTC datasets
demonstrate the effectiveness and competitive-
ness of our method.

2 Related Work

Multi-label Text Classification In MLTC, early
works like CNN (Kim, 2014; Kurata et al., 2016;
Poria et al., 2017) and RNN (Liu et al., 2016) were
proposed to learn fine-grained and coarse-grained
text information. Besides, Wang et al. (2018); Xiao
et al. (2019); Chen et al. (2021) adopted joint em-
bedding and text-labels fusion strategy to explore
the correlations between text and labels. To capture
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Figure 1: Illustration of different text-labels correlations.
The direct correlations are determined by one specific
type of key-words, while the latent correlations require
a mix of multiple features.

label correlations, (Tsoumakas and Katakis, 2007)
and (Read et al., 2011) used unique label combina-
tions and classification chain. Seq2seq-based meth-
ods (Nam et al., 2017; Yang et al., 2018) transform
MLTC into label sequence generation tasks. These
methods tackle MLTC task via different granulari-
ties information, which strikes us the feasibility of
balancing multi-granularity information to improve
the expressiveness of text representations.

Anisotropy problem Recently, pre-trained lan-
guage models (PLMs) (Devlin et al., 2019; Liu
et al., 2019) have become paradigms for various
NLP tasks. PLMs based methods (Adhikari et al.,
2019; Zhang et al., 2021; Su et al., 2022) further
achieve remarkable performance on MLTC. How-
ever, Ethayarajh (2019b); Su et al. (2021) have
demonstrated the anisotropy problem limits the ex-
pressiveness of text representations. The represen-
tations generated by PLMs are constrained within
a narrow cone-shaped space after fine-tuned. Li
et al. (2020) reveals that texts with high-frequency
words concentrate densely in the narrowest part of
the cone, while texts with low-frequency words dis-
tribute sparsely. The anisotropy problem in MLTC,
owing to high word frequency, leads samples with
low-frequency labels to be closely gathered with
other samples of different label frequencies, which
can corrupt semantic information of representation
and hinder the classification performance of MLTC.
Therefore, we use contrastive learning to improve
the uniformity of representations and introduce la-
bel frequency information into representations to
alleviate the anisotropy problem.

3 Proposed Method

Our framework, illustrated in Figure 2, consists
of two modules: a contrastive learning (CL) mod-
ule and a multi-granularity information learning
(MIL) module. The CL module refines initial rep-
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[SEP]
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[SEP]
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Figure 2: The framework of our proposed approach.

resentations for the MIL module, which introduces
multi-granularity information to enhance overall
expressive ability. Besides, label frequency is also
introduced by both CL and MIL module to alleviate
the anisotropy problem.

3.1 Problem Formulation

Given a MLTC training set D = {(xi, yi)|1 ≤
i ≤ N} consisting of N samples, each xi is a
text and corresponding to a label sequence Yi =
{y1, y2, · · ·, yl|yk ∈ {0, 1}} consisting of l labels.
The aim of MLTC is to learn a mapping function
from the text xi to the corresponding label set Yi.

3.2 Contrastive Learning for MLTC

We propose a contrastive learning (CL) objective
for the MLTC task to enhance the effectiveness of
the MIL module during the fine-tuning stage. This
involves providing more uniform and effective ini-
tial representations and implicitly introducing label
frequency information into it. Besides, considering
randomly sampled negatives may bias the repre-
sentations of samples with similar labels. Our CL
objective is based on the labels co-occurrence and
mainly focuses on low-frequency labels.

Initially, we delineate two CL datasets: the tar-
get dataset, comprising samples associated with
low-frequency labels, and the source dataset, en-
compassing the entirety of the training data. Sub-

sequently, we generate positive (ti, t+i ) and nega-
tive (ti, sj) pairs for CL. To create a positive pair,
we select a sample ti from the target dataset and
apply the dropout function to obtain t+i . For neg-
ative pairs, we randomly select samples sj from
the source dataset, ensuring that ti and sj share
negligible or no label co-occurrence. In the spe-
cific scenario of a CL data mini-batch, where the
batch size is denoted as N + 1, our method yields
N negative pairs and a single positive pair. The
ultimate objective of CL training is articulated as
follows:

LCL = − log
esim(ti,t+i )/τ∑N

j=1 e
sim(ti,t+i )/τ + esim(ti,sj)/τ

(1)
where sim(α, β) denotes the cosine similarity, cal-
culated as α⊤β

||α||·||β|| , t
+
i represents the augmented

representation derived from applying dropout to
ti, and τ = 20 constitutes the temperature hyper-
parameter.

3.3 Multi-Granularity Information Learning
(MIL)

The primary objective of the MIL module is to
facilitate the learning of multi-granularity informa-
tion, thereby enriching the representations from
diverse perspectives. To address the anisotropy
problems and to explore diverse text-label corre-



lations, we propose a dual-granularity interactive
learning (DIL) task. Concurrently, a constraint
label relations learning (CLRL) task is proposed
to model the relations between labels and deepen
text-labels interactive learning. CLRL achieves
auxiliary augmentation by optimizing label repre-
sentations and implicitly passing label relations to
the DIL task.

3.3.1 Dual-granularity Interactive Learning
In DIL, we design two different granularities in-
teractive leaning tasks to capture the varied text-
labels correlations. Fine-grained interactive learn-
ing (FIL) task achieves interaction based on the
output representations of the encoder, and coarse-
grained interactive learning (CIL) task interacts
text with labels through 12 layers of transformer
encoder.

Fine-grained Interactive Leaning In instances
where direct correlations between text and labels
are assessed, such as in the AAPD dataset, the label
computer vision (CV) is commonly correlated to
specific keyphrases (image, vision and pixel) in the
given text. To address this, the FIL task interacts
text with labels at the token-level to perform fine-
grained interactive learning.

We first normalize both the word-level text rep-
resentation and labels representation by L2 normal-
ization:

H̃Word = ℓ(HWord), H̃Label = ℓ(HLabel) (2)

ℓ([x1, · · · , xn]) = [
x1√

Σh
i=1x

2
1i

, · · · , xn√
Σh
i=1x

2
ni

]

(3)
where HWord ∈ Rd×h, HLabel ∈ Rl×h. Then, we
transpose H̃Label and interact with H̃Word by dot
product to get text-labels correlations matrix C:

C = H̃Word · H̃T
Label (4)

where C ∈ Rd×l, for Ci,j ∈ C indicates the inter-
action between Hxi and HLabelj . In order to learn
the correlations more explicitly, we use CNN with
Max-Pooling under the ReLU activation, and obtain
correlations score S ∈ Rd×1 by tanh function. The
final representation HFIL can be calculated by:

HFIL = GlobalMaxPooling(S × H̃Word) (5)

Coarse-grained Interactive Leaning Given
that latent correlations between text and labels are
influenced by multiple discrete text segments, a

global perspective in interactive information explor-
ing is imperative. For example, in AAPD dataset,
label machine learning (ML) is typically correlated
to no specific key-phrases, thus the classification
of ML requires comprehensively integration of the
global semantic feature.

In this task, we extract and learn the repre-
sentation H(0) = {Hx1 ,Hx2 , · · ·,Hxd

} through
coarse-grained information extraction layer, which
is consisted of 15 layers of Dilated Gated CNN
(DGCNN). Within the DGCNN architecture, the
dilated CNN acts to expand the receptive field
of the overall structure, thereby enabling to cap-
ture more extensive information. Concurrently, the
gated framework facilitates transmitting the coarse-
grained textual label interactions across multiple
channels.

The first layer is calculated by:

H(1) =H(0) ⊗ (1− σ) + Conv1D1(H(0))⊗ σ

σ =sigmoid(Conv1D2(H(0)))
(6)

To improve the effectiveness of classifying repre-
sentations, we use CNN and Multi-head Attention
with a residual structure, and generate the final
representation HCIL by performing GlobalMax-
Pooling:

Htemp =MultiHeadAttention(H(15))

H∗
CIL =Conv1D([Htemp,H(15)])

HCIL =GlobalMaxPooling(H∗
CIL)

(7)

Multi-Label Prediction For both the HCIL and
HFIL, we take a fully connected layer with sig-
moid activation as the multi-label classifier, and
use Binary Cross Entropy as the loss function:

LBCE = −
N∑
i=1

l∑
j=1

yij log(ŷij)+(1−yij) log(1−ŷij) (8)

where N is the number of training samples, and l
is the length of labels sequence. yij ∈ {0, 1} and
ŷij ∈ [0, 1] are the true value and the predicted
value of the yj , yj ∈ Yi = {y0, y1, · · · , yl}.

3.3.2 Constraint Label Relations Learning
The objective of CLRL is to assist the DIL task to
perform MLTC by learning similar and constraint
relations between labels. As the text and labels are
embedded in the same semantic space, the label
frequency information is integrated into the DIL
task through optimizing label relations. Introduc-
ing label frequency thus alleviates the anisotropy
problem caused by word frequency bias.



Label Set Definition
Y +
i

For any input sample (Di, Yi), yj ∈ Yi =
{y1, · · ·, yl} and yj = 1.

Y ∗
i

For any input sample (Di, Yi), yj ∈ Yi =
{y1, · · ·, yl} and yj = 0, ∃ yk ∈ Y +

i =⇒
Myk <Myj ,yk , yj /∈ Y lowfreq

k .

Y −
i

For any input sample (Di, Yi), yj ∈ Yi =
{y1, · · ·, yl} and yj = 0, ∀ yk ∈ Y +

i =⇒
Myk >Myj ,yk , yj ∈ Y lowfreq

k .

Table 1: Definition of constraint label set

In CLRL, we first analyze the distribution of
the training labels set and then count the fre-
quency of co-occurrence between each single la-
bel and the rest labels. For a given labels set
Y = {y1, y2, · · ·, yl}, we calculate the label re-
lations matrix MLabel by:

MLabel =

l∑
i=1

l∑
j=1

Count(yi, yj)

=


M1,1 M1,2 · · · M1,l

M2,1 M2,2 · · · M2,l

...
...

. . .
...

Ml,1 Ml,2 · · · Ml,l


(9)

where Mi,j indicates the frequency of the co-
occurrence between label yi and label yj in the
training dataset.

We then calculate the average frequency co-
occurrence of each label by:

Mi =
1

l − 1

l∑
j=1,j ̸=i

Mi,j (10)

and then obtain the low-frequency labels sequence
Y lowfreq
i = {ya, · · ·, yb} according to Mi, where

Mi,a,Mi,b ≤ Mi.
In light of the foregoing, we randomly select one

text-correlated label, denoted as Yi. Subsequent to
this, we partition the remaining labels into three
distinct subsets: Y +

i , Y ∗
i , and Y −

i , based on the
relations of labels and the low-frequency labels
sequence. The definition of these label subsets can
be found in Tab 1.

To elucidate further, we first randomly select yi
from the text correlated labels as matching label A,
and partition the input labels into three constraint
label sets according to matching label A. Then, we
randomly select one label yj from the rest of the
labels as matching label B. We obtain the relations
embedding Hrelations to perform the CLRL by:

Hrelations = (HA,HB, |HA −HB|) (11)

Herein, HA and HB epitomize the representa-
tions of matching label A and B, respectively. To
explore the relations between labels, we utilize a
fully connected layer with a softmax activation as
the label relations classifier. The adopted loss func-
tion is the Categorical Cross Entropy, which can be
articulated as:

LCCE = −
c∑

k=1

yk log(ŷk) (12)

where c is the category of the CLRL label, whilst
yk and ŷk signify the actual and predicted values
of category k within the CLRL label, respectively.

In the scenario where Matching Label B aligns
with Y +

i , Y ∗
i or Y −

i , the CLRL labels are respec-
tively designated as directly related [1,0,0], indi-
rectly related [0,1,0], or irrelevant [0,0,1].

3.3.3 Training Objectives
The loss functions for the multi-label text classi-
fier (FIL & CIL) are defined as LFIL and LCIL,
utilizing Binary Cross Entropy LBCE . The loss
function for the label relations classifier is denoted
as LCLRL, employing Categorical Cross Entropy
LCCE . The total loss of MIL can be calculate by:

LMIL = αLCIL + βLFIL + λLCLRL (13)

where both α and β are hyper-parameters in (0,2)
and λ is hyper-parameter in (0,1) we set α = 1,
β = 1, λ = 0.35 as the final setting. In addition,
the final predictions of DIL are the summed by the
output of FIL and CIL weighted respectively by
γ and 1− γ during inference stage, where we set
γ = 0.5.

4 Experimental Settings

In this section, we evaluate the main experimental
results of the baseline models and our method on
two datasets. Implementation details of our method
can be found in Appendix A.

4.1 Datasets
To validate our method, we conduct experiments on
two benchmark datasets AAPD (Yang et al., 2018)
and RCV1-V2 (Lewis et al., 2004). Tab 2 shows
statistics of both datasets.

4.2 Evaluation Metrics
Following previous works (Yang et al., 2018), we
adopt Hamming Loss (HL) and Micro-F1 (F1)
scores as our main evaluation metrics. To further



Dataset N L L N
AAPD 55,840 54 2.4 163.4
RCV1-V2 804,414 103 3.2 123.9

Table 2: Statistics of datasets. N and L denote the total
number of texts and labels. L is the average number of
labels associated with the text. N means the average
length of all texts.

evaluate our method, we also take Micro-Precision
(Pre) and Micro-Recall (Rec) as auxiliary analysis
metrics.

4.3 Baseline Methods

We compare our method with two sets of competi-
tive MLTC methods including: text representation
learning and label correlation exploring methods.

The first set of methods involves (1) CNN (Kim,
2014) a fine-grained text representation learning
method that utilizes multiple convolutional kernels
to extract text representations. (2) BERT (Devlin
et al., 2019), a coarse-grained text representation
learning method which takes the [CLS] token as
a global classification representation. (3) LEAM
(Wang et al., 2018) proposes joint embedding of
text and labels to obtain text representation. (4)
LSAN (Xiao et al., 2019) proposes an adaptive
attention fusion strategy and classifies each docu-
ment by building label-specific representation.

The second set of methods involves (5) SGM
(Yang et al., 2018) applies the sequence genera-
tion model to transform the MLTC problem into
sequence generation problem, and proposes global
embedding mechanism to capture label correla-
tions. (6) Seq2set (Yang et al., 2019) adds a Set
decoder on the basis of the SGM and exploit of
the disorder of Set to reduce the impact of incor-
rect label sorting. (7) LACO (Zhang et al., 2021)
utilizes multi-task framework with two auxiliary
label correlation learning tasks and one MLTC task.
(8) CL-BERT+kNN (Su et al., 2022) proposes a
kNN mechanism according to the relevant labels
between samples and designs a multi-label con-
trastive learning objective to enhance the effect of
kNN mechanism on MLTC.

5 Results and Analysis

5.1 Main Results

Table 3 displays the results of all compared meth-
ods on two datasets. It is noted that CL-MIL
outperforms all baselines considerably on major

(a) Initial Representation (b) Initial Representation
with CL

Figure 3: Text representations of test set generated by
initial models in 3D PCA. Where in [h,m,l], h = 1
denotes that the current sample contains high-frequency
label, while m = 1 and l = 1 denote the occurrence of
middle and low-frequency label respectively.

(a) BERT (b) CL-BERT

(c) DIL (d) CL-DIL

(e) MILclrl (f) CL-MIL

Figure 4: Text representations of test set generated by
fine-tuned models in 3D PCA. We present different sce-
narios of applying CL to the backbone models, and
illustrate the specific conditions for performance im-
provement of applying CL.

evaluation metrics such as Rec (72.5/87.2), HL
(0.0208/0.0068), and F1 (75.8/88.9).

For text representation learning, when compared
to coarse-grained learning methods like BERT,
which uses the [CLS] token for global representa-



Model AAPD dataset RCV1-V2 dataset
HL(-) Pre(+) Rec(+) F1(+) HL(-) Pre(+) Rec(+) F1(+)

CNN (Kurata et al., 2016) 0.0256 84.9 54.5 66.4 0.0089 92.2 79.8 85.5
BERT (Devlin et al., 2019) 0.0230 76.7 69.8 73.1 0.0078 89.1 85.6 87.3
LEAM† (Wang et al., 2018) 0.0261 76.5 59.6 67.0 0.0090 87.1 84.1 85.6
LSAN† (Xiao et al., 2019) 0.0242 77.7 64.6 70.6 0.0075 91.3 84.1 87.5
LACO† (Zhang et al., 2021) 0.0213 80.2 69.6 74.5 0.0072 90.8 85.6 88.1

SGM† (Yang et al., 2018) 0.0251 74.6 65.9 69.9 0.0081 88.7 85.0 86.9
Seq2set† (Yang et al., 2019) 0.0247 73.9 67.4 70.5 0.0073 90.0 85.8 87.9
LACO†

plcp(Zhang et al., 2021) 0.0212 79.5 70.8 74.9 0.0070 90.8 86.2 88.4
LACO†

clcp (Zhang et al., 2021) 0.0215 78.9 70.8 74.7 0.0070 90.6 86.4 88.5
CL-BERT†

kNN (Su et al., 2022) 0.0216 - - 75.1 0.0071 - - 88.3

CL-MIL (Ours) 0.0208 79.3 72.5 75.8 0.0068 90.6 87.2 88.9

Table 3: Predictive performance of each comparing algorithm on two datasets. Hamming Loss (HL), Micro Precision
(Pre), Recall (Rec), F1-Score (F1) are used as evaluation metrics. The (-) represents the lower score the better
performance, and the (+) is the opposite. Models with † denote for its results are quoted from previous papers.

tion in classification, CL-MIL improves the F1 by
increasing the Pre. Compared to fine-grained learn-
ing methods like CNN and LACO, which focus on
more detailed information, CL-MIL increases the
Rec and improves the F1. This suggests a need for
an appropriate balance of different granularities in-
formation to improve the overall ability of learning
text-labels correlations, and more specific analysis
are in Section 5.3.

Among label correlations learning methods,
LACOplcp, LACOclcp, and CL-BERTkNN provide
more significant improvements than other base-
line methods. Comparing to these three strong
methods, CL-MIL reduces the HL by 1.9%~3.7%
/ 2.9%~4.2%, and improves the F1 by 0.9%~1.5%
/ 0.5%~0.7% on two datasets.

Model AAPD
HL(-) Pre(+) Rec(+) F1(+)

BERT 0.0230 76.7 69.8 73.1
+CL 0.0298 63.8 78.1 70.1

DIL (Ours) 0.0214 78.3 72.2 75.1
+CL 0.0217 77.6 72.5 74.9

MILclrl (Ours) 0.0211 78.8 72.4 75.5
+CL 0.0208 79.3 72.5 75.8

Table 4: Ablation over BERT, DIL and MILclrl with or
without CL on AAPD dataset.

5.2 The Impact of Contrastive Learning

For contrastive learning (CL), we utilize BERT
(with joint embedding), DIL and MILclrl as the
backbone models to verify the effect of CL and
visualize the text representations of test set gen-
erated by these models in 3 dimension PCA. As

shown in Figure 3, in initial stage, the representa-
tions after CL distribute more uniformly in geom-
etry space. Besides, samples that only correlated
high-frequency labels are preliminary pushed away
from the central space of samples of low-frequency
middle-frequency labels. The refined representa-
tions will be more suitable for MIL module.

Table 4 and Figure 4 demonstrate the perfor-
mance changes of applying CL to backbone models
with varying degrees of label information: BERT
(only embeddings), DIL (Interactive Learning), and
MILclrl (label relations). For BERT, which learns
no label information, applying CL may be counter-
productive and greatly hinder performance. Simi-
larly, CL offers no improvement to DIL, which only
learns text-label correlations. However, implement-
ing CL in MILclrl, which learns constraint label
relations, can effectively improve the performance
on main evaluation metrics. We believe the fun-
damental reason for this is that the training target
of CL for MLTC is to push non-neighbor samples
apart based on label co-occurrence, which aligns
precisely with the objective of CLRL. This obser-
vation suggests that CL for MLTC has high-order
relevance to CLRL.

In conclusion, CL brings a more uniform and
task-adapted initial representation, and further im-
proves the auxiliary effectiveness of CLRL by ex-
ploiting the contrastive relations among low co-
occurrence frequency labels.

5.3 Analysis of Dual-grained Interactive
Learning

We conduct an ablation study to validate the relia-
bility and effect of DIL. Table 5 shows the compari-
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Figure 5: Hyper-parameters analysis of DIL on AAPD dataset

Model AAPD dataset RCV1-V2 dataset
HL(-) Pre(+) Rec(+) F1(+) HL(-) Pre(+) Rec(+) F1(+)

CIL 0.0229 76.8 70.2 73.5 0.0075 88.5 87.3 87.9
FIL 0.0298 76.2 66.1 71.1 0.0074 89.3 86.6 87.9
DIL 0.0214 78.3 72.2 75.1 0.0073 89.1 87.3 88.2

Table 5: Analysis of coarse-grained interactive learning (CIL), fine-grained interactive learning (FIL) and DIL on
AAPD and RCV1-V2 datasets.
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Figure 6: Micro-F1 performance on four label frequency
distributions.

son of DIL with coarse-grained interactive learning
(CIL) and fine-grained interactive learning (FIL)
respectively. The result reveals that it is an appro-
priate integration of CIL and FIL that DIL achieves
effective performance rather than two dispersed
modules.

We also conduct a hyper-parameters analysis
of DIL to further illustrate the effect of different
granularities on classification performance. Figure
5 shows the influence of training loss weights α
and β on Pre, Rec and F1 score under different
proportion of predictions γ. The curves prove that
coarse-grained information is related to Rec while
fine-grained information correlate to Pre. Besides,
the curves also illustrate that an appropriate ratio of
training loss weights determines the lower bound of
classification performance, while an apt proportion
of predictions determines the upper.

5.4 Analysis of Constraint Label Relations
Learning

According to Table 3, we can notice that label cor-
relations learning methods obtain higher Rec than
text representation learning methods. It indicates
that these label correlations learning methods im-
proving F1 without considering constraint relations
are based on increasing Rec at the cost of decreas-
ing Pre. A potential reason is that learning label
correlations explores whether the labels share co-
occurrence in current sample, which may lead to
a certain degree of label bias (high co-occurrence
frequency but not correlated in current sample). It
will hinder the performance since the labels have
been already embedded together with the text in
a same space and sufficiently interacted with the
text.

Differ from these methods, our MILclrl takes
constraint label relations into consideration, which
judges the relations not only by the co-occurrence
of current sample but also by the labels co-
occurrence frequency. By this means, the label
bias can be alleviated, and MILclrl can better en-
hance the FIL module to obtain more considerable
F1 with both Pre and Rec improved.

To further illustrate the effectiveness of CLRL,
we analyze the label frequency of the AAPD test set
and divide the labels into three groups1 according

1The head label group (head-group), the middle-frequency
group (mid-group) and the tail label group (tail-group) accord-
ing to the label distribution of training set.



to the definition shown in Table 6. As shown in Fig-
ure 6, MILclrl outperforms DIL in the mid-group
and tail-group, while BERTclrl only improves per-
formance in the head-group compared to BERT.
Additionally, when CLRL is applied to BERT with-
out interactive text-label correlation learning, per-
formance decreases in the mid-group and tail-group
labels, demonstrating that CLRL can better explore
label relations and improve low-frequency perfor-
mance under the reinforcement of DIL.

Label Groups Definition

head-group For any label Li in head-group,
Frequency (Li) ≥ 3000.

mid-group For any label Li in mid-group, 3000 >
Frequency (Li) ≥ 1000.

tail-group For any label Li in tail-group, 1000 >
Frequency (Li).

Table 6: Definition of label frequency groups

6 Conclusion

This paper proposed a multi-granularity informa-
tion enhanced MLTC framework. Through exten-
sive experiments, we demonstrated the competi-
tiveness and stability of our method and confirmed
the effectiveness of incorporating multi-granularity
information to enhance representations in MLTC.
Additionally, our extended analysis highlighted the
complementarity of the modules in our framework
and emphasizes the necessity of each module.

Limitations

While our method has yielded promising results by
utilizing BERT as the encoder of our framework,
it comes with certain limitations worth consider-
ing. Firstly, the foremost limitation is the restricted
input length of the BERT encoder set at 512. In
extreme label scenario, it’s not feasible to embed
all the labels, limiting our approach to cases with a
normal number of labels. In future work, we could
explore a hierarchical label embedding strategy or
migrate to other pre-trained language models with
unlimited embedding lengths. Secondly, although
our framework explores the multi-granularity infor-
mation after joint embedding of text and labels, it
would be engaging to investigate the effect of la-
bel embedding order. Hence, trying different label
embedding orders will provide potential insights
for future work and enhance the performance of
MLTC tasks.

Ethics Statement

Our method is used to address multi-label text clas-
sification. Therefore, ethical considerations of text
classification models generally apply to our method.
We encourage users to assess potential biases be-
fore deploying text classification models.

Acknowledgements

This research is supported by the National Nat-
ural Science Foundation of China [62172449,
72374070, 62006251], Hunan Provincial Natu-
ral Science Foundation of China [2021JJ30870,
2022JJ3021, 2021JJ40783], Changsha Municipal
Natural Science Foundation [kq2202300], Training
Program for Excellent Young Innovators of Chang-
sha [kq2107004], The science and technology inno-
vation Program of Hunan Province [2022RC1105]
and Industry-University-Research Innovation Fund
of Chinese University[2021ITA01023(mxl)]. And
this research was supported in part by the High
Performance Computing Center of Central South
University.

References
Ashutosh Adhikari, Achyudh Ram, Raphael Tang, and

Jimmy Lin. 2019. Docbert: Bert for document classi-
fication. ArXiv preprint, abs/1904.08398.

Benjamin Bengfort and Rebecca Bilbro. 2019. Yel-
lowbrick: Visualizing the Scikit-Learn Model Selec-
tion Process. The Journal of Open Source Software,
4(35).

Haibin Chen, Qianli Ma, Zhenxi Lin, and Jiangyue Yan.
2021. Hierarchy-aware label semantics matching net-
work for hierarchical text classification. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 4370–4379, Online.
Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Kawin Ethayarajh. 2019a. How contextual are con-
textualized word representations? Comparing the
geometry of BERT, ELMo, and GPT-2 embeddings.
In Proceedings of the 2019 Conference on Empirical

https://arxiv.org/abs/1904.08398
https://arxiv.org/abs/1904.08398
https://doi.org/10.21105/joss.01075
https://doi.org/10.21105/joss.01075
https://doi.org/10.21105/joss.01075
https://doi.org/10.18653/v1/2021.acl-long.337
https://doi.org/10.18653/v1/2021.acl-long.337
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006


Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 55–65,
Hong Kong, China. Association for Computational
Linguistics.

Kawin Ethayarajh. 2019b. How contextual are con-
textualized word representations? Comparing the
geometry of BERT, ELMo, and GPT-2 embeddings.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 55–65,
Hong Kong, China. Association for Computational
Linguistics.

Jun Gao, Di He, Xu Tan, Tao Qin, Liwei Wang, and Tie-
Yan Liu. 2019. Representation degeneration problem
in training natural language generation models. In
7th International Conference on Learning Represen-
tations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. OpenReview.net.

Li Guo, Bo Jin, Ruiyun Yu, Cuili Yao, Chonglin Sun,
and Degen Huang. 2016. Multi-label classification
methods for green computing and application for
mobile medical recommendations. IEEE ACCESS,
4:3201–3209.

Himanshu Jain, Yashoteja Prabhu, and Manik Varma.
2016. Extreme multi-label loss functions for recom-
mendation, tagging, ranking & other missing label ap-
plications. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, San Francisco, CA, USA, August
13-17, 2016, pages 935–944. ACM.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1746–1751,
Doha, Qatar. Association for Computational Linguis-
tics.

Gakuto Kurata, Bing Xiang, and Bowen Zhou. 2016.
Improved neural network-based multi-label classifi-
cation with better initialization leveraging label co-
occurrence. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 521–526, San Diego, California.
Association for Computational Linguistics.

David D Lewis, Yiming Yang, Tony Russell-Rose, and
Fan Li. 2004. Rcv1: A new benchmark collection
for text categorization research. Journal of machine
learning research, 5(Apr):361–397.

Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang,
Yiming Yang, and Lei Li. 2020. On the sentence
embeddings from pre-trained language models. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9119–9130, Online. Association for Computa-
tional Linguistics.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2016.
Recurrent neural network for text classification with
multi-task learning. In Proceedings of the Twenty-
Fifth International Joint Conference on Artificial In-
telligence, IJCAI 2016, New York, NY, USA, 9-15 July
2016, pages 2873–2879. IJCAI/AAAI Press.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. ArXiv preprint, abs/1907.11692.

Aditya Krishna Menon, Sadeep Jayasumana,
Ankit Singh Rawat, Himanshu Jain, Andreas
Veit, and Sanjiv Kumar. 2021. Long-tail learning via
logit adjustment. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net.

Jinseok Nam, Eneldo Loza Mencía, Hyunwoo J. Kim,
and Johannes Fürnkranz. 2017. Maximizing subset
accuracy with recurrent neural networks in multi-
label classification. In Advances in Neural Informa-
tion Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, De-
cember 4-9, 2017, Long Beach, CA, USA, pages
5413–5423.

Y. Papanikolaou, D. Dimitriadis, G. Tsoumakas,
M. Laliotis, and I. P. Vlahavas. 2014. Ensemble
approaches for large-scale multi-label classification
and question answering in biomedicine. In CLEF
2014.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2227–2237,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Soujanya Poria, Haiyun Peng, Amir Hussain, Newton
Howard, and Erik Cambria. 2017. Ensemble appli-
cation of convolutional neural networks and multiple
kernel learning for multimodal sentiment analysis.
Neurocomputing, page 217–230.

Jesse Read, Bernhard Pfahringer, Geoff Holmes, and
Eibe Frank. 2011. Classifier chains for multi-label
classification. Machine learning, 85:333–359.

Jianlin Su, Jiarun Cao, Weijie Liu, and Yangyiwen Ou.
2021. Whitening sentence representations for bet-
ter semantics and faster retrieval. ArXiv preprint,
abs/2103.15316.

Xi’ao Su, Ran Wang, and Xinyu Dai. 2022. Contrastive
learning-enhanced nearest neighbor mechanism for
multi-label text classification. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages

https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://openreview.net/forum?id=SkEYojRqtm
https://openreview.net/forum?id=SkEYojRqtm
https://doi.org/10.1145/2939672.2939756
https://doi.org/10.1145/2939672.2939756
https://doi.org/10.1145/2939672.2939756
https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.18653/v1/N16-1063
https://doi.org/10.18653/v1/N16-1063
https://doi.org/10.18653/v1/N16-1063
https://doi.org/10.18653/v1/2020.emnlp-main.733
https://doi.org/10.18653/v1/2020.emnlp-main.733
http://www.ijcai.org/Abstract/16/408
http://www.ijcai.org/Abstract/16/408
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=37nvvqkCo5
https://openreview.net/forum?id=37nvvqkCo5
https://proceedings.neurips.cc/paper/2017/hash/2eb5657d37f474e4c4cf01e4882b8962-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/2eb5657d37f474e4c4cf01e4882b8962-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/2eb5657d37f474e4c4cf01e4882b8962-Abstract.html
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.1016/j.neucom.2016.09.117
https://doi.org/10.1016/j.neucom.2016.09.117
https://doi.org/10.1016/j.neucom.2016.09.117
https://arxiv.org/abs/2103.15316
https://arxiv.org/abs/2103.15316
https://doi.org/10.18653/v1/2022.acl-short.75
https://doi.org/10.18653/v1/2022.acl-short.75
https://doi.org/10.18653/v1/2022.acl-short.75


672–679, Dublin, Ireland. Association for Computa-
tional Linguistics.

Grigorios Tsoumakas and Ioannis Katakis. 2007. Multi-
label classification: An overview. International
Journal of Data Warehousing and Mining (IJDWM),
3(3):1–13.

Guoyin Wang, Chunyuan Li, Wenlin Wang, Yizhe
Zhang, Dinghan Shen, Xinyuan Zhang, Ricardo
Henao, and Lawrence Carin. 2018. Joint embed-
ding of words and labels for text classification. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2321–2331, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Yaqi Wang, Shi Feng, Daling Wang, Ge Yu, and Yifei
Zhang. 2016. Multi-label chinese microblog emotion
classification via convolutional neural network. In
Asia-Pacific Web Conference.

Lin Xiao, Xin Huang, Boli Chen, and Liping Jing.
2019. Label-specific document representation for
multi-label text classification. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Process-
ing (EMNLP-IJCNLP), pages 466–475, Hong Kong,
China. Association for Computational Linguistics.

Pengcheng Yang, Fuli Luo, Shuming Ma, Junyang Lin,
and Xu Sun. 2019. A deep reinforced sequence-to-set
model for multi-label classification. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 5252–5258, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Pengcheng Yang, Xu Sun, Wei Li, Shuming Ma, Wei
Wu, and Houfeng Wang. 2018. SGM: Sequence
generation model for multi-label classification. In
Proceedings of the 27th International Conference on
Computational Linguistics, pages 3915–3926, Santa
Fe, New Mexico, USA. Association for Computa-
tional Linguistics.

Y. Yang and S. Gopal. 2012. Multilabel classification
with meta-level features in a learning-to-rank frame-
work. Machine Learning, 88(1-2):47–68.

Zhang, M., Zhou, and Z. 2014. A review on multi-
label learning algorithms. IEEE Transactions on
Knowledge and Data Engineering, 26(8):1819–1837.

Ximing Zhang, Qian-Wen Zhang, Zhao Yan, Ruifang
Liu, and Yunbo Cao. 2021. Enhancing label corre-
lation feedback in multi-label text classification via
multi-task learning. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 1190–1200, Online. Association for Computa-
tional Linguistics.

Kun Zhou, Beichen Zhang, Xin Zhao, and Ji-Rong Wen.
2022. Debiased contrastive learning of unsupervised
sentence representations. In Proceedings of the 60th

Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 6120–
6130, Dublin, Ireland. Association for Computational
Linguistics.

A Implementation Details

We implement our model based on Bert4keras and
run on NVIDIA Tesla V100s. The English BERT
version is base-uncased BERT with 12 layers of
encoder and 768 of hidden size. On contrastive
learning stage, we use a maximum input sequence
length of 230 and a batch size of 32 for AAPD, and
use a maximum input sequence length of 200 and
a batch size of 32 for RCV1-V2. On MLTC stage,
we use maximum input sequence length of 320 and
a batch size of 32 for both datasets. We train all
the models on both stages and both datasets up to
20 epochs with an early stop of 2 patience and take
the Adam as our optimizer with a learning rate of
5 ×10−5.

B The PCA Visualization Details

In Figure 3 and Figure 4, we utilize 3 dimensional
PCA visualization tool (Bengfort and Bilbro, 2019)
to illustrate the text representations (to be fed into
MIL module) distribution in geometry space. The
text representations are divided into seven cate-
gories according to the frequency distribution of
their corresponding labels in the training set.
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