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ABSTRACT

Motion transfer from 2D videos to 3D assets is a challenging problem, due to
inherent pose ambiguities and diverse object shapes, often requiring category-
specific parametric templates. We propose CAMO, a category-agnostic frame-
work that transfers motion to diverse target meshes directly from monocular 2D
videos without relying on predefined templates or explicit 3D supervision. The
core of CAMO is a morphology-parameterized articulated 3D Gaussian splatting
model combined with dense semantic correspondences to jointly adapt shape and
pose through optimization. This approach effectively alleviates shape-pose am-
biguities, enabling visually faithful motion transfer for diverse categories. Ex-
perimental results demonstrate superior motion accuracy, efficiency, and visual
coherence compared to existing methods, significantly advancing motion transfer
in varied object categories and casual video scenarios.
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Figure 1: Conceptual overview of CAMO. Our method directly transfers articulated motion from 2D video
to diverse target objects, without requiring 3D reconstruction of the source or parametric templates.

1 INTRODUCTION

Efficient 3D character animation remains an important goal in both computer graphics research
and content industries such as film 2007), interactive media (Rachmavita, 2020), and
robotics (Arduengo et al} 2021). Motion transfer techniques (Aberman et al., 2020} [Liao et al.
provide an efficient alternative to manual keyframing or marker-based motion capture by en-
abling the reuse of existing animations across different characters.

However, many existing techniques rely on precomputed 3D sequences, such as articulated skele-
tons (Aberman et al.}[2020) or sparse 3D keypoints [2023)), limiting their applicability in
real-world scenarios where such data is scarce or expensive to obtain. [Wang et al.| (2023)) and Mura-
likrishnan et al.| (2024) explored extracting and transferring motion cues from readily accessible 2D
monocular videos which reduces this reliance. A common strategy within this domain involves a
two-stage, reconstruct-then-retarget approach: first, a 3D proxy representation of the source subject
(e.g., its pose or shape) is reconstructed from the 2D video, and this intermediate 3D representation
is then fed into established 3D-to-3D motion transfer techniques.

Despite demonstrating effective retargeting performance under controlled conditions, these sequen-
tial pipelines inherently possess several limitations. A primary limitation stems from their depen-
dence on category-specific priors, such as parametric template models (Loper et all, 2013}, [Zuffil
2017), which require large-scale, high-fidelity training data. Although models built on such
priors (Kanazawa et al., 2018}, [Zhang et al., 202} Rueegg et al,[2022)) achieve robust and transfer-
able pose estimation within the structural biases of their target domains, their ability to generalize
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to diverse shapes and semantic categories remains limited. Furthermore, the cascaded structure
of these pipelines can lead to error propagation, where inaccuracies from the reconstruction stage
detrimentally impact the fidelity of the final transferred motion.

Our category-agnostic motion transfer framework, CAMO, adopts an alternative strategy to conven-
tional reconstruct-then-retarget pipelines. Rather than relying on intermediate 3D reconstructions of
the source, we directly project the target character into the 2D observation space, enabling pose
optimization purely through image-space supervision. Specifically, we repurpose articulated 3D
Gaussian splatting (Yao et al., [2025)) (articulated-GS), originally developed for reconstructing artic-
ulated animatable objects from 2D videos, to facilitate motion transfer.

CAMO extends this by explicitly modeling morphological differences between source and target
characters. Structural variations are decomposed from the target’s original shape and adapted to
transfer the source motion while preserving topology. To complement this morphology-adaptive
optimization and further mitigate shape-pose ambiguity, dense semantic correspondences are es-
tablished between the 2D source frames and the 3D target mesh, providing semantic guidance for
coherent pose recovery. This integration of structural modeling and semantic correspondence guides
both visually plausible and semantically coherent pose optimization processes, enabling robust gen-
eralization across diverse categories and complex motions. Fig.[T]illustrates the overview of CAMO.

We comprehensively validate CAMO on synthetic benchmarks spanning diverse categories such
as humanoids, quadrupeds, and other non-standard animals, as well as on real-world monocular
videos. Across all these settings, CAMO consistently preserves motion fidelity and generalizes
across diverse morphologies, achieving substantial improvements in both PMD ({) and FID (), with
reductions reaching up to 85% on the challenging categories compared to state-of-the-art methods.

2 RELATED WORK

Motion transfer between 3D assets. Traditional techniques in motion transfer have leveraged 3D
skeletal structures to enable efficient retargeting across various characters (Gleicher, 1998} Villegas
et al.l 2018} |Aberman et al., |2020; |Villegas et al., |2021; |(Chen et al., 2023). These approaches
commonly build upon category-specific skeletal priors, which enable effective performance within
their target domains but constrain their generalization to categories outside those domains.

Beyond skeleton-based approaches, skeleton-free deformation methods (Gao et al., 2018, Wang
et al., 2020; [Liao et al., 2022; \Wang et al., 2023 Muralikrishnan et al., [2024} Yoo et al., 2024) are
independent from explicit skeletal models, relaxing categorical constraints. Nevertheless, these ap-
proaches typically rely on high-quality 3D motion data, which is generally not available for objects
across diverse categories. As a result, generalizing these methods to a wider variety of object cat-
egories remains a notable challenge, primarily due to the substantial cost and scarcity of such 3D
data.

Shape and pose estimation from 2D videos. Another line of research focuses on capturing 3D
pose from monocular video. These methods achieve impressive reconstructions within specific do-
mains, often leveraging parametric templates. Representative works include human pose estima-
tion (Zhang et all 2021} |Goel et al., |2023) with SMPL (Loper et al., |2015), and quadruped pose
estimaiton (Riiegg et al., 2023} Lyu et al., 2024) with SMAL (Zuffi et al., 2017). Although effective
in domains with abundant 3D scan data, these methods are constrained by their reliance on paramet-
ric templates, which limits generalization to categories without extensive 3D pose annotations.

Recent approaches (Yao et al.||2022; Wu et al., [2023aib; |Aygun & Mac Aodha, [2024; Li et al.| [2024)
explore parametric template-free construction of articulated models from image collections. While
promising for intra-class generalization without strong parametric template priors, these methods
often struggle to generalize across categories. [Uzolas et al.| (2023) and |Yao et al.| (2025) inherently
avoid this limitation by employing per-scene optimization to directly decompose shape and skeletal
pose from individual dynamic scene observations. However, as their focus lies in reconstruction,
their ability to retarget motion to novel characters remains underexplored.

2D to 3D motion transfer. Recent 3D-to-3D motion transfer methods (Wang et al.l [2023; [Mura-
likrishnan et al.,[2024) extend to 2D-to-3D by combining parametric template-based pose and shape
estimators (Zhang et al.l|[2021; Rueegg et al., [2022) with 3D pose transfer techniques. These shape
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estimators are typically demonstrated on humanoid or quadruped characters respectively, where the
reliance on categorical templates (Loper et al., 2015} [Zuffi et al., 2017) fundamentally limits their
ability to generalize to novel categories. Moreover, we observe that sequentially combining inde-
pendently trained components often leads to cumulative errors, ultimately degrading the fidelity of
transferred motion.

Maheshwari et al.|(2023) propose a category-agnostic approach that removes template priors, trans-
ferring motion from RGB-D videos to 3D meshes by estimating skeletal motion from reconstructed
meshes; its performance, however, hinges on accurate depth input, limiting robustness in casual or
monocular RGB settings. In contrast, [Fu et al.| (2024) and [Zhang et al.| (2024a)) achieve 2D-to-3D
motion transfer without depth by reconstructing motion with neural bones (Yang et al.| [2022)) or
by leveraging image-to-3D generative models. Despite improved generalizability, these approaches
remain tied to intermediate reconstruction stages (e.g., pseudo-3D supervision, skeletonization, or
physics simulation), which makes them sensitive to reconstruction errors and less robust under large
morphological variations.

In contrast, we directly leverage 2D RGB videos as motion sources through morphology-adaptive
shape and pose parameter optimization, bypassing intermediate 3D reconstruction. This approach
mitigates reconstruction errors and enables robust motion transfer across diverse object categories
without category-specific templates.

3 METHODS

Our goal is to transfer articulated motion from a monocular video to arbitrary 3D characters. We
take as input a static 3D target mesh M%* and a source monocular RGB video with paired fore-
ground masks {I;, Mt}tT:O, where I; is a frame from time ¢, and M; is obtained via off-the-shelf
segmentation model (Kirillov et al.| [2023). We aim to produce a temporally coherent sequence of
deformed meshes {./\/lig 75}tTZO that faithfully reproduces the source motion.

We first encapsulate the target mesh with an articulated-GS (Yao et al.| |2025) representation with
pose parameters (Sec.[3.1). We then parameterize morphology using learnable bone lengths, a global
scale, and local Gaussian offsets (Sec.[3.2). This representation disentangles shape variation from
pose dynamics. Finally, all shape and pose parameters are optimized jointly via differentiable ren-
dering and dense semantic correspondences (Sec. [3.3H3.4), yielding semantically coherent motion
aligned to the source. Fig. []illustrates the full pipeline.

3.1 ARTICULATED 3D GAUSSIAN SPLATTING

Retargeting pose from monocular 2D observations to 3D assets involves challenges such as oc-
clusion and geometric ambiguity, since full 3D dynamics must be inferred from partial 2D inputs.
To address these inherent complexities without resorting to explicit 3D source reconstruction, we
pioneers a direct optimization strategy centered on a target-specific, deformable 3D representation.

To this end, we build upon articulated-GS (Yao et al.| 2025) to represent the target character, leverag-
ing its framework that supports differentiable rendering and skeletal articulation. This representation
models a dynamic object with a skeletal structure and 3D Gaussians, enabling kinematic pose-driven
deformation of Gaussians through Linear Blend Skinning (LBS).

The skeleton is represented as a tree 7 = (J,.A), where J is the set of joints and A =
{A;j}jer\(j,} assigns each non-root joint j to its parent joint A;, with j, denoting the root. A
3D Gaussian G; is parameterized by its mean u; € R3, rotation q; € R%, scale s; € R3, opacity
o; € [0,1], and color SH; € RE encoded with spherical harmonics, where K is the number of
basis functions.

Unlike the previous articulated-GS (Yao et al., [2025)), which initializes Gaussian centers from SfM
point clouds or random sampling, we leverage target mesh geometry for initialization of Gaussian
positions u; (Sec.[3.2)). We assume a rigged skeleton is available for skeletal structure; for unrigged
meshes, we employ existing automatic rigging methods (Xu et al., 2020; Zhang et al., 2025).

As shown in Fig. 2] we predict the skeletal motion using a temporally conditioned multilayer percep-
tron (MLP) for each timestamp ¢. Specifically, the MLP takes a sinusoidal time embedding emb(-)
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Figure 2: Morphology-adaptive articulated Gaussian splatting pipeline. Our framework optimizes the
pose and shape of the target mesh directly in 2D observation space using a differentiable Gaussian representa-
tion, enabling category-agnostic motion transfer without explicit source reconstruction.
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and outputs joint-wise transformations comprising relative rotations and the global translation:
{{0;‘}]'6\7’ 6ffilobal} = fMLP(emb(t)) ) (D

where 05 € R* is the unit quaternion representing the relative 3D rotation of joint j with respect to
its parent in the kinematic hierarchy, and 5§1<>ba1 € R? denotes the global translation of the root joint
at time ¢.

The predicted joint transformations are applied to deform the canonical Gaussian centers using LBS,
ensuring visually plausible motion. Specifically, the deformed position ! € R? of Gaussian i at
time ¢ is computed as a weighted combination of per-joint transformations:

R! Ja, —RLJIA

t t } : t - t Tt Tt k k k< Ak

K = 6global + wijTj/"'ia Tj = H Tk ;o T = ( 0 1 ) (2)
jeT keP(root,j)

where 1, denotes the canonical center of Gaussian ¢, and w;; is the skinning weight of joint j on

Gaussian ¢. The transformation T; is obtained by recursively composing the joint transformations

T along the kinematic path P(root, j). Here, R!, denotes the relative joint rotation derived from
the predicted quaternion 6}, and J 4, denotes the transformation of the parent joint.

The posed 3D Gaussians are rasterized onto the image plane. Given a camera viewpoint v; and pixel
location u € R?, the pixel color C(u) is computed via alpha compositing with spherical harmonics:

i—1
Clu) = Z T; o; SH(sh;,v;), T;= H(l — o). 3)
ieN j=1

Here, sh; € RX denotes the spherical harmonics coefficients, and the opacity is computed as
o = oy exp(f%(u — f;) T3 (u — ;lz)) where f1; € R? and 3; € R?*? are the 2D-projected
mean and covariance under the camera projection.

3.2 MORPHOLOGY-ADAPTIVE SHAPE PARAMETERIZATION

While the articulated-GS detailed in Sec. [3.1implements skeletal pose-driven deformation, it is for-
mulated for single-object reconstruction, and thus faces limitations in extracting and transferring
motion between source and target with morphological differences. In this paper, we use the term
morphology to refer to the character’s limb proportions, body scale, and local shape details. Pa-
rameterization of such variance is a key objective in our framework, enabling the articulated-GS
framework to accommodate diverse body shapes while preserving kinematic coherence (Fig.[3](b)).

Bone length parameterization. We first extend the standard skeleton definition by allowing each
bone to have a learnable length parameter. Specifically, let 5 denote the set of bones, each defined
by a parent-child joint pair. For each bone b € B, we define its direction vector v, € R? which
denotes the unit vector from parent node to child node of the bone, and a learnable scalar length
¢, € RT. The canonical position of a joint j € J in the rest pose is then computed by a linear
combination of scaled bone vectors along the kinematic chain:

jrest (]) = jrest(jroot) + Z gbvby 4
beP(root,j)

where P(root, j) denotes the ordered path of bones connecting the root joint to joint j.
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Figure 3: Deformable morphology parameterization. (a) We initialize the target character with skeleton
rigging (Xu et al, [2020), acquiring the topological structure and skinning weights. (b) Morphology-adaptive
parameterization of structural variations. (c¢) During optimization, shape parameters deform the target’s mor-
phological structure to align with the morphology of the source.

Gaussian mean initialization. The deformable surface of our shape parameterization is represented
by Gaussian primitives. We parameterize Gaussian means g in a morphology-aware manner to
determine local shape. Specifically, we parameterize p; of Gaussian G; relative to a skeleton-
blended reference position p;, computed from LBS weights w;; of G; and rest-pose joint Jreq ():

i =pi+0i, where p; =Y wij jreu(4), 5)
JjET
where 0; € R3 is a learnable vector representing local shape deviation from the skeleton-driven

reference. This formulation allows p; to incorporate learned skeletal proportions via p;, while
providing a dedicated parameter o; for fine-grained local geometry.

Global scale. To further account for overall size differences across characters, we introduce a global
scaling factor sgjope € R that uniformly scales the entire skeleton and associated Gaussian means.
This scaling allows the representation to adapt to different character sizes during optimization.

The final canonical position fi; for each morphology-parameterized Gaussian in the rest pose is
obtained by applying this global scale s4i,p4: to the morphology-aware mean p; (defined in Eq. E[):

i = Sglobal * Mi- (6)

Resulting f1; encapsulates all morphological parameters and serves as the canonical center in LBS
transformation (Eq. ). Our deformable morphology parameterization enables target character to
smoothly conform its appearance to the source cues while preserving original topology (Fig.[3] (c)).

3.3 TARGET-SOURCE DENSE SEMANTIC CORRESPONDENCE

While our proposed shape parameterization accounts for morphological differences, a key challenge
in transferring articulated motion from 2D to 3D remains: shape—pose ambiguity. This refers to the
inherent uncertainty in disentangling an object’s underlying pose from its observation. Photometric
loss provides essential low-level supervision, but relying on it alone may produce motion artifacts,
as it captures only visual cues and lacks explicit semantic correspondences between characters.
These artifacts can be mitigated by incorporating additional semantic cues, which help disambiguate
overlapping projections, particularly when source and target morphologies differ.

To address this, we establish robust 2D-3D semantic correspondences by leveraging pre-trained
vision foundation models. Specifically, we utilize an orientation-sensitive feature extractor (Yang
et al.l 2020) that produces spatially consistent descriptors across varied poses and morphologies,
then obtain dense pixel-to-vertex mappings through semantic feature matching between input im-
ages and target mesh renderings (Shtedritski et al.||2024)). This provides automatic correspondence
estimation without requiring manual registration or additional training.

The detailed pipeline of our dense correspondence extraction module is illustrated in Fig. ] We
first compute the similarity score of the dense semantic features extracted by the feature extractor
¢(-) from a source video frame I; with those from multiple rendered views {I,'} of the target mesh
M. Then, given a source pixel p € I; with the extracted feature ¢(I;), we compute a pooled
similarity score X1, (p, ) for each vertex x;, € M' as:

Sn(powr) = pool S (6(L)[pl, d(L)[mo(ak)]) ©)

v,wkEVis(If‘)
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Figure 4: Dense target-source correspondences matching. We extract robust 2D-to-3D semantic correspon-
dences by matching semantic features between source frames and rendered target views.

where S(-) denotes a cosine similarity, 7, () denotes the 2D projection of vertex aj onto the
rendered image I.%', and ¢(I;¥")[m, (2)] is the corresponding feature vector at the 2D projected
location. The operator pool aggregates similarity scores via max-pooling across all v target-rendered
views where x;, is visible.

The best-matching 3D vertex :Ef,{:g for each pixel p in frame ¢ is obtained by selecting the vertex
with the highest pooled similarity score:

:E3?:arg max Xy, (p,xr), (8)

P zpEV (M)
where V(M'') denotes the set of vertices of the target mesh. These retrieved 3D points :Ef,{:t’ serve as
semantic keypoints, providing supervision to guide semantic structure alignment of cross-modality
during optimization, as the keypoint 10ss Leypoint (Sec. @)

3.4 OPTIMIZATION

As formalized in Eq.[T|and visualized in Fig.[2] our primary objective is to recover the target mesh’s
time-varying skeletal pose parameters aligned with the source motion, relying solely on 2D ob-
servations without ground-truth 3D annotations or any form of pose template prior. The entire
framework, composed of morphology-parameterized articulated Gaussians, is optimized end-to-end
by minimizing a composite loss function. Our optimization objective combines photometric re-
construction, semantic correspondence, and multiple regularization terms: Ly = ArenderLrender +
AkeypointLkeypoint T Areg Lreg, Where the weights balance their respective contributions.

The render loss enforces photometric consistency between the rendered frame I, (from Eq.3) and
the source frame I; by combining an ¢; term with a SSIM (Wang et al., 2004) term:

T

Lrender = Z [(1 — Nasstv) || Ze — e[, + Aass(1 — SSIM(I},L‘/))}- 9)
=0

The keypoint loss supervises geometric alignment by minimizing projection error between source
image pixels and their matched 3D vertices derived from dense semantic correspondences:

T
Lkeypoint = Z Z ||P — Tt (53?)?) ||2 ) (10)

t=0 peP;

where :Ef,{:t) is the best-matching 3D vertex obtained via Eq. (8} and P; represents sampled foreground
pixels. Finally, L, comprises multiple regularization terms that encourage temporal smoothness
and geometric consistency (detailed formulations provided in the Appendix).

4 EXPERIMENTS

4.1 DATASETS AND IMPLEMENTATIONS

Datasets. We evaluate our approach on mesh-animation pairs sampled from DeformingThings-
4D (DT4D) (Li et al., [2021) and Mixamo (Adobe). From DT4D, we select 20 animation pairs
spanning diverse animal categories of quadrupeds and non-quadrupeds exhibiting varied motions.
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Table 1: Quantitative evaluation on Mixamo and DT4D datasets. Our method consistently outperforms all
baselines across diverse categories. Results are averaged across scenes, with per-scene results in the Appendix.

Mixamo DT4D-Quadrupeds DT4D-Others
PMD |, FID | PMD |, FID | PMD | FID |
SPT+ 0.0029 0.0366 - - - -
NPR+ 0.0099 0.0551 0.0032 0.0669 - -
Transfer4dD 0.0084 0.0855 0.0058 0.0505 0.0133 0.0805
Ours 0.0028 0.0304 0.0018 0.0171 0.0023 0.0124
Source frame Target mesh ~ NPR* TransferdD Ours Source frame  Target mesh SPT* R* TransferdD Ours

% =

e i
a: R Dal
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Figure 5: Qualitative results on Mixamo and DT4D-Quadruped datasets. Our method shows superior pose
alignment compared to baselines across diverse objects. Refer to the supplementary video for full animation.

From Mixamo, we utilize 12 humanoid mesh-animation pairs across different character models and
motion types. To simulate a casually captured monocular video scenario, we render each source
animation using a single camera with constrained movement (+30° angular range), generating input
frames with corresponding ground-truth 3D target mesh animations. We further conduct qualitative
evaluation on real-world videos sourced from the DAVIS dataset (Perazzi et all 2016) and two
publicly available online videos in.d.), as well as 2D-to-2D motion transfer
scenarios using additional synthetic sequences (Pumarola et al.}, 2021}, [Liu et al., 2024). Details on

dataset preparation and configuration are provided in the Appendix.

Implementation details. We employ a two-stage optimization strategy that first performs global
alignment of scale and translation, then jointly refines local pose and shape parameters (bone length,
Gaussians) to adapt morphology while preserving essential motion characteristics. All experiments
use the Adam optimizer (Kingma & Bal, [2014) with adaptive learning rates over 10k iterations. Our
method achieves efficient optimization, completing training in under 10 minutes on a single RTX
4090 GPU. Detailed hyperparameter specifications are provided in the Appendix.

4.2 2D-T0-3D MOTION TRANSFER

Baselines and metrics. We compare our method against two baseline categories: compos-
ite pipelines combining 2D-to-3D reconstruction with 3D motion transfer, and a template-free
optimization-based approach (Transfer4D (Maheshwari et al.}, 2023))). For composite baselines, we
adopt a two stage setup with mesh reconstruction followed by motion transfer using SPT ( m
ﬁ and NPR (Yoo et al. m denoted as SPT* and NPR™ (see Appendix for base-
line 1mplementati0n details). SPT™ is evaluated only on humanoid motion, as the original method
was designed and tested on stylized human characters. Transfer4D performs motion retargeting by
extracting skeletal structure from RGB-D input. On datasets with non-quadruped animals, where
parametric templates of reconstruction methods are not applicable, we compare only to Transfer4D.

We quantify motion transfer by comparing the retargeted and ground-truth mesh sequences. Consis-
tent with prior work (Liao et al.}[2022} Yoo et al.}[2024)), we adopt Point-wise Mesh Distance (PMD)
to measure per-vertex accuracy and Fréchet Inception Distance (FID) (Heusel et al.,[2017) to assess
perceptual fidelity. To compute FID, both ground-truth and retargeted animations are rendered from
12 viewpoints and their image distributions are compared.

Comparison results. We evaluate our method and baselines on DT4D and Mixamo datasets. As
shown in Tab. [T} our approach achieves superior performance on both PMD and FID metrics. These
results show that our approach achieves strong performance in a data-efficient manner, relying only
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Figure 6: Qualitative results on real-world datasets. Our motion transfer pipeline effectively transfers
motion from both synthetic and real-world videos in a category-agnostic manner.

on direct optimization without explicit 3D supervision. On non-quadrupeds (DT4D-Others), we
significantly outperform Transfer4D even without depth input, demonstrating strong performance
beyond parametric model categories.

Fig. [|demonstrates that our method preserves the target shape and transfers motion faithfully, while
baselines often produce distorted shapes by estimating incorrect transformation (Liao et al, 2022

[Maheshwari et al.| 2023) or relying on predicted surface Jacobians 2024). This shape
fidelity is attributed to our morphology-parameterization, which we also analyze in Sec.[4.3]

Qualitative results on real-world videos. To evaluate real-world applicability, we apply our
method to in-the-wild monocular videos featuring diverse animal categories with complex back-
grounds and occlusions. These noisy or open-domain scenarios represent cases where obtaining
corresponding 3D animations is challenging. As shown in Fig.[6] our approach successfully transfers
motion across these varied scenarios while preserving target mesh structure and proportions. These
results demonstrate effective motion transfer directly from monocular input without requiring 3D
motion generation, highlighting the practical value of our 2D-grounded motion transfer approach.

4.3 ABLATION STUDY

We ablate key components of our framework in Tab. [2] and Fig. [7]] Removing the rendering loss
severely degrades performance (PMD 1 ~5 ), indicating it as the primary driver of motion transfer,
while the keypoint loss adds complementary semantic guidance. Fig. [7] shows that dropping the
keypoint loss yields suboptimal transfers due to unresolved shape-pose ambiguities.

Excluding our shape parameterization (bone lengths [;, Gaussian means p, global scale Sgioba1)
causes distorted geometry and misaligned orientations, especially under large morphological dif-
ferences. With shape parameters fixed, global translation lowers render loss by pulling the object
toward the camera, partially recovering motion but distorting orientation and pose (Fig. [7; see sup-
plementary videos). Overall, adding each component yields consistent gains (Tab. [Z), confirming
their complementary roles to enhance robustness. Extended ablation studies appear in the Appendix.

) &

Table 2: Quantitative evaluation of
component contributions.

Source
Frame

P
) Ablation PMD (}) FID (})

) £ B | <
Morphological difference Ground Truth Ours (full) W/0 Lyeypoint  W/0 Shape param. Full Model 0.0018  0.0171
W/0 Liender 0.0090 0.0463
Figure 7: Qualitative ablations. Keypoint loss complements mo- w/o Shape param. 0.0047  0.0747
tion details and accuracy. Excluding shape parameters induces severe w/o i update 0.0039 - 0.0552
. . . L. w/o lp & $g410bal update 0.0040 0.0488
geometric artifacts for large morphological variation. W0 Lreypoin 00031 00252

4.4 DIVERSE APPLICATION SCENARIOS

Cross-category motion transfer. Our method demonstrates strong generalization across diverse
categories, as shown in Fig. [8[(a). We successfully transfer motion between different animal species
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Figure 8: Results on diverse applications. Our method transfers motion for (a) cross-category source-target
pairs, (b) 2D-to-2D videos, and (c) Al-generated mesh animations.

(rabbit-to-deer) and even across broader categories (animal-to-human). This flexibility stems from
our universal optimization approach that does not rely on category-specific skeletal structures or
explicit category matching between source and target.

2D-to-2D motion transfer. A key advantage of our method is its representation-agnostic appli-
cability across articulated 3D assets. While primarily demonstrated on mesh targets, our frame-
work seamlessly extends to Gaussian-based 3D representation without modification of core design.
Fig. [8b) shows motion transfer to 3DGS reconstructed from multi-view images 2025),
enabling video-to-video transfer when both source and target originate from RGB sequences. To-

gether, these results yield a single, category-agnostic framework that operates consistently across
varied 3D representations.

Al-generated mesh animation. Another interesting application is animating meshes synthesized
by generative models. As shown in Fig. [§] (c), we achieve effective motion transfer using meshes
generated from an off-the-shelf image-to-mesh model [2025). This demonstrates the
versatility of our approach to meshes from diverse sources, supporting modern content creation
workflows that increasingly incorporate Al-generated assets.

5 DISCUSSION

We introduce CAMO, a framework that transfers motion from monocular videos to 3D assets with-
out relying on category-specific templates. By reformulating motion retargeting as an efficient
morphology-adaptive optimization on articulated Gaussian splats, our method avoids error accumu-
lation in traditional reconstruct-then-retarget pipelines without any 3D supervision or large datasets.
The integration of morphology-adaptive modeling and semantic correspondences provides comple-
mentary cues that reduce shape-pose ambiguities and enable broad applicability across different
skeletal structures and 3D representations.

Limitations and future work. Our approach inherits common challenges of monocular input, such
as occlusion and depth ambiguities with a single character. Future work includes addressing severe
occlusion, modeling multi-character or object interactions, adding contact-aware or physics-based
constraints, and extending to longer sequences with complex interactions.



Under review as a conference paper at ICLR 2026

REFERENCES

Kfir Aberman, Peizhuo Li, Dani Lischinski, Olga Sorkine-Hornung, Daniel Cohen-Or, and Baoquan
Chen. Skeleton-aware networks for deep motion retargeting. ACM Transactions on Graphics
(TOG), 39(4):62-1, 2020.

Adobe. Mixamo. https://www.mixamo.com.

Miguel Arduengo, Ana Arduengo, Adria Colomé, Joan Lobo-Prat, and Carme Torras. Human to
robot whole-body motion transfer. In 2020 IEEE-RAS 20th International Conference on Hu-
manoid Robots (Humanoids), pp. 299-305. IEEE, 2021.

Mehmet Aygun and Oisin Mac Aodha. Saor: Single-view articulated object reconstruction. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10382—
10391, 2024.

Chris Bregler. Motion capture technology for entertainment [in the spotlight]. IEEE Signal Process-
ing Magazine, 24(6):160-158, 2007.

Jinnan Chen, Chen Li, and Gim Hee Lee. Weakly-supervised 3d pose transfer with keypoints. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1515615165,
2023.

Paul Daley. Close-up video of white seagull. |https://www.pexels.com/video/
close—up-video—of-white-seaqull-1536290/, n.d. Pexels video; accessed 2025-
09-23.

Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set generation network for 3d object recon-
struction from a single image. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 605-613, 2017.

Zhoujie Fu, Jiacheng Wei, Wenhao Shen, Chaoyue Song, Xiaofeng Yang, Fayao Liu, Xulei Yang,
and Guosheng Lin. Sync4d: Video guided controllable dynamics for physics-based 4d generation.
arXiv preprint arXiv:2405.16849, 2024.

Lin Gao, Jie Yang, Yi-Ling Qiao, Yu-Kun Lai, Paul L. Rosin, Weiwei Xu, and Shihong Xia. Auto-
matic unpaired shape deformation transfer. ACM Transactions on Graphics (ToG), 37(6):1-15,
2018.

Michael Gleicher. Retargetting motion to new characters. In Proceedings of the 25th annual con-
ference on Computer graphics and interactive techniques, pp. 3342, 1998.

Shubham Goel, Georgios Pavlakos, Jathushan Rajasegaran, Angjoo Kanazawa, and Jitendra Malik.
Humans in 4d: Reconstructing and tracking humans with transformers. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 14783-14794, 2023.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Angjoo Kanazawa, Michael J. Black, David W. Jacobs, and Jitendra Malik. End-to-end recovery of
human shape and pose. In Computer Vision and Pattern Recognition (CVPR), 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceed-
ings of the IEEE/CVF international conference on computer vision, pp. 4015-4026, 2023.

Yang Li, Hikari Takehara, Takafumi Taketomi, Bo Zheng, and Matthias NieBner. 4dcomplete: Non-
rigid motion estimation beyond the observable surface. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 12706-12716, 2021.

10


https://www.mixamo.com
https://www.pexels.com/video/close-up-video-of-white-seagull-1536290/
https://www.pexels.com/video/close-up-video-of-white-seagull-1536290/

Under review as a conference paper at ICLR 2026

Zizhang Li, Dor Litvak, Ruining Li, Yunzhi Zhang, Tomas Jakab, Christian Rupprecht, Shangzhe
Wu, Andrea Vedaldi, and Jiajun Wu. Learning the 3d fauna of the web. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9752-9762, 2024.

Zhouyingcheng Liao, Jimei Yang, Jun Saito, Gerard Pons-Moll, and Yang Zhou. Skeleton-free pose
transfer for stylized 3d characters. In European Conference on Computer Vision, pp. 640-656.
Springer, 2022.

Isabella Liu, Hao Su, and Xiaolong Wang. Dynamic gaussians mesh: Consistent mesh reconstruc-
tion from dynamic scenes. arXiv preprint arXiv:2404.12379, 2024.

Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J. Black.
SMPL: A skinned multi-person linear model. ACM Trans. Graphics (Proc. SIGGRAPH Asia),
34(6):248:1-248:16, October 2015.

Jin Lyu, Tianyi Zhu, Yi Gu, Li Lin, Pujin Cheng, Yebin Liu, Xiaoying Tang, and Liang An.
Animer: Animal pose and shape estimation using family aware transformer. arXiv preprint
arXiv:2412.00837, 2024.

Shubh Maheshwari, Rahul Narain, and Ramya Hebbalaguppe. Transfer4d: A framework for fru-
gal motion capture and deformation transfer. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 12836-12846, 2023.

Sanjeev Muralikrishnan, Niladri Dutt, Siddhartha Chaudhuri, Noam Aigerman, Vladimir Kim,
Matthew Fisher, and Niloy J Mitra. Temporal residual jacobians for rig-free motion transfer.
In European Conference on Computer Vision, pp. 93—109. Springer, 2024.

Nicky Pe. A cheetah walking and looking around. https://www.pexels.com/video/
a-cheetah-walking—and-looking—around—-8451567/, n.d. Pexels video; accessed
2025-09-23.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin EI-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

Federico Perazzi, Jordi Pont-Tuset, Brian McWilliams, Luc Van Gool, Markus Gross, and Alexander
Sorkine-Hornung. A benchmark dataset and evaluation methodology for video object segmen-
tation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.

724-732, 2016.

Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. D-nerf: Neural
radiance fields for dynamic scenes. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 10318-10327, 2021.

FP Rachmavita. Interactive media-based video animation and student learning motivation in math-
ematics. In Journal of Physics: Conference Series, volume 1663, pp. 012040. IOP Publishing,
2020.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684-10695, 2022.

Nadine Rueegg, Silvia Zuffi, Konrad Schindler, and Michael J Black. Barc: Learning to regress
3d dog shape from images by exploiting breed information. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 3876-3884, 2022.

Nadine Riiegg, Shashank Tripathi, Konrad Schindler, Michael J Black, and Silvia Zuffi. Bite: Be-
yond priors for improved three-d dog pose estimation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 8867-8876, 2023.

Aleksandar Shtedritski, Christian Rupprecht, and Andrea Vedaldi. Shic: Shape-image correspon-
dences with no keypoint supervision. In ECCV, 2024.

11


https://www.pexels.com/video/a-cheetah-walking-and-looking-around-8451567/
https://www.pexels.com/video/a-cheetah-walking-and-looking-around-8451567/

Under review as a conference paper at ICLR 2026

Chaoyue Song, Jianfeng Zhang, Xiu Li, Fan Yang, Yiwen Chen, Zhongcong Xu, Jun Hao Liew,
Xiaoyang Guo, Fayao Liu, Jiashi Feng, et al. Magicarticulate: Make your 3d models articulation-
ready. In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 15998—
16007, 2025.

Lukas Uzolas, Elmar Eisemann, and Petr Kellnhofer. Template-free articulated neural point clouds
for reposable view synthesis. Advances in Neural Information Processing Systems, 36:31621—

31637, 2023.

Ruben Villegas, Jimei Yang, Duygu Ceylan, and Honglak Lee. Neural kinematic networks for
unsupervised motion retargetting. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8639-8648, 2018.

Ruben Villegas, Duygu Ceylan, Aaron Hertzmann, Jimei Yang, and Jun Saito. Contact-aware retar-
geting of skinned motion. In Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, pp. 9720-9729, 2021.

Jiashun Wang, Chao Wen, Yanwei Fu, Haitao Lin, Tianyun Zou, Xiangyang Xue, and Yinda
Zhang. Neural pose transfer by spatially adaptive instance normalization. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 5831-5839, 2020.

Jiashun Wang, Xueting Li, Sifei Liu, Shalini De Mello, Orazio Gallo, Xiaolong Wang, and Jan
Kautz. Zero-shot pose transfer for unrigged stylized 3d characters. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8704-8714, 2023.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing, 13(4):600—
612, 2004.

Shangzhe Wu, Tomas Jakab, Christian Rupprecht, and Andrea Vedaldi. Dove: Learning deformable
3d objects by watching videos. International Journal of Computer Vision, 131(10):2623-2634,
2023a.

Shangzhe Wu, Ruining Li, Tomas Jakab, Christian Rupprecht, and Andrea Vedaldi. Magicpony:
Learning articulated 3d animals in the wild. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 8792-8802, 2023b.

Zhan Xu, Yang Zhou, Evangelos Kalogerakis, Chris Landreth, and Karan Singh. Rignet: Neural
rigging for articulated characters. arXiv preprint arXiv:2005.00559, 2020.

Gengshan Yang, Minh Vo, Natalia Neverova, Deva Ramanan, Andrea Vedaldi, and Hanbyul Joo.
Banmo: Building animatable 3d neural models from many casual videos. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2863-2873, 2022.

Karren Yang, Bryan Russell, and Justin Salamon. Telling left from right: Learning spatial corre-
spondence of sight and sound. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 9932-9941, 2020.

Chun-Han Yao, Wei-Chih Hung, Yuanzhen Li, Michael Rubinstein, Ming-Hsuan Yang, and Varun
Jampani. Lassie: Learning articulated shapes from sparse image ensemble via 3d part discovery.
Advances in Neural Information Processing Systems, 35:15296—-15308, 2022.

Yuxin Yao, Zhi Deng, and Junhui Hou. Riggs: Rigging of 3d gaussians for modeling articulated
objects in videos. In The IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2025.

Seungwoo Yoo, Juil Koo, Kyeongmin Yeo, and Minhyuk Sung. Neural pose representation learning
for generating and transferring non-rigid object poses. arXiv preprint arXiv:2406.09728, 2024.

Hao Zhang, Di Chang, Fang Li, Mohammad Soleymani, and Narendra Ahuja. Magicpose4d: Craft-
ing articulated models with appearance and motion control. arXiv preprint arXiv:2405.14017,
2024a.

12



Under review as a conference paper at ICLR 2026

Hongkun Zhang, Zherong Pan, Congyi Zhang, Lifeng Zhu, and Xifeng Gao. Texpainter: Generative
mesh texturing with multi-view consistency. In ACM SIGGRAPH 2024 Conference Papers, pp.
1-11, 2024b.

Hongwen Zhang, Yating Tian, Xinchi Zhou, Wanli Ouyang, Yebin Liu, Limin Wang, and Zhenan
Sun. Pymaf: 3d human pose and shape regression with pyramidal mesh alignment feedback loop.
In Proceedings of the IEEE/CVF international conference on computer vision, pp. 11446-11456,
2021.

Jia-Peng Zhang, Cheng-Feng Pu, Meng-Hao Guo, Yan-Pei Cao, and Shi-Min Hu. One model to rig
them all: Diverse skeleton rigging with unirig. arXiv preprint arXiv:2504.12451, 2025.

Tongjie Y Zhang and Ching Y. Suen. A fast parallel algorithm for thinning digital patterns. Com-
munications of the ACM, 27(3):236-239, 1984.

Zibo Zhao, Zeqiang Lai, Qingxiang Lin, Yunfei Zhao, Haolin Liu, Shuhui Yang, Yifei Feng,
Mingxin Yang, Sheng Zhang, Xianghui Yang, et al. Hunyuan3d 2.0: Scaling diffusion models for
high resolution textured 3d assets generation. arXiv preprint arXiv:2501.12202, 2025.

Silvia Zuffi, Angjoo Kanazawa, David W Jacobs, and Michael J Black. 3d menagerie: Modeling
the 3d shape and pose of animals. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 6365-6373, 2017.

A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

This appendix provides additional implementation details, ablations, and extended results supporting
the main paper. The overall structure for the Appendices is as follows:

1. Datasets and baselines (Sec.

* Synthetic datasets
* Real-world videos
* Implementation of composite baselines
2. Implementational details (Sec.
* Skeletal motion field
* Motion regularizers
* Training details
3. Ablation on design choices (Sec.
» Shape parameterization
* Dense keypoint loss
* Rigging modules
* Geometry-aware semantic features
4. Performance analysis (Sec.[A.4)
* Performance on diverse morphological differences
* Performance on different motion scales
* Performance on extreme cases
* Failure cases

5. Extended results (Sec.

» Extended quantitative evaluations
» Extended qualitative evaluations

6. Ethical considerations (Sec.
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SMPL mesh reconstruction with 4D-Humans : SMAL mesh reconstruction with AniMer

Figure 9: Intermediate mesh reconstruction with template-based 3D pose and shape estimation models.

A.1 DATASETS AND BASELINES

Synthetic datasets. DeformingThings4D (DT4D) (Li et al},2021) is a large-scale synthetic dataset
of non-rigidly deforming objects, featuring 1,972 animation sequences across 147 characters from
31 categories made by CG experts. We specifically select animal motion sequences (DT4D-animals)
for evaluation. We collect 20 pairs of animations, each pair sharing identical pose parameters but
differing in character shape. For humanoid characters, we utilize Mixamo (Adobe)) to acquire
12 character-motion pairs of discrete motions. Example datasets URL for animal and humanoid
datasets are provided in our index.html. Code and full datasets will be released for reproducibil-

1ty.

To generate the monocular video, we render source animations from the DT4D and Mixamo datasets
at a resolution of 256x256 using PyTorch3D’s PerspectiveCamera, ensuring consistent view-
point changes by varying camera azimuth within +30°. Untextured DT4D sequences are textured
with texture maps generated from TexPainter (Zhang et al.| 2024b)) to improve visual realism.

Real-world videos. For real-world videos collected from different sources (Daley, |n.d.; Nicky Pe,
n.d.; Perazzi et al., [2016), we clip and resize the videos at a resolution of 256x256. While syn-
thetic datasets provide ground-truth camera configurations and global orientation alignment between
source and target sequences, real-world videos lack such information; thus, we assume a fixed cam-
era for real-world videos. To align the 3D target mesh with the source video’s object orientation and
scale for motion transfer, we adopt a render-and-compare strategy guided by semantic correspon-
dences. Specifically, we pre-render target mesh with candidate camera poses and evaluate each pose
by calculating patch-wise feature cosine similarity to the source frame. The camera pose yielding the
maximum similarity serves as our initial alignment, providing a stable and semantically grounded
initialization for subsequent optimization.

Implementation of Composite baselines. As described in Sec. 4]in main paper, we compare our
method with composite pipelines that first reconstruct 3D source meshes from 2D videos, followed
by 3D-to-3D motion retargeting. Intermediate reconstructions are obtained by fitting parametric
templates to each video frame: SMPL (Loper et al., 2015) for humans and SMAL (Zuffi et al.
2017) for quadrupeds (see Fig[9] for reconstruction examples).

For humanoid motion transfer on the Mixamo dataset, we first extract SMPL meshes using 4D-
Humans (Goel et al.l 2023), then apply SPT (Liao et al., |2022) and NPR (Yoo et al., 2024) with
pretrained checkpoints based on the SMPL model. For quadruped experiments on DT4D, we train
NPR’s pose extractor and shape applier modules using SMAL meshes reconstructed from monocular
videos via AniMer (Lyu et al.||[2024).

A.2 IMPLEMENTATIONAL DETAILS

Skeletal motion field. The skeletal motion field is parameterized by MLPs. Temporal inputs are first
processed using sinusoidal embeddings (13-dimensional), and subsequently passed through a two-
layer embedding network producing a 30-dimensional temporal representation. This representation
is then fed into an 8-layer MLP featuring 256 hidden units and a skip connection at the fourth layer.
The MLP outputs are then directed to a 2-layer global translation head predicting 3D translation
vectors, and a 2-layer joint rotation head predicting normalized quaternions. Together, these outputs
define SE(3) transformation governing the skeletal motion.

Motion regularizers. Our method employs four distinct motion regularizers to ensure stable and
plausible motion. To prevent excessive motions during early training, we apply an L; penalty jointly
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to global translations and joint rotations:

J t
[8g1oballt + 2251 75111
['trans = >\trans s 7 =1 ) (11)

where A¢rans 18 the regularization weight, 5élobal the global translation vector at frame ¢, 1";- the
rotation angle for joint j at frame t, and J the number of joints.

To enforce temporal smoothness, we additionally penalize frame-to-frame motion:
|1> : (12)

Following Yao et al. (Yao et al., 2025)), we impose 2D projection constraints on 3D points sampled
along the articulated skeleton. First, we extract 2D skeleton points p, ... from the source fore-
ground mask M!_ via a morphological thinning algorithm (Zhang & Suen, [1984). Then, at each
frame ¢, we sample a set of 3D points ¢* on the deformed skeleton, project them into the image plane

using the camera projection 7;, and penalize their misalignment to the 2D skeleton:

ﬁchamf - /\chamf CDél (pékeletony Wt(ct))a (13)

where CDy, denotes the Chamfer distance (Fan et al.l 2017) under the ¢; norm, and Acpams is a
hyperparameter that controls the regularization strength.

J
£smooth = )\smooth (ZHT; - T;'_l ||1 + H(s;lobal - 6;1_0%)8.1
7=1

where Agmootn 18 the smoothness weight.

To ensure each joint remains within its assigned skinning region, we penalize the mean squared
error between the deformed joint positions j and the centroids of their corresponding Gaus-
sian groups—computed as weighted averages of the Gaussian means p with normalized skinning
weights:

J N
~T 2 ~ Wi 4
‘Cskin = Askin ZHZU}” Hi — L7JH y  Wij = %7 (14)
=1 i=1 D=1 Wity
where w € RV are the LBS skinning weights, u € R™>3 the Gaussian mean positions, J €
R7*3 the joint positions, and Ay, the skinning regularization weight.

Training details. As described in Sec. of the main paper, we balance the rendering and key-
point losses with Arenger = 1.0 and Aeypoine = 0.001. The motion regularization weights are set to
Atransform = 0.005, Agmooth = 0.001, Achams = 0.0001, and Mg, = 0.1.

Training follows a two-stage schedule over 10K iterations using Adam optimizer (Kingma & Ba,
2014). The first 500 iterations optimize only global scale, bone length, and global translation for
stable initialization. Subsequently, all parameters including shape parameters are jointly optimized
with exponential learning rate decay.

We employ differentiated update frequencies based on parameter characteristics. Frame-specific
parameters including articulated 3D Gaussians and local motion heads are updated per frame to
capture temporal details. Shape parameters such as bone length and global scale, and the global
translation are updated every 10 frames to maintain cross-frame consistency and motion smoothness.

A.3 ABLATION ON DESIGN CHOICES

Shape parameterization. Shape parameters are essential for accurately capturing both global and
local motion dynamics and ensuring consistent spatial orientation (Sec. Inadequate scale reg-
ularization causes temporal drift toward the camera, where optimization compensates for scale dis-
crepancies through global translation (shown in the supplementary videos). This compensation
disrupts orientation estimation and motion coherence. In contrast, our complete formulation with
comprehensive shape parameters preserves geometric consistency and produces stable motion re-
constructions.

Dense keypoint loss. As described in Sec.4.3, eliminating dense correspondence guidance leads to
misaligned motion cues and misperception of semantic parts. Results illustrated in Fig[I0] demon-
strate that our dense semantic correspondence effectively encodes object-level semantics, enabling
spatially consistent and semantically faithful motion generation.
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Table 3: Ablation Table 4: Ablation on num-
on keypoint confi- ber of keypoints. While 1K
dence thresholding. points yield slight improve-
PMD and FID de- ments, performance remains
crease slightly with comparable even at sparse
higher thresholds but points (#50).

remain stable across

the tested range. #Keyp. PMD | FID |

Source frame Target mesh Ours (full)  wo/ keypoint loss

Figure 10: Qualitative ablation on keypoint loss.
When arms and legs lie nearby in the 2D plane of
the source video, the absence of semantic guidance
causes overlaps between semantically differentbody Thr. PMD| FID |

50 0.0020 0.0191

parts, resulting in incorrect motion reconstruction. 100 0.0020 0.0185
0.0  0.0020 0.0178 500 0.0019 0.0179
0.7 0.0019 0.0179 1000 0.0018 0.0171
0.9  0.0018 0.0171 1500 0.0020 0.0185
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Figure 11: Ablations on semantic keypoints. Left: effects of confidence threshold level (PMD, FID). Right:
effects of keypoint counts (PMD, FID).

We sample 1K keypoints with confidence above 90% to minimize the effect of outliers. Tab.|3|and
Fig. [TT] show that performance remains consistent across different confidence thresholds, demon-
strating robustness to noisy correspondences. Tab.[4]and Fig. [[T]suggest stable behavior of keypoint
density effects across guidance densities, with slight improvement on 1K points.

Rigging module ablation. We evaluate the impact of rigging quality on our DT4D dataset, includ-
ing quadrupeds and non-quadrupeds, by comparing three rigging modules: RigNet (Xu et al.,|2020),
MagicArticulate (Song et al., 2025), and UniRig (Zhang et al., 2025). Enhanced rigging priors gen-
erally improve performance, as shown in Tab. 5| (DT4D-sub). We observe that skinning weight
quality significantly affects results. While MagicArticulate and UniRig perform well on the subset,
their performance varies on the full dataset, particularly for large motions (Tab. 5] DT4D-all). These
results demonstrate the importance of high-quality skinning weights and suggest potential benefits
from incorporating adaptive skinning refinement mechanisms.

Geometry-aware semantic features. Distinguishing geometrical differences (e.g., left/right limbs)
is crucial for accurate motion transfer. We utilize a pretrained geometry-aware semantic feature ex-
traction module (Yang et all, 2020) for dense correspondence matching. Tab. [6 ablates this design
choice, comparing motion transfer performance when using alternative pretrained semantic features
from foundation models (Stable Diffusion (Rombach et al.,[2022)) and DINOv2 (Oquab et al., 2023)))
for correspondence matching. Performance significantly drops with SD or DINOvV2 features, con-
firming the effectiveness of geometry-aware features for motion transfer tasks.

A.4 PERFORMANCE ANALYSIS

Performance across morphological variations. Our dataset encompasses diverse morphological
differences between source and target subjects. We quantify these variations using two metrics:
(1) global scale measured by mesh volume ratio to capture overall size differences, and (2) shape
distance measured by Chamfer Distance (CD) on normalized meshes to assess geometric variations
independent of scale. The dataset spans volume ratios from 1.08x to 16.00x and shape distances
from 0.0004 to 0.0023, enabling comprehensive evaluation across morphological diversity.

Regarding global size, we find no correlation between performance and global scale differences.
Dividing our dataset into three groups by scale magnitude, low and high groups achieve similar mean

16



Under review as a conference paper at ICLR 2026

Table 5: Ablation study on rigging modules. Performance  Table 6: Ablation on semantic features.
comparison across different rigging methods on DT4D dataset ~ Our framework achieves best performance

subsets. DT4D-sub contains scenes with relatively small mo- with geometry-aware semantic features by
tions. "CAMO + Best” represents oracle results using the op- distinguishing geometrical relationships be-
timal method for each individual scene. tween body parts.

DT4D-sub DT4D-all Method PMD | FID |
Method PMD| FID| PMDJ| FIDJ| CAMO + Stable Diffusion 0.0028 0.0561
CAMO + RigNet 0.0018 0.0153  0.0019  0.0159 giﬁg : gIN(ZVZ 888?; 88131
CAMO + MagicArticulate ~ 0.0016  0.0094  0.0021  0.0117 co-Aware ; ;
CAMO + UniRig 0.0015  0.0110 0.0026  0.0168
CAMO + Best 0.0012  0.0086 0.0015 0.0108

Table 7: Performance on DT4D dataset —— r——
according to the morphological varia- Rl [N 015] —— NPR
tions. Shape differences increase substan- _ oo TeansferdD o] T Tremsertd |
tially across groups (up to 341% from low to 2 oo | é T .
high), yet performance degrades gracefully. = /A\\e 003 .\-’/'
0005 | | t - é_—./.
Shape Dift. PMD | FID| 000 v e - o et
Motion Scale Motion Scale

Low 0.00084 4+ 0.00036 0.0012 0.0091

Med 0.00211 4 0.00016 0.0017 0.0205  Figure 12: Performance on DT4D dataset according to the
High 0.00287 4 0.00036 0.0026 0.0218 motion scale. Our method outperforms baselines at all motion
levels with minimal degradation on large-motion sequences.

PMD (0.00150 vs 0.00136). Note that this requires the target mesh to initially lie within the camera
frustum for valid optimization signals. Regarding shape differences, we categorize source-target
pairs into three groups by shape distance. As shown in Tab.[7} our method achieves optimal results
with minimal morphological differences while maintaining robust performance under considerable
shape variations.

Performance on different motion scales. We define motion magnitude as the maximum average
vertex displacement from the first frame across the sequence, computed in normalized coordinate
space for cross-mesh comparability. Our dataset spans diverse motion scales (min: 0.03, max: 0.23,
avg: 0.11), which we categorized into three distinct groups ranging from small to large motion.
Fig.[I2]demonstrates consistent performance across motion scales, confirming robustness to motion
scale variations. This robustness stems from our time-conditioned MLP jointly optimizing across
frames to capture global trajectories and temporal dependencies, while the joint-rotation head pro-
vides frame-specific refinements, maintaining global coherence with localized flexibility.

Performance on challenging cases. We evaluate our method on two challenging scenarios that can
potentially compromise performance: long video sequences and thin geometric structures.

Our method maintains robust performance on sequences up to 300 frames without degradation. To
evaluate longer sequences, we synthetically extended videos by repeating motions. While perfor-
mance remains stable at 300 frames (PMD: 0.0016), it degradation gently starts from 600 frames
(PMD: 0.0021). This limitation stems from our fixed-capacity MLPs. As sequence length increases,
mapping sinusoidal time embeddings to motion parameters demands greater representational ca-
pacity. When this complexity exceeds the network’s capacity, it struggles to capture fine-grained
variations.

Challenging structures, such as thin bird wings, present difficulties for both visual guidance and
mesh deformation. Their 2D projected regions cover only a few pixels, yielding limited visual cues,
while their slender geometry is easily distorted during deformation. As shown in Fig[T3] our method
robustly addresses these geometrically challenging scenarios within reasonable performance. This
robustness is enabled by 2D skeletal projection constraints and temporal smoothness regularization,
which jointly enforce motion consistency across frames (Sec[A.T).

Failure case analysis. Despite the robust performance, CAMO exhibits limitations when faced
with significant occlusion or ambiguous left-right limb distinction in the source video, leading to
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Figure 13: Qualitative results on challenging case with thin structure. Our method achieves robust perfor-
mance on characters with thin structures, which may pose fundamental difficulties in motion transfer.
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Figure 14: Failure cases. Representative failure cases include misperception of geometric semantics leading
to left-right confusion (a) and pose estimation errors due to severe occlusion in the source video (b).

less faithful motion transfer. Specifically, Fig.[T4] (a) illustrates a failure case where motion quality
degrades due to an unclear differentiation of the left and right legs. Fig.[T4] (b) highlights per-
formance degradation attributed to extensive self-occlusion, where insufficient visual information
hinders accurate motion reconstruction.

A.5 EXTENDED TABLES AND QUALITATIVE VIDEOS

Quantitative evaluations across all scenes We provide detailed quantitative results for all evalu-
ation scenes from the DT4D and Mixamo datasets in Tab. [8] Tab.[9] and
Tab.[I0] These per-scene metrics supplement the averaged results presented in Tab. 1 of the main pa-
per, consistently demonstrating our method’s superior performance across diverse motion categories
and scenarios.

Qualitative Video Results Qualitative comparisons between our approach and baseline methods
are available via index .html file, or can be directly accessed in . /static/videos.

A.6 ETHICAL CONSIDERATIONS

Ethical considerations We acknowledge ethical concerns such as potential misuse for deceptive
content and privacy issues when using videos of identifiable individuals. As with any motion syn-
thesis technology, responsible development and deployment practices are important to mitigate risks
of generating misleading media.

Applications using human motion data raise privacy and consent considerations, particularly when
source videos contain identifiable individuals. While our method transfers motion rather than iden-
tity, ethical data collection and privacy protection remain important for deployment. This work is
intended for beneficial applications in digital content creation, robotics, and virtual reality, and we
advocate for its use in alignment with ethical guidelines and legal frameworks.
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Table 8: Quantitative evaluation across all scenes from DT4D-Quadrupeds. Lower is better for both PMD
and FID (). Best and second-best results are highlighted in red and orange, respectively. The complete set of

source—motion—target pairs used in this evaluation will be released.

Method Punch Walk1 Death Walk2 KickBack
PMD, FID|, PMD| FIDJ|, PMD| FID|, PMDJ|] FID| PMD| FID|
NPR* 0.0027 0.0961 0.0027 0.1535 0.0039 0.0215 0.0010 0.0118 0.0024 0.0245
Transfer4dD 0.0032 0.0145 0.0136 0.1395 0.0047 0.0399 0.0019 0.0099 0.0045 0.0383
Ours 0.0012 0.0074 0.0009 0.0029 0.0020 0.0343 0.0003 0.0043 0.0020 0.0211
Method Swim Jump Walk3 Aggression Howl
PMD,| FID|, PMD,| FID, PMD| FID, PMD| FID| PMD| FID|
NPR+ 0.0030 0.0676 0.0024 0.0526 0.0022 0.0369 0.0025 0.0489 0.0022 0.0285
Transfer4D 0.0062 0.0837 0.0026 0.0055 0.0078 0.0388 0.0042 0.0075 0.0026 0.0079
Ours 0.0040 0.0385 0.0013 0.0085 0.0005 0.0023 0.0019 0.0335 0.0015 0.0141
Method Hit Back Run Stop Run Forward Drink Hop Forward
PMD, FID|, PMD| FID, PMD| FID|, PMD| FID| PMD| FID|
NPR+ 0.0013 0.0234 0.0059 0.3740 0.0083 0.0269 0.0043 0.0152 0.0026 0.0227
Transfer4D 0.0014 0.0434 0.0123 0.2292 0.0123 0.0303 0.0065 0.0207 0.0029 0.0485
Ours 0.0008 0.0077 0.0024 0.0377 0.0057 0.0261 0.0016 0.0134 0.0013 0.0050

Table 9: Quantitative evaluation across all scenes from the Mixamo dataset. Lower is better for both PMD
and FID (). Best and second-best results are highlighted in red and orange, respectively. The complete set of
source—motion—target pairs used in this evaluation will be released.

Method  JumpingJacks Running SideStep SkinningTest ~ StandingJump  SwingDance

PMD| FID| PMD| FID| PMD| FID| PMD| FID| PMD| FID| PMD| FID|
SPT+  0.0016 0.0047 0.0030 0.0069 0.0022 0.0170 0.0036 0.0376 0.0025 0.1816 0.0019 0.0143
NPR*  0.0017 0.0027 0.0287 0.0194 0.0042 0.0308 0.0092 0.0656 0.0084 0.2369 0.0029 0.0167

Transfer4D 0.0077 0.0107

0.0122 0.0450

0.0066 0.0294

0.0086 0.0664

0.0098 0.5631

0.0050 0.0108

Ours  0.0010 0.0035 0.0042 0.0229 0.0013 0.0089 0.0042 0.0195 0.0033 0.1728 0.0018 0.0087
Method Walking Floating HipHopDance Header Dying Snatch

PMD| FID|, PMD, FID| PMD| FID| PMD| FID|, PMD| FID| PMD| FID|

SPT+  0.0018 0.0079 0.0074 0.0192 0.0027 0.0047 0.0036 0.0156 0.0025 0.0314 0.0024 0.0982

NPR*  0.0036 0.0057 0.0084 0.0059 0.0032 0.0028 0.0089 0.0177 0.0111 0.0772 0.0282 0.1798

Transfer4D 0.0113 0.0274

0.0043 0.0055

0.0034 0.0037

0.0071 0.0170

0.0072 0.0489

0.0173 0.1981

Ours  0.0011 0.0027 0.0037 0.0029 0.0032 0.0025 0.0026 0.0042 0.0043 0.0416 0.0029 0.0746

Table 10: Quantitative evaluation across all scenes from the DT4D-others dataset. Lower is better for
both PMD and FID ({). Best results are highlighted in bold. The DT4D-Others dataset contains animals that
cannot be reconstructed with parametric templates, including birds, whales, dinosaurs, dragons, and elephants.
The complete set of source-motion-target pairs will be released.

Method Fly Attack Running Walk Swimming
PMD| FID| PMD| FID| PMD| FID| PMD| FID| PMD| FID |

0.0283 0.0971 0.0086 0.0409 0.0162 0.0165 0.0119 0.2455 0.0015 0.0024
0.0045 0.0415 0.0022 0.0122 0.0033 0.0028 0.0006 0.0020 0.0007 0.0034

TransferdD
Ours
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