

000 001 002 003 004 005 CAMO: CATEGORY-AGNOSTIC 3D MOTION TRANS- 006 FER FROM MONOCULAR 2D VIDEOS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022

ABSTRACT

011 Motion transfer from 2D videos to 3D assets is a challenging problem, due to
012 inherent pose ambiguities and diverse object shapes, often requiring category-
013 specific parametric templates. We propose CAMO, a category-agnostic frame-
014 work that transfers motion to diverse target meshes directly from monocular 2D
015 videos without relying on predefined templates or explicit 3D supervision. The
016 core of CAMO is a morphology-parameterized articulated 3D Gaussian splatting
017 model combined with dense semantic correspondences to jointly adapt shape and
018 pose through optimization. This approach effectively alleviates shape-pose am-
019 biguities, enabling visually faithful motion transfer for diverse categories. Ex-
020 perimental results demonstrate superior motion accuracy, efficiency, and visual
021 coherence compared to existing methods, significantly advancing motion transfer
022 in varied object categories and casual video scenarios.

031 Figure 1: **Conceptual overview of CAMO.** Our method directly transfers articulated motion from 2D video
032 to diverse target objects, without requiring 3D reconstruction of the source or any parametric templates.
033

034 1 INTRODUCTION 035

036 Efficient 3D character animation remains an important goal in both computer graphics research
037 and content industries such as film (Bregler, 2007), interactive media (Rachmavita, 2020), and
038 robotics (Arduengo et al., 2021). Motion transfer techniques (Aberman et al., 2020; Liao et al.,
039 2022) provide an efficient alternative to manual keyframing or marker-based motion capture by en-
040 abling the reuse of existing animations across different characters.

041 However, a major limitation of many existing methods is their reliance on precomputed 3D se-
042 quences, such as articulated skeletons (Aberman et al., 2020) or sparse 3D keypoints (Chen et al.,
043 2023). Acquiring such high-fidelity 3D data is often expensive or impractical in real-world scenar-
044 os. To address this data scarcity, recent works (Wang et al., 2023; Muralikrishnan et al., 2024) have
045 explored extracting motion cues directly from readily accessible 2D monocular videos. A common
046 strategy within this domain involves a two-stage reconstruct-then-retarget approach. In this process,
047 a 3D proxy representation of the source subject is first reconstructed from the 2D video, and this
048 intermediate representation is then fed into established 3D-to-3D motion transfer techniques.

049 Despite demonstrating effective retargeting performance under controlled conditions, these sequen-
050 tial pipelines inherently possess several limitations. A primary limitation stems from their depen-
051 dence on category-specific priors, such as parametric template models (Loper et al., 2015; Zuffi
052 et al., 2017), which require large-scale, high-fidelity training data. Although models built on such
053 priors (Kanazawa et al., 2018; Zhang et al., 2021; Rueegg et al., 2022) achieve robust and trans-
ferable pose estimation within the structural biases of their target domains, their ability to generalize

054 to diverse shapes and semantic categories remains limited. Furthermore, the cascaded structure
 055 of these pipelines can lead to error propagation, where inaccuracies from the reconstruction stage
 056 detrimentally impact the fidelity of the final transferred motion.

057 Our category-agnostic motion transfer framework, **CAMO**, adopts an alternative strategy to conventional
 058 reconstruct-then-retarget pipelines. Rather than relying on intermediate 3D reconstructions of
 059 the source, we directly project the target character into the 2D observation space, enabling pose
 060 optimization purely through image-space supervision. Specifically, we repurpose articulated 3D
 061 Gaussian splatting (Yao et al., 2025) (articulated-GS), originally developed for reconstructing artic-
 062 ulated animatable objects from 2D videos, to facilitate motion transfer.

063 CAMO extends this by explicitly modeling morphological differences between source and target
 064 characters. Structural variations are decomposed from the target’s original shape and adapted to
 065 transfer the source motion while preserving topology. To complement this morphology-adaptive
 066 optimization and further mitigate shape-pose ambiguity, dense semantic correspondences are es-
 067 tablished between the 2D source frames and the 3D target mesh, providing semantic guidance for
 068 coherent pose recovery. This integration of structural modeling and semantic correspondence guides
 069 both visually plausible and semantically coherent pose optimization processes, enabling robust gen-
 070 eralization across diverse categories and complex motions. Fig. 1 illustrates the overview of CAMO.

071 We comprehensively validate CAMO on synthetic benchmarks spanning diverse categories such
 072 as humanoids, quadrupeds, and other non-standard animals, as well as on real-world monocular
 073 videos. Across all these settings, CAMO consistently preserves motion fidelity and generalizes
 074 across diverse morphologies, achieving substantial improvements in both PMD (\downarrow) and FID (\downarrow), with
 075 reductions reaching up to 85% on the challenging categories compared to state-of-the-art methods.

077 2 RELATED WORK

080 **Motion transfer between 3D assets.** Traditional techniques in motion transfer have leveraged 3D
 081 skeletal structures to enable efficient retargeting across various characters (Gleicher, 1998; Villegas
 082 et al., 2018; Aberman et al., 2020; Villegas et al., 2021; Chen et al., 2023). These approaches
 083 commonly build upon category-specific skeletal priors, which enable effective performance within
 084 their target domains but constrain their generalization to categories outside those domains.

085 Beyond skeleton-based approaches, skeleton-free deformation methods (Gao et al., 2018; Wang
 086 et al., 2020; Liao et al., 2022; Wang et al., 2023; Muralikrishnan et al., 2024; Yoo et al., 2024) are
 087 independent from explicit skeletal models, relaxing categorical constraints. Nevertheless, these ap-
 088 proaches typically rely on high-quality 3D motion data, which is generally not available for objects
 089 across diverse categories. As a result, generalizing these methods to a wider variety of object cat-
 090 egories remains a notable challenge, primarily due to the substantial cost and scarcity of such 3D
 091 data.

092 **Shape and pose estimation from 2D videos.** Another line of research focuses on capturing 3D
 093 pose from monocular video. These methods achieve impressive reconstructions within specific do-
 094 mains, often leveraging parametric templates. Representative works include human pose estima-
 095 tion (Zhang et al., 2021; Goel et al., 2023) with SMPL (Loper et al., 2015), and quadruped pose
 096 estimation (Rüegg et al., 2023; Lyu et al., 2024) with SMAL (Zuffi et al., 2017). Although effective
 097 in domains with abundant 3D scan data, these methods are constrained by their reliance on paramet-
 098 ric templates, which limits generalization to categories without extensive 3D pose annotations.

099 Recent approaches (Yao et al., 2022; Wu et al., 2023a;b; Aygun & Mac Aodha, 2024; Li et al., 2024)
 100 explore parametric template-free construction of articulated models from image collections. While
 101 promising for intra-class generalization without strong parametric template priors, these methods
 102 often struggle to generalize across categories. Uzolas et al. (2023) and Yao et al. (2025) inherently
 103 avoid this limitation by employing per-scene optimization to directly decompose shape and skeletal
 104 pose from individual dynamic scene observations. However, as their focus lies in reconstruction,
 105 their ability to retarget motion to novel characters remains underexplored.

106 Specifically targeting character animation, auto-rigging methods (Song et al., 2025a; Zhang et al.,
 107 2025a) predict the skeleton and skinning weights of a 3D asset to apply motion extracted from
 108 videos or reconstructed mesh sequences. However, these methods typically require a complete mor-

108 phological (Song et al., 2025a) or skeletal structural correspondence (Zhang et al., 2025a) between
 109 the motion source and the target 3D character.

110 **2D to 3D motion transfer.** Existing 3D-to-3D motion transfer frameworks (Wang et al., 2023; Mu-
 111 ralikrishnan et al., 2024) extend to the 2D domain by combining parametric template-based pose
 112 and shape estimators (Zhang et al., 2021; Rueegg et al., 2022) with 3D pose transfer techniques.
 113 These shape estimators are typically demonstrated on humanoid or quadruped characters respec-
 114 tively, where the reliance on categorical templates (Loper et al., 2015; Zuffi et al., 2017) fundamen-
 115 tally limits their ability to generalize to novel categories. Moreover, we observe that sequentially
 116 combining independently trained components often leads to cumulative errors, ultimately degrading
 117 the fidelity of transferred motion.

118 Maheshwari et al. (2023) propose a category-agnostic approach that removes template priors, trans-
 119 ferring motion from RGB-D videos to 3D meshes by estimating skeletal motion from reconstructed
 120 meshes; its performance, however, hinges on accurate depth input, limiting robustness in casual or
 121 monocular RGB settings. In contrast, Fu et al. (2024) and Zhang et al. (2024a) achieve 2D-to-3D
 122 motion transfer without depth by reconstructing motion with neural bones (Yang et al., 2022) or
 123 by leveraging image-to-3D generative models (Liu et al., 2023). Despite improved generalizability,
 124 these approaches remain tied to intermediate reconstruction stages (e.g., pseudo-3D supervision or
 125 skeletonization), which makes them sensitive to reconstruction errors and less robust under large
 126 morphological variations.

127 In contrast, we directly leverage 2D RGB videos as motion sources through morphology-adaptive
 128 shape and pose parameter optimization. By bypassing intermediate 3D reconstruction, our approach
 129 mitigates reconstruction errors and enables robust motion transfer across diverse object categories
 130 and morphological variances without relying on category-specific templates.

132 3 METHODS

133 Our goal is to transfer articulated motion from a monocular video to arbitrary 3D characters. We
 134 take as input a static 3D target mesh \mathcal{M}^{tgt} and a source monocular RGB video with paired fore-
 135 ground masks $\{I_t, M_t\}_{t=0}^T$, where I_t is a frame from time t , and M_t is obtained via off-the-shelf
 136 segmentation model (Kirillov et al., 2023). We aim to produce a temporally coherent sequence of
 137 deformed meshes $\{\mathcal{M}_t^{tgt}\}_{t=0}^T$ that faithfully reproduces the source motion.

138 We first encapsulate the target mesh with an Articulated-GS (Yao et al., 2025) representation with
 139 pose parameters (Sec. 3.1). We then parameterize morphology using learnable bone lengths, a global
 140 scale, and local Gaussian offsets (Sec. 3.2). This representation disentangles shape variation from
 141 pose dynamics. Finally, all shape and pose parameters are optimized jointly via differentiable ren-
 142 dering and dense semantic correspondences (Sec. 3.3–3.4), yielding semantically coherent motion
 143 aligned to the source. Fig. 2 illustrates the full pipeline.

146 3.1 ARTICULATED 3D GAUSSIAN SPLATTING FOR IMAGE-SPACE OPTIMIZATION

147 Retargeting motion from a monocular video typically requires estimating the 3D geometry of the
 148 source subject. However, inferring accurate 3D pose and shape from 2D inputs is inherently am-
 149 biguous. Reliance on these estimated 3D priors often introduces errors that propagate to the final
 150 result. We propose a direct optimization strategy to address this issue. We optimize the target char-
 151 acter to align directly with the 2D source video observations. This approach bypasses the need for
 152 an explicit intermediate 3D representation of the source.

153 To this end, we employ Articulated 3D Gaussian Splatting (Articulated-GS) (Yao et al., 2025). This
 154 framework defines the target character using a single, unified canonical shape. We deform this time-
 155 invariant geometry via Linear Blend Skinning (LBS) to match the pose in each video frame. Crit-
 156 ically, our optimization updates this single canonical shape to satisfy projection constraints across
 157 all time steps and camera views. This enforces geometric consistency throughout the entire motion
 158 sequence.

159 **Target Representation.** We represent the target character using a set of 3D Gaussians attached
 160 to a kinematic skeleton $\mathcal{T} = (\mathcal{J}, \mathcal{A})$, where \mathcal{J} denotes the set of joints and $\mathcal{A} = \{A_j\}_{j \in \mathcal{J} \setminus \{j_r\}}$

Figure 2: **Overview of the morphology-adaptive articulated Gaussian splatting pipeline.** Given a target mesh, we parameterize it with deformable 3D Gaussians. A time-conditioned MLP (f_{MLP}) predicts skeletal transformations driven by input time embeddings. Crucially, our pipeline employs morphology adaptation (Sec. 3.2) to align the target’s canonical structure, followed by LBS-based deformation (Sec. 3.1) for articulation. The framework is optimized end-to-end using differentiable rendering ($\mathcal{L}_{\text{render}}$) and semantic keypoint constraints ($\mathcal{L}_{\text{keypoint}}$) consistent with the source video.

maps each joint j to its parent A_j , with j_r being the root. Each Gaussian G_i is parameterized by its mean $\mu_i \in \mathbb{R}^3$, rotation $q_i \in \mathbb{R}^4$, scale $s_i \in \mathbb{R}^3$, opacity $\sigma_i \in [0, 1]$, and spherical harmonic coefficients $\mathcal{SH}_i \in \mathbb{R}^K$. Unlike previous works that initialize from sparse point clouds, we leverage the explicit geometry of the target mesh to initialize these Gaussian positions μ_i (Sec. 3.2). For unrigged meshes, we employ automatic rigging methods (Xu et al., 2020; Zhang et al., 2025b) to establish the skeletal structure.

Kinematic Deformation. To capture temporal dynamics, a time-conditioned MLP, f_{MLP} , predicts the skeletal pose for each timestamp t . Given a sinusoidal time embedding $\text{emb}(t)$, the network outputs the root translation and relative joint rotations:

$$\{\{\theta_j^t\}_{j \in \mathcal{J}}, \delta_{\text{global}}^t\} = f_{MLP}(\text{emb}(t)), \quad (1)$$

where θ_j^t is the unit quaternion for joint j and δ_{global}^t is the global translation. These predictions drive the deformation of the canonical Gaussians. The deformed position μ_i^t of Gaussian i is computed via LBS:

$$\mu_i^t = \delta_{\text{global}}^t + \sum_{j \in \mathcal{J}} w_{ij} \mathbf{T}_j^t \bar{\mu}_i, \quad \mathbf{T}_j^t = \prod_{k \in \text{P}(\text{root}, j)} \bar{\mathbf{T}}_k^t, \quad \bar{\mathbf{T}}_k^t = \begin{pmatrix} \mathbf{R}_k^t & \mathbf{J}_{A_k} - \mathbf{R}_k^t \mathbf{J}_{A_k} \\ 0 & 1 \end{pmatrix}. \quad (2)$$

Here, $\bar{\mu}_i$ is the canonical center, w_{ij} is the skinning weight, and \mathbf{R}_k^t is the rotation matrix derived from θ_k^t . This formulation ensures that the Gaussians move coherently according to the skeletal hierarchy.

Differentiable Rendering. The deformed Gaussians are rasterized into 2D images to compute the optimization loss. For a viewpoint v and pixel u , the color $\mathcal{C}(u)$ is derived via alpha compositing:

$$\mathcal{C}(u) = \sum_{i \in \mathcal{N}} T_i \alpha_i \mathcal{SH}(\mathbf{sh}_i, v), \quad T_i = \prod_{j=1}^{i-1} (1 - \alpha_j). \quad (3)$$

This differentiable rendering process allows us to backpropagate gradients from the 2D projection error directly to the 3D pose and shape parameters, bridging the domain gap between the 2D source and 3D target.

3.2 MORPHOLOGY-ADAPTIVE SHAPE PARAMETERIZATION

Standard Articulated-GS assumes a fixed skeletal topology, which restricts its ability to transfer motion between characters with differing limb proportions. To address this, we introduce a morphology-adaptive parameterization that explicitly disentangles structural variations from pose dynamics. In this paper, we use the term *morphology* to refer to the character’s limb proportion, global body scale, and local shape details. By optimizing these time-invariant parameters alongside time-variant poses, our framework enables the target character to adapt its shape to the source motion while preserving kinematic coherence (Fig. 3 (b)).

Learnable Bone Lengths. We first relax the fixed skeleton constraint by assigning a learnable scalar length $\ell_b \in \mathbb{R}^+$ to each bone $b \in \mathcal{B}$. Given the unit direction vector $v_b \in \mathbb{R}^3$ from a parent to a child

Figure 3: **Deformable morphology parameterization.** (a) We initialize the target character with skeleton rigging, acquiring the topological structure and skinning weights. (b) Morphology-adaptive parameterization of structural variations. (c) During optimization, shape parameters deform the target’s morphological structure to align with the morphology of the source.

joint, the rest-pose position of any joint j is determined by the cumulative length of bones along the kinematic chain:

$$\mathbf{j}_{rest}(j) = \mathbf{j}_{rest}(j_{root}) + \sum_{b \in P(\text{root}, j)} \ell_b \mathbf{v}_b. \quad (4)$$

This allows the skeleton to stretch or shrink segments (e.g., legs or arms) to match the source subject’s proportions purely through optimization.

Morphology-Aware Gaussian Initialization. Crucially, the surface geometry must adapt to these skeletal changes. Instead of treating Gaussian positions as independent variables, we parameterize the mean μ_i of each Gaussian G_i relative to the underlying bone structure. We define μ_i as a displacement from a skeleton-anchored reference point p_i :

$$\mu_i = p_i + o_i, \quad \text{where } p_i = \sum_{j \in \mathcal{J}} w_{ij} \mathbf{j}_{rest}(j), \quad (5)$$

where p_i represents the coarse geometry derived from joint positions $\mathbf{j}_{rest}(j)$ LBS weights w_{ij} , while the learnable offset $\mathbf{o}_i \in \mathbb{R}^3$ captures fine-grained local shape deviations. This formulation ensures that when bone lengths ℓ_b change, the associated Gaussians move coherently with the skeleton, preventing geometric artifacts.

Global Scale and Canonical Shape. Finally, to resolve the scale ambiguity inherent in monocular video, we introduce a global scaling factor $s_{global} \in \mathbb{R}^+$. This factor uniformly scales the entire morphology-parameterized character. The final canonical position $\bar{\mu}_i$ used for deformation (Eq. 2) is obtained by:

$$\bar{\mu}_i = s_{global} \cdot \mu_i. \quad (6)$$

By jointly optimizing bone lengths (ℓ_b), local offsets (\mathbf{o}_i), and global scale (s_{global}), our parameterization allows the target mesh to conform to the source’s morphology while maintaining its original topological structure (Fig. 3 (c)).

Discussion. Our morphology parameterization provides a structural basis for mitigating the shape-pose ambiguity inherent in 2D-to-3D motion transfer. By explicitly decoupling global scale, skeletal lengths, and local offsets, our formulation promotes geometric identifiability under non-degenerate motion conditions, showing that morphological changes are distinguishable from pose dynamics. This disentanglement facilitates stable optimization by reducing the solution space to physically plausible configurations. We provide a detailed discussion on theoretical analysis in Appendix B.

3.3 TARGET-SOURCE DENSE SEMANTIC CORRESPONDENCE

While our proposed shape parameterization accounts for morphological differences, a key challenge in transferring articulated motion from 2D to 3D remains: *shape–pose ambiguity*. This refers to the inherent uncertainty in disentangling an object’s underlying pose from its observation. Photometric loss provides essential low-level supervision, but relying on it alone may produce motion artifacts, as it captures only visual cues and lacks explicit semantic correspondences between characters. These artifacts can be mitigated by incorporating additional semantic cues, which help disambiguate overlapping projections, particularly when source and target morphologies differ.

Figure 4: **Dense target-source correspondences matching.** We extract robust 2D-to-3D semantic correspondences by matching semantic features between source frames and rendered target views.

To address this, we establish robust 2D-3D semantic correspondences by leveraging pre-trained vision foundation models. Specifically, we utilize an orientation-sensitive feature extractor (Yang et al., 2020) that produces spatially consistent descriptors across varied poses and morphologies, then obtain dense pixel-to-vertex mappings through semantic feature matching between input images and target mesh renderings (Shtedritski et al., 2024). This provides automatic correspondence estimation without requiring manual registration or additional training.

The detailed pipeline of our dense correspondence extraction module is illustrated in Fig. 4. We first compute the similarity score of the dense semantic features extracted by the feature extractor $\phi(\cdot)$ from a source video frame I_t with those from multiple rendered views $\{I_v^{\text{tgt}}\}$ of the target mesh \mathcal{M}^{tgt} . Then, given a source pixel $p \in I_t$ with the extracted feature $\phi(I_t)$, we compute a pooled similarity score $\Sigma_{I_t}(p, x_k)$ for each vertex $x_k \in \mathcal{M}^{\text{tgt}}$ as:

$$\Sigma_{I_t}(p, x_k) = \underset{v, x_k \in \text{vis}(I_v^{\text{tgt}})}{\text{pool}} S(\phi(I_t)[p], \phi(I_v^{\text{tgt}})[\pi_v(x_k)]), \quad (7)$$

where $S(\cdot)$ denotes a cosine similarity, $\pi_v(x_k)$ denotes the 2D projection of vertex x_k onto the rendered image I_v^{tgt} , and $\phi(I_v^{\text{tgt}})[\pi_v(x_k)]$ is the corresponding feature vector at the 2D projected location. The operator pool aggregates similarity scores via max-pooling across all v target-rendered views where x_k is visible.

The best-matching 3D vertex $\tilde{x}_{p,t}^{3D}$ for each pixel p in frame t is obtained by selecting the vertex with the highest pooled similarity score:

$$\tilde{x}_{p,t}^{3D} = \arg \underset{x_k \in \mathcal{V}(\mathcal{M}^{\text{tgt}})}{\max} \Sigma_{I_t}(p, x_k), \quad (8)$$

where $\mathcal{V}(\mathcal{M}^{\text{tgt}})$ denotes the set of vertices of the target mesh. These retrieved 3D points $\tilde{x}_{p,t}^{3D}$ serve as semantic keypoints, providing supervision to guide semantic structure alignment of cross-modality during optimization, as the keypoint loss L_{keypoint} (Sec. 3.4).

3.4 OPTIMIZATION

As formalized in Eq. 1 and visualized in Fig. 2, our primary objective is to recover the target mesh’s time-varying skeletal pose parameters aligned with the source motion, relying solely on 2D observations without ground-truth 3D annotations or any form of pose template prior. The entire framework, composed of morphology-parameterized articulated Gaussians, is optimized end-to-end by minimizing a composite loss function. Our optimization objective combines photometric reconstruction, semantic correspondence, and multiple regularization terms: $\mathcal{L}_{\text{total}} = \lambda_{\text{render}} \mathcal{L}_{\text{render}} + \lambda_{\text{keypoint}} \mathcal{L}_{\text{keypoint}} + \lambda_{\text{reg}} \mathcal{L}_{\text{reg}}$, where the weights balance their respective contributions.

The render loss enforces photometric consistency between the rendered frame \hat{I}_t (from Eq. 3) and the source frame I_t by combining an ℓ_1 term with a SSIM (Wang et al., 2004) term:

$$\mathcal{L}_{\text{render}} = \sum_{t=0}^T \left[(1 - \lambda_{\text{dSSIM}}) \|\hat{I}_t - I_t\|_1 + \lambda_{\text{dSSIM}} (1 - \text{SSIM}(\hat{I}_t, I_t)) \right]. \quad (9)$$

The keypoint loss supervises geometric alignment by minimizing projection error between source image pixels and their matched 3D vertices derived from dense semantic correspondences:

$$\mathcal{L}_{\text{keypoint}} = \sum_{t=0}^T \sum_{p \in \mathcal{P}_t} \|p - \pi_t(\tilde{x}_{p,t}^{3D})\|_2, \quad (10)$$

324 **Table 1: Quantitative evaluation on Mixamo and DT4D datasets.** Our method consistently outperforms all
 325 baselines across diverse categories. Results are averaged across scenes, with per-scene results in the Appendix.

	Mixamo		DT4D-Quadrupeds		DT4D-Others	
	PMD ↓	FID ↓	PMD ↓	FID ↓	PMD ↓	FID ↓
SPT ⁺	0.0029	0.0366	-	-	-	-
NPR ⁺	0.0099	0.0551	0.0032	0.0669	-	-
Transfer4D	0.0084	0.0855	0.0058	0.0505	0.0133	0.0805
Ours	0.0028	0.0304	0.0018	0.0171	0.0023	0.0124

322
 323 where $\tilde{x}_{p,t}^{3D}$ is the best-matching 3D vertex obtained via Eq. 8, and \mathcal{P}_t represents sampled foreground
 324 pixels. Finally, \mathcal{L}_{reg} comprises multiple regularization terms that encourage temporal smoothness
 325 and geometric consistency (detailed formulations provided in the Appendix).

337 4 EXPERIMENTS

339 4.1 DATASETS AND IMPLEMENTATIONS

342 **Datasets.** We evaluate our approach on mesh-animation pairs sampled from DeformingThings-
 343 4D (DT4D) (Li et al., 2021) and Mixamo (Adobe). From DT4D, we select 20 animation pairs
 344 spanning diverse animal categories of quadrupeds and non-quadrupeds exhibiting varied motions.
 345 From Mixamo, we utilize 12 humanoid mesh-animation pairs across different character models and
 346 motion types. To simulate a *casually captured* monocular video scenario, we render each source
 347 animation using a single camera with constrained movement ($\pm 30^\circ$ angular range), generating input
 348 frames with corresponding ground-truth 3D target mesh animations. We further conduct qualitative
 349 evaluation on real-world videos sourced from the DAVIS dataset (Perazzi et al., 2016) and two
 350 publicly available online videos (Daley, n.d.; Nicky Pe, n.d.), as well as 2D-to-2D motion transfer
 351 scenarios using additional synthetic sequences (Pumarola et al., 2021; Liu et al., 2024). Details on
 352 dataset preparation and configuration are provided in the Appendix.

353 **Implementation details.** We employ a two-stage optimization strategy that first performs global
 354 alignment of scale and translation, then jointly refines local pose and shape parameters (bone length,
 355 Gaussians) to adapt morphology while preserving essential motion characteristics. All experiments
 356 use the Adam optimizer (Kingma & Ba, 2014) with adaptive learning rates over 10k iterations. Our
 357 method achieves efficient optimization, completing training in under 10 minutes on a single RTX
 358 4090 GPU. Detailed hyperparameter specifications are provided in the Appendix.

359 4.2 2D-TO-3D MOTION TRANSFER

360 **Baselines and metrics.** We compare our method against two baseline categories: *composite*
 361 *pipelines* combining 2D-to-3D reconstruction with 3D motion transfer, and a template-free
 362 optimization-based approach (Transfer4D (Maheshwari et al., 2023)). For composite baselines, we
 363 adopt a two-stage setup with mesh reconstruction followed by motion transfer using SPT (Liao
 364 et al., 2022) and NPR (Yoo et al., 2024), denoted as SPT⁺ and NPR⁺ (see Appendix for base-
 365 line implementation details). SPT⁺ is evaluated only on humanoid motion, as the original method
 366 was designed and tested on stylized human characters. Transfer4D performs motion retargeting by
 367 extracting skeletal structure from RGB-D input. On datasets with non-quadruped animals, where
 368 parametric templates of reconstruction methods are not applicable, we compare only to Transfer4D.
 369

370 We quantify motion transfer by comparing the retargeted and ground-truth mesh sequences. Consis-
 371 tent with prior work (Liao et al., 2022; Yoo et al., 2024), we adopt Point-wise Mesh Distance (PMD)
 372 to measure per-vertex accuracy and Fréchet Inception Distance (FID) (Heusel et al., 2017) to assess
 373 perceptual fidelity. To compute FID, both ground-truth and retargeted animations are rendered from
 374 12 viewpoints and their image distributions are compared.

375 **Comparison results.** We evaluate our method and baselines on DT4D and Mixamo datasets. As
 376 shown in Tab. 1, our approach achieves superior performance on both PMD and FID metrics. These
 377 results show that our approach achieves strong performance in a data-efficient manner, relying only
 378 on direct optimization without explicit 3D supervision. On non-quadrupeds (DT4D-Others), we

Figure 5: **Qualitative results on Mixamo and DT4D-Quadruped datasets.** Our method shows superior pose alignment compared to baselines across diverse objects. Refer to the supplementary video for full animation.

Figure 6: **Qualitative results on real-world datasets.** Our motion transfer pipeline effectively transfers motion from both synthetic and real-world videos in a category-agnostic manner.

significantly outperform Transfer4D even without depth input, demonstrating strong performance beyond parametric model categories.

Fig. 5 demonstrates that our method preserves the target shape and transfers motion faithfully, while baselines often produce distorted shapes by estimating incorrect transformation (Liao et al., 2022; Maheshwari et al., 2023) or relying on predicted surface Jacobians (Yoo et al., 2024). This shape fidelity is attributed to our morphology-parameterization, which we also analyze in Sec. 4.3.

Qualitative results on real-world videos. To evaluate real-world applicability, we apply our method to in-the-wild monocular videos featuring diverse animal categories with complex backgrounds and occlusions. These noisy or open-domain scenarios represent cases where obtaining corresponding 3D animations is challenging. As shown in Fig. 6, our approach successfully transfers motion across these varied scenarios while preserving target mesh structure and proportions. These results demonstrate effective motion transfer directly from monocular input without requiring 3D motion generation, highlighting the practical value of our 2D-grounded motion transfer approach.

4.3 ABLATION STUDY

We ablate key components of our framework in Tab. 2 and Fig. 7. Removing the rendering loss severely degrades performance ($\text{PMD} \uparrow \sim 5 \times$), indicating it as the primary driver of motion transfer, while the keypoint loss adds complementary semantic guidance. Fig. 7 shows that dropping the keypoint loss yields suboptimal transfers due to unresolved shape-pose ambiguities.

Excluding our shape parameterization (bone lengths l_b , Gaussian means μ , global scale s_{global}) causes distorted geometry and misaligned orientations, especially under large morphological differences. With shape parameters fixed, global translation lowers render loss by pulling the object toward the camera, partially recovering motion but distorting orientation and pose (Fig. 7; see supplementary videos). Overall, adding each component yields consistent gains (Tab. 2), confirming their complementary roles to enhance robustness. Extended ablation studies appear in the Appendix.

Figure 7: **Qualitative ablations.** Keypoint loss complements motion details and accuracy. Excluding shape parameters induces severe geometric artifacts for large morphological variation.

Table 2: Quantitative evaluation of component contributions.

Ablation	PMD (↓)	FID (↓)
Full Model	0.0018	0.0171
w/o L_{render}	0.0090	0.0463
w/o Shape param.	0.0047	0.0747
w/o μ update	0.0039	0.0552
w/o l_b & s_{global} update	0.0040	0.0488
w/o L_{keypoint}	0.0031	0.0252

Figure 8: **Results on diverse applications.** Our method transfers motion for (a) cross-category source-target pairs, (b) 2D-to-2D videos, and (c) AI-generated mesh animations.

4.4 DIVERSE APPLICATION SCENARIOS

Cross-category motion transfer. Our method demonstrates strong generalization across diverse categories, as shown in Fig. 8 (a). We successfully transfer motion between different animal species (rabbit-to-deer) and even across broader categories (animal-to-human). This flexibility stems from our universal optimization approach that does not rely on category-specific skeletal structures or explicit category matching between source and target.

2D-to-2D motion transfer. A key advantage of our method is its representation-agnostic applicability across articulated 3D assets. While primarily demonstrated on mesh targets, our framework seamlessly extends to Gaussian-based 3D representation without modification of core design. Fig. 8(b) shows motion transfer to 3DGS reconstructed from multi-view images (Yao et al., 2025), enabling video-to-video transfer when both source and target originate from RGB sequences. Together, these results yield a single, category-agnostic framework that operates consistently across varied 3D representations.

AI-generated mesh animation. Another interesting application is animating meshes synthesized by generative models. As shown in Fig. 8 (c), we achieve effective motion transfer using meshes generated from an off-the-shelf image-to-mesh model (Zhao et al., 2025). This demonstrates the versatility of our approach to meshes from diverse sources, supporting modern content creation workflows that increasingly incorporate AI-generated assets.

486 5 DISCUSSION

488 We introduce **CAMO**, a framework that transfers motion from monocular videos to 3D assets with-
 489 out relying on category-specific templates. By reformulating motion retargeting as an efficient
 490 morphology-adaptive optimization on articulated Gaussian splats, our method avoids error accumu-
 491 lation in traditional reconstruct-then-retarget pipelines without any 3D supervision or large datasets.
 492 The integration of morphology-adaptive modeling and semantic correspondences provides comple-
 493 mentary cues that reduce shape-pose ambiguities and enable broad applicability across different
 494 skeletal structures and 3D representations.

495 **Limitations and future work.** While CAMO achieves robust category-agnostic motion transfer, the
 496 current morphology-adaptive formulation is limited to articulated kinematic structures. This restricts
 497 its ability to capture richer non-rigid dynamics such as soft-tissue deformation or secondary motion
 498 (e.g., hair dynamics, tail sway). Beyond these kinematic limitations, our framework currently prior-
 499 itizes visual motion transfer rather than enforcing full physical plausibility. A promising direction is
 500 to augment our optimization with physically grounded constraints, such as Jacobian-space motion
 501 consistency and contact-aware regularization. Another promising avenue for future work is to enrich
 502 the framework with additional geometric cues, such as monocular depth predictors or generative 3D
 503 priors. These sources of structure-aware regularization could improve robustness in complex scenes
 504 or under limited camera motion, further extending the applicability of our approach.

505 506 Ethics Statement

507 This work presents a novel framework for motion synthesis, intended for beneficial applications in
 508 digital content creation, robotics, and virtual reality. While our research focuses on advancing 3D
 509 motion synthesis techniques, we acknowledge the potential risks associated with generative tech-
 510 nologies, such as the creation of deceptive content or deepfakes. To address privacy and data ethics,
 511 all experiments were conducted using publicly available benchmark datasets (e.g., Mixamo (Adobe),
 512 DT4D (Li et al., 2021), DAVIS (Perazzi et al., 2016)) and open-license video resources (Pexels). All
 513 data sources were utilized in strict accordance with their respective licenses and usage guidelines.
 514 Technically, our method is designed to transfer motion rather than identity; however, we emphasize
 515 that responsible deployment is essential to mitigate misuse, and we advocate for adherence to ethical
 516 guidelines and legal frameworks.

517 518 Reproducibility Statement

519 We are committed to ensuring the reproducibility of our results. We provide detailed descriptions of
 520 our pipeline, including articulated 3D Gaussian Splatting, morphology-adaptive parameterization,
 521 and dense semantic keypoint correspondence in Sec. 3. Furthermore, detailed objective functions,
 522 data preprocessing steps, specific hyperparameter settings, and additional ablation studies verifying
 523 the robustness of our method are comprehensively reported in Appendix A.1 and A.2.

524 525 REFERENCES

527 Kfir Aberman, Peizhuo Li, Dani Lischinski, Olga Sorkine-Hornung, Daniel Cohen-Or, and Baoquan
 528 Chen. Skeleton-aware networks for deep motion retargeting. *ACM Transactions on Graphics*
 529 (*TOG*), 39(4):62–1, 2020.

530 Adobe. Mixamo. <https://www.mixamo.com>.

532 Miguel Arduengo, Ana Arduengo, Adrià Colomé, Joan Lobo-Prat, and Carme Torras. Human to
 533 robot whole-body motion transfer. In *2020 IEEE-RAS 20th International Conference on Hu-*
 534 *manoid Robots (Humanoids)*, pp. 299–305. IEEE, 2021.

536 Mehmet Aygun and Oisin Mac Aodha. Saor: Single-view articulated object reconstruction. In *Pro-*
 537 *ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 10382–
 538 10391, 2024.

539 Blender. Blender. <https://www.blender.org>.

540 Chris Bregler. Motion capture technology for entertainment [in the spotlight]. *IEEE Signal Processing Magazine*, 24(6):160–158, 2007.
 541
 542

543 Jinnan Chen, Chen Li, and Gim Hee Lee. Weakly-supervised 3d pose transfer with keypoints. In
 544 *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 15156–15165,
 545 2023.

546 Paul Daley. Close-up video of white seagull. <https://www.pexels.com/video/close-up-video-of-white-seagull-1536290/>, n.d. Pexels video; accessed 2025-09-23.
 547
 548
 549

550 Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set generation network for 3d object recon-
 551 struction from a single image. In *Proceedings of the IEEE conference on computer vision and*
 552 *pattern recognition*, pp. 605–613, 2017.

553 Zhoujie Fu, Jiacheng Wei, Wenhao Shen, Chaoyue Song, Xiaofeng Yang, Fayao Liu, Xulei Yang,
 554 and Guosheng Lin. Sync4d: Video guided controllable dynamics for physics-based 4d generation.
 555 *arXiv preprint arXiv:2405.16849*, 2024.
 556

557 Hang Gao, Rui long Li, Shubham Tulsiani, Bryan Russell, and Angjoo Kanazawa. Monocular dy-
 558 namic view synthesis: A reality check. *Advances in Neural Information Processing Systems*, 35:
 559 33768–33780, 2022.

560 Lin Gao, Jie Yang, Yi-Ling Qiao, Yu-Kun Lai, Paul L Rosin, Weiwei Xu, and Shihong Xia. Auto-
 561 matic unpaired shape deformation transfer. *ACM Transactions on Graphics (ToG)*, 37(6):1–15,
 562 2018.

563 Michael Gleicher. Retargetting motion to new characters. In *Proceedings of the 25th annual con-
 564 ference on Computer graphics and interactive techniques*, pp. 33–42, 1998.

565 Shubham Goel, Georgios Pavlakos, Jathushan Rajasegaran, Angjoo Kanazawa, and Jitendra Malik.
 566 Humans in 4d: Reconstructing and tracking humans with transformers. In *Proceedings of the*
 567 *IEEE/CVF International Conference on Computer Vision*, pp. 14783–14794, 2023.

568 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 569 Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in*
 570 *neural information processing systems*, 30, 2017.

571 Angjoo Kanazawa, Michael J. Black, David W. Jacobs, and Jitendra Malik. End-to-end recovery of
 572 human shape and pose. In *Computer Vision and Pattern Recognition (CVPR)*, 2018.

573 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint*
 574 *arXiv:1412.6980*, 2014.

575 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
 576 Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *Proceed-
 577 ings of the IEEE/CVF international conference on computer vision*, pp. 4015–4026, 2023.

578 Yang Li, Hikari Takehara, Takafumi Taketomi, Bo Zheng, and Matthias Nießner. 4dcomplete: Non-
 579 rigid motion estimation beyond the observable surface. In *Proceedings of the IEEE/CVF Interna-
 580 tional Conference on Computer Vision*, pp. 12706–12716, 2021.

581 Zizhang Li, Dor Litvak, Ruining Li, Yunzhi Zhang, Tomas Jakab, Christian Rupprecht, Shangzhe
 582 Wu, Andrea Vedaldi, and Jiajun Wu. Learning the 3d fauna of the web. In *Proceedings of the*
 583 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 9752–9762, 2024.

584 Zhouyingcheng Liao, Jimei Yang, Jun Saito, Gerard Pons-Moll, and Yang Zhou. Skeleton-free pose
 585 transfer for stylized 3d characters. In *European Conference on Computer Vision*, pp. 640–656.
 586 Springer, 2022.

587 Isabella Liu, Hao Su, and Xiaolong Wang. Dynamic gaussians mesh: Consistent mesh reconstruc-
 588 tion from dynamic scenes. *arXiv preprint arXiv:2404.12379*, 2024.

594 Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Zakharov, and Carl Vondrick.
 595 Zero-1-to-3: Zero-shot one image to 3d object. In *Proceedings of the IEEE/CVF international*
 596 *conference on computer vision*, pp. 9298–9309, 2023.

597

598 Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J. Black.
 599 SMPL: A skinned multi-person linear model. *ACM Trans. Graphics (Proc. SIGGRAPH Asia)*,
 600 34(6):248:1–248:16, October 2015.

601 Jin Lyu, Tianyi Zhu, Yi Gu, Li Lin, Pujin Cheng, Yebin Liu, Xiaoying Tang, and Liang An.
 602 Animer: Animal pose and shape estimation using family aware transformer. *arXiv preprint*
 603 *arXiv:2412.00837*, 2024.

604

605 Shubh Maheshwari, Rahul Narain, and Ramya Hebbalaguppe. Transfer4d: A framework for fru-
 606 gal motion capture and deformation transfer. In *Proceedings of the IEEE/CVF Conference on*
 607 *Computer Vision and Pattern Recognition*, pp. 12836–12846, 2023.

608 Sanjeev Muralikrishnan, Niladri Dutt, Siddhartha Chaudhuri, Noam Aigerman, Vladimir Kim,
 609 Matthew Fisher, and Niloy J Mitra. Temporal residual jacobians for rig-free motion transfer.
 610 In *European Conference on Computer Vision*, pp. 93–109. Springer, 2024.

611 Nicky Pe. A cheetah walking and looking around. <https://www.pexels.com/video/a-cheetah-walking-and-looking-around-8451567/>, n.d. Pexels video; accessed
 612 2025-09-23.

613

614 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 615 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 616 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

617

618 Federico Perazzi, Jordi Pont-Tuset, Brian McWilliams, Luc Van Gool, Markus Gross, and Alexander
 619 Sorkine-Hornung. A benchmark dataset and evaluation methodology for video object segmen-
 620 tation. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 621 724–732, 2016.

622

623 Pexels. Pexels. <https://www.pexels.com/videos/>.

624

625 Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. D-nerf: Neural
 626 radiance fields for dynamic scenes. In *Proceedings of the IEEE/CVF conference on computer*
 627 *vision and pattern recognition*, pp. 10318–10327, 2021.

628

629 FP Rachmavita. Interactive media-based video animation and student learning motivation in math-
 630 ematics. In *Journal of Physics: Conference Series*, volume 1663, pp. 012040. IOP Publishing,
 631 2020.

632

633 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 634 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 635 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

636

637 Nadine Rueegg, Silvia Zuffi, Konrad Schindler, and Michael J Black. Barc: Learning to regress
 638 3d dog shape from images by exploiting breed information. In *Proceedings of the IEEE/CVF*
 639 *Conference on Computer Vision and Pattern Recognition*, pp. 3876–3884, 2022.

640

641 Nadine Rüegg, Shashank Tripathi, Konrad Schindler, Michael J Black, and Silvia Zuffi. Bite: Be-
 642 yond priors for improved three-d dog pose estimation. In *Proceedings of the IEEE/CVF Confer-
 643 ence on Computer Vision and Pattern Recognition*, pp. 8867–8876, 2023.

644

645 Runway. Gen-4. <https://runwayml.com>.

646

647 Aleksandar Shtedritski, Christian Rupprecht, and Andrea Vedaldi. Shic: Shape-image corre-
 648 spondences with no keypoint supervision. In *ECCV*, 2024.

649

650 Chaoyue Song, Xiu Li, Fan Yang, Zhongcong Xu, Jiacheng Wei, Fayao Liu, Jiashi Feng, Gu-
 651 osheng Lin, and Jianfeng Zhang. Puppeteer: Rig and animate your 3d models. *arXiv preprint*
 652 *arXiv:2508.10898*, 2025a.

648 Chaoyue Song, Jianfeng Zhang, Xiu Li, Fan Yang, Yiwen Chen, Zhongcong Xu, Jun Hao Liew,
 649 Xiaoyang Guo, Fayao Liu, Jiashi Feng, et al. Magicarticulate: Make your 3d models articulation-
 650 ready. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 15998–
 651 16007, 2025b.

652 Lukas Uzolas, Elmar Eisemann, and Petr Kellnhofer. Template-free articulated neural point clouds
 653 for reposable view synthesis. *Advances in Neural Information Processing Systems*, 36:31621–
 654 31637, 2023.

655 Ruben Villegas, Jimei Yang, Duygu Ceylan, and Honglak Lee. Neural kinematic networks for
 656 unsupervised motion retargetting. In *Proceedings of the IEEE conference on computer vision and*
 657 *pattern recognition*, pp. 8639–8648, 2018.

658 Ruben Villegas, Duygu Ceylan, Aaron Hertzmann, Jimei Yang, and Jun Saito. Contact-aware retar-
 659 geting of skinned motion. In *Proceedings of the IEEE/CVF International Conference on Com-*
 660 *puter Vision*, pp. 9720–9729, 2021.

661 Jiashun Wang, Chao Wen, Yanwei Fu, Haitao Lin, Tianyun Zou, Xiangyang Xue, and Yinda
 662 Zhang. Neural pose transfer by spatially adaptive instance normalization. In *Proceedings of*
 663 *the IEEE/CVF conference on computer vision and pattern recognition*, pp. 5831–5839, 2020.

664 Jiashun Wang, Xuetong Li, Sifei Liu, Shalini De Mello, Orazio Gallo, Xiaolong Wang, and Jan
 665 Kautz. Zero-shot pose transfer for unrigged stylized 3d characters. In *Proceedings of the*
 666 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 8704–8714, 2023.

667 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
 668 from error visibility to structural similarity. *IEEE transactions on image processing*, 13(4):600–
 669 612, 2004.

670 Shangzhe Wu, Tomas Jakab, Christian Rupprecht, and Andrea Vedaldi. Dove: Learning deformable
 671 3d objects by watching videos. *International Journal of Computer Vision*, 131(10):2623–2634,
 672 2023a.

673 Shangzhe Wu, Ruining Li, Tomas Jakab, Christian Rupprecht, and Andrea Vedaldi. Magicpony:
 674 Learning articulated 3d animals in the wild. In *Proceedings of the IEEE/CVF Conference on*
 675 *Computer Vision and Pattern Recognition*, pp. 8792–8802, 2023b.

676 Zhan Xu, Yang Zhou, Evangelos Kalogerakis, Chris Landreth, and Karan Singh. Rignet: Neural
 677 rigging for articulated characters. *arXiv preprint arXiv:2005.00559*, 2020.

678 Gengshan Yang, Minh Vo, Natalia Neverova, Deva Ramanan, Andrea Vedaldi, and Hanbyul Joo.
 679 Banmo: Building animatable 3d neural models from many casual videos. In *Proceedings of the*
 680 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 2863–2873, 2022.

681 Karren Yang, Bryan Russell, and Justin Salamon. Telling left from right: Learning spatial corre-
 682 spondence of sight and sound. In *Proceedings of the IEEE/CVF conference on computer vision*
 683 *and pattern recognition*, pp. 9932–9941, 2020.

684 Chun-Han Yao, Wei-Chih Hung, Yuanzhen Li, Michael Rubinstein, Ming-Hsuan Yang, and Varun
 685 Jampani. Lassie: Learning articulated shapes from sparse image ensemble via 3d part discovery.
 686 *Advances in Neural Information Processing Systems*, 35:15296–15308, 2022.

687 Yuxin Yao, Zhi Deng, and Junhui Hou. Riggs: Rigging of 3d gaussians for modeling articulated
 688 objects in videos. In *The IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 689 2025.

690 Seungwoo Yoo, Juil Koo, Kyeongmin Yeo, and Minhyuk Sung. Neural pose representation learning
 691 for generating and transferring non-rigid object poses. *arXiv preprint arXiv:2406.09728*, 2024.

692 Yifei Zeng, Yanqin Jiang, Siyu Zhu, Yuanxun Lu, Youtian Lin, Hao Zhu, Weiming Hu, Xun Cao, and
 693 Yao Yao. Stag4d: Spatial-temporal anchored generative 4d gaussians. In *European Conference*
 694 *on Computer Vision*, pp. 163–179. Springer, 2024.

702 Hao Zhang, Di Chang, Fang Li, Mohammad Soleymani, and Narendra Ahuja. Magicpose4d: Craft-
 703 ing articulated models with appearance and motion control. *arXiv preprint arXiv:2405.14017*,
 704 2024a.

705 Hao Zhang, Haolan Xu, Chun Feng, Varun Jampani, and Narendra Ahuja. Physrig: Differentiable
 706 physics-based skinning and rigging framework for realistic articulated object modeling. *arXiv
 707 preprint arXiv:2506.20936*, 2025a.

708 Hongkun Zhang, Zherong Pan, Congyi Zhang, Lifeng Zhu, and Xifeng Gao. Texpainter: Generative
 709 mesh texturing with multi-view consistency. In *ACM SIGGRAPH 2024 Conference Papers*, pp.
 710 1–11, 2024b.

711 Hongwen Zhang, Yating Tian, Xinchi Zhou, Wanli Ouyang, Yebin Liu, Limin Wang, and Zhenan
 712 Sun. Pymaf: 3d human pose and shape regression with pyramidal mesh alignment feedback loop.
 713 In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 11446–11456,
 714 2021.

715 Jia-Peng Zhang, Cheng-Feng Pu, Meng-Hao Guo, Yan-Pei Cao, and Shi-Min Hu. One model to rig
 716 them all: Diverse skeleton rigging with unirig. *arXiv preprint arXiv:2504.12451*, 2025b.

717 Tongjie Y Zhang and Ching Y. Suen. A fast parallel algorithm for thinning digital patterns. *Com-
 718 munications of the ACM*, 27(3):236–239, 1984.

719 Zibo Zhao, Zeqiang Lai, Qingxiang Lin, Yunfei Zhao, Haolin Liu, Shuhui Yang, Yifei Feng,
 720 Mingxin Yang, Sheng Zhang, Xianghui Yang, et al. Hunyuan3d 2.0: Scaling diffusion models for
 721 high resolution textured 3d assets generation. *arXiv preprint arXiv:2501.12202*, 2025.

722 Silvia Zuffi, Angjoo Kanazawa, David W Jacobs, and Michael J Black. 3d menagerie: Modeling
 723 the 3d shape and pose of animals. In *Proceedings of the IEEE conference on computer vision and
 724 pattern recognition*, pp. 6365–6373, 2017.

725

730 A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

731

732 This appendix provides additional implementation details, ablations, and extended results supporting
 733 the main paper. The overall structure for the Appendices is as follows:

- 735 • **Datasets and baselines** (Sec. A.1)
- 736 • **Implementational details** (Sec. A.2)
- 737 • **Ablation on design choices** (Sec. A.3)
 - 739 – Shape parameterization
 - 740 – Dense keypoint loss
 - 741 – Rigging modules
 - 742 – Geometry-aware semantic features
- 743 • **Performance analysis** (Sec. A.4)
 - 745 – Performance on diverse morphological variations
 - 746 – Performance on different motion scales
 - 747 – Performance on challenging cases
 - 748 – Failure case analysis
 - 749 – **Computational analysis** (New)
 - 750 – **Analysis on camera initialization** (New)
 - 751 – **Robustness under occlusion** (New)
 - 752 – **Multi-view scalability** (New)
 - 753 – **Robustness against fast motion and motion blur** (New)
- 754 • **Extended Tables and Qualitative Videos** (Sec. A.5)
- 755 • **Comparison with generative 4D pipelines.** (New) (Sec. A.6)

756
757
758
759
760
761
762

SMAL mesh reconstruction with AniMer

Figure 9: Intermediate mesh reconstruction with template-based 3D pose and shape estimation models.

A.1 DATASETS AND BASELINES

Synthetic datasets. DeformingThings4D (DT4D) (Li et al., 2021) is a large-scale synthetic dataset of non-rigidly deforming objects, featuring 1,972 animation sequences across 147 characters from 31 categories made by CG experts. We specifically select animal motion sequences (DT4D-animals) for evaluation. We collect 20 pairs of animations, each pair sharing identical pose parameters but differing in character shape. For humanoid characters, we utilize Mixamo (Adobe) to acquire 12 character-motion pairs of discrete motions. Example datasets URL for animal and humanoid datasets are provided in our `index.html`.

To generate the monocular video, we render source animations from the DT4D and Mixamo datasets at a resolution of 256×256 using PyTorch3D’s `PerspectiveCamera`, ensuring consistent viewpoint changes by varying camera azimuth within $\pm 30^\circ$. Untextured DT4D sequences are textured with texture maps generated from TexPainter (Zhang et al., 2024b) to improve visual realism.

Real-world videos. For real-world videos collected from different sources (Daley, n.d.; Nicky Pe, n.d.; Perazzi et al., 2016), we clip and resize the videos at a resolution of 256x256. While synthetic datasets provide ground-truth camera configurations and global orientation alignment between source and target sequences, real-world videos lack such information; thus, we assume a fixed camera for real-world videos. To align the 3D target mesh with the source video’s object orientation and scale for motion transfer, we adopt a render-and-compare strategy guided by semantic correspondences. Specifically, we pre-render target mesh with candidate camera poses and evaluate each pose by calculating patch-wise feature cosine similarity to the source frame. The camera pose yielding the maximum similarity serves as our initial alignment, providing a stable and semantically grounded initialization for subsequent optimization.

Implementation of Composite baselines. As described in Sec. 4 in main paper, we compare our method with *composite pipelines* that first reconstruct 3D source meshes from 2D videos, followed by 3D-to-3D motion retargeting. Intermediate reconstructions are obtained by fitting parametric templates to each video frame: SMPL (Loper et al., 2015) for humans and SMAL (Zuffi et al., 2017) for quadrupeds (see Fig.9 for reconstruction examples).

For humanoid motion transfer on the Mixamo dataset, we first extract SMPL meshes using 4D-Humans (Goel et al., 2023), then apply SPT (Liao et al., 2022) and NPR (Yoo et al., 2024) with pretrained checkpoints based on the SMPL model. For quadruped experiments on DT4D, we train NPR’s pose extractor and shape applier modules using SMAL meshes reconstructed from monocular videos via AniMer (Lyu et al., 2024).

A.2 IMPLEMENTATIONAL DETAILS

Skeletal motion field. The skeletal motion field is parameterized by MLPs. Temporal inputs are first processed using sinusoidal embeddings (13-dimensional), and subsequently passed through a two-layer embedding network producing a 30-dimensional temporal representation. This representation is then fed into an 8-layer MLP featuring 256 hidden units and a skip connection at the fourth layer. The MLP outputs are then directed to a 2-layer global translation head predicting 3D translation vectors, and a 2-layer joint rotation head predicting normalized quaternions. Together, these outputs define SE(3) transformation governing the skeletal motion.

Motion regularizers. Our method employs four distinct motion regularizers to ensure stable and plausible motion. To prevent excessive motions during early training, we apply an L_1 penalty jointly

810 to global translations and joint rotations:
 811

$$812 \quad 813 \quad 814 \quad \mathcal{L}_{\text{trans}} = \lambda_{\text{trans}} \frac{\|\delta_{\text{global}}^t\|_1 + \sum_{j=1}^J \|r_j^t\|_1}{J}, \quad (11)$$

815 where λ_{trans} is the regularization weight, δ_{global}^t the global translation vector at frame t , r_j^t the
 816 rotation angle for joint j at frame t , and J the number of joints.

817 To enforce temporal smoothness, we additionally penalize frame-to-frame motion:
 818

$$819 \quad 820 \quad 821 \quad \mathcal{L}_{\text{smooth}} = \lambda_{\text{smooth}} \left(\sum_{j=1}^J \|r_j^t - r_j^{t-1}\|_1 + \|\delta_{\text{global}}^t - \delta_{\text{global}}^{t-1}\|_1 \right), \quad (12)$$

822 where λ_{smooth} is the smoothness weight.
 823

824 Following Yao et al. (Yao et al., 2025), we impose 2D projection constraints on 3D points sampled
 825 along the articulated skeleton. First, we extract 2D skeleton points p_{skeleton}^t from the source fore-
 826 ground mask M_{src}^t via a morphological thinning algorithm (Zhang & Suen, 1984). Then, at each
 827 frame t , we sample a set of 3D points c^t on the deformed skeleton, project them into the image plane
 828 using the camera projection π_t , and penalize their misalignment to the 2D skeleton:

$$829 \quad 830 \quad \mathcal{L}_{\text{chamf}} = \lambda_{\text{chamf}} \text{CD}_{\ell_1}(p_{\text{skeleton}}^t, \pi_t(c^t)), \quad (13)$$

831 where CD_{ℓ_1} denotes the Chamfer distance (Fan et al., 2017) under the ℓ_1 norm, and λ_{chamf} is a
 832 hyperparameter that controls the regularization strength.

833 To ensure each joint remains within its assigned skinning region, we penalize the mean squared error
 834 between the deformed joint positions j and the centroids of their corresponding Gaussian groups,
 835 computed as weighted averages of the Gaussian means μ with normalized skinning weights:
 836

$$837 \quad 838 \quad 839 \quad \mathcal{L}_{\text{skin}} = \lambda_{\text{skin}} \sum_{j=1}^J \left\| \sum_{i=1}^N \tilde{w}_{ij}^\top \mu_i - \mathcal{J}_j \right\|^2, \quad \tilde{w}_{ij} = \frac{w_{ij}}{\sum_{i'=1}^N w_{i'j}}, \quad (14)$$

840 where $w \in \mathbb{R}^{N \times J}$ are the LBS skinning weights, $\mu \in \mathbb{R}^{N \times 3}$ the Gaussian mean positions, $\mathcal{J} \in$
 841 $\mathbb{R}^{J \times 3}$ the joint positions, and λ_{skin} the skinning regularization weight.
 842

843 **Training details.** As described in Sec. 3.4 of the main paper, we balance the rendering and key-
 844 point losses with $\lambda_{\text{render}} = 1.0$ and $\lambda_{\text{keypoint}} = 0.001$. The motion regularization weights are set to
 845 $\lambda_{\text{transform}} = 0.005$, $\lambda_{\text{smooth}} = 0.001$, $\lambda_{\text{chamf}} = 0.0001$, and $\lambda_{\text{skin}} = 0.1$.

846 Training follows a two-stage schedule over 10K iterations using Adam optimizer (Kingma & Ba,
 847 2014). The first 500 iterations optimize only global scale, bone length, and global translation for
 848 stable initialization. Subsequently, all parameters including shape parameters are jointly optimized
 849 with exponential learning rate decay.

850 We employ differentiated update frequencies based on parameter characteristics. Frame-specific
 851 parameters including articulated 3D Gaussians and local motion heads are updated per frame to capture
 852 temporal details. Shape parameters such as bone length and global scale, and the global translation
 853 are updated every 10 frames to maintain cross-frame consistency and motion smoothness.
 854

855 A.3 ABLATION ON DESIGN CHOICES

856 A.3.1 SHAPE PARAMETERIZATION

857 Shape parameters are essential for accurately capturing both global and local motion dynamics and
 858 ensuring consistent spatial orientation (Sec. 4.3). Inadequate scale regularization causes temporal
 859 drift toward the camera, where optimization compensates for scale discrepancies through global
 860 translation (shown in the supplementary videos). This compensation disrupts orientation estimation
 861 and motion coherence. In contrast, our complete formulation with comprehensive shape parameters
 862 preserves geometric consistency and produces stable motion reconstructions.
 863

Figure 10: **Qualitative ablation on keypoint loss.** Keypoint loss L_{keyp} helps ensure correct motion reconstruction by resolving ambiguity where limbs overlap in the source video frame.

Table 3: **Ablation on keypoint confidence thresholding.** We observe that PMD and FID decrease slightly with higher thresholds, reflecting improved performance, yet remain stable across the full range.

Table 4: **Ablation on number of keypoints.** While 1K points yield slight improvements, performance remains comparable even at sparse points (#50).

#Keyp.	PMD \downarrow	FID \downarrow
50	0.0020	0.0191
100	0.0020	0.0185
500	0.0019	0.0179
1000	0.0018	0.0171
1500	0.0020	0.0185

Figure 11: **Ablations on semantic keypoints.** Left two images: effects of confidence thresholds. Right two images: effects of keypoint counts. The results demonstrate robust performance across these configurations.

A.3.2 DENSE KEYPOINT LOSS

As described in Sec.4.3, eliminating dense correspondence guidance leads to misaligned motion cues and misperception of semantic parts. Results illustrated in Fig.10 demonstrate that our dense semantic correspondence effectively encodes object-level semantics, enabling spatially consistent and semantically faithful motion generation.

We sample 1K keypoints with confidence above 90% to minimize the effect of outliers. Tab. 3 and Fig. 11 show that performance remains consistent across different confidence thresholds, demonstrating robustness to noisy correspondences. Tab. 4 and Fig. 11 suggest stable behavior of keypoint density effects across guidance densities, with slight improvement on 1K points.

A.3.3 RIGGING MODULE ABLATION

We evaluate the impact of rigging quality on our DT4D dataset, including quadrupeds and non-quadrupeds, by comparing three rigging modules: RigNet (Xu et al., 2020), MagicArticulate (Song et al., 2025b), and UniRig (Zhang et al., 2025b). Enhanced rigging priors generally improve performance, as shown in Tab. 5 (DT4D-sub). We observe that skinning weight quality significantly affects results. While MagicArticulate and UniRig perform well on the subset, their performance varies on the full dataset, particularly for large motions (Tab. 5, DT4D-all). These results demonstrate the importance of high-quality skinning weights and suggest potential benefits from incorporating adaptive skinning refinement mechanisms.

A.3.4 GEOMETRY-AWARE SEMANTIC FEATURES

Distinguishing geometrical differences (e.g., left/right limbs) is crucial for accurate motion transfer. We utilize a pretrained geometry-aware semantic feature extraction module (Yang et al., 2020) for dense correspondence matching. Tab. 6 ablates this design choice, comparing motion transfer performance when using alternative pretrained semantic features from foundation models (Stable Diffusion (Rombach et al., 2022) and DINOv2 (Oquab et al., 2023)) for correspondence matching. Performance significantly drops with SD or DINOv2 features, confirming the effectiveness of geometry-aware features for motion transfer tasks.

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
Table 5: **Ablation on rigging methods.** We compare performance on the DT4D dataset, where DT4D-sub consists of scenes with relatively small motions. 'CAMO+Best' denotes results using the optimal method for each scene.

Method	DT4D-sub		DT4D-all	
	PMD \downarrow	FID \downarrow	PMD \downarrow	FID \downarrow
CAMO + RigNet	0.0018	0.0153	0.0019	0.0159
CAMO + MagicArticulate	0.0016	0.0094	0.0021	0.0117
CAMO + UniRig	0.0015	0.0110	0.0026	0.0168
CAMO + Best	0.0012	0.0086	0.0015	0.0108

930
931
932
933
934
Table 7: **Performance on DT4D under morphological variations.** Shape differences increase substantially across groups (up to 341% from Low to High), yet performance degrades gracefully, highlighting robustness to diverse geometric discrepancies.

	Shape Differences	PMD \downarrow	FID \downarrow
Low	0.00084 ± 0.00036	0.0012	0.0091
Med	0.00211 ± 0.00016	0.0017	0.0205
High	0.00287 ± 0.00036	0.0026	0.0218

A.4 PERFORMANCE ANALYSIS

A.4.1 PERFORMANCE ACROSS MORPHOLOGICAL VARIATIONS

945 Our dataset encompasses diverse morphological differences between source and target subjects. We
946 quantify these variations using two metrics: (1) *global scale* measured by mesh volume ratio to
947 capture overall size differences, and (2) *shape distance* measured by Chamfer Distance (CD) on
948 normalized meshes to assess geometric variations independent of scale. The dataset spans volume
949 ratios from 1.08 \times to 16.00 \times and shape distances from 0.0004 to 0.0023, enabling comprehensive
950 evaluation across morphological diversity.

951 Regarding global size, we find no correlation between performance and global scale differences.
952 Dividing our dataset into three groups by scale magnitude, low and high groups achieve similar mean
953 PMD (0.00150 vs 0.00136). Note that this requires the target mesh to initially lie within the camera
954 frustum for valid optimization signals. Regarding shape differences, we categorize source-target
955 pairs into three groups by shape distance. As shown in Tab. 7, our method achieves optimal results
956 with minimal morphological differences while maintaining robust performance under considerable
957 shape variations.

A.4.2 PERFORMANCE ON DIFFERENT MOTION SCALES

958 We define motion magnitude as the maximum average vertex displacement from the first frame
959 across the sequence, computed in normalized coordinate space for cross-mesh comparability. Our
960 dataset spans diverse motion scales (min: 0.03, max: 0.23, avg: 0.11), which we categorized into
961 three distinct groups ranging from small to large motion. Fig. 12 demonstrates consistent perfor-
962 mance across motion scales, confirming robustness to motion scale variations. This robustness
963 stems from our time-conditioned MLP jointly optimizing across frames to capture global trajec-
964 tories and temporal dependencies, while the joint-rotation head provides frame-specific refinements,
965 maintaining global coherence with localized flexibility.

A.4.3 PERFORMANCE ON CHALLENGING CASES

966 We evaluate our method on two challenging scenarios that can potentially compromise performance:
967 **thin geometric structures and long video sequences.**

Table 6: **Ablation on semantic features.** Our framework achieves best performance with geometry-aware semantic features by distinguishing relationships between body parts. This provides superior structural guidance compared to standard 2D feature extractors.

Method	PMD \downarrow	FID \downarrow
CAMO + Stable Diffusion	0.0028	0.0561
CAMO + DINOv2	0.0025	0.0191
CAMO + Geo-Aware	0.0018	0.0171

Figure 12: **Performance on DT4D by motion scale.** Our method outperforms baselines across all levels, with minimal degradation on large motions.

Figure 13: **Qualitative results on challenging case with thin structure.** Our method achieves robust performance on characters with thin structures, which may pose fundamental difficulties in motion transfer.

Figure 14: **Loss curves vs. number of frames.** R_L denotes temporal resolution with L frequency bands for positional encoding.

First, challenging structures, such as thin bird wings, present difficulties for both visual guidance and mesh deformation. Their 2D projected regions cover only a few pixels, yielding limited visual cues, while their slender geometry is easily distorted during deformation. As shown in Fig.13, our method robustly addresses these geometrically challenging scenarios within reasonable performance. This robustness is enabled by 2D skeletal projection constraints and temporal smoothness regularization, which jointly enforce motion consistency across frames (Sec.A.2).

To support substantially longer sequences, our model can be scaled in two ways: (i) increasing the MLP capacity, or (ii) partitioning the video into temporal segments and optimizing a dedicated motion-field MLP per segment. This segmentation strategy effectively prevents error accumulation and maintains stable optimization over long durations. Our analysis of the model’s behavior across varying sequence lengths validates the rationale behind this approach. While performance remains stable at 300 frames (PMD: 0.0010), it degrades for sequences exceeding 600 frames (PMD: 0.0012) as the mapping of time embeddings to complex motions demands greater representational capability. Increasing the frequency bands of sinusoidal positional encoding (e.g., $L = 6 \rightarrow 8$) restores optimization quality (Tab. 8, Fig. 14). However, naive extension eventually leads to temporal drift (Fig. 15), as the finite capacity of a fixed-size MLP saturates against the complexity of extremely long trajectories.

A.4.4 FAILURE CASE ANALYSIS

Despite the robust performance, CAMO exhibits limitations when faced with significant occlusion or ambiguous left-right limb distinction in the source video, leading to less faithful motion transfer. Specifically, Fig. 16 (a) illustrates a failure case where motion quality degrades due to an unclear differentiation of the left and right legs. Fig. 16 (b) and Fig. 17 highlight performance degradation attributed to extensive self-occlusion, where insufficient visual information hinders accurate motion reconstruction.

A.4.5 COMPUTATIONAL ANALYSIS

Figure 18 demonstrates the stability and efficiency of our framework. As illustrated in Fig. 18a, the optimization duration remains remarkably stable across varying input complexities. Despite variations in vertex count (avg. 12K, max. 19K) and sequence length (avg. 46, max. 140 frames), the process consistently completes within 4–5 minutes (median < 4.6 minutes). Fig. 18b further shows

Table 8: **Quantitative evaluation of temporal capacity.** Values in parentheses indicate frequency bands (L). We observe that increasing L effectively handles extended sequences, mitigating performance degradation.

Frames (Temporal PE Bands)	PMD ↓	FID ↓
100 (R_6)	0.0010	0.0034
330 (R_6)	0.0008	0.0060
660 (R_6)	0.0012	0.0125
660 (R_8)	0.0010	0.0047

Figure 15: **Visualization of temporal drift.** We compare our result with the Ground Truth (shown as a gray silhouette underneath). While the method maintains high stability across the 660-frame sequence, slight drift accumulates in later frames (e.g., Frame 561), revealing the underlying GT.

Figure 16: **Failure cases.** Representative failure cases include misperception of geometric semantics leading to left-right confusion (a) and pose estimation errors due to severe occlusion in the source video (b).

Figure 17: **Analysis of self-occlusion.** We investigate the impact of severe self-occlusion across varying camera angles. As demonstrated in the 0° camera angle, the method fails when the moving limb is completely occluded from the camera’s perspective.

Figure 18: **Computational analysis on operation time and loss convergence.** (a) The optimization time is plotted against input complexity (sequence length and mesh resolution), highlighting the scalability of our approach. (b) Training loss trajectories for MIXAMO and DT4D datasets confirm that the proposed framework ensures smooth and stable convergence within approximately 10K iterations.

Figure 19: **Visualization of noisy camera initialization.** We illustrate the perturbed starting poses for optimization, created by adding 60° , 120° , and 180° of angular perturbation to the best view. These perturbations simulate imperfect calibration to evaluate the robustness of our pipeline.

Table 9: **Robustness to camera initialization.** Our method outperforms baselines with negligible degradation, even under 180° rotation.

Method / Configuration	PMD \downarrow	FID \downarrow
Transfer4D	0.0027	0.1535
NPR ⁺	0.0136	0.1395
Ours (Best Init.)	0.0016	0.0193
Ours ($+60^\circ$ error)	0.0018	0.0294
Ours ($+120^\circ$ error)	0.0017	0.0259
Ours ($+180^\circ$ error)	0.0016	0.0240

that the loss decreases smoothly across diverse assets, including both quadrupeds and humanoids, with convergence occurring at approximately 10K iterations. Across all evaluated scenarios, the end-to-end runtime stays well below 10 minutes on an RTX 4090.

A.4.6 ANALYSIS ON CAMERA INITIALIZATION

To evaluate the robustness of our framework against imperfect camera initialization in the optimization stage, we intentionally introduce significant perturbations to the initial camera rotation. We test angular deviations of 60° , 120° , and 180° relative to the optimal initialization (Fig. 19), which is configured by render-and-compare (Sec. A.1).

As summarized in Tab. 9, our method exhibits remarkable stability even under extreme noise. Notably, initializing from a completely opposite viewpoint (180° deviation) results in negligible performance degradation (PMD: $0.00159 \rightarrow 0.00160$), maintaining superiority over baseline methods.

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
Table 10: **Quantitative robustness analysis based on EMF**. We measure quality across different camera motion scenarios. EMF (angular) quantifies the effective angular coverage; lower values indicate limited parallax and increased geometric ambiguity.

Scenario	EMF (ang.)	Ours		NPR ⁺	
		PMD ↓	FID ↓	PMD ↓	FID ↓
Stationary	35.22	0.0014	0.0075	-	-
Slow orbit (30°)	45.46	0.0011	0.0068	0.0053	0.0257
Teleporting views	253.8	0.0008	0.0083	-	-

Figure 20: **Qualitative comparison of multi-view integration**. We compare results from 1-view and 4-view inputs. The use of 4 views effectively resolves the inherent 2D-3D ambiguity observed in the single-view case, ensuring accurate geometric consistency.

Table 11: **Quantitative evaluation of multi-view motion transfer**. Results demonstrate consistent gains as the number of views increases (from 1 to 4). Notably, our method surpasses the NPR⁺ baseline even in the challenging monocular setting.

#Views	Ours		NPR ⁺	
	PMD ↓	FID ↓	PMD ↓	FID ↓
1-View	0.0027	0.0145	0.0045	0.0683
2-Views	0.0022	0.0095	-	-
4-Views	0.0020	0.0095	-	-

Table 12: **Robustness to fast motion**. We simulate acceleration (1.0 \times to 3.0 \times) to induce motion blur. *Laplacian Variance* (LV) quantifies sharpness (lower values indicate severe blur).

Speed (Frames)	LV	PMD ↓	FID ↓
1.0 \times (66 frames)	459.95	0.0010	0.0029
2.0 \times (33 frames)	453.99	0.0010	0.0052
3.0 \times (22 frames)	438.33	0.0011	0.0050

This robustness arises from our hierarchical optimization strategy, which decouples global alignment from local articulation. The root transformation is optimized first to quickly compensate for camera initialization errors, while internal motions are learned as relative transformations defined with respect to the canonical rest pose. This separation ensures that local pose optimization remains stable and unaffected by inaccuracies in the initial global orientation.

A.4.7 ROBUSTNESS UNDER OCCLUSION

We assess robustness to occlusion using the Effective Multi-view Factor (EMF) from Gao et al. (2022), which measures the extent of viewpoint diversity in a monocular sequence. Low EMF indicates minimal camera motion, such as fixed or subtle hand-held captures, where severe self-occlusion and limited parallax make 3D reasoning highly ambiguous. In contrast, high EMF corresponds to larger viewpoint changes that provide multiple effective views, thereby reducing reconstruction ambiguity.

The quantitative results in Tab. 10 demonstrate that our method yields stable PMD and FID scores even in these low-EMF settings. Notably, in the stationary camera scenario, our method drastically reduces error compared to the baseline (PMD: 0.0014 vs. 0.0053), validating our effective handling of ambiguity without relying on large camera baselines.

A.4.8 MULTI-VIEW SCALABILITY

We investigate whether introducing stronger multi-view cues alleviates inherent 2D-to-3D ambiguities. To this end, we evaluate performance variance across varying numbers of input viewpoints. As shown in Tab. 11, both PMD and FID metrics exhibit consistent improvement as the number of views increases from 1 to 4. This trend indicates that our model effectively exploits multi-view constraints to resolve 2D-to-3D ambiguities (Fig. 20). Notably, a distinct advantage of our framework is its scalability; the pipeline seamlessly extends to multi-view setups via differentiable rendering without requiring any modifications to the underlying network architecture.

A.4.9 ROBUSTNESS AGAINST FAST MOTION AND MOTION BLUR

We evaluate robustness to rapid motion by rendering source videos at different playback speeds (1 \times , 2 \times , 3 \times) with explicit motion blur in Blender (Blender). As shown in Tab. 12, our method re-

1134 Table 13: **Quantitative evaluation across all scenes from DT4D-Quadrupeds.** Lower is better for both
 1135 PMD and FID (↓). Best and second-best results are highlighted in red and orange, respectively.

Method	Punch		Walk1		Death		Walk2		KickBack	
	PMD ↓	FID ↓	PMD ↓	FID ↓						
NPR ⁺	0.0027	0.0961	0.0027	0.1535	0.0039	0.0215	0.0010	0.0118	0.0024	0.0245
Transfer4D	0.0032	0.0145	0.0136	0.1395	0.0047	0.0399	0.0019	0.0099	0.0045	0.0383
Ours	0.0012	0.0074	0.0009	0.0029	0.0020	0.0343	0.0003	0.0043	0.0020	0.0211

Method	Swim		Jump		Walk3		Aggression		Howl	
	PMD ↓	FID ↓	PMD ↓	FID ↓	PMD ↓	FID ↓	PMD ↓	FID ↓	PMD ↓	FID ↓
NPR ⁺	0.0030	0.0676	0.0024	0.0526	0.0022	0.0369	0.0025	0.0489	0.0022	0.0285
Transfer4D	0.0062	0.0837	0.0026	0.0055	0.0078	0.0388	0.0042	0.0075	0.0026	0.0079
Ours	0.0040	0.0385	0.0013	0.0085	0.0005	0.0023	0.0019	0.0335	0.0015	0.0141

Method	Hit Back		Run Stop		Run Forward		Drink		Hop Forward	
	PMD ↓	FID ↓	PMD ↓	FID ↓	PMD ↓	FID ↓	PMD ↓	FID ↓	PMD ↓	FID ↓
NPR ⁺	0.0013	0.0234	0.0059	0.3740	0.0083	0.0269	0.0043	0.0152	0.0026	0.0227
Transfer4D	0.0014	0.0434	0.0123	0.2292	0.0123	0.0303	0.0065	0.0207	0.0029	0.0485
Ours	0.0008	0.0077	0.0024	0.0377	0.0057	0.0261	0.0016	0.0134	0.0013	0.0050

1154 Table 14: **Quantitative evaluation across all scenes from the Mixamo dataset.** Lower is better for both
 1155 PMD and FID (↓). Best and second-best results are highlighted in red and orange, respectively.

Method	JumpingJacks		Running		SideStep		SkinningTest		StandingJump	
	PMD ↓	FID ↓	PMD ↓	FID ↓	PMD ↓	FID ↓	PMD ↓	FID ↓	PMD ↓	FID ↓
SPT ⁺	0.0016	0.0047	0.0030	0.0069	0.0022	0.0170	0.0036	0.0376	0.0025	0.1816
NPR ⁺	0.0017	0.0027	0.0287	0.0194	0.0042	0.0308	0.0092	0.0656	0.0084	0.2369
Transfer4D	0.0077	0.0107	0.0122	0.0450	0.0066	0.0294	0.0086	0.0664	0.0098	0.5631
Ours	0.0010	0.0035	0.0042	0.0229	0.0013	0.0089	0.0042	0.0195	0.0033	0.1728

Method	Walking		Floating		HipHopDance		Header		Dying	
	PMD ↓	FID ↓	PMD ↓	FID ↓	PMD ↓	FID ↓	PMD ↓	FID ↓	PMD ↓	FID ↓
SPT ⁺	0.0018	0.0079	0.0074	0.0192	0.0027	0.0047	0.0036	0.0156	0.0025	0.0314
NPR ⁺	0.0036	0.0057	0.0084	0.0059	0.0032	0.0028	0.0089	0.0177	0.0111	0.0772
Transfer4D	0.0113	0.0274	0.0043	0.0055	0.0034	0.0037	0.0071	0.0170	0.0072	0.0489
Ours	0.0011	0.0027	0.0037	0.0029	0.0032	0.0025	0.0026	0.0042	0.0043	0.0416

1172 mains stable. Even with a reduction in Laplacian variance, indicating strong blur, the reconstruction
 1173 metrics show minimal change (e.g., PMD: 0.0010 → 0.0011).

1174 A known boundary case arises only when frames become fully degraded and contain no usable
 1175 visual cues. In such cases, pose updates fail due to the absence of photometric or semantic gradients,
 1176 a fundamental limitation of any image-supervised optimization method, rather than an issue specific
 1177 to our approach.

A.5 EXTENDED TABLES AND QUALITATIVE VIDEOS

1181 **Quantitative evaluations across all scenes** We provide detailed quantitative results for all evalua-
 1182 tion scenes from the DT4D (Li et al., 2021) and Mixamo (Adobe) datasets in Tab. 13, Tab. 14,
 1183 and Tab. 15. These per-scene metrics supplement the averaged results presented in Tab. 1 of the
 1184 main paper, consistently demonstrating our method’s superior performance across diverse motion
 1185 categories and scenarios.

1187 **Qualitative Video Results** Qualitative comparisons between our approach and baseline methods
 1188 are available via `index.html` file, or can be directly accessed in `./static/videos`.

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
Table 15: **Quantitative evaluation across all scenes from the DT4D-others dataset.** Lower is better for both PMD (\downarrow) and FID (\downarrow). Best results are highlighted in **bold**. The DT4D-Others dataset contains animals that cannot be reconstructed with parametric templates, including birds, whales, dinosaurs, dragons, and elephants.

Method	Fly		Attack		Running		Walk		Swimming	
	PMD \downarrow	FID \downarrow								
Transfer4D	0.0283	0.0971	0.0086	0.0409	0.0162	0.0165	0.0119	0.2455	0.0015	0.0024
Ours	0.0045	0.0415	0.0022	0.0122	0.0033	0.0028	0.0006	0.0020	0.0007	0.0034

Figure 21: **Qualitative comparison with a generative 4D pipeline (Gen-4 Aleph (Runway) + Stag4D (Zeng et al., 2024)).** We illustrate the key limitations of generative approaches. *Left (Identity drift):* The generative pipeline does not fully preserve the geometry of the target object (moose mesh), leading to a more generic appearance even with appropriate text conditioning. *Right (Motion control specificity):* The highlighted regions (red boxes) show that the generative pipeline often fails to reconstruct the motion details.

A.6 COMPARISON WITH GENERATIVE 4D PIPELINES

To situate our method within the broader landscape of generative video and 4D content creation, we compare against a representative state-of-the-art pipeline that integrates video-to-video generation (Runway Gen-4 (Runway)) with a 4D lifting approach (Stag4D (Zeng et al., 2024)).

We assess this pipeline under two practical usage configurations: (i) editing the source video by providing a rendered target image along with a text prompt describing the target’s appearance (Fig. 21, left), and (ii) performing image-to-video generation using a single rendered view of the target while conditioning on a text prompt that specifies the source motion (Fig. 21, right). These settings correspond to common workflows in generative content production and serve as an appropriate reference for comparison.

Although this pipeline is capable of generating visually compelling results, its design goal differs fundamentally from our framework CAMO, which focuses on accurate motion retargeting for a specified target asset. The key distinctions are summarized below.

Identity Preservation. As shown on the left side of Fig. 21, text- or latent-conditioned video generation models generally lack mechanisms to maintain strict correspondence to a particular non-human 3D asset. Consequently, the output often drifts toward generic appearances rather than retaining the asset’s original structure. CAMO avoids such drift by explicitly preserving the asset’s topology and identity throughout optimization.

Motion Faithfulness. As illustrated on the right side of Fig. 21, video generation models produce visually plausible sequences but tend to default to generic motion patterns (e.g., walking, running, dancing). Such models are not designed to follow the precise temporal cues or the nuanced behaviors present in a specific driving video. In contrast, CAMO is designed to explicitly enforce temporal and geometric alignment, enabling the accurate transfer of fine-grained and idiosyncratic motion

1242 characteristics. In addition, the 4D lifting stage introduces further temporal and geometric inconsis-
1243 tencies, as the generative video lacks the stable correspondence and motion specificity required for
1244 reliable reconstruction.

1245 **Computational efficiency.** The two-stage generative pipeline is computationally demanding (ap-
1246 proximately 1 hour per 120-frame sequence), whereas CAMO achieves significantly faster process-
1247 ing (10 minutes per 120 frames) while maintaining reliable control.

1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

1296 **B THEORETICAL ANALYSIS**

1297
 1298 This section examines the structure of our morphology-parameterized representation. We aim to
 1299 understand how the parameters that describe scale, bone lengths, surface offsets, and pose are con-
 1300 strained by an articulated object observed in motion. Under assumptions on piecewise rigidity, a
 1301 kinematic tree, and sufficiently varied motion, we show that these proposed parameters are iden-
 1302 tifiable up to a single global scale factor. This explains why the formulation avoids unnecessary
 1303 ambiguity and leads to stable optimization.

1304 **B.1 PROBLEM SETUP AND ASSUMPTIONS**

1305 Let $\mathcal{I} = \{(I_t, M_t)\}_{t=0}^T$ denote the observed monocular sequence. We estimate two groups of un-
 1306 knowns: the time-varying pose parameters $\{\Theta_t\}$ and the time-invariant morphology parameters Φ .
 1307 The following analysis clarifies when these parameters are uniquely determined and how each com-
 1308 ponent is fixed by the object's structure and observed motion.

1311 **Pose Parameters (Θ):** The dynamic state of the articulated structure at time t :

1313
$$\Theta = \{\Theta_t\}_{t=0}^T \quad (15)$$

1314 where Θ_t includes the root global transformation and local joint rotations.

1315 **Morphology Parameters (Φ):** The time-invariant parameters defining the target character's
 1316 unique geometry:

1317
$$\Phi = (s_{\text{global}}, \{l_b\}_{b \in \mathcal{B}}, \{o_i\}_{i=1}^N) \quad (16)$$

1318

- $s_{\text{global}} \in \mathbb{R}^+$: Global scale factor to resolve monocular depth-scale ambiguity.
- $\{l_b\}_{b \in \mathcal{B}}$: Learnable lengths of bones b in the kinematic tree \mathcal{B} .
- $\{o_i\}_{i=1}^N$: Local offsets for the N 3D Gaussian primitives, modeling surface details.

1325 The canonical center $\bar{\mu}_i$ of the i -th Gaussian is parameterized explicitly to couple the skeletal struc-
 1326 ture with the volumetric representation:

1327
$$\bar{\mu}_i = s_{\text{global}}(p_i(l) + o_i) \quad (17)$$

1328 Here, $p_i(l)$ is the skeleton-driven reference position determined by Linear Blend Skinning (LBS)
 1329 weights w_{ij} and the rest-pose joint locations j_{rest} :

1330
$$p_i(l) = \sum_{j \in \mathcal{J}} w_{ij} j_{\text{rest}}(j; l) \quad (18)$$

1331 The rest-pose joint positions are linear functions of the bone lengths:

1332
$$\mathbf{j}_{\text{rest}}(j; l) = \mathbf{j}_{\text{rest}}(j_{\text{root}}) + \sum_{b \in P(\text{root}, j)} l_b v_b \quad (19)$$

1333 where v_b is the unit direction vector of bone b , and $P(\text{root}, j)$ denotes the set of parent joints along
 1334 the kinematic chain from the root to joint j .

1335 The optimization problem minimizes the energy function E :

1336
$$(\Theta^*, \Phi^*) = \arg \min_{\Theta, \Phi} [\mathcal{L}_{\text{render}} + \lambda_{\text{keypoint}} \mathcal{L}_{\text{keypoint}} + \lambda_{\text{reg}} \mathcal{L}_{\text{reg}}] \quad (20)$$

1337 **Assumptions.** To isolate the contribution of our morphology parameterization, we analyze iden-
 1338 tifiability under controlled conditions where ambiguities arising from 2D observations (e.g., occlu-
 1339 sion, limited viewpoints) are ignored. Specifically, we rely on the following assumptions:

1340

- **A1. Piecewise rigidity:** The target mesh consists of rigid parts connected by joints, forming a kinematic tree structure.

- 1350 • **A2. Non-degenerate motion:** The motion observed in the source video exhibits sufficient
1351 rotation around linearly independent axes, avoiding planar or single-axis singularities that
1352 would prevent unique 3D structure recovery.
- 1353 • **A3. Sufficient observability:** We assume that the temporal sequence of 2D observations
1354 provides sufficient viewpoint diversity (effectively serving as multi-view constraints) to
1355 resolve the 3D structure of rigid components.

1357 **Remark.** In this theoretical analysis, we assume sufficient observability via photometric cues (A3)
1358 so that the identifiability of morphology parameters can be examined in isolation without confounding
1359 factors arising from incomplete or ambiguous 2D evidence. To resolve ambiguities under partial
1360 occlusion, we address this with dense semantic correspondences (Sec. 3.3), regularizations (Ap-
1361 pendix A.2). Empirical robustness under limited viewpoint variation and occlusion is discussed in
1362 Appendix A.4.7–A.4.8.

1364 B.2 AMBIGUITY ANALYSIS OF THE NAIVE FORMULATION

1366 Before introducing our morphology parameterization, we analyze a *naive model* to demonstrate
1367 why standard vertex-based optimization suffers from shape-pose entanglement under monocular
1368 supervision. In a naive formulation, while an articulated skeleton drives deformation via LBS, the
1369 canonical Gaussian centers (initialized from mesh vertices) are treated as free optimization variables
1370 without explicit morphological constraints relative to the skeleton (e.g., learnable bone lengths).

1371 **Naive Gaussian-Center Model.** Let the canonical centers $\{\mu_i\}_{i=1}^N \in \mathbb{R}^3$ be directly optimized as
1372 independent variables. The rendering process at time t from viewpoint v is defined as:

$$1374 \hat{I}_{t,v} = \Pi_v(\text{LBS}(\{\mu_i\}, \Theta_t)), \quad (21)$$

1376 where Π_v is the projection operator and Θ_t represents the articulated pose. Ideally, morphological
1377 discrepancies between the source and target should be absorbed exclusively by the static shape
1378 parameters (the canonical centers $\{\mu_i\}$), while pose parameters $\{\Theta_t\}$ solely capture the dynamic
1379 motion. However, we show that this disentanglement fails under 2D supervision alone.

1380 **Proposition 1** (Shape–Pose Ambiguity in the Naive Model). *Let $(\{\mu_i^*\}, \{\Theta_t^*\}_{t=0}^T)$ be a solution
1381 that minimizes the reprojection error, where $\{\mu_i^*\}$ represents the time-invariant canonical shape.
1382 There exists a continuous family of alternative solutions $(\{\tilde{\mu}_i\}, \{\tilde{\Theta}_t\})$ that produce nearly identical
1383 rendered images.*

1384 Specifically, for a perturbation in canonical shape $\{\Delta\mu_i\}$ that modifies the shape while preserving
1385 skeleton topology, there exists a corresponding pose adjustment $\{\Delta\Theta_t\}_{t=0}^T$ such that:

$$1388 \forall t, \quad \left\| \frac{\partial \hat{I}_t}{\partial \mu} \{\Delta\mu_i\} + \frac{\partial \hat{I}_t}{\partial \Theta_t} \Delta\Theta_t \right\|_2 \approx 0. \quad (22)$$

1391 **Why the Naive Model suffers Ambiguity.** The fundamental challenge lies in disentangling mor-
1392 phological adaptation from pose dynamics. Ideally, structural parameters (e.g., bone lengths) should
1393 adapt to the source’s morphology while independently recovering the articulated *pose*. However,
1394 the naive formulation treats canonical Gaussians $\{\mu_i\}$ as free variables decoupled from the skeleton.
1395 This surface-skeleton decoupling allows the optimizer to satisfy projection constraints by incor-
1396 rectly sliding surface points along bone axes rather than estimating the true pose. Consequently,
1397 this shape-pose ambiguity creates a degenerate solution space where morphological distortions er-
1398 roneously compensate for pose estimation errors.

1400 B.3 IDENTIFIABILITY ANALYSIS

1402 We now establish that our morphology parameterization alleviates the shape-pose entanglement.
1403 The key insight is that by explicitly coupling surface geometry to skeletal structure, we transform an
1404 underconstrained problem into one with unique solution.

1404 B.3.1 IDENTIFIABILITY THEOREM
14051406 **Theorem 1** (Identifiability under Morphology Parameterization). *If surface geometry is parameter-
1407 ized as:*

1408
$$\mu_i(\Phi) = s_{\text{global}}(p_i(\{l_b\}) + o_i), \quad (23)$$

1409

1410 *where $p_i(\{l_b\})$ is the skeleton-driven joint position and o_i is a local offset, then the morphology
1411 parameters $\Phi = (s_{\text{global}}, \{l_b\}, \{o_i\})$ and pose parameters $\Theta = \{\Theta_t\}_{t=0}^T$ are uniquely identifiable
1412 up to a global similarity transformation.*1413
1414 *Proof.* We construct the solution through sequential decomposition, demonstrating that each parameter set is uniquely determined given the previous ones.
14161417 **Step 1: Rigid Part Decomposition.** By A1 (piecewise rigidity), the target object can be decom-
1418 posed into K rigid parts $\{\mathcal{P}_k\}_{k=1}^K$, each moving rigidly over time. Let $\tilde{\mu}_i^k$ denote the canonical
1419 (time-invariant) coordinates of point i on part \mathcal{P}_k , and let $R_k(t) \in \text{SO}(3)$ and $\mathbf{t}_k(t) \in \mathbb{R}^3$ denote
1420 the time-varying rigid transformation of part \mathcal{P}_k at time t . Then the 3D trajectory of each point on
1421 \mathcal{P}_k can be written as:

1422
$$\mu_i^k(t) = R_k(t)(s_k \tilde{\mu}_i^k) + \mathbf{t}_k(t), \quad (24)$$

1423

1424 where $s_k > 0$ is an (unknown) isotropic scale associated with part \mathcal{P}_k .
14251426 Assumption A3 (sufficient observability) implies that the temporal observations provide enough
1427 independent constraints to uniquely determine the rigid motion of each part and its canonical shape
1428 up to this isotropic scale. In other words, for each k , the factorization

1429
$$\{\mu_i^k(t)\}_{i,t} \longleftrightarrow (\{R_k(t), \mathbf{t}_k(t)\}_t, \{s_k \tilde{\mu}_i^k\}_i) \quad (25)$$

1430

1431 is unique up to the per-part scale s_k . Consequently, under non-degenerate motion (A2), we can
1432 recover the time-varying rigid transformations $\{R_k(t), \mathbf{t}_k(t)\}$ and the unscaled geometry for each
1433 part k up to s_k .
14341435 **Step 2: Scale Unification via Kinematic Constraints.** Although Step 1 leaves an arbitrary local
1436 scale s_k for each part, the kinematic tree imposes compatibility constraints at joints. Consider two
1437 adjacent parts \mathcal{P}_k and $\mathcal{P}_{k'}$ connected at joint j . Let \tilde{J}_j^k and $\tilde{J}_j^{k'}$ denote the corresponding joint
1438 locations in the canonical frames of \mathcal{P}_k and $\mathcal{P}_{k'}$, respectively. Their world-space joint position at
1439 time t must coincide:
1440

1441
$$R_k(t)(s_k \tilde{J}_j^k) + \mathbf{t}_k(t) \equiv R_{k'}(t)(s_{k'} \tilde{J}_j^{k'}) + \mathbf{t}_{k'}(t) \quad \forall t. \quad (26)$$

1442

1443 Rearranging equation 26 and with non-degenerate relative motions (A2) eliminates the translations
1444 and shows that the ratio:
1445

1446
$$\rho_{k \rightarrow k'} := \frac{s_{k'}}{s_k} \quad (27)$$

1447

1448 is uniquely determined by the recovered canonical geometries and motions. Intuitively, the physical
1449 bone incident to joint j must have the same length when measured from either side, which fixes
1450 $s_{k'}/s_k$.
14511452 Because the kinematic graph is a tree, these ratios can be propagated from the root part $k = 0$ to all
1453 other parts:
1454

1455
$$s_k = \rho_{0 \rightarrow k} s_0, \quad (28)$$

1456 where $\rho_{0 \rightarrow k}$ is determined by the unique path from the root to k . Thus all local scales $\{s_k\}$ become
1457 linear functions of a single global scale s_0 . This reduces the scale degrees of freedom from K
(independent per-part scales) to a single scalar $s_{\text{global}} \equiv s_0$.

1458 **Step 3: Bone Lengths and Pose.** With a unified global scale s_{global} , the joint trajectories $\{J_j(t)\}$
 1459 are uniquely determined in world coordinates. For a bone b connecting a parent joint j_{parent} and a
 1460 child joint j_{child} , its physical length is:

$$\ell_b = \|J_{j_{\text{child}}}(t) - J_{j_{\text{parent}}}(t)\|, \quad (29)$$

1463 which is invariant over time. Hence the set of bone lengths $\{\ell_b\}$ is uniquely determined (up to the
 1464 same global scale already absorbed into s_{global}).

1465 Given the kinematic tree, the known bone lengths $\{\ell_b\}$, and the joint trajectories $\{J_j(t)\}$, the pose
 1466 parameters $\{\Theta_t\}$ (e.g., joint rotations in a chosen parameterization) are obtained by solving the
 1467 inverse kinematics (IK) problem at each time t . Assumption A2 (non-degenerate motion with suf-
 1468 ficient rotational variation) ensures that the IK solution is unique, i.e., discrete ambiguities such as
 1469 mirrored configurations are ruled out by temporal continuity and multi-joint consistency. Therefore,
 1470 the pose sequence $\{\Theta_t\}$ is uniquely determined.

1471 **Step 4: Surface Offsets.** Finally, we consider the morphology parameters associated with the
 1472 surface, namely the local offsets $\{o_i\}$. As defined in Sec. 3.2, each canonical Gaussian mean is
 1473 parameterized as:

$$\bar{\mu}_i = s_{\text{global}}(p_i(\{\ell_b\}) + o_i), \quad (30)$$

1476 where $p_i(\{\ell_b\})$ is the skeleton-anchored reference position obtained from the kinematic chain and
 1477 skinning weights, and o_i is a time-invariant offset in the canonical frame.

1478 Given the recovered pose sequence $\{\Theta_t\}$, the LBS operator deterministically maps canonical pos-
 1479 tions to their deformed positions. Thus each observed deformed point $\tilde{\mu}_i(t)$ satisfies:

$$\tilde{\mu}_i(t) = \text{LBS}(s_{\text{global}}(p_i(\{\ell_b\}) + o_i), \Theta_t). \quad (31)$$

1484 Here, s_{global} , $\{\ell_b\}$, and $\{\Theta_t\}$ are already fixed by Steps 2–3, so equation 31 is linear in o_i for each
 1485 time t . Stacking equation 31 over multiple time steps yields an overdetermined linear system for o_i .
 1486 By A2, the poses $\{\Theta_t\}$ span sufficiently diverse configurations so that the corresponding system has
 1487 full column rank, and thus admits a unique least-squares solution for o_i .

1488 Putting all steps together, we conclude that under A1–A3, the morphology parameters $(s_{\text{global}}, \ell_b, o_i)$
 1489 and the pose sequence $\{\Theta_t\}$ are uniquely determined up to a single global scale factor s_{global} , com-
 1490 pleting the identifiability. \square

1491 **Remark.** This sequential identifiability theoretically justifies our hierarchical optimization strat-
 1492 egy. By prioritizing global structure (scale, bone lengths) before refining local offsets, we align the
 1493 optimization trajectory with the identifiable path derived above, ensuring stable convergence.

1495 B.3.2 OPTIMIZATION ANALYSIS

1497 In this subsection, we study how each parameter group in $\Psi = \{s_{\text{global}}, \ell_b, \Theta, o_i\}$ influences the
 1498 rendered image by examining their induced image-space motion fields. Rather than evaluating the
 1499 full rendering Jacobian $J = \partial \hat{I} / \partial \Psi$ directly, we analyze the instantaneous 2D displacement (or
 1500 gradient flow) generated by perturbing each parameter. This provides geometric intuition for how
 1501 CAMO achieves disentangled and stable optimization.

1502 We focus on the geometric component of the rasterization process by only considering the projection
 1503 of 3D Gaussian centers. Let $\mu \in \mathbb{R}^3$ be the mean position of a 3D Gaussian and $u = \pi(\mu) \in \mathbb{R}^2$
 1504 be its perspective projection on the image plane. Using the chain rule, the 2D motion field $F_\psi(u)$
 1505 induced by a parameter ψ is formulated as:

$$F_\psi(u) = \frac{\partial \pi}{\partial \mu} \frac{\partial \mu}{\partial \psi} = \mathbf{J}_\pi(\mu) \cdot \mathbf{v}_\psi, \quad (32)$$

1510 where $\mathbf{J}_\pi(\mu) \in \mathbb{R}^{2 \times 3}$ is the Jacobian of the perspective projection function at μ , and $\mathbf{v}_\psi \in \mathbb{R}^3$ is the
 1511 instantaneous 3D velocity of the Gaussian center induced by perturbing ψ . We analyze the structure
 of \mathbf{v}_ψ and its projection for each parameter group:

1512 **Global Scale** s_{global} . Scaling uniformly moves points along the ray from the camera origin. The
 1513 induced 3D velocity is radial, $\mathbf{v}_s \propto \mu$. Under perspective projection, this results in a purely radial
 1514 motion field centered at the principal point c :
 1515

$$F_{s_{global}}(u) \propto (u - c). \quad (33)$$

1518 This creates a global, low-frequency expansion/contraction pattern.
 1519

1520 **Bone Length** ℓ_b . Let w_{ib} be the LBS skinning weight of the Gaussian i with respect to bone b .
 1521 Varying the bone length shifts child Gaussians along the bone axis vector \mathbf{b}_{axis} . The induced 3D
 1522 velocity is $\mathbf{v}_b = w_{ib} \cdot \mathbf{b}_{axis}$. The projected motion field is:
 1523

$$F_{\ell_b}(u) = \mathbf{J}_\pi(\mu) \cdot (w_{ib} \cdot \mathbf{b}_{axis}). \quad (34)$$

1525 Unlike global scale, this field is spatially localized to the specific limb and constrained to align with
 1526 the vanishing point of the bone axis.
 1527

1528 **Pose Parameters** Θ . A pose update corresponds to a rigid rotation of a body part around a joint.
 1529 Let ω be the instantaneous angular velocity vector derived from Θ , and p be the joint location. The
 1530 induced 3D velocity is tangential to the arc of rotation: $\mathbf{v}_\Theta = \omega \times (\mu - p)$. The projected motion
 1531 field captures the perspective projection of this arc:
 1532

$$F_\Theta(u) = \mathbf{J}_\pi(\mu) \cdot (\omega \times (\mu - p)). \quad (35)$$

1535 Depending on the rotation axis relative to the view direction, this produces distinct curvilinear flow
 1536 patterns (e.g., circular motion or foreshortening effects). These patterns are geometrically distin-
 1537 guishable from the strictly linear shifts caused by bone scaling.

1538 **Local Offsets** o_i . Offsets model fine-grained surface details independent of the skeletal structure. A
 1539 perturbation in o_i induces an arbitrary local 3D displacement \mathbf{v}_{o_i} .
 1540

$$F_{o_i}(u) = \mathbf{J}_\pi(\mu) \cdot \mathbf{v}_{o_i}. \quad (36)$$

1543 Crucially, because o_i operates on individual Gaussians rather than kinematic chains, it generates
 1544 high-frequency, sparse motion updates. This sparsity makes the offset gradients orthogonal to the
 1545 global, low-frequency motion fields induced by scale, bone length, and pose, preventing optimiza-
 1546 tion ambiguity.
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565