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Abstract

Inductive program synthesis, or programming by example, requires syn-
thesizing functions from input-output examples that generalize to unseen
inputs. While large language model agents have shown promise in pro-
gramming tasks guided by natural language, their ability to perform induc-
tive program synthesis is underexplored. Existing evaluation protocols rely
on static sets of examples and held-out tests, offering no feedback when
synthesized functions are incorrect and failing to reflect real-world scenar-
ios such as reverse engineering. We propose CodeARC, the Code Abstraction
and Reasoning Challenge, a new evaluation framework where agents interact
with a hidden target function by querying it with new inputs, synthesizing
candidate functions, and iteratively refining their solutions using a differ-
ential testing oracle. This interactive setting encourages agents to perform
function calls and self-correction based on feedback. We construct the first
large-scale benchmark for general-purpose inductive program synthesis,
featuring 1114 functions. Among 18 models evaluated, 03-mini performs
best with a success rate of 52.7%, highlighting the difficulty of this task.
Fine-tuning LLaMA-3.1-8B-Instruct on curated synthesis traces yields up
to a 31% relative performance gain. CodeARC provides a more realistic
and challenging testbed for evaluating LLM-based program synthesis and
inductive reasoning. Our code, data, and models are publicly available at
https://github.com/Anjiang-Wei/CodeARC

1 Introduction

Inductive reasoning, i.e., the ability to identify patterns and form abstractions from limited
examples, is widely recognized as a fundamental aspect of human intelligence (Hayes et al.,
2010; Yan et al., 2025). In the context of programming, inductive reasoning underpins the task
of synthesizing functions that satisfy given input-output examples and generalize to unseen
inputs. This task, commonly referred to as inductive program synthesis or programming by
example (Manna & Waldinger, 1971; Myers, 1986; Feser et al., 2023; Li & Ellis, 2025), has
broad application domains (Wang et al., 2017; Deng et al., 2024).

Recent advances in Large Language Models (LLMs) have led to the emergence of au-
tonomous agents capable of decision-making, multi-step planning, tool use, and iterative
self-improvement through interaction and feedback (Chen et al., 2023; Liu et al., 2023e;
2024b; Guo et al., 2024; Xi et al., 2025). While much of the existing work focuses on pro-
gramming tasks guided by natural language (Chen et al., 2021; Austin et al., 2021; Jimenez
et al., 2023; Jain et al., 2024b), we study a fundamentally different problem: inductive pro-
gram synthesis, where the objective is to infer the target program solely from input-output
examples. This setting provides a more rigorous test of inductive reasoning capabilities,
as it eliminates natural language descriptions that can trigger retrieval-based completions
memorized during model training.

Correspondence to: anjiang@cs. stanford.edu


https://github.com/Anjiang-Wei/CodeARC

Published as a conference paper at COLM 2025

1 t Output . N .
nput Suteu ® © ® Hidden Target Function e Testing Oracle
def funci(x): N\ Counterexample found!
if x >= @o: Input func1(2.5) func2(2.5)
return math.floor(x + 0.5)
else 2.5 3 F 2
return math.ceil(x - 90.5)
; - Feedback Need a different
Rounding? — rounding rule for .5?
ounding? Let me generate code. o o Let me try more...
Let me try O (func1(s. 1) i -
more inputs. il I *ﬁ eoe ® (50 func2 next try this?
g 3 o= 3 -
i & [ £ [ I
‘ def func2(x I 1|0 1] e
X Function 22k "
AL return round(x) Ad ™15 3 ™15 3
Invocation - N )
Agent Agent  Synthesized Function Agent Self-Reflection

Figure 1: Overview of CodeARC. Our framework evaluates LLMs’ reasoning capabilities in
inductive program synthesis. The agent begins with input-output examples, interacts with
a hidden target function via function calls, and uses a differential testing oracle to check the
correctness of the synthesized function for self-reflection and refinement.

Designing an effective evaluation protocol for inductive program synthesis with LLMs is
inherently challenging, as multiple valid functions may satisfy a given set of input-output
examples (as demonstrated in Section 5.2). The state-of-the-art protocol (Li & Ellis, 2025),
which evaluates synthesized functions on held-out test cases after presenting 10 fixed
input-output examples, has several notable limitations. First, a small, static set of input-
output examples may underspecify the target functions, especially for those with complex
logic. Moreover, held-out tests may fail to reveal subtle semantic discrepancies between
the generated and intended implementations. In addition, when the model produces an
incorrect solution, it receives no feedback and has no opportunity to revise or explore
alternatives. Finally, existing benchmarks for inductive program synthesis (Gulwani, 2011;
Wang et al., 2017; Wong et al., 2021; Deng et al., 2024; Li & Ellis, 2025) are focused on
domain-specific tasks and do not assess the ability of LLMs to synthesize functions written
in general-purpose programming languages.

To address the limitations of existing evaluation protocols for inductive program synthesis,
we introduce CodeARC, the Code Abstraction and Reasoning Challenge, inspired by real-world
scenarios such as decompilation and reverse engineering (Lin et al., 2010; Mantovani et al.,
2022; Al-Kaswan et al., 2023). In such settings, an agent is given a binary executable (without
source code) and must synthesize equivalent source code by observing input-output behav-
ior. Instead of relying on a fixed dataset, the agent can query the binary with new inputs,
invoke a differential testing oracle, and use counterexamples for iterative refinement. This
setup parallels the classic learnability framework of queries and counterexamples (Angluin,
1987; De la Higuera, 2010), here applied to program synthesis.

Figure 1 illustrates how CodeARC instantiates this process: LLM-based agents begin with
an initial set of input-output examples, query the ground-truth function for more examples,
and debug synthesized code using a differential testing oracle. We impose fixed budgets
on both the number of observable input-output examples and the number of testing oracle
invocations for self-debugging. The task requires agents to proactively generate inputs
(function calls) and revise solutions based on feedback (self-reflection). This interactive
setup offers a more realistic alternative to prior static evaluation protocols.

We construct the first comprehensive dataset for general-purpose inductive program
synthesis, featuring 1114 functions with initial input-output examples. Our benchmark
targets general programming tasks and employs two state-of-the-art differential testing
tools (Lukasczyk & Fraser, 2022; Etemadi et al., 2024) for correctness evaluation.

Our experiments demonstrate that CodeARC poses a significant challenge for LLM-based
inductive program synthesis. Among the 18 models evaluated, OpenAl 03-mini performs
the best overall, yet only achieves 52.7% success rate. We further conduct ablation studies to



Published as a conference paper at COLM 2025

analyze how budgets on the number of input-output examples and oracle calls affect model
performance. To enhance model capabilities, we generate synthetic fine-tuning data with
curated synthesis traces that capture the reasoning steps. We show that supervised fine-
tuning on LLaMA-3.1-8B-Instruct yields up to a 31% relative performance improvement.

In summary, our contributions are as follows:

¢ Interactive evaluation protocol for inductive program synthesis. We introduce a setup
where agents start with fixed input-output examples but can generate new inputs to query
ground-truth functions and invoke a differential testing oracle to self-correct their solu-
tions. This setup brings the task closer to a real-world setting, e.g. reverse-engineering.

¢ General-purpose benchmark with extensive evaluation. We construct the first large-
scale, general-purpose benchmark for this task, including 1114 diverse functions. Among
the 18 models evaluated, 03-mini achieves the best overall performance but still only
reaches a success rate of 52.7%.

* Synthetic data and fine-tuning. To boost model performance, we generate synthetic fine-
tuning data containing curated synthesis traces that capture both function invocations
and reasoning steps. We show that fine-tunining on LLaMA-3.1-8B-Instruct yields up to a
31% relative performance improvement.

2 Related Work

Inductive Program Synthesis Traditional inductive program synthesis methods rely solely
on input-output examples, without natural language input. They focus on domain-specific
tasks like string and data transformations (Gulwani, 2011; Singh & Gulwani, 2016; Yagh-
mazadeh et al., 2016), SQL (Wang et al., 2017), visual programming (Wang et al., 2019), and
quantum computing (Deng et al., 2024). These approaches typically define a domain-specific
language and use tailored search algorithms to prune the space efficiently (Feser et al., 2015;
Polikarpova et al., 2016; Feng et al., 2018; Guria et al., 2023; Mell et al., 2024). In contrast, we
introduce the first general-purpose program synthesis benchmark for LLM-powered agents.

LLM Benchmarks for Code Most LLM benchmarks, such as HumanEval+ (Chen et al.,
2021; Liu et al., 2023b), MBPP+ (Austin et al., 2021; Liu et al., 2023b), APPS (Hendrycks et al.,
2021), and others (Li et al., 2022; Liu et al., 2023c; Li et al., 2023; Jain et al., 2024a; Banerjee
et al., 2025; Ni et al., 2024b; Liu et al., 2023d; Du et al., 2023; Suresh et al., 2025b; Zhuo et al.,
2024; Yin et al., 2022; Lai et al., 2023; Patil et al., 2025; Ugare et al., 2024; 2025; Wei et al.,
2025d; Wu et al., 2025), evaluate code generation from natural language. Beyond generation,
tasks like I/O prediction (Gu et al., 2024; Liu et al., 2024a), execution prediction (Liu et al.,
2023a; La Malfa et al., 2024; Ni et al., 2024a; Ding et al., 2024), bug localization (Suresh et al.,
2025a), and program equivalence (Wei et al., 2025a) have also been studied. In contrast, we
focus on predicting function bodies purely from input-output examples, without natural
language. Prior work (Li & Ellis, 2025; Barke et al., 2024) targets domain-specific tasks, while
we introduce a general-purpose benchmark with an interactive evaluation protocol.

LLM Benchmarks for Reasoning LLMs are widely benchmarked on reasoning tasks
across domains, including commonsense (Talmor et al., 2018), mathematical (Cobbe et al.,
2021), and logical (Han et al., 2022; Miao et al., 2021; Liu et al., 2020; Parmar et al., 2024;
Wei et al., 2025e). Inductive reasoning, a core cognitive skill that generalizes from limited
examples (Hayes et al., 2010), is increasingly studied in LLMs (Li et al., 2024; Ma et al,,
2024; Xiao et al., 2024; Cai et al., 2024; Shao et al., 2024). ARC (Chollet, 2019) is a prominent
benchmark for abstract pattern induction. Our work shares this goal but is for inductive
program synthesis.

LLM-powered Agents LLM-based agents have shown strong performance in domains
like web navigation (Zhou et al., 2024a;b), code generation (Zhang et al., 2023; Jimenez et al.,
2024), performance optimization (Wei et al., 2025b;c), and ML experimentation (Huang
et al.,, 2024). They interact with environments, invoke functions, make decisions, and self-
reflect (Madaan et al., 2023; Paul et al., 2023; Xie et al., 2023; Huang et al., 2022; Shinn et al.,
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2023). We introduce the first benchmark to systematically evaluate agents’ capabilities in
inductive program synthesis, providing a rigorous testbed for inductive reasoning and
program synthesis.

3 Method

3.1 Problem Definition of Inductive Program Synthesis

We formalize the inductive program synthesis task as follows. Let f* be a hidden ground-
truth function that maps inputs x € & to outputs y € ). The synthesizer is given an
initial set of input-output examples & = {(x;,y;)}!_;, where y; = f*(x;), and the goal is to
synthesize a program f such that f = f*, i.e.,

Ve X, f(x)=f*(x).

To evaluate whether a synthesized function f is correct, we introduce a differential testing
oracle O. The oracle takes as input both the synthesized function f and the hidden ground-
truth function f* and attempts to identify inputs on which their behaviors differ. Formally,
the oracle operates as follows:

« » _ JPass, if Vx € Xest, f(x) = f*(x);
O h) = {Fail(x)/ if 3¢ € e such that f(x) £ f*(x),

where Xiest C X is a set of test inputs dynamically selected by the oracle.

Unlike fixed held-out test sets used in prior work, the differential testing oracle conditions
on both f* and the candidate f, generating targeted inputs to expose discrepancies. On

failure, it returns a counterexample x € Xjest such that f(x) # f*(x). Note that program
equivalence checking is fundamentally undecidable, and thus no perfect oracle exists. To
approximate oracle functionality, we adopt two state-of-the-art differential testing tools,
enabling a more robust and practical evaluation than prior work or reliance on a single tool
(see Appendix A.3).

3.2 Interactive Evaluation Protocol for LLM Agents

To evaluate the capabilities of LLM-based agents in inductive program synthesis, we in-
troduce an interactive protocol. This protocol extends beyond static evaluation settings by
enabling dynamic interaction with the hidden ground-truth function and the differential
testing oracle.

Initial Information. At the beginning of the task, the agent is provided with an initial
set of input-output examples & = {(x;,y;)}/;, as explained previously. This set serves as
partial information about the target function.

Action Space. During evaluation, the agent may take two types of actions. First, it may
query the ground-truth function f* at a chosen input x € &, and obtain the corresponding
output f*(x), thereby augmenting its observed set of input-output pairs. Second, it may
synthesize a candidate program f and invoke the differential testing oracle O(f*, f), which
returns PASS if no discrepancies are found on a dynamically generated test set, or FAIL with

a counterexample x € Xiest such that f(x) # f*(x).

Self-Reflection. If the oracle returns FAIL, a counterexample J, which is a tuple of
(x, f(x), f*(x)) will be provided to the agent. This counterexample helps the agent to
self-reflect and revise its current hypothesis, either by issuing additional queries f* or syn-
thesizing new programs. The ability to take such feedback is crucial for iterative refinement.
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Budget Constraints. The agent operates under two budget parameters: Bj, and Bgce-
Bj, limits the total number of input-output examples that the agent can observe from the
ground-truth function f*, while B, limits the number of invocations to the differential
testing oracle O.

Evaluation Metrics. The task is considered successful if the final synthesized program

~

f, produced within the given budgets, receives a PASS from the differential testing ora-

cle O(f*, f). We assess LLM agent performance along two dimensions: correctness and
efficiency, prioritizing correctness. Correctness is the success rate, i.e., the proportion of
problems solved within the budget. Efficiency is the average number of input-output queries
and oracle invocations per problem.

3.3 Benchmark Preparation

Our benchmark is designed to evaluate LLM agents on the inductive synthesis of general-
purpose Python programs. This contrasts with prior benchmarks that focus on domain-
specific tasks or programs written in domain-specific languages, such as string manipulation
and SQL query generation (Yaghmazadeh et al., 2017; Deng et al., 2024; Li & Ellis, 2025).

Programs for Synthesis. We curate a diverse collection of Python functions sampled
from three established code generation benchmarks: HumanEval (Chen et al., 2021),
MBPP (Austin et al., 2021), and APPS (Hendrycks et al., 2021). HumanEval and MBPP
primarily consist of simple, entry-level programming tasks, whereas APPS contains more
challenging problems that resemble competition-level code exercises. Importantly, we ex-
tract only the function bodies from these benchmarks and do not use any accompanying
natural language descriptions.

Annotated vs. Anonymized. To assess the extent to which function names help the LLM
agent synthesize the correct program, we construct two versions of the benchmark. In
the annotated version, function names that reflect the intended functionality of the task
(e.g., is_palindrome) are made available to the agent. In the anonymized version, all func-
tion names are replaced with a generic identifier (i.e., solution). This design isolates the
influence of identifier cues on synthesis performance. We report results on both versions.

Initial Input-Output Examples. Each synthesis task includes 10 fixed input-output exam-
ples that specify the target function’s expected behavior. We use GPT-40 to generate diverse
inputs and execute the original function to obtain the corresponding ground-truth outputs.

Synthetic Data Generation. We generate a synthetic dataset for fine-tuning (described
in more detail in Section 3.4) by first collecting 50 seed Python functions that are disjoint
from the evaluation set. Using these seeds, we prompt GPT-40 to synthesize a diverse set of
new functions, yielding 10,000 candidates. For each generated function, we additionally
instruct GPT-40 to produce 10 representative inputs that expose the function’s behavior
and highlight patterns in its input-output relationships. These inputs are executed to verify
the executability of the functions, and we discard any that fail at this stage. To reduce
redundancy, we deduplicate the dataset based on function names, finally resulting in 5,405
unique Python functions used for fine-tuning.

3.4 Fine-Tuning on Synthetic Data

We evaluate whether fine-tuning on curated synthesis traces, which capture both function
calls and reasoning, improves LLM performance on CodeARC, using a distillation approach
that imitates the reasoning of a teacher model with access to f*, the ground-truth function.

During training, we first run the interactive evaluation protocol described in Section 3.2
with a frozen teacher model. Unlike a standard evaluation, we prepend a set of task-specific
instructions Py« to each teacher prompt. This prefix includes the function body of f* and
explicitly instructs the teacher to (1) query f* on informative inputs, (2) explain the rationale
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behind those queries, and (3) synthesize the full implementation of f* only when confident
that the correct logic can be inferred from the accumulated input-output pairs. The student
model, which is the only model we fine-tune, learns to mimic the teacher’s reasoning and
synthesis behavior without seeing the teacher’s prompt that includes the target function.

We provide the teacher with access to f* because we find that, in many cases, the model
struggles to solve the task independently. Without knowledge of the ground truth, the
teacher is often too weak to generate meaningful queries or explanations, limiting the
effectiveness of the resulting supervision.

While executing the evaluation protocol, we record the multi-turn conversation history Cr,
which comprises the teacher model’s prompts and responses. Let n be the total number
of turns in Cr and denote by x' the sequence of tokens in the ith turn. Furthermore, let p
represent the number of tokens in the teacher-specific instruction prefix Py:.

We fine-tune the student model using a language modeling objective by minimizing the
negative log-likelihood of predicting the next token in Cr:

n || 4 .
L=-Y Y logP (x;. | CT,<i,xl<]-) .
i=1j=p+1

Here, P (x; | Cr <i xi< j) denotes the probability of generating token x; given all tokens

from previous turns, Ct -;, and the tokens preceding xj- in the current turn, xi< j- By starting
the inner sum at j = p + 1, the teacher-specific instructions Py« are excluded from the loss

computation, ensuring that the training signal comes only from the parts of Cr available
during inference.

4 Experiment Setup

We construct two versions (annotated and
anonymized) of the 1114 Python functions, drawn  Source Functions
from HumanEval+, MBPP+ (Liu et al., 2023b), and

Lines of Code
Min Max Avg

APPS (Hendrycks et al., 2021). Table 1 summa- HumanEval+ 78 7 56 185
rizes key statistics. Unlike prior work in program =~ MBPP+ 131 2 21 39
synthesis that often focuses on domain specific APPS 905 2 74 95
languages and constrained settings, our bench- Annotated 1114 2 74 95
mark consists of programs written in Python, a Anonymized 1114 2 74 95

general-purpose language that captures a broader
range of real-world algorithms and tasks. Table 1: Number of functions and lines
of code statistics for each benchmark

For the main evaluation (Section 5.1), we provide source across both dataset versions.

10 initial input-output examples and set the query
budget to 30 input-output pairs and 2 oracle calls
(Bio = 30, Boracle = 2), chosen based on practical constraints such as API cost and runtime.
Section 5.3 reports ablation studies on both budgets. We use two state-of-the-art differential
testing tools, PYNGUIN (Lukasczyk & Fraser, 2022) and MOKAV (Etemadi et al., 2024). For
supervised fine-tuning on synthetic reasoning trajectories, we use gpt-4o as the teacher
model and LLaMA-3.1-8B-Instruct as the student. See Appendix A for further details,
including prompts, fine-tuning parameters, and additional results on the differential testing
tools.

5 Results

5.1 Main Results

Table 2 shows the results for 18 large language models on CodeARC. The order is sorted
based on the success rate on the anonymized dataset. We also report the average number of
observed input-output examples and oracle invocations. Our findings are as follows:
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Annotated Dataset Anonymized Dataset
Model #I/O #Oracle Success (%) | #I/O # Oracle Success (%)
Llama-3.2-3B 28.3 1.9 11.0 29.3 2.0 4.8
Mixtral-8x7B 27.4 1.9 20.3 28.5 1.9 12.0
Llama-3.1-8B 28.0 1.8 19.3 28.6 1.9 13.7
Mixtral-8x22B 26.7 1.8 25.1 28.1 1.9 15.0
QwQ-32B 24.6 1.8 20.0 25.7 1.9 154
Qwen2.5-7B 26.9 1.8 29.2 28.3 1.9 15.8
Llama-3.2-11B 27.3 1.8 249 28.3 1.9 16.1
gpt-40-mini 27.0 1.8 26.1 27.9 1.8 18.5
Llama-3.2-90B 26.2 1.8 28.4 27.7 1.9 19.7
Llama-3.1-70B 26.9 1.8 30.1 27.9 1.9 20.0
Qwen2.5-72B 255 1.7 30.1 27.1 1.8 21.6
Llama-3.1-405B 24.2 1.7 38.6 26.0 1.8 26.7
gpt-4o 234 1.7 37.8 25.2 1.8 28.7
DeepSeek-V3 23.7 1.7 37.7 25.1 1.8 29.5
claude3.7-sonnet  23.6 1.7 39.0 24.6 1.7 33.8
DeepSeek-R1 18.6 1.6 49.8 20.3 1.7 41.3
ol-mini 21.0 1.6 53.2 21.5 1.6 47.7
03-mini 15.6 1.5 59.5 16.0 1.6 52.7

Table 2: Success rates of LLMs on CodeARC using both annotated and anonymized datasets.
We also report the average number of observed input-output examples and oracle invoca-
tions. All open-source models are instruction-tuned.
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Figure 2: Scaling trend on CodeARC.

Reasoning models perform best. Reasoning models (03-mini, 01-mini, DeepSeek-R1)
achieve the highest success rates, all exceeding 40% on the anonymized dataset. They also
require fewer 1/O examples and oracle calls, indicating greater accuracy and efficiency.

CodeARC is a challenging benchmark. Among the 18 evaluated models, only OpenAl’s
03-mini achieves over 50% success on both datasets (i.e., 59.5% on the annotated and 52.7%
on the anonymized) while all other models fall short of this threshold. This underscores the
difficulty of the task and reveals the limitations of current models in inductive reasoning.

Anonymization of function names reduces performance, but trends persist. All models
show a modest drop in success rate on the anonymized dataset. However, the overall
ranking remains largely consistent. This suggests that while the presence of meaningful
function names provides some benefit, strong inductive reasoning remains the main factor
behind high performance on this synthesis benchmark.

Scaling up model size improves performance. Larger models generally achieve better
performance, as shown in Figure 2 (log-scale x-axis). All model families exhibit scaling
trends, though with varying consistency. Llama-3.1 scales steadily, while Llama-3.2 plateaus
at larger sizes, likely due to its multimodal focus. Qwen2.5 shows clearer scaling on



Published as a conference paper at COLM 2025

Metric # Problems (%) Model Success Rate (%)

Passl: Initial I/O Examples 1506 (67.6%) /o 200 30L0

Pass2: Testing Oracle 866 (38.9%) ol-mini 437 49.6 50.5

A = Pass1 — Pass2 640 (28.7%) 03-mini 51.3 53.8 56.1
Table 3: Number of problems (in both Table 4: Success rates (%) with varying
datasets) where the synthesized function budgets on the observable input-output
passes the initial examples compared to examples (on both datasets).
the oracle.

anonymized data, where reasoning is required over memorization, highlighting model
size’s impact on generalization.

5.2 Do Initial Input-Output Examples Underspecify the Target Function?

To assess whether 10 input-output examples (Li & Ellis, 2025) suffice to specify the target
function, we evaluate the first synthesized function of 03-mini, i.e., the strongest model in
our study. Functions that pass the initial examples but fail under oracle testing indicate
under-specification, motivating the need for additional examples or oracle-guided feedback.
As shown in Table 3, 67.6% pass the initial 10 input-output example tests, but only 38.9%
pass the oracle, revealing 640 cases (28.7%) where the initial examples fail to uniquely
specify the target function. These findings show that initial input-output examples often
under-specify program behavior, motivating additional queries and oracle-guided feedback
for reliable evaluation. This motivates the design of our interactive evaluation protocol.

Model Scale & Success Rate (Annotated) Model Scale & Success Rate (Anonymized)
70
60
§00 S
< <50
250 3
& & 40
(%] 40 ]
wn [%2]
g g 30
330 320
20 10
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—e— gpt-40-mini —a— gpt-40 ol-mini —&— 03-mini

Figure 3: Success rates (%) of LLM models across varying numbers of oracle invocations.

5.3 Ablation Study: Input-Output Queries and Oracle Feedback

We perform two ablation studies to evaluate how varying the budgets for querying ground-
truth functions and invoking the oracle impacts performance.

Effect of Input-Output Query Budget. We evaluate 03-mini and ol-mini with input-
output budgets of 10, 20, and 30, using the same setup as Section 5.1. Table 4 shows that
success rates improve consistently with more examples.

Effect of Oracle Invocation Budget. We vary the number of allowed oracle invocations
and report success rates in Figure 3 for four models on both datasets. More oracle calls

consistently improve performance, showing that counterexamples from differential testing
are valuable for guiding iterative refinement.

These results demonstrate that incorporating both querying mechanisms and oracle feedback
consistently enhances overall performance. This improvement underscores the importance
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New Invocations return False def solution(l):
[None, O, "None"]  True return True return len(l) == len(set(1l))

Figure 4: Case Study. The model queries edge cases, synthesizes a comparison function,
receives a counterexample from the oracle, and corrects it with a set-based solution.

of adopting an interactive evaluation protocol rather than relying solely on static, one-shot
evaluation approaches.

5.4 Performance of Fine-Tuned Models

Table 5 shows that fine-tuning the
LLaMA-3.1-8B-Instruct model on cu-  Dataset
rated synthesis traces yields consistent
improvements across both datasets. Annotated 19.3 25.3 +31%
The larger gain on the annotated vari- Anonymized 137 15.0 +9.5%

ant suggests that fine-tuning is particu-

larly e%f% ctive when semant%calll; infor- Table 5: Success rates of LLaMA-3.1-8B-Instruct

mative identifiers are present. Notably and its fine-tuned variant on annotated and
| anonymized datasets. Fine-tuning improves per-

this performance gap emerges despite .
b othp datasets b eirgl gpevaluagte d unP():l or formance, especially on the annotated dataset.

the same model architecture and train-

ing methodology discussed in Section 3.4. These results indicate that while fine-tuning helps,
there remains substantial room for further improvement. This suggests that future research
may focus on enhancing the quality and diversity of the fine-tuning dataset, particularly
for the anonymized variant, where gains are more limited. Another promising direction is
to explore reinforcement learning approaches (Wei et al., 2025c) that optimize for higher
synthesis success rates, potentially overcoming limitations of supervised fine-tuning alone.

Success Rate (%)
Base Model Fine-Tuned Rel. A

To assess whether fine-tuning affects general code generation capabilities, we additionally
evaluate the models on BigCodeBench (Zhuo et al., 2024). Unlike our inductive program
synthesis benchmark, BigCodeBench measures traditional code generation from natural
language descriptions, covering diverse function calls and library usage. Our synthetic
fine-tuning dataset is constructed independently, with no overlap with BigCodeBench,
providing a clean test of the fine-tuned model’s performance on other coding tasks.

On BigCodeBench, the base model achieves a pass@1 score of 40.1%, while the fine-tuned
model attains 39.6%, a marginal decrease of 0.5 percentage points. This aligns with prior
findings on catastrophic forgetting (Kotha et al., 2024), a well-documented phenomenon
in which training on a new task can impair performance on previously learned ones. We
consider this small degradation acceptable given the gains in inductive program synthesis.

5.5 Case Study

Figure 4 shows an interaction trace from our benchmark. The model starts by querying
the ground-truth function with edge-case inputs, aiming to probe its behavior beyond
the initial examples. It then synthesizes a candidate solution using pairwise comparisons,
which passes the given examples but fails on a counterexample with unhashable elements.
From the error message, the model correctly infers that the ground-truth function raises
a TypeError, while its own does not. On the second attempt, it reasons that using a set
simplifies the uniqueness check and synthesizes the correct set-based function. This case
illustrates how the model combines function invocation and oracle feedback to perform
inductive program synthesis. The full trace is in Appendix A.1.
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6 Discussion

6.1 Results on BigCodeBench for Broader Domain Coverage

Our interactive protocol is domain-agnostic and readily extensible to any Python program.
To further increase the domain coverage, we extend the original CodeARC dataset with
200 Python functions randomly sampled from BigCodeBench (Zhuo et al., 2024), which
includes problems involving scientific computing (e.g., NumPy, SciPy, pandas), machine
learning libraries (e.g., sklearn), visualization (e.g., matplotlib), and system libraries. This
addition enhances domain diversity beyond traditional algorithm-focused problems.

Table 6 shows that reason-

. . L Model CodeARC (Original) BigCodeBench

ing models (03-mini, o1-mini)

achieve lower success rates on LLaMA-3.1-SB Base 19.3 32.5

BigCOdeBench Compared to Fine-tuned LLaMA 25.3 40.0

their performance on the orig- ~ 8pt-40 37.8 46.5

inal CodeARC benchmarks. ©l-mini 532 40.0
03-mini 59.5 43.0

In contrast, non-reasoning

del f bett Big-
ggds];eliec;?rmwz Zr,cg,rilbul,i Table 6: Success rates (%) on the original CodeARC bench-

this to the nature of Big- mark and BigCodeBench, which covers diverse domains
CodeBench tasks, which often  Such as scientific computing and machine learning, extend-

involve domain-specific APIs ing beyond algorithm-focused problems.

and library usage, where non-reasoning models perform better. Notably, our fine-tuned
model shows a substantial gain over the base model on BigCodeBench, indicating that the
model fine-tuned on synthesis reasoning traces can generalize to unseen datasets.

6.2 Impact of Providing Access to a Python Interpreter

Our default evaluation restricts access to external tools such as a Python interpreter, though
the CodeARC protocol can easily incorporate them via additional actions. To assess the
impact, we added a code execution action, updated the prompts, and evaluated 100 sampled
problems from the dataset.

Results shown in Table 7 suggest that pro-
viding access to a Python interpreter does
not uniformly improve model performance. gpt-4o 48.5 46.0

For instance, while 03-mini benefits mod- 03-mini 69.0 71.0

estly (+2.0%), gpt-40’s performance slightly

decreases (-1.5%). This outcome highlights Table 7: Success rates (%) with and without
that expanding the agent’s action space may access to a Python interpreter.

sometimes lead to suboptimal behavior.

Model  w/o Interpreter w/ Interpreter

We note that internal code simulation is a natural part of the inductive program synthesis
process. Our benchmark is designed to evaluate inductive reasoning capability, and we
believe that requiring models to reason without relying on external execution tools remains
a meaningful and challenging setting.

7 Conclusion

We introduce CodeARC, a new framework for evaluating LLMs on inductive program
synthesis through interactive input generation and self-correction. Unlike static protocols,
CodeARC allows agents to query a ground truth function and use a differential testing
oracle to get feedback for iterative refinement. Designed to assess inductive reasoning from
input-output examples, our benchmark covers 1114 diverse and general-purpose functions
and evaluates 18 language models. The best-performing model, OpenAl 03-mini, achieves a
success rate of 52.7%. Fine-tuning LLaMA-3.1-8B-Instruct on curated synthesis traces results
in a 31% relative performance gain. CodeARC provides a more realistic and challenging
testbed for evaluating LLM-based inductive program synthesis.
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A Appendix

A1 Case Study

In the below example, the model first invokes the ground-truth function with 10 more
inputs, then tries to synthesize the function, and then gets back the counter-example from
the differential testing oracle. Its second trial then passes the oracle’s test.

Prompt:

You are a software engineer tasked with implementing a blackbox Python function solution.
Your goal is to implement this function correctly, ensuring it works for all possible valid
inputs, not just the example inputs provided.

Your primary goal is to get the function implementation exactly right. Your secondary goal
is to minimize the number of function invocations and implementation attempts.

GIVEN EXAMPLES:

print('Result
print('Result
print('Result
print('Result
print('Result

1 str(solution([1, 2, 3, 4, 51)))

2

3

4

5:
print('Result 6:

7

8

9

1

str(solution([1, 2, 2, 4, 51)))
str(solution(['a', 'b', 'c', 'd', 'e'D)))
str(solution(['apple', 'banana', 'apple'l)))
str(solution([])))

str(solution([10, 20, 30, 40, 50, 601)))
str(solution([10, 20, 30, 30, 50, 601)))
str(solution(['x"', 'y', 'z'1))

: str(solution([1, 1, 1, 11)))

0: ' + str(solution(list(range(100)))))

print('Result
print('Result
print('Result
print('Result

'
'
'
'
'
'
'
'
[

+ o+ o+ o+ + o+

Corresponding outputs:

Result 1: True
Result 2: False
Result 3: True
Result 4: False
Result 5: True
Result 6: True
Result 7: False
Result 8: True
Result 9: False
Result 10: True

Strategy Overview:

You should work in two phases:

1. Exploration Phase: use function invocations strategically to fully understand the
function’s behavior.

2. Implementation Phase: only after a thorough understanding, attempt an implementation.

This is the first iteration. You must first reason and then decide between one of the following
two options:

1. Generate more function invocations in the same format as the examples. You can generate
up to 20 additional function invocations across all iterations.

2. Generate an implementation of solution. You have only 1 debugging check total. If your
implementation is incorrect, you lose your check and are shown a counterexample. If you
attempt an implementation and have no debugging checks left and your implementation is
incorrect, you cannot take any more actions. This attempt will be considered your final
answer.

Assistant:
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I'll start with the Exploration Phase and generate additional strategic invocations to better
understand the function’s behavior over a wide range of inputs. I want to explore cases like
unique negative and non-negative numbers, duplicate negative numbers, duplicate empty
strings, duplicate boolean values, and unique special character strings. I also want to verify
that single element lists should be unique.

INVOCATIONS:

print('Result 11:
print('Result 12:
print('Result 13:
print('Result 14:

" + str(solution([-1, -2, 0, 1))
print('Result 15: '

str(solution([-1, -2, -11)))
str(solution([1, 1.0, 21)))
str(solution(L(1,), (2,), (1,)1)))

str(solution([421)))
print('Result 16: str(solution(["", "a", "b"1)))
print('Result 17: str(solution(["", "", "b"1)))
print('Result 18: str(solution([True, False, Falsel)))
print('Result 19: str(solution(['!", '@"', "#', '$'1))

+ o+ + o+ o+ o+ o+

print('Result 20: str(solution([None, @, "None"])))

Prompt:

Here are the outputs of the function invocations from the previous iteration:

Result 11: True
Result 12: False
Result 13: False
Result 14: False
Result 15: True
Result 16: True
Result 17: False
Result 18: False
Result 19: True
Result 20: True

STRATEGY UPDATE: Based on the new data above, you should update your understanding
of the function and decide on your next action. You have 10 additional function invocations
and 1 debugging check left.

Assistant: Based on the input-output pairs I have analyzed, I infer that this function is
intended to evaluate whether all elements in a given list are distinct—that is, to determine if
there are any duplicate entries within the list. To implement this functionality, I propose
using a pairwise comparison strategy. By systematically comparing each element in the
list with every subsequent element, it becomes possible to identify any duplicates that may
exist. This approach ensures thorough coverage of all potential comparisons and provides a
reliable method for detecting non-unique elements in the list.

IMPLEMENTATION:

def solution(lst):

# Use a simple pairwise comparison approach
n = len(lst)
for i in range(n):

for j in range(i + 1, n):

if 1st[i] == 1st[j]:
return False

return True

Prompt:

The implementation you generated in the previous iteration failed for the following input
(and potentially other inputs):

Failed input: [1, 2, 3, 4, [5, 61, [5, 61]
Ground Truth Function != Output From Generated Code:
"Error' != 'No Error'
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This failure provides valuable information about a case you didn’t account for. You should
decide between generating more invocations to explore and debug the function behavior or
generating one final implementation. You have 10 additional function invocations and NO
debugging checks left.

Assistant: Based on the error message, it appears that raising an error for this input would
be the appropriate response. To handle this effectively, a set-based approach might be
more suitable than a pairwise comparison approach. By converting the list to a set, I can
efficiently detect unhashable elements, as attempting this operation would naturally raise
a TypeError for any such elements. Let me proceed with implementing this approach to
validate the reasoning.

IMPLEMENTATION:

def solution(lst):
# Attempt to convert the list to a set.
# If any element is unhashable, this will raise a TypeError as expected.
return len(lst) == len(set(lst))

This final implementation passes the differential testing oracle.
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A.2 Supervised Fine-Tuning Experiment Setup

Table 8 presents the parameters used for our supervised fine-tuning experiments.

Name Value
Teacher Model gpt-40
Student Model LLaMA-3.1-8B-Instruct
Fine-tuning Context Length 32768
Learning Rate 1.00E-5
LR Schedule linear
Warmup Ratio 0.03
Epoch 3
Batch Size 8
Gradient Accumulation Steps 8
LoRA Rank 8
LoRA « 8

Table 8: LoRA Fine-Tuning Parameters.

A.3 Analysis of Differential Testing Tools

Program equivalence is undecidable, and no oracle can guarantee perfect correctness check-
ing. To mitigate this, our evaluation combines two state-of-the-art differential testing tools,
PYNGUIN (Lukasczyk & Fraser, 2022) and MOKAV (Etemadi et al., 2024). This dual-oracle
setup reduces the likelihood of overlooking behavioral discrepancies between the synthe-
sized and ground-truth functions.

Empirically, the two tools produce identical outcomes on 75.4% of problems. MOKAV detects
additional bugs in 18.8% of cases missed by PYNGUIN, while the reverse holds in only 5.9%.
Overall, using both tools yields a more reliable approximation of correctness in the absence
of a perfect oracle.
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