

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FORECASTING WITH LLMs: A DATASET FOR RAPID BACKTESTING WITHOUT TEMPORAL CONTAMINATION

Anonymous authors

Paper under double-blind review

ABSTRACT

The rise of large language models (LLMs) has made scalable forecasting increasingly feasible, as these models have access to massive amounts of context. Yet evaluating their forecasting ability presents three methodological challenges. Standard benchmarks are vulnerable to *temporal contamination*, where outcomes are already known before the model’s training cutoff, and to *staleness confounds*, where newer models gain an advantage from fresher data. Dynamic benchmarks address temporal leakage by tracking unresolved questions, but this results in *long evaluation delays*, since evaluators must wait for outcomes to resolve before judging the accuracy. We address these issues with a forward-only, backtestable forecasting evaluation framework built on frozen context snapshots: contemporaneous, structured summaries of web search results paired with forecasting questions. Our pipeline continuously scrapes unresolved questions from prediction markets and captures their supporting context at the time of scraping, eliminating temporal contamination and mitigating staleness effects. Once questions resolve, these snapshots enable rapid backtesting of diverse forecasting strategies, substantially accelerating research cycles. This framework provides a rigorous, reproducible, and open-source foundation for studying the forecasting capabilities of LLMs. Through two experiments, we demonstrate that our approach enables the rapid identification of effective forecasting strategies.

1 INTRODUCTION

Forecasting future events requires reasoning under uncertainty and the timely use of external information (Tetlock & Gardner, 2016). The rise of large language models (LLMs) has made scalable forecasting increasingly feasible, as these models have access to massive amounts of context (Schoenegger et al., 2025; Tan et al., 2024; Schoenegger & Park, 2023; Halawi et al., 2024). Yet evaluating their forecasting ability presents a series of methodological challenges. A central issue is temporal contamination: when models are tested on events occurring before their training cutoff, it becomes unclear whether they are reasoning about the future or simply echoing past information (Lopez-Lira et al., 2025). Another challenge is the staleness confound: models trained on more recent data may appear superior not because of intrinsic forecasting ability, but because their training includes fresher information—even if the event being forecast has not yet occurred.

Traditional benchmarks exacerbate these issues. Static datasets quickly become outdated as new models are trained on more recent corpora. Continuously updated, forward-looking benchmarks that collect unresolved questions reduce leakage but introduce long delays, since evaluation must wait until outcomes are resolved. To address these challenges, we introduce a forward-only, backtestable evaluation framework based on frozen **context snapshots**: contemporaneous, structured summaries of web search results paired with forecasting questions (See Figure 1). Our pipeline continuously scrapes active, unresolved questions and captures the corresponding context at multiple timepoints between the market’s initial inclusion in the dataset and its eventual resolution. Because these snapshots are fixed when collected, they eliminate temporal contamination and help control for staleness, increasing the fairness of comparisons across models with different cutoff dates. Importantly, once questions resolve, these frozen snapshots enable replicable, rapid, and efficient evaluation, allowing researchers to test diverse forecasting strategies without waiting for real-world outcomes. Our

Figure 1: (A) By summarizing the results of web searches conducted before an event resolves, our dataset provides models access to event-relevant information without risking temporal contamination. This dataset can then be used to evaluate models with a knowledge cutoff preceding the event (and systems composed of such models) by providing context snapshots as supporting input. (B) An *event* is a single outcome around which a prediction market is formed, such as “who will win Album of the Year?”, or whether the Federal Reserve will raise its benchmark interest rate in a given month. For events with a known set of options, binary (“yes/no”) markets are constructed for each option; for events with continuous outcomes, binary markets are typically constructed over intervals of the outcome variable. To generate a forecast, a model can be prompted to make a prediction about a single option without knowledge of the other options (i.e., market-level prompting), or prompted to choose among the full set of options (i.e., event-level prompting.) (C) For each event in the dataset, we generate multiple context snapshots between the market creation and resolution. Models can be prompted with one or more of these context snapshots when making forecasts.

framework thus provides a rigorous, open-source foundation for studying the forecasting capabilities of LLMs, accelerating the development of robust forecasting strategies.

Our initial benchmark consists of 9,388 forecasting questions sourced from a leading prediction market. Of these, 3,338 are questions that, as of the time of writing, have been resolved and include at least one context snapshot, making them immediately available for evaluation. The remaining 6,050 are still active, and we are collecting context snapshots on them and on new questions being launched. The earliest of these context snapshots was taken on July 21, 2025, which falls after the knowledge cutoff of `gpt-5` (September 30, 2024) and other contemporaneous frontier LLMs. As these models’ knowledge cut-offs advance, some questions and snapshots will inevitably become outdated. However, our dataset is continuously refreshed by the addition and resolution of new questions, which provide fresh, evaluable snapshots over time. The dataset and code are available at <https://anonymous.4open.science/r/backtest-forecast-2736>.

Our context snapshot scraping pipeline employs two complementary methods for information retrieval. The first method uses a search-integrated language model, specifically `gpt-4o` with Grounding with Bing, which performs live web searches and generates summaries based on the search results. The second method is a custom retrieval-augmented generation (RAG) pipeline. In this approach, we first use `gpt-4o-mini` to generate relevant search queries. These queries are then sent to Dux Distributed Global Search (DDGS) to identify relevant URLs. The content from the retrieved URLs is scraped and subsequently summarized using `gpt-4o-mini`. Finally, we apply a post-hoc filtering step to eliminate summaries that are clearly unrelated to the event in question or that contain leakage.

Through two experiments, we demonstrate the utility of our dataset in enabling the rapid identification of effective forecasting strategies. The first experiment shows that event-level prompting outperforms market-level prompting when using `gpt-4o`, but this advantage does not persist with `gpt-5`. This finding underscores the model-specific nature of forecasting strategies and emphasizes the critical role of backtesting in uncovering the nuanced interactions between a given forecasting strategy and the model used to execute it. The second experiment investigates the effects of ensem-

108 bling multiple context snapshots, comparing the performance of combining four distinct snapshots
 109 against using a single context snapshot. Together, these instances underline the value of backtesting
 110 as a tool for distinguishing between key factors that drive predictive performance and those that are
 111 less consequential, ultimately guiding the systematic identification of reliable forecasting strategies.

112 Our framework not only helps mitigate key evaluation pitfalls like temporal contamination and stal-
 113 eness but also enables rapid, reproducible assessment of LLM forecasting. By combining dynamic
 114 questions with fixed-time context snapshots, it lays the groundwork for fair and forward-looking
 115 evaluation of predictive reasoning in language models.

117 2 RELATED WORK

119 2.1 FORECASTING WITH LLMs

121 AI systems with forecasting capabilities have significant potential to enhance human decision-
 122 making (Hendrycks et al., 2021; Schoenegger et al., 2025). However, prior efforts to evaluate
 123 the forecasting abilities of LLMs, such as simulating predictions of historical economic indica-
 124 tors (Hansen et al., 2024), are susceptible to temporal leakage and retrieval contamination, where
 125 the information being predicted is already available in the model’s pretrained data or supporting
 126 context it retrieves through web search (Lopez-Lira et al., 2025; Magar & Schwartz, 2022). In
 127 essence, when LLMs are tested on questions whose outcomes were already known prior to the
 128 model’s knowledge cutoff, it becomes unclear whether the model is genuinely reasoning about the
 129 future or merely echoing seen information (Paleka et al., 2025). To overcome these limitations, we
 130 introduce a dataset construction pipeline that scrapes active, unresolved questions from live predic-
 131 tion markets and captures contemporaneous web search results at the time of scraping. Because
 132 these questions are posted after the model’s training cutoff, this approach effectively mitigates con-
 133 tamination risks. Moreover, this design enables rigorous backtesting and efficient evaluation of
 134 model forecasts once the associated markets have resolved.

135 2.2 INFORMATION RETRIEVAL FOR FORECASTING

137 Recent studies have investigated the use of information retrieval to forecast resolved questions. For
 138 instance, Pratt et al. (2024) retrieve news articles via the New York Times and Hacker News APIs.
 139 However, since these APIs do not preserve historical snapshots, some articles may be retrospectively
 140 updated, introducing a risk of temporal contamination. Publishers often update articles using the
 141 same URL, making it difficult to ensure that these sources do not contribute to such leakage. Halawi
 142 et al. (2024) rely on articles sourced from proprietary third-party news aggregators. However, these
 143 closed resources (e.g., GNews, NewsCatcher) do not ensure article permanence, meaning the content
 144 may change or become inaccessible over time. In contrast, our dataset is both fully guaranteed
 145 to be frozen and entirely open-source, making it readily accessible to the public for research and
 146 development purposes. Similarly, Yan et al. (2023) explore forecasting with resolved questions by
 147 leveraging Common Crawl. While such web archives provide openly available data, their coverage
 148 is often sparse and inconsistent, limiting their utility for fine-grained or time-sensitive forecasting
 149 tasks. Appendix A.1 details our empirical experience and observations regarding the limitations of
 150 these approaches.

151 2.3 FORECASTING BENCHMARKS

153 Traditional benchmarks rely on static question sets, which quickly become outdated as modern
 154 models are trained on increasingly recent data (Guan et al., 2024; Nako & Jatowt, 2025; Jin et al.,
 155 2020; Zou et al., 2022). To address this limitation, recent work has proposed dynamic benchmarks—
 156 collections of forecasting questions that evolve over time and are designed to avoid data leakage by
 157 including only questions about unresolved future events (Together.ai, 2025; Karger et al., 2024; Zeng
 158 et al., 2025). However, dynamic benchmarks face a fundamental challenge: the absence of ground
 159 truth at the time of prediction introduces an evaluation delay—the time between making a forecast
 160 and the event’s resolution, during which accuracy remains unknowable.

161 Bench to the Future (Wildman et al., 2025) proposes a backtesting framework using archived web
 crawls to evaluate forecasts on resolved questions. Nevertheless, this benchmark is limited in that it

162
163
Table 1: Comparison of recent forecasting benchmarks and our dataset

Benchmark Name	Dynamic	No Temporal Leakage	No Evaluation Delay	Retrieval Snapshots	Question Count
ForecastBench (Karger et al., 2024)	✓	✓	-	-	6,402
FutureBench (Together.ai, 2025)	✓	✓	-	-	42
FutureX (Zeng et al., 2025)	✓	✓	-	-	~500 / week
Bench to the Future (Wildman et al., 2025)	-	-	✓	✓	299
Our Benchmark	✓	✓	✓	✓	9,388 (~100 / day)

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
relied on Google queries to surface previously crawled pages, introducing noise and possible leakage (See Appendix A.1.4). Moreover, it is closed-source, static, and limited to 299 questions. In contrast, our benchmark is fully open-source, dynamic, and backtestable, fully eliminating retrospective contamination and offering thousands of forecasting questions paired with context snapshots.

3 VALUE OF CONTEXT SNAPSHOTS

3.1 REDUCING STALENESS CONFOUNDS

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
Direct comparisons between models with different training cutoffs are inherently confounded by both model quality and staleness. A model trained more recently benefits from fresher information in its training corpus, so an observed performance gap may reflect not only underlying capability but also recency of training data. Without accounting for this confound, such comparisons risk being misleading.

Context snapshots help mitigate this issue by standardizing the information provided to each model, thereby helping to better isolate model performance from the potential influence of training data freshness. Appendix A.2 illustrates this point by comparing `gpt-4.1-mini` and `gpt-4o`, which differ in knowledge cutoff dates.

3.2 DECOUPLING MODEL AND SEARCH QUALITY

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
Comparing two models that both include built-in search capabilities poses a fundamental challenge because model quality and search quality are confounded. Search systems may vary in terms of indexing strategies, coverage, and the freshness of their results. When each model relies on its own retrieval pipeline, it becomes impossible to determine whether any observed performance differences stem from the underlying models or from the quality of the search.

Our frozen context snapshots help address this challenge by holding the retrieval constant. Importantly, this does not imply that information-seeking is unimportant for real-world forecasting; rather, it reflects a deliberate evaluation constraint. By disentangling model performance from search quality, we ensure that differences in forecasting accuracy arise solely from how models reason over the same historical context. Consequently, our dataset supports comparisons of forecasting strategies (e.g., base-rate methods, reference-class approaches) given fixed contemporaneous information, not comparisons of alternative retrieval pipelines or search systems.

It is important to clarify the context our benchmark was designed to address. With regards to the model used for forecasting, this benchmark is designed to evaluate systems based on LLMs that (a) have training data cutoffs that precede the events used for benchmarking; and (b) do not access the live web during inference, which would introduce temporal contamination and invalidate the key advantage of this dataset. While models that are specifically trained to search for forecasting-relevant information may possibly improve forecasting performance, they lie outside the intended scope of systems to be evaluated by this benchmark.

216 3.3 EFFICIENT AND RAPID EVALUATION
217

218 Evaluating large numbers of decision strategies is impractical if one must wait for real-world out-
219 comes to unfold. For instance, the question “Will Waymo operate in Las Vegas before Sep 2025?”
220 has a snapshot in our dataset on August 2, 2025, and was resolved on September 1, 2025. Under
221 existing benchmarks, testing this question would require waiting an entire month for the outcome.
222 In contrast, our dataset allows rapid backtesting: one can replicate the LLM forecast relying only on
223 information available on August 2, 2025, and immediately compare it against the eventual resolu-
224 tion. And while a one-month delay may seem manageable, many questions—especially in domains
225 like politics—can take a year or more to resolve, making traditional evaluation painfully slow.
226

227 Without such archival snapshots, testing dozens of strategies would take months or even years, as
228 each trial depends on the natural pace of event resolution. Our forward-only benchmark overcomes
229 this barrier by enabling researchers to replay strategies against the same frozen timeline, drastically
230 accelerating evaluation. This design shortens the cycle between experimentation and results, sup-
231 ports repeated evaluations under consistent conditions, and allows for rapid iteration across a wide
232 variety of forecasting strategies. In Section 5, we demonstrate this advantage with two instances of
233 experimentation across various forecasting approaches.
234

235 3.4 DATA DISTRIBUTION CONSTRAINTS
236

237 Direct redistribution of copyrighted articles or web content is typically prohibited due to intellectual
238 property restrictions. In contrast, our context snapshots are structured summaries generated using
239 a search-integrated LLM or a custom retrieval-augmented generation (RAG) architecture powered
240 by a web search library. This approach mitigates legal risks while ensuring reproducibility. From
241 both legal and practical perspectives, structured summarization offers a robust alternative to direct
242 content redistribution.
243

244 4 BENCHMARK AND DATASET
245246 4.1 FORECASTING QUESTIONS
247

248 Table 2: The total count of forecasting questions in the current release of our dataset, with their
249 current status, whether active or resolved, recorded as of September 22, 2025.
250

	All Questions	Active Questions	Resolved Questions
Total	9,388	6,050	3,338
Politics	4,140	4,029	111
Sports	3,325	766	2,559
Entertainment	682	317	365
Science & Technology	347	305	42
Finance	311	219	92
Economics	194	139	55
Climate & Weather	170	113	57
Health	51	49	2
Other	168	113	55

260 Our initial benchmark comprises 9,388 forecasting questions sourced from Kalshi, a leading pre-
261 diction market. Of these, 3,338 are “backtestable” questions, meaning they have been resolved and
262 include at least one associated context snapshot, making them immediately suitable for evaluation.
263 Each question corresponds to a market on Kalshi.
264

265 The earliest snapshot was captured on July 21, 2025, a date that falls beyond the knowledge cutoffs
266 of most frontier LLMs, which generally range from mid-2024 to early 2025. As the knowledge cut-
267 offs of these models continue to advance, some of these snapshots will eventually become outdated.
268 However, this limitation is counterbalanced by the ongoing resolution of new markets, which con-
269 tinuously introduces fresh, evaluable snapshots into the dataset. Our pipeline is designed to actively
scrape unresolved questions and capture their supporting context at the time, ensuring that tempo-

270 ral contamination is avoided. Once these questions are resolved, the frozen context snapshots are
 271 dynamically added to the backtestable dataset.
 272

273 All questions in our dataset are binary, with responses limited to “Yes” or “No.” Table 2 provides
 274 a detailed breakdown of the total number of questions, along with the distribution of questions
 275 across domains. While politics dominates as the most prevalent domain for all questions, the Sports
 276 domain leads in terms of resolved questions. This trend can be attributed to the typically short-term,
 277 event-driven nature of sports-related questions, which often resolve more quickly compared to other
 278 domains. However, as the dataset matures, more and more events from other categories will resolve.
 279 Examples of forecasting questions in our dataset are provided in Appendix A.3.

280 4.2 CONTEXT SNAPSHOTS 281

282 Our context snapshot scraping pipeline leverages two independent methods for information retrieval.
 283

284 The first approach uses a search-integrated LLM, specifically `gpt-4o` with Grounding with
 285 Bing Microsoft. This approach conducts live web searches and generates contextual summaries
 286 based on real-time search results. This enables dynamic, up-to-date information synthesis directly
 287 from the web. On average, we obtained 4.08 summaries per event per date for resolved questions.
 288 In total, 4,912 backtestable context snapshots were collected, allowing for backtesting across 1,435
 289 resolved questions. The detailed numerical breakdown is provided in Appendix Table 4. These
 290 context snapshots will be referred to as **Bing snapshots** in the subsequent sections.

291 The second approach leverages a custom retrieval-augmented generation (RAG) pipeline. Initially,
 292 `gpt-4o-mini` is employed to generate six search queries based on the details of the provided
 293 event. These queries are subsequently fed into the Dux Distributed Global Search (DDGS) library,
 294 which returns a set of relevant URLs. The pipeline then scrapes the content from these URLs and
 295 utilizes `gpt-4o-mini` to generate concise summaries of the extracted information. Each query
 296 yields one summary, resulting in a total of six distinct summaries per event. To ensure relevance,
 297 we apply a post-hoc filtering step to eliminate summaries that are clearly unrelated to the event
 298 in question. On average, this results in 5.11 relevant summaries per event per date for resolved
 299 questions. As a result, our dataset consists of 26,388 backtestable context snapshots generated by
 300 the custom RAG pipeline, facilitating forecasts across 2,072 resolved questions. These context
 301 snapshots are referred to as **RAG snapshots** in the following sections.

302 Taken together, these methods provide complementary strengths. Bing snapshots are produced
 303 through a high-performing but largely black-box commercial system, whereas RAG snapshots offer
 304 greater transparency and customizability at lower cost, albeit with potentially more variability in
 305 quality.

306 To ensure relevant context is captured, we continuously collect snapshots of unresolved forecasting
 307 questions through these two methods. For Bing snapshots, 100 questions are randomly sampled from
 308 the question pool each day, with six summaries generated for each question. For RAG snapshots,
 309 six summaries are generated for every question in the pool. This pipeline is executed on a daily
 310 basis through a combination of GitHub Actions and local cron jobs, ensuring the snapshots and
 311 questions are consistently timestamped at the moment of scraping. Examples of context snapshots
 312 are provided in Appendix A.5.

313 4.3 MARKET PRICE SNAPSHOTS 314

315 Our pipeline also captures the daily market prices associated with the forecasting questions in our
 316 database. These prices represent the aggregated beliefs of human participants, serving as a valuable
 317 baseline for comparison. To calculate the market price, we divide the “yes” price by the sum of the
 318 “yes” and “no” prices, providing a normalized measure of collective human judgment.

319 5 EXPERIMENTS 320

321 In this section, we demonstrate two instantiations of backtesting applied to different forecasting
 322 strategies. The primary objective is to show that our dataset supports rapid iteration and evaluation
 323 of a set of strategies. We do not intend to claim that any single strategy significantly improves

324 forecasting accuracy. Rather, these experiments serve as demonstrations of how our backtestable
 325 framework enables rapid evaluation of diverse strategies. The primary contribution of this work is
 326 the methodology and dataset that make such backtesting possible, not the magnitude of gains from
 327 any particular strategy we happened to test.

329 5.1 METRIC

331 Since our forecasting questions are binary, we evaluate performance using the Brier score, a standard
 332 metric for probabilistic predictions. The Brier score is defined as $(f - o)^2$, where $f \in [0, 1]$ repre-
 333 sents the forecasted probability, and $o \in \{0, 1\}$ is the actual outcome. Lower Brier scores indicate
 334 better forecasting performance, with a score of 0 representing perfect accuracy. A forecast of 0.5,
 335 reflecting complete uncertainty, yields a Brier score of 0.25, serving as a baseline for uninformed
 336 predictions.

337 5.2 PROMPT GRANULARITY

339 5.2.1 BACKGROUND

341 Our dataset is structured hierarchically, consisting of events and their associated markets (or ques-
 342 tions). An event (e.g., a political election) can contain one or more markets (e.g., individual candi-
 343 dates). The structure of these markets can vary depending on the nature of the event.

344 Some events feature mutually exclusive outcomes, where only one market can resolve positively.
 345 For example, in a prediction about the winner of an award, only one candidate can win, so only one
 346 market can resolve in the affirmative. Other events follow a ladder-style structure, where markets
 347 represent incremental thresholds (e.g., predicting whether the temperature will exceed 50°F, 60°F,
 348 70°F, and so on.) In such cases, multiple markets may resolve positively depending on the final
 349 outcome, as each threshold is met.

350 In addition, there are non-mutually exclusive events, where several markets can resolve positively
 351 at the same time. An example of this would be predicting which companies will run Super Bowl
 352 ads, where multiple companies may be involved, and more than one market could resolve “yes.” All
 353 context snapshots are generated at the event level, ensuring that they capture the full set of associated
 354 markets and the broader framing of the event.

355 In this experiment, we aim to explore the effectiveness of different prompting strategies by lever-
 356 aging the event-market hierarchy. Specifically, we compare the impact of event-level prompting,
 357 where prompts include event-level data of all options (e.g., including all nominees for a given Oscar
 358 award), versus market-level prompting, where forecasting prompts only include information about
 359 a single option/outcome (e.g., asking whether a specific actor will win a given Oscar award, without
 360 including information on who else is nominated for the same award).

362 5.2.2 EXPERIMENTAL SETUP

364 **Conditions.** Market-level prompting includes only the metadata for a single market, such as the
 365 specific market question (e.g., “Will Taylor Swift win the Grammy Awards?”). In contrast, event-
 366 level prompting incorporates the broader context of the entire event, including the event title (e.g.,
 367 “Who will win the Grammy Awards?”), and the metadata for all associated markets (e.g., a list of
 368 nominated candidates). To assess the efficacy of these two strategies, we compare the performance
 369 of event-level and market-level prompting, both with and without the inclusion of context snapshots.
 370 As a baseline, we also evaluate market prices to gauge model accuracy relative to collective human
 371 predictions, offering a point of comparison for the model’s performance.

372 **Models.** We compare these conditions using six models: `gpt-5`, `gpt-4o`,
 373 `claude-3.5-haiku`, `gemini-2.0-flash`, `llama-3.1-70B`, and `qwen-2.5-72B`.
 374 This design allows us to investigate whether there are model-specific differences in the effectiveness
 375 of the prompting strategies and to explore how interactions between each strategy and each model
 376 may influence performance.

377 **Sample.** Our experimental evaluation draws on 1,336 questions, which correspond to 566
 unique events. The sampling procedure is detailed in Appendix A.10. For each event, we

use four RAG snapshots. All included markets were published after the respective model knowledge cutoffs—September 30, 2024, for `gpt-5`; October 1, 2023, for `gpt-4o`; July 2024 for `claude-3.5-haiku`; August 2024 for `gemini-2.0-flash`; December 2023 for `llama-3.1-70B`; and late 2023 for `qwen-2.5-72B`. While all markets had been resolved by the time of evaluation, their resolutions occurred after the context snapshots were generated (i.e., after the simulated prediction time).

5.2.3 RESULTS

Figure 2: Mean Brier scores across all models under different prompting granularities and context snapshot conditions. Bars compare market-level and event-level prompting, each evaluated with and without context snapshots. Error bars indicate ± 1 standard error of the mean, computed across questions.

Results reveal clear differences in how event-level versus market-level prompting influences model performance. Mixed-effects regression shows that `gpt-4o`, `claude-3.5-haiku`, and `qwen-2.5-72B` experience a significant accuracy drop when using market-level prompting rather than event-level prompting ($p < 0.01$ for all interaction terms). In contrast, for `gpt-5`, `gemini-2.0-flash`, and `llama-3.1-70B`, the distinction between event-level and market-level prompting effectively disappears.

Across all models, the inclusion of context snapshots consistently improves accuracy. The regression shows that removing snapshots increases Brier scores by approximately 0.012 on average ($p < 0.001$), confirming that snapshots provide useful additional information regardless of model or prompting strategy.

Taken together, these findings highlight that the effect of prompt granularity is model-dependent. `gpt-4o`, `claude-3.5-haiku`, and `qwen-2.5-72B` gain a measurable advantage from event-level prompting, whereas `gpt-5`, `gemini-2.0-flash`, and `llama-3.1-70B` show no sensitivity to prompt granularity. Rapid backtesting thus proves valuable in uncovering these model-specific dynamics and clarifying which design choices matter most for different systems. Detailed results of the regression are presented in Appendix A.8.

5.3 CONTEXT ENSEMBLE EFFECT

5.3.1 BACKGROUND

While prior work has discussed the idea of model ensembling in forecasting tasks (Schoenegger et al., 2024; Karger et al., 2024), much less attention has been paid to ensembling summarized context in the realm of information retrieval. We address this gap by providing the first evidence that ensembling summarized context, by combining multiple context snapshots, can measurably affect the forecasting performance of language models.

We conduct two experiments. In the first experiment, we ensemble Bing snapshots generated via identical processes, each prompted in the same way. In the second experiment, we ensemble snapshots derived from divergent processes—summaries produced by our RAG pipeline, where each is based on a distinct search query.

In both settings, we compare LLM forecasting performance when the model is conditioned on a single snapshot versus multiple snapshots provided together in the prompt.

5.3.2 EXPERIMENTAL SETUP

Conditions. Each experiment includes three conditions: (1) “Ensemble”, where the LLM receives an ensemble of multiple context snapshots; (2) “No ensemble”, where only one context snapshot is provided; and (3) “Market price”, where the forecasting LLM is provided the market price for the event, which serves as a baseline measure of the benefit gained by knowing aggregated human beliefs.

Models. We employ OpenAI’s `gpt-5` model for both experiments. Since our objective is to investigate the effects of ensembling context snapshots rather than to compare different models, we use the same model across all experimental settings. We select `gpt-5` because it represents one of the most state-of-the-art language models currently available.

Sample. In the first experiment, we use a sample of 779 questions associated with 340 distinct events, each accompanied by four Bing snapshots. For the second experiment, we employ the same sample used in the prompt granularity experiment, consisting of 1,336 questions associated with 566 unique events, each supplemented with four RAG snapshots.

5.3.3 RESULTS

Figure 3: Mean Brier scores by condition and domain

Experiment 1. Using multiple context snapshots produced a slight overall improvement relative to a single snapshot, with the mean Brier score dropping from 0.177 to 0.174. By domain, in politics, ensembling reduced the score from 0.122 to 0.113, although market prices remained far stronger at 0.067. Sports saw only a marginal gain (0.180 to 0.178), and in other domains the improvement was somewhat larger (0.168 to 0.151). In contrast, entertainment showed worse performance under ensembling (0.193 to 0.225), though this result is difficult to interpret given the small sample size.

Experiment 2. The overall pattern was similar: ensembling slightly improved forecasts across all domains, with the mean Brier score dropping from 0.179 to 0.171. Politics and entertainment benefited most. In politics, ensembling enhanced scores from 0.206 to 0.178, though markets were still far ahead at 0.089. In entertainment, ensembling reduced the score from 0.147 to 0.121—slightly underperforming markets at 0.117. Sports showed a minor improvement (0.180 to 0.175), while in the other domains, ensemble and no-ensemble were nearly identical (0.205 vs. 0.204), with markets much stronger at 0.051.

486 Together, the two experiments demonstrate that context ensembling may improve LLM forecasts,
 487 though the degree of benefit varies considerably by domain. Gains are more pronounced in politics
 488 and entertainment, and more modest in sports, and negligible elsewhere. Despite these improve-
 489 ments, market prices remain the strongest baseline overall.
 490

491 6 CONCLUSION

492 6.1 LIMITATIONS

493 Our work has several limitations. First, while context snapshots help reduce staleness-related
 494 confounds, they do not eliminate them entirely. For instance, the models may rely more on their training
 495 data than on the context snapshots, compromising the effectiveness of our solution. The ideal solu-
 496 tion would be to control the pretrained dataset across models, which is infeasible in practice. As a
 497 result, context snapshots serve as a viable alternative. They standardize the information provided to
 498 each model to a reasonable degree, helping to alleviate the confounding issues. While not perfect,
 499 our approach represents a pragmatic compromise for feasibility.
 500

501 Second, our structured summaries are not raw data but derived representations. As such, they may
 502 omit certain details or nuances that were present at the time of scraping. This is partly due to the
 503 inherent limitations of summarization, as well as legal constraints that prevent the open release of
 504 raw web content. Furthermore, capturing the full contextual landscape of any given market compre-
 505 hensively is inherently difficult—if not impossible.
 506

507 Finally, the dataset is drawn exclusively from a single prediction market, Kalshi. To improve generalizability, we may expand it in future work to include additional platforms. Nevertheless, Kalshi
 508 is one of the largest real-money forecasting platforms, characterized by high question volume and
 509 broad topical coverage, making it a strong initial testbed. Moreover, most prediction platforms share
 510 a similar trading structure to Kalshi, and Kalshi spans a wide range of domains, including sports,
 511 politics, economics, and global events, which substantially overlap with other leading prediction
 512 markets.
 513

514 6.2 SUMMARY

515 We introduce a forward-only, backtestable evaluation framework that pairs forecasting questions
 516 with frozen context snapshots, enabling fairer and more efficient assessment of LLM forecasting
 517 capabilities. Our experiments further demonstrate the value of systematic backtesting: uncovering
 518 model-specific differences in prompting strategies and highlighting the benefits of ensembling
 519 diverse context snapshots. Together, these contributions advance the study of forecasting as a testbed
 520 for reasoning under uncertainty, offering practical utility for the broader research community.
 521

522 7 REPRODUCIBILITY STATEMENT

523 We have made extensive efforts to ensure the reproducibility of all results presented in this paper. All
 524 code, datasets, and the specific event identifiers used in our experiments will be open-sourced under
 525 a clear license. Additionally, all prompts used in our experiments are included in Appendix A.9,
 526 A.7, and A.6, enabling full independent verification and promoting transparency.
 527

528 8 ETHICS STATEMENT

529 This work does not involve human subjects or sensitive personal data. All data are derived from
 530 publicly available prediction markets and web content, which we summarize into structured context
 531 snapshots to mitigate copyright and privacy concerns. Our dataset and code will be released under an
 532 open-source license to ensure transparency and reproducibility. While our framework is designed for
 533 research on forecasting and reasoning, we recognize that forecasting technologies could be misused
 534 for disinformation or manipulation; we therefore encourage responsible use and emphasize that our
 535 dataset is intended for scientific study.
 536

540 REFERENCES
541

542 Yong Guan, Hao Peng, Xiaozhi Wang, Lei Hou, and Juanzi Li. Openep: Open-ended future event
543 prediction. *arXiv preprint arXiv:2408.06578*, 2024.

544 Danny Halawi, Fred Zhang, Chen Yueh-Han, and Jacob Steinhardt. Approaching human-level fore-
545 casting with language models. *Advances in Neural Information Processing Systems*, 37:50426–
546 50468, 2024.

547 Anne Lundgaard Hansen, John J Horton, Sophia Kazinnik, Daniela Puzzello, and Ali Zarifhonarvar.
548 Simulating the survey of professional forecasters. *Available at SSRN*, 2024.

549

550 Mathew D Hardy, Sam Zhang, Jessica Hullman, Jake M Hofman, and Daniel G Goldstein. Improv-
551 ing out-of-population prediction: The complementary effects of model assistance and judgmental
552 bootstrapping. *International Journal of Forecasting*, 41(2):689–701, 2025.

553 Dan Hendrycks, Nicholas Carlini, John Schulman, and Jacob Steinhardt. Unsolved problems in ml
554 safety. *arXiv preprint arXiv:2109.13916*, 2021.

555

556 Minhao Jiang, Ken Ziyu Liu, Ming Zhong, Rylan Schaeffer, Siru Ouyang, Jiawei Han, and Sanmi
557 Koyejo. Investigating data contamination for pre-training language models. *arXiv preprint*
558 *arXiv:2401.06059*, 2024.

559

560 Woojeong Jin, Rahul Khanna, Suji Kim, Dong-Ho Lee, Fred Morstatter, Aram Galstyan, and Xiang
561 Ren. Forecastqa: A question answering challenge for event forecasting with temporal text data.
562 *arXiv preprint arXiv:2005.00792*, 2020.

563

564 Ezra Karger, Houtan Bastani, Chen Yueh-Han, Zachary Jacobs, Danny Halawi, Fred Zhang, and
565 Philip E Tetlock. Forecastbench: A dynamic benchmark of ai forecasting capabilities. *arXiv*
566 *preprint arXiv:2409.19839*, 2024.

567

568 Sida Li and Prophet Arena Team. How we score & rank llms in prophet arena. 2025.

569

570 Alejandro Lopez-Lira, Yuehua Tang, and Mingyin Zhu. The memorization problem: Can we trust
571 llms' economic forecasts? *arXiv preprint arXiv:2504.14765*, 2025.

572

573 Inbal Magar and Roy Schwartz. Data contamination: From memorization to exploitation. *arXiv*
574 *preprint arXiv:2203.08242*, 2022.

575

576 Microsoft. Grounding with bing. <https://www.microsoft.com/en-us/bing/apis>.
577 Accessed: 2025-11-27.

578

579 Petraq Nako and Adam Jatowt. Navigating tomorrow: Reliably assessing large language models'
580 performance on future event prediction. *arXiv preprint arXiv:2501.05925*, 2025.

581

582 Daniel Paleka, Shashwat Goel, Jonas Geiping, and Florian Tramèr. Pitfalls in evaluating language
583 model forecasters. *arXiv preprint arXiv:2506.00723*, 2025.

584

585 Sarah Pratt, Seth Blumberg, Pietro Kreitlon Carolino, and Meredith Ringel Morris. Can language
586 models use forecasting strategies? *arXiv preprint arXiv:2406.04446*, 2024.

587

588 Oscar Sainz, Jon Ander Campos, Iker García-Ferrero, Julen Etxaniz, Oier Lopez de Lacalle, and
589 Eneko Agirre. Nlp evaluation in trouble: On the need to measure llm data contamination for each
590 benchmark. *arXiv preprint arXiv:2310.18018*, 2023.

591

592 Philipp Schoenegger and Peter S Park. Large language model prediction capabilities: Evidence from
593 a real-world forecasting tournament. *arXiv preprint arXiv:2310.13014*, 2023.

594

595 Philipp Schoenegger, Indre Tuminauskaitė, Peter S Park, Rafael Valdece Sousa Bastos, and Philip E
596 Tetlock. Wisdom of the silicon crowd: Llm ensemble prediction capabilities rival human crowd
597 accuracy. *Science Advances*, 10(45):eadp1528, 2024.

598

599 Philipp Schoenegger, Peter S Park, Ezra Karger, Sean Trott, and Philip E Tetlock. Ai-augmented
600 predictions: Llm assistants improve human forecasting accuracy. *ACM Transactions on Interac-
601 tive Intelligent Systems*, 15(1):1–25, 2025.

594 Mingtian Tan, Mike Merrill, Vinayak Gupta, Tim Althoff, and Tom Hartvigsen. Are language
 595 models actually useful for time series forecasting? *Advances in Neural Information Processing*
 596 *Systems*, 37:60162–60191, 2024.

597

598 Philip E Tetlock and Dan Gardner. *Superforecasting: The art and science of prediction*. Random
 599 House, 2016.

600

601 Philip E Tetlock, Barbara A Mellers, Nick Rohrbaugh, and Eva Chen. Forecasting tournaments:
 602 Tools for increasing transparency and improving the quality of debate. *Current Directions in*
 603 *Psychological Science*, 23(4):290–295, 2014.

604

605 Together.ai. Futurebench: Evaluating agents’ future prediction capabilities, 2025. URL <https://www.together.ai/blog/futurebench>. Accessed: 2025-07-27.

606

607

608 Jack Wildman, Nikos I Bosse, Daniel Hnyk, Peter Mühlbacher, Finn Hambly, Jon Evans, Dan
 609 Schwarz, Lawrence Phillips, et al. Bench to the future: A pastcasting benchmark for forecasting
 610 agents. *arXiv preprint arXiv:2506.21558*, 2025.

611

612 Cheng Xu, Shuhao Guan, Derek Greene, M Kechadi, et al. Benchmark data contamination of large
 613 language models: A survey. *arXiv preprint arXiv:2406.04244*, 2024.

614

615 Qi Yan, Raihan Seraj, Jiawei He, Lili Meng, and Tristan Sylvain. Autocast++: Enhancing world
 616 event prediction with zero-shot ranking-based context retrieval. *arXiv preprint arXiv:2310.01880*,
 617 2023.

618

619 Chenchen Ye, Ziniu Hu, Yihe Deng, Zijie Huang, Mingyu Derek Ma, Yanqiao Zhu, and Wei Wang.
 620 Mirai: Evaluating llm agents for event forecasting. *arXiv preprint arXiv:2407.01231*, 2024.

621

622 Zhiyuan Zeng, Jiashuo Liu, Siyuan Chen, Tianci He, Yali Liao, Jinpeng Wang, Zaiyuan Wang, Yang
 623 Yang, Lingyue Yin, Mingren Yin, et al. Futurex: An advanced live benchmark for llm agents in
 624 future prediction. *arXiv preprint arXiv:2508.11987*, 2025.

625

626 Jian-Qiao Zhu, Haijiang Yan, and Thomas L Griffiths. Recovering event probabilities from large
 627 language model embeddings via axiomatic constraints. *arXiv preprint arXiv:2505.07883*, 2025.

628

629 Andy Zou, Tristan Xiao, Ryan Jia, Joe Kwon, Mantas Mazeika, Richard Li, Dawn Song, Jacob
 630 Steinhardt, Owain Evans, and Dan Hendrycks. Forecasting future world events with neural net-
 631 works. *Advances in Neural Information Processing Systems*, 35:27293–27305, 2022.

632

633

634 **A APPENDIX**

635

636 **A.1 LIMITATIONS OF PRIOR RETRIEVAL METHODS**

637

638 **A.1.1 NEW YORK TIMES API**

639

640 We observed discrepancies among the date sources associated with news articles, including those
 641 recorded in the API, those embedded in the web page’s metadata (e.g., HTML meta tags), the dates
 642 mentioned within the article content itself, and the actual last updated timestamp of the article. For
 643 example, consider the article titled “*A Trade Weapon*” available at <https://www.nytimes.com/2025/01/28/briefing/donald-trump-tariffs.html>. As queried on Septem-
 644 ber 22, 2025, the New York Times API returns the `pub_date` field as January 28, 2025, and the
 645 corresponding HTML meta tag on the web page also indicates January 28, 2025. However, the ar-
 646 ticle was subsequently updated on March 26, 2025, and includes content and references added after
 647 the original publication date. This discrepancy highlights the risk of temporal contamination when
 relying solely on API-provided publication dates for information retrieval.

648
649

A.1.2 THIRD-PARTY NEWS AGGREGATORS

650
651
652

Proprietary third-party news aggregators, such as GNews and NewsCatcher, do not guarantee content permanence or stability. Moreover, both platforms require costly subscriptions to access their data APIs, further complicating their use for long-term or reliable data tracking.

653
654
655
656
657
658
659
660
661

For instance, consider an article about National Football League coach Aaron Glenn, initially published on November 29, 2024, which can be accessed at <https://abc7.com/post/nfl-coaching-changes-2024-latest-firings-openings-rumors/15603353/>. On July 11, 2025, this article was still available through the GNews API. However, by September 23, 2025, querying GNews with the exact title, or even with highly similar terms, yielded no results, even when specific date ranges were applied. This discrepancy suggests that GNews does not guarantee the permanence of articles, and content may be removed or altered over time, leading to potential inconsistencies in data. The underlying cause could be related to limited licensing agreements, which may restrict access to certain content after a period.

662
663
664
665

Additionally, this article was updated on February 11, 2025, several months after its initial publication, raising the possibility of retrospective changes to the content. If the article's URL is used directly without an API request, there is a risk of incorporating outdated or altered versions of the content, introducing further potential contamination in the data.

666
667
668
669
670
671

As for NewsCatcher, the prohibitively high cost of its subscription has prevented us from verifying whether the integrity of its content is maintained over time. This leaves uncertainty regarding the reliability and consistency of articles sourced through its API.

672
673
674
675
676
677
678
679
680

A.1.3 COMMON CRAWL AND WAYBACK MACHINE

Although web archives like Common Crawl offer publicly available data, their coverage is often sparse. For example, when querying the URL pattern "`cnn.com/2024/01/*`", Common Crawl returns only 146 crawls, while the Wayback Machine provides access to 7,050 unique URLs for the same period. Similarly, for the pattern "`nytimes.com/2024/01/*`", Common Crawl returns no results, while Wayback Machine archives 16,497 unique URLs. The discrepancy is even more stark for the pattern "`variety.com/*`", where Common Crawl only captures 52 crawls, compared to over 50,000 URLs available on the Wayback Machine. These figures are based on an analysis of 15 Common Crawl indexes spanning 2024 to 2025, underscoring limitations in its temporal coverage.

681
682
683
684
685
686
687
688

While the Wayback Machine offers broader archival depth, it presents its own constraints. It is not designed for bulk access, and its API is rate-limited and occasionally inconsistent. Bulk downloading or automated scraping typically requires special permissions. Moreover, the archive primarily provides raw HTML snapshots, which can sometimes be incomplete or corrupted. Critically, neither CommonCrawl nor the Wayback Machine supports keyword-based contextual search, making it impossible to query efficiently. Because these archives require URL-based access, these archives do not readily support a reproducible pipeline for retrieving contemporaneous, thematically relevant material for each forecasting question.

689
690
691
692
693

Our framework is best viewed as complementary rather than competitive with large web archives. Researchers who wish to augment our snapshots with additional archival context can do so, since our dataset already provides the questions, queries, and timestamps needed to anchor such searches. Our contribution is not intended to replace these archives, but to offer a clean, leakage-free, forecasting-specific layer on top of the broader information ecosystem.

694
695
696
697

In short, while CommonCrawl and the Wayback Machine serve as excellent general-purpose archives, they do not resolve the practical reproducibility or legal challenges inherent in large-scale, forward-only forecasting evaluation. Our framework fills that gap.

698
699

A.1.4 GOOGLE SEARCH WITH DATE LIMIT

700
701

Limiting Google search to a cutoff date does not fully address temporal contamination because search engines continually re-rank and retroactively update pages. Even if results are filtered by date, snippets, metadata, and page contents frequently reflect information added after the nominal

702 cutoff, and many pages are undated or incorrectly dated. As a result, date-filtered live search is still
 703 exposed to leakage, making the evaluation neither reproducible nor temporally secure.
 704

705 Bench to the Future (Wildman et al., 2025) acknowledges that using live Google searches introduces
 706 the potential for information leakage based on the fact that the order of certain search results likely
 707 changed over time.

708 Frozen snapshots solve these problems by capturing information as it appears at the time of query
 709 (which occurs before event resolution), independent of later edits, page removals, or algorithmic
 710 changes (which may occur after an event is resolved). This creates a stable and contemporaneous
 711 record that supports controlled backtesting.

713 A.2 STALENESS CONFOUNDS

725 Figure 4: Brier scores over time and by condition for `gpt-4.1-mini` and `gpt-4o`. Left/middle:
 726 Each marker represents a forecasting question; solid lines indicate ordinary least squares (OLS)
 727 trend lines with 95% confidence intervals (lower is better). When provided with context snapshots,
 728 both models exhibit reduced forecasting errors, particularly for questions with later snapshot times,
 729 compared to conditions without snapshots.

730 Comparing models with different training cutoffs is problematic because performance differences
 731 may reflect both model quality and the freshness of training data. Newer models benefit from more
 732 recent information, skewing results. Context snapshots can help control for this by standardizing
 733 inputs, making it easier to assess true model performance.

734 Figure 4 illustrates this point by comparing `gpt-4.1-mini` and `gpt-4o`, which differ in knowl-
 735 edge cutoff dates. `gpt-4.1-mini` was trained on data up to June 1, 2024, while `gpt-4o`'s cutoff
 736 was October 1, 2023. We evaluate both models across simulated prediction dates ranging from
 737 July 2025 to September 2025, corresponding to the timestamps when the context snapshots were
 738 collected. The evaluation draws on a random sample of 947 questions from our dataset.

739 In the absence of context snapshots, the mean difference in Brier scores between `gpt-4.1-mini`
 740 and `gpt-4o` is negligible. However, once context snapshots are introduced, `gpt-4o` tends to per-
 741 form slightly better than `gpt-4.1-mini`. This shift could indicate that `gpt-4.1-mini` might
 742 have an advantage in settings without snapshots due to its more recent knowledge cutoff. In other
 743 words, when both models are provided with the same up-to-date contextual information, the differ-
 744 ence in their forecasting abilities becomes noticeable, with `gpt-4o` showing a slight edge.

745 These findings highlight that LLMs trained on static corpora may grow stale over time. Interestingly,
 746 a more recent model, despite having a smaller or less comprehensive training set, can sometimes ap-
 747 pear superior, or at least comparable, to an earlier model. This phenomenon often arises because the
 748 newer model benefits from more recent data, which may provide an advantage in certain circum-
 749 stances. However, context snapshots, which provide timely updates to both models, help mitigate
 750 this effect. This allows for a relatively fairer comparison that focuses on the intrinsic forecasting
 751 capabilities of the models, rather than the mere recency of their training data.

756 A.3 EXAMPLE FORECASTING QUESTIONS
757758 Table 3 presents a set of example forecasting questions drawn from various domains within our
759 dataset.760
761 Table 3: Examples of forecasting questions in our dataset

Category	Market Title	Market Subtitle	Primary Rules
Politics	Will Stacy Garrity be the Republican nominee for Governor in Pennsylvania?	Stacy Garrity	If Stacy Garrity wins the nomination for the Republican Party to contest the 2026 Pennsylvania Governorship, then the market resolves to Yes.
Sports	Abilene Christian vs Tulsa Winner?	Tulsa	If Tulsa wins the Abilene Christian vs Tulsa college football game originally scheduled for Aug 30, 2025, then the market resolves to Yes.
Entertainment	Will Taylor Swift release a song this month?	Taylor Swift	If Taylor Swift releases a song on Spotify after issuance (August 11, 2025) and before Sep 1, 2025, then the market resolves to Yes.
Science & Technology	Best AI at the end of 2025?	ChatGPT	If OpenAI has the top-ranked LLM on Dec 31, 2025, then the market resolves to Yes.
Finance	Will Klarna or Stripe IPO first?	Klarna	If Klarna confirms an IPO first, before Jan 1, 2040, then the market resolves to Yes.
Economics	When will the next U.S. recession start?	Q4 2024	If the NBER declares the peak of American business activity predating a recession to be in Q4 2024, then the market resolves to Yes.
Climate & Weather	Will it rain in NYC on Sep 12, 2025?	Rain in NYC	If the number of inches of precipitation recorded at Central Park, New York on September 12, 2025 is strictly greater than 0, then the market resolves to Yes.
Health	Will English resident doctors strike before Aug 2025?	Before Aug 2025	If resident doctors in England have engaged in strike action before Aug 1, 2025, then the market resolves to Yes.
Other	When will the Amtrak Acela II trains enter revenue service?	Before Aug 1, 2025	If the Amtrak Acela II trainsets have entered revenue service before Aug 1, 2025, then the market resolves to Yes.

782
783 A.4 THE TOTAL NUMBER OF CONTEXT SNAPSHOTS784 Table 4 presents the total number of context snapshots collected by each method in our dataset, along
785 with their average length and the average number of snapshots per event.786 Table 4: The total count of context snapshots per method in our dataset, with their average length
787 and count per event, recorded as of September 22, 2025.

	Bing Snapshots	RAG Snapshots
Backtestable Snapshots	4,912	26,388
Resolved Questions with Snapshots	1,435	2,072
Resolved Events with Snapshots	609	785
Mean Count Per Event Per Date	4.08	5.11
Average Length in Characters	2427.02	2566.88

810 A.5 EXAMPLE CONTEXT SNAPSHOTS
811812 Table 5 shows an example of a Bing snapshot. Table 6 shows an example of a RAG snapshot.
813 Table 7 shows examples of RAG snapshots from our dataset, paired with the corresponding GPT-5
814 predictions and reasoning, each produced using only a single snapshot as input.815 816 Table 5: An example of a Bing context snapshot generated with search-integrated LLM.
817

818 Alexander Shevchenko and Reilly Opelka are set to compete in the first round of Wimbledon Men Singles 2025 (Round of 128) on Tuesday, July 1. Grass court
819 dynamics and player performance history are crucial in evaluating both players' chances.

820 1. Shevchenko's record on grass is notably weak with limited exposure. He has played just five matches on the surface, with only one victory in 2024. This year,
821 he faced an early exit in Mallorca qualifying after a loss to Elias Ymer. His experience and lack of familiarity with grass court mechanics position him as an
822 underdog. His head-to-head record versus Opelka is also disadvantageous, with a loss in their previous meeting.

823 2. Reilly Opelka has demonstrated competence on grass despite inconsistent form in 2025. His powerful serve thrives on grass, averaging over 11 aces per
824 match during this year's season. However, he experienced early exits in recent tournaments including Queen's Club and Eastbourne. Nevertheless, he is favored
825 substantially in this matchup considering his higher ATP rank, grass court experience, and his previous victory against Shevchenko.

826 3. Predictive models and simulations consistently favor Opelka's victory, assigning him a 66-71.4% likelihood of winning against Shevchenko. Shevchenko's
827 odds of advancing are generally in the range of 30-34% based on data analysis by Dimers and Bleacher Nation. Opelka's strong serve, strategic play on grass,
828 and higher match experience are cited as key factors.

829 4. Betting experts have indicated Opelka as a firm favorite in terms of moneyline odds. His aggressive style and ability to capitalize on pressure points further
830 amplify expectations for his advancement in the tournament. Shevchenko's inexperience and performance inconsistencies, particularly on this surface, amplify
831 his challenges.

830 5. Summing up, Reilly Opelka's strengths on grass and prior dominance over Shevchenko alongside statistical models mark him as a clear favorite in this Round
831 of 128 match. The likelihood of Alexander Shevchenko pulling off an upset remains low.

832 833 Table 6: An example of a RAG context snapshot.
834

835 As Pope Leo XIV approaches the 100th day of his ministry, he has focused on adapting to his new role while preparing for future changes within the Vatican.
836 His first public address emphasized a commitment to a synodal church and the key objectives of his papacy center around the teachings of Vatican II, including
837 growth in collegiality, attention to the faithful, and dialogue with the contemporary world. The article indicates that during this initial phase, the pope holds
838 meetings to understand the structure of Vatican functions before making significant appointments. (August 12, 2025, <https://www.usccb.org/news/2025/pope-leos-first-100-days-leaving-his-new-role>)

839 Pope Leo XIV, elected on May 8, 2025, is the first pope from the United States, with a background that includes significant time spent in Peru as both a missionary
840 and bishop. His election is characterized by the melding of American and Latino cultural influences, reflecting his diverse heritage. The article discusses his
841 academic background and pastoral experience, noting his previous role in church governance as the head of the Dicastery for Bishops. It emphasizes his
842 potentially progressive stance on social issues, while also highlighting certain doctrinal conservativisms, such as his opposition to the ordination of women as
843 deacons. (May 10, 2025, <https://www.cbsnews.com/news/new-pope-robert-prevost-pope-leo-xiv/>)

844 Pope Leo XIV's election is marked by a focus on continuity with the previous pope, emphasizing the establishment of a dialogue-centered church. This context
845 places him in a difficult position as he takes over during a period of scrutiny regarding clerical sexual abuse and broader calls for social justice. His public
846 statements suggest an intention to honor his predecessor's legacy while potentially carving out a distinct path for his papacy. He is expected to engage with
847 international political issues but must navigate the church's internal challenges, which include ongoing crises stemming from past scandals. (May 8, 2025,
848 <https://www.nbcnews.com/news/national/international/new-pope-who-is-robert-francis-prevost/3610225>)

849 Pope Leo XIV's inaugural address illustrated his aim to foster unity and love within the church while addressing the need to transform it into a more missionary
850 entity. His election, which highlights a departure from the traditional selection of non-Americans for the papacy, reflects a notable shift in the church's dynamics
851 and points towards his potential role in utilizing his American background to engage with contemporary challenges. The article discusses the political implications
852 of his election and how it may resonate with American Catholics. (May 8, 2025, <https://www.cnn.com/2025/05/08/europe/new-pope-conclave-white-smoke-vatican-intl>)

853
854
855
856
857
858
859
860
861
862
863

Table 7: Examples of context snapshots from our dataset, paired with the corresponding GPT-5 predictions and reasoning. Each prediction was produced using only a single snapshot as input. The first example uses a Bing snapshot, and the second uses a RAG snapshot.

Question	Context Snapshot	Prediction	Reasoning
How much will core PCE increase in July 2025?	<p>1. Economists widely agree that the core Personal Consumption Expenditures (PCE) inflation in July 2025 was expected to rise 0.3% month-over-month, slightly higher than the June rate of 0.26%. Tariff-related inflationary pressures and goods price increases contributed to this trend. While core PCE annual rate was predicted to increase to 2.9% from 2.8%, the monthly growth rate appeared steady at 0.3%. Such figures align with the Bureau of Economic Analysis consensus data and economist reviews^{3:0}^{source3:1}^{source3:2}^{source}.</p> <p>2. The underlying inflation model indicated steady month-to-month pressures from tariffs driving the inflation rate. Key factors included higher costs for consumer goods, services, and shelter indexes. Though some economists speculate that the inflation caused by tariffs may eventually stabilize, July's inflation remained above the Federal Reserve target of 2%, reflecting persistent upward trends^{3:0}^{source3:2}^{source}.</p> <p>3. Goldman Sachs forecasts for July core inflation also fell within the predicted range of 0.3% monthly increments, projecting a consistent upward spiral driven by external trade policies impacting consumer pricing. Meanwhile, other financial institutions, including BofA, offered similar figures confirming 0.3% growth in core metrics aligned with consensus^{3:2}^{source3:3}^{source}.</p> <p>4. Economic reports coming before late August further emphasized robust upward trends in July inflation as driven by national policy factors and post-pandemic residual bracketing between goods/resolution shifts. Bureau Measured PCE review will add attributes finality later impacting PCE Status driving above set evolving resolve next weeks towards median/public dimensions</p>	0.35	Above 0.3% requires a 0.4%+ print at one decimal. With consensus at 0.3%, upside tail to 0.4% exists but is not the base case.
Will any Texas House Democrat be arrested in Aug 2025?	<p>Texas Democrats defied Republican efforts by not attending a legislative session on August 8, 2025, aimed at voting on a redistricting plan that would increase Republican congressional seats. In response, Texas Attorney General Ken Paxton expressed a willingness to target those who remain absent from the state for contempt and indicated plans for potential civil arrests. While some Democrats expressed a readiness to return pending agreements on various issues, Governor Greg Abbott has pursued lawsuits to remove absent Democrats from their posts and threaten the legitimacy of their seats. This situation resulted in civil warrants being sought for multiple Democrats who left the state to avoid voting on the proposed congressional maps. (ABC News, August 8, 2025, https://abcnews.go.com/Politics/texas-democrats-face-republican-deadline-stop-standoff-face/story?id=124480936)</p> <p>The Texas House took action to issue civil arrest warrants on August 4, 2025, for over 50 Democratic lawmakers who left the state to break quorum in order to block the passage of a new congressional map. The warrants allow for arresting these legislators only within Texas state lines, making them largely symbolic as most absentees relocated to states like Illinois and New York. A similar tactic was previously attempted in 2021, when an injunction was upheld against such warrants, indicating an ongoing legal battle over quorum rules. The House's move signaled an escalating conflict between the parties over redistricting efforts. (Texas Tribune, August 4, 2025, https://www.texastribune.org/2025/08/04/texas-democrats-house-warrants-arrest-quorum-break/)</p> <p>Governor Abbott issued direct orders for the arrest of Texas Democrats on August 4, 2025, after they failed to comply with a deadline to return to the legislative session. He criticized their absence as un-Texan and accused them of abandoning their duties. Abbott outlined potential consequences, suggesting the removal of seats for non-compliance and claiming that their absence was obstructing critical legislation. The legislative standoff has drawn national attention due to its implications on congressional balance and has prompted Abbott to mobilize state authorities to ensure the return of the absent Democrats. (Fox 4 News, August 4, 2025, https://www.fox4news.com/news/abbott-orders-arrest-democrats-legislative-standoff)</p> <p>The ongoing standoff between Texas Republicans and Democrats continued as the Texas House failed to achieve quorum for a third time by August 11, 2025. This was notable because a series of Democratic lawmakers had traveled to different states, while Republican officials expressed increasing frustration at their absence from legislative duties. Amid this dynamic, Texas Attorney General Ken Paxton filed lawsuits aiming to remove specific House Democrats from office. The contention largely centers around the potential redistricting plan, which Democrats argue is discriminatory while Republicans assert that Democrats are not fulfilling their legislative responsibilities. (CBS News, August 11, 2025, https://www.cbsnews.com/texas/news/texas-legislative-standoff-continues-lawsuits-state-house-democrats-protesting-redistricting-proposal/)</p> <p>On August 4, 2025, the Texas House voted to track down and arrest Democratic lawmakers who fled the state to prevent quorum, impacting legislative processes. The arrests resulted in warrants that empowered law enforcement to detain lawmakers, though the warrants are symbolic due to jurisdiction limits. The absence of Democrats is being leveraged as a political tool to force their return and resume critical legislative work amid a session focused on redistricting, previously initiated due to significant Republican pressure. The situation reflects ongoing tensions associated with the state's political landscape and governance dynamics. (KRGV, August 4, 2025, https://www.krgv.com/news/texas-house-votes-to-track-down-arrest-democratic-lawmakers-who-left-the-state)</p>	0.17	Civil arrest warrants were issued by the Texas House in early August 2025, but they were only enforceable within Texas; most absent Democrats remained out of state. Past precedent (e.g., 2021) suggests such warrants rarely result in actual detentions, and ongoing legal challenges further reduce the likelihood. While a brief detention upon return could count, the window before Sep 1, 2025 was short and incentives favored Democrats staying away.

A.6 CONTEXT SNAPSHOT GENERATION

To generate context snapshots, our system leverages a dual-strategy information retrieval pipeline.

The first method incorporates a search-augmented LLM, specifically `gpt-4o` and Grounding with Bing. We used the `gpt-4o-2024-08-06` snapshot. This setup performs live web searches and

918 Table 8: The prompt used for generating context snapshots with the search-integrated LLM, specifically
 919 gpt-4o and Grounding with Bing.
 920

```

921 You are an expert superforecaster, familiar with the work of Philip Tetlock.
922
923 # Instructions
924 Given all you know, make the best possible prediction for whether each of these markets will resolve to Yes. Search the web for reliable and up-to-date information
925 that can help forecast the outcomes of these markets. We expect you to answer in this format:
926
927 RESEARCH REPORT:
928 Write a *complete* record of the full search results (at least 5 paragraphs). Use plain text without markdown formatting.
  
```

928 Table 9: The prompt used for generating context snapshots with the custom RAG pipeline, specifically
 929 for search query construction.
 930

```

931 The following are markets under the event titled "{event title}". The markets can resolve before the scheduled close date.
932
933 # Market 1
934 Title: {market title}
935 Subtitle: {market subtitle}
936 Possible Outcomes: Yes (0) or No (1)
937 Rules: {market primary rules}
938 Secondary rules: {market secondary rules}
939 Scheduled close date: {market expiration time}
940 (Note: The market may resolve before this date.)
941
942
943 # Market 2
944 ...
945
946 # Instructions
947 What are 6 short search queries that would meaningfully improve the accuracy and confidence of a forecast regarding the market outcomes described above?
948 Output exactly 6 queries, one query per line, without any other text or numbers. Each query should be less than 7 words.
  
```

943 synthesizes concise contextual summaries from up-to-date online content. The prompt used to guide
 944 the model in producing these snapshots is detailed in Table 8.
 945

946 The second method employs our RAG pipeline. It begins with the use of gpt-4o-mini, which
 947 generates six context-specific search queries based on the prompt outlined in Table 9. These queries
 948 are then fed into the Dux Distributed Global Search (DDGS) library, which returns a curated list of
 949 relevant URLs along with their titles and brief descriptions.

950 Next, we scrape the content from each of the retrieved web pages. To distill this information, we
 951 again use gpt-4o-mini, this time prompting it (see Table 10) to produce concise summaries. The
 952 summarization prompt incorporates the page title, body, URL, and full scraped content. Each search
 953 query results in a single summary, yielding six summaries per event.

954 To maintain topical relevance, a filtering stage is applied to discard summaries that are off-topic
 955 or irrelevant to the original event. This step is handled by gpt-5-mini, guided by the prompt
 956 in Table 11. For gpt-5-mini, we used the gpt-5-mini-2025-08-07 snapshot and for
 957 gpt-4o-mini, we used the gpt-4o-mini-2024-07-18 snapshot.
 958

959 A.7 PROMPTS FOR THE GRANULARITY EXPERIMENT

960 In the prompt granularity experiment, we compare two levels of prompting: market-level prompting
 961 and event-level prompting. Each prompting strategy is evaluated both with and without the inclusion
 962 of context snapshots (i.e., research report excerpts). The market-level prompt with context snapshots
 963 is shown in Table 12. The version without context snapshots is identical, except that the research
 964 report content is omitted. Likewise, the event-level prompt with context snapshots is presented in
 965 Table 13, and the corresponding version without context snapshots simply excludes the research
 966 report excerpts. All prompts were used with both the gpt-5-2025-08-07 snapshot and the
 967 gpt-4o-2024-08-06 snapshot.
 968

969
 970
 971

972 Table 10: The prompt used for generating context snapshots with the custom RAG pipeline, specifically
 973 for the summarization of the content of the relevant URLs.
 974

```

975 The following are markets under the event titled "{event title}". The markets can resolve before the scheduled close date.
976
977 # Market 1
978 Title: {market title}
979 Subtitle: {market subtitle}
980 Possible Outcomes: Yes (0) or No (1)
981 Rules: {market primary rules}
982 Secondary rules: {market secondary rules}
983 Scheduled close date: {market expiration time}
984 (Note: The market may resolve before this date.)
985
986 # Market 2
987 ...
988
989 # Article 1
990 Title: {article title}
991 Body: {article description}
992 Source URL: {article link}
993 Full Content: {article content}
994
995 # Article 2
996 ...
997
998 # Instructions
999 Carefully read the articles provided above. Your task is to generate a multi-paragraph summary (one paragraph per article) that highlights factual insights
1000 or relevant context related to the listed markets. Avoid subjective opinions or speculative statements. Use plain text without markdown syntax, headings, or
1001 numbering. Do not add any additional text outside the summary.
1002 Return blank for an article that does not contain relevant information. Not all of the articles are relevant to the markets above. Some are clearly unrelated to the
1003 topic and should be excluded. Exclude only the articles that are clearly off-topic, entirely unrelated to the markets. If an article is at least broadly related or offers
1004 potentially useful context, it should be considered relevant.
1005 Important note: Include the date and source URL of the article at the end of each paragraph.
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
```

Table 11: The prompt used for the post-hoc filtering of the RAG context snapshots.

```

977 You are given a description of a prediction market, and 6 research reports generated to help predict the outcome of the market. However, not all of the reports are
978 relevant. Some are clearly unrelated to the topic and should be excluded. Your task is to identify only the reports that are clearly off-topic, those that are entirely
979 unrelated to the market. If a report is at least broadly related or offers potentially useful context, it should be considered relevant and not flagged. Carefully read
980 the market description and each report. Then, select the reports that are clearly irrelevant to the prediction task. The market and reports are:
981
982 The following are markets under the event titled "{event title}". The markets can resolve before the scheduled close date.
983
984 # Market 1
985 Title: {market title}
986 Subtitle: {market subtitle}
987 Possible Outcomes: Yes (0) or No (1)
988 Rules: {market primary rules}
989 Secondary rules: {market secondary rules}
990 Scheduled close date: {market expiration time}
991 (Note: The market may resolve before this date.)
992
993 # Market 2
994 ...
995
996 # Research Report 1
997 {context snapshot 1}
998
999 # Research Report 2
1000 ...
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
```

A.8 MIXED-EFFECTS REGRESSION RESULTS

1015 We estimated a mixed-effects regression model to evaluate how model choice, prompting strategy,
 1016 domain category, and the inclusion of context snapshots influence forecasting accuracy, measured
 1017 by Brier score. Formally, the specification is given by

$$1018 \text{Brier}_{ij} = \beta_0 + \beta_1 \text{Model}_i + \beta_2 \text{Strategy}_i + \beta_3 \text{Snapshot}_i + \beta_4 (\text{Model}_i \times \text{Strategy}_i) + \beta_5 \text{Domain}_i \\ 1019 + \beta_6 (\text{Snapshot}_i \times \text{TimeToResolution}_i) + u_j + \epsilon_{ij}$$

1020 where Brier_{ij} denotes the Brier score for an observation i on market j , Model_i is a categorical
 1021 variable with six levels (gpt-5, gpt-4o, claude-3.5-haiku, gemini-2.0-flash,
 1022 llama-3.1-70B, and qwen-2.5-72B), where gpt-5 serves as the reference category.
 1023 Strategy_i is an indicator for market-level prompting (with event-level as the baseline), and Snapshot_i
 1024 indicates whether context snapshots were included or excluded (with inclusion as the baseline).
 1025 Domain_i is a categorical variable capturing the topic of the forecasting question (e.g., Sports, Pol-

1026

Table 12: The market-level prompt used for the prompt granularity experiment.

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

```

# Market
Title: {market title}
Subtitle: {market subtitle}
Possible Outcomes: Yes (0) or No (1)
Rules: {market primary rules}
Secondary rules: {market secondary rules}
Scheduled close date: {market expiration time}
(Note: The market may resolve before this date.)

# Research Report 1
{context snapshot 1}

# Research Report 2
{context snapshot 2}

# Research Report 3
{context snapshot 3}

# Research Report 4
{context snapshot 4}

# Instructions
Given all you know, make the best possible prediction for whether this market will resolve to Yes. Format your prediction as a JSON object with the following structure. There should be no text outside the object.
- "ticker": "KXWTAMATCH-25JUN30KALSTO" // market ticker copied exactly from the market metadata
- "reasoning": "A brief explanation of how you arrived at the prediction"
- "prediction": 0.00 // a probability between 0 and 1, inclusive.

```

The following are markets under the event titled "{event title}". The markets can resolve before the scheduled close date.

```

# Market 1
Title: {market title}
Subtitle: {market subtitle}
Possible Outcomes: Yes (0) or No (1)
Rules: {market primary rules}
Secondary rules: {market secondary rules}
Scheduled close date: {market expiration time}
(Note: The market may resolve before this date.)

# Market 2
...
# Research Report 1
{context snapshot 1}

# Research Report 2
{context snapshot 2}

# Research Report 3
{context snapshot 3}

# Research Report 4
{context snapshot 4}

# Instructions
Given all you know and the research reports above, make the best possible prediction for whether each of these markets will resolve to Yes. Format your predictions as a JSON array of objects, where each object corresponds to a market. The length of your array must be {number of markets}. Include ALL markets, even if you think they will resolve to No. There should be no text outside the array. Each object should have the following structure:
- "ticker": "KXWTAMATCH-25JUN30KALSTO" // market ticker copied exactly from the market metadata
- "reasoning": "A brief explanation of how you arrived at the prediction"
- "prediction": 0.00 // a probability between 0 and 1, inclusive.

```

itics, Finance), with Sports serving as the reference category. $\text{TimeToResolution}_i$ is a continuous variable defined only when snapshots are present; its effect is therefore modeled through the interaction $\text{Snapshot}_i \times \text{TimeToResolution}_i$. This variable represents the elapsed time between when the snapshot was taken and when the question ultimately resolved. The term $u_j \sim \mathcal{N}(0, \sigma_u^2)$ captures random intercepts at the market level to account for heterogeneity across markets, and $\epsilon_{ij} \sim \mathcal{N}(0, \sigma^2)$ represents the residual error.

The regression results show clear differences in forecasting accuracy across models, prompting strategies, and domains. Using gpt-5 as the reference category, all other models display significantly higher Brier scores, indicating worse accuracy on average. Prompting strategy exhibits no main effect for gpt-5, but significant interaction terms reveal that several models — specifi-

1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 cally `gpt-4o`, `claude-3.5-haiku`, and `qwen-2.5-72B` — perform substantially worse under market-level prompting compared to event-level prompting. In contrast, `gemini-2.0-flash` and `llama-3.1-70B` show no reliable difference between the two prompting strategies.

1084
 1085
 1086
 1087
 1088
 1089
 Across all models, removing context snapshots leads to higher Brier scores, confirming that snapshot information improves predictive accuracy ($p < .001$). Domain effects reveal meaningful variation in task difficulty: Politics, Finance, and Climate & Weather questions are significantly harder to forecast than Sports, while Entertainment questions are easier. Finally, the interaction between snapshots and time-to-resolution is small and not statistically significant, indicating no reliable evidence that the time-to-resolution meaningfully affects forecasting accuracy.

	Coefficient	Std. Error	<i>z</i>	<i>p</i>
Intercept	0.184***	0.009	20.521	< .001
Model (ref = GPT-5)				
<code>GPT-4o</code>	0.016***	0.003	4.801	< .001
<code>Claude 3.5 Haiku</code>	0.022***	0.003	6.586	< .001
<code>Gemini 2.0 Flash</code>	0.015***	0.003	4.546	< .001
<code>Llama-3.1-70B</code>	0.023***	0.003	6.787	< .001
<code>Qwen-2.5-72B</code>	0.014***	0.003	4.082	< .001
Strategy (ref = Event-level)				
Market-level	0.003	0.003	0.757	.449
Snapshots (ref = With snapshots)				
Without snapshots	0.012***	0.003	4.893	< .001
Domain (ref = Sports)				
Economics	0.026	0.036	0.726	.468
Politics	0.059**	0.023	2.605	.009
Science & Technology	0.052	0.045	1.164	.245
Entertainment	-0.043**	0.014	-3.005	.003
Finance	0.170*	0.078	2.196	.028
Climate & Weather	0.110*	0.049	2.239	.025
Health	0.240	0.154	1.559	.119
Model × Strategy				
<code>GPT-4o</code> × Market-level	0.016**	0.005	3.249	.001
<code>Claude</code> × Market-level	0.014**	0.005	3.001	.003
<code>Gemini</code> × Market-level	0.005	0.005	0.947	.344
<code>Llama</code> × Market-level	0.002	0.005	0.494	.621
<code>Qwen</code> × Market-level	0.016***	0.005	3.420	< .001
Time to Resolution				
With snapshots × TimeToResolution	-0.002	0.001	-1.875	.061
Random intercept variance (Market Ticker)	0.023	0.008		

1120
 1121
 *** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$

1122
 1123
 1124
 Table 14: Mixed-effects regression of Brier score on model, prompting strategy, snapshots, domain category, and time-to-resolution, with random intercepts by market.

1125
 1126
 1127
 We conducted simple slopes analyses using estimated marginal means (EMMs) from the mixed-effects model. Pairwise contrasts compared event-level versus market-level prompting separately within each model, with Holm-adjusted *p*-values and asymptotic degrees of freedom.

1128
 1129
 1130
 1131
 1132
 1133
 As summarized in Table 15, results show clear model-dependent differences in sensitivity to prompt granularity. Event-level prompting significantly outperforms market-level prompting for `gpt-4o` (estimate = -0.018, *SE* = 0.003, *z* = -5.35, $p < .001$), `claude-3.5-haiku` (estimate = -0.017, *SE* = 0.003, *z* = -5.00, $p < .001$), and `qwen-2.5-72B` (estimate = -0.019, *SE* = 0.003, *z* = -5.59, $p < .001$). A smaller but still significant difference is observed for `gemini-2.0-flash` (estimate = -0.007, *SE* = 0.003, *z* = -2.10, $p = .036$). In contrast, the effects are nonsignificant for `gpt-5` (estimate = -0.003, *SE* = 0.003, *z* = -0.76, $p = .449$) and

1134 llama-3.1-70B (estimate = -0.005 , $SE = 0.003$, $z = -1.46$, $p = .146$), indicating that these
 1135 models perform similarly under both prompting strategies.
 1136

1137 Table 15: Simple slopes of prompting strategy within each model (event-level vs. market-level),
 1138 based on estimated marginal means averaged over snapshot inclusion and domain.
 1139

1140 Model	1141 Contrast	1142 Estimate	1143 SE	1144 z	1145 p
1141 gpt-5	1142 Event – Market	1143 -0.0026	1144 0.0034	1145 -0.76	1146 .449
1142 gpt-4o	1143 Event – Market	1144 -0.0182	1145 0.0034	1146 -5.35	1147 $< .001^{***}$
1143 gemini-2.0-flash	1144 Event – Market	1145 -0.0071	1146 0.0034	1147 -2.10	1148 .036*
1144 claude-3.5-haiku	1145 Event – Market	1146 -0.0170	1147 0.0034	1148 -5.00	1149 $< .001^{***}$
1145 llama-3.1-70B	1146 Event – Market	1147 -0.0049	1148 0.0034	1149 -1.46	1150 .146
1146 qwen-2.5-72B	1147 Event – Market	1148 -0.0190	1149 0.0034	1150 -5.59	1151 $< .001^{***}$

1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

1188 A.9 PROMPTS FOR THE CONTEXT ENSEMBLE EFFECTS
1189

1190 In the experiment investigating context ensemble effects, we compare two conditions: an Ensemble
1191 condition, which includes multiple context snapshots, and a No Ensemble condition, which includes
1192 a single snapshot. Both conditions utilize event-level prompting, and the prompt structure remains
1193 consistent with that shown in Table 13. The only difference lies in the number of research reports
1194 (i.e., context snapshots) included in the prompt—four in the Ensemble condition and one in the No
1195 Ensemble condition. All prompts were used with the `gpt-5-2025-08-07` snapshot.

1196 A.10 SAMPLING PROCEDURE
1197

1198 From the 2,072 resolved questions with backtestable RAG snapshots collected as of September 22,
1199 2025, we applied a series of filters to construct our experimental sample. These filters were chosen
1200 to ensure well-posed questions, stable metadata, and reliable resolution, all prerequisites for valid
1201 backtesting. The final dataset comprises 1,336 questions from 566 distinct events, with each question
1202 paired with four RAG snapshots. The filtering criteria were as follows:

- 1204 • The question was published after the knowledge cutoff of `gpt-5` (September 30, 2024).
1205 This ensures that the model could not have directly learned the answer during training,
1206 thereby preventing temporal leakage and preserving the validity of the backtest.
- 1207 • The event contains no more than six associated markets. This restriction prevents extremely
1208 large events (e.g., those with 50+ markets) from disproportionately influencing the analysis.
- 1209 • Market prices at the simulated prediction time (i.e., the snapshot generation time) are avail-
1210 able. Price availability is necessary for computing forecasting accuracy and all downstream
1211 evaluation metrics.
- 1212 • The question has a definitive resolution outcome (“yes” or “no”). Binary outcomes are
1213 required to evaluate probabilistic predictions in a consistent manner.
- 1214 • The question did not resolve before the simulated prediction time, even if the official market
1215 close date was later. (See the next section for details on these exclusions.)
- 1216 • At least four RAG snapshots are available for the question at the simulated prediction time.
1217 A minimum of four RAG snapshots is required to allow the ensembling setup.

1218 Applying the same filtering procedure to the Bing snapshots produced a comparable experimental
1219 sample. From 1,435 resolved questions with backtestable Bing snapshots, 779 questions remained
1220 after filtering, spanning 340 unique events.

1222 A.11 ELIMINATING EDGE CASES OF TEMPORAL CONTAMINATION
1223

1224 To ensure that LLMs are genuinely forecasting future events rather than recalling known outcomes,
1225 we introduced an additional filtering step. Specifically, we excluded any prediction markets where
1226 the official close time occurred after the actual resolution of the underlying event.

1227 For example, consider a market about the outcome of the Cincinnati vs. Philadelphia MLS soccer
1228 match, with the rule: “If Philadelphia wins the Cincinnati vs. Philadelphia professional MLS soccer
1229 game originally scheduled for August 30, 2025, after 90 minutes plus stoppage time (excluding extra
1230 time or penalties), then the market resolves to Yes.” Although the event resolves at the end of regular
1231 time on August 30, the market’s official close time is listed as August 31, 2025, at 01:41:33 AM.
1232 This means that a simulated prediction made on August 30—intended to be prior to the event—could
1233 actually occur after the game’s outcome is already known, but before the market officially closes.

1234 To eliminate such edge cases, we processed all candidate markets using `gpt-5-nano`, filtering out
1235 any where the official close time trailed the real-world event resolution. Specifically, we used the
1236 `gpt-5-nano-2025-08-07` snapshot. This ensured that our final experimental dataset was free
1237 from temporal contamination and consisted only of markets where true forecasting was required.

1239 A.12 VALIDATION OF INFORMATION SOURCE AND RELEVANCE
1240

1241 To validate the information sources for the context snapshots, we verified every URL used in both
pipelines. For the Bing snapshots, we checked all URLs returned by Grounding with Bing during

1242 snapshot generation. For the RAG snapshots, we validated all URLs retrieved through the DDGS
1243 library that contributed to the final snapshots. Every URL was processed through the Google Safe
1244 Browsing API to identify any indicators of non-credible or unsafe websites. No URLs were flagged,
1245 meaning all sources used to generate our context snapshots passed the safety screening.

1246 In terms of relevance, the RAG pipeline includes a filtering and ranking step that scores HTML
1247 content using cosine similarity, ensuring that only relevant text is summarized into RAG snapshots.
1248 For the Bing snapshots, we rely on Grounding with Bing and the GPT-4o model to generate content
1249 that is already optimized for relevance. As an additional verification step, we computed the cosine
1250 similarity between the embeddings of each context snapshot and the associated market metadata.
1251 We used the all-mpnet-base-v2 model from sentence-transformers library as the embedding model.
1252 The market metadata included the event title (the question being asked), market title, market subtitle,
1253 primary rules, and secondary rules. All snapshots achieved a similarity score of 0.3 or higher. These
1254 relevance scores are included in the released dataset under the “relevance” field.

1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295