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ABSTRACT

Motion transfer from 2D videos to 3D assets is a challenging problem, due to
inherent pose ambiguities and diverse object shapes, often requiring category-
specific parametric templates. We propose CAMO, a category-agnostic frame-
work that transfers motion to diverse target meshes directly from monocular 2D
videos without relying on predefined templates or explicit 3D supervision. The
core of CAMO is a morphology-parameterized articulated 3D Gaussian splatting
model combined with dense semantic correspondences to jointly adapt shape and
pose through optimization. This approach effectively alleviates shape-pose am-
biguities, enabling visually faithful motion transfer for diverse categories. Ex-
perimental results demonstrate superior motion accuracy, efficiency, and visual
coherence compared to existing methods, significantly advancing motion transfer
in varied object categories and casual video scenarios.
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Figure 1: Conceptual overview of CAMO. Our method directly transfers articulated motion from 2D video
to diverse target objects, without requiring 3D reconstruction of the source or any parametric templates.

1 INTRODUCTION

Efficient 3D character animation remains an important goal in both computer graphics research
and content industries such as film (Bregler, 2007), interactive media (Rachmavita, 2020), and
robotics (Arduengo et al., 2021). Motion transfer techniques (Aberman et al., 2020; Liao et al.,
2022) provide an efficient alternative to manual keyframing or marker-based motion capture by en-
abling the reuse of existing animations across different characters.

However, a major limitation of many existing methods is their reliance on precomputed 3D se-
quences, such as articulated skeletons (Aberman et al., 2020) or sparse 3D keypoints (Chen et al.,
2023). Acquiring such high-fidelity 3D data is often expensive or impractical in real-world scenar-
ios. To address this data scarcity, recent works (Wang et al., 2023; Muralikrishnan et al., 2024) have
explored extracting motion cues directly from readily accessible 2D monocular videos. A common
strategy within this domain involves a two-stage reconstruct-then-retarget approach. In this process,
a 3D proxy representation of the source subject is first reconstructed from the 2D video, and this
intermediate representation is then fed into established 3D-to-3D motion transfer techniques.

Despite demonstrating effective retargeting performance under controlled conditions, these sequen-
tial pipelines inherently possess several limitations. A primary limitation stems from their depen-
dence on category-specific priors, such as parametric template models (Loper et al., 2015; Zuffi
et al., 2017), which require large-scale, high-fidelity training data. Although models built on such
priors (Kanazawa et al., 2018; Zhang et al., 2021; Rueegg et al., 2022) achieve robust and transfer-
able pose estimation within the structural biases of their target domains, their ability to generalize
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to diverse shapes and semantic categories remains limited. Furthermore, the cascaded structure
of these pipelines can lead to error propagation, where inaccuracies from the reconstruction stage
detrimentally impact the fidelity of the final transferred motion.

Our category-agnostic motion transfer framework, CAMO, adopts an alternative strategy to conven-
tional reconstruct-then-retarget pipelines. Rather than relying on intermediate 3D reconstructions of
the source, we directly project the target character into the 2D observation space, enabling pose
optimization purely through image-space supervision. Specifically, we repurpose articulated 3D
Gaussian splatting (Yao et al., 2025) (articulated-GS), originally developed for reconstructing artic-
ulated animatable objects from 2D videos, to facilitate motion transfer.

CAMO extends this by explicitly modeling morphological differences between source and target
characters. Structural variations are decomposed from the target’s original shape and adapted to
transfer the source motion while preserving topology. To complement this morphology-adaptive
optimization and further mitigate shape-pose ambiguity, dense semantic correspondences are es-
tablished between the 2D source frames and the 3D target mesh, providing semantic guidance for
coherent pose recovery. This integration of structural modeling and semantic correspondence guides
both visually plausible and semantically coherent pose optimization processes, enabling robust gen-
eralization across diverse categories and complex motions. Fig. 1 illustrates the overview of CAMO.

We comprehensively validate CAMO on synthetic benchmarks spanning diverse categories such
as humanoids, quadrupeds, and other non-standard animals, as well as on real-world monocular
videos. Across all these settings, CAMO consistently preserves motion fidelity and generalizes
across diverse morphologies, achieving substantial improvements in both PMD (↓) and FID (↓), with
reductions reaching up to 85% on the challenging categories compared to state-of-the-art methods.

2 RELATED WORK

Motion transfer between 3D assets. Traditional techniques in motion transfer have leveraged 3D
skeletal structures to enable efficient retargeting across various characters (Gleicher, 1998; Villegas
et al., 2018; Aberman et al., 2020; Villegas et al., 2021; Chen et al., 2023). These approaches
commonly build upon category-specific skeletal priors, which enable effective performance within
their target domains but constrain their generalization to categories outside those domains.

Beyond skeleton-based approaches, skeleton-free deformation methods (Gao et al., 2018; Wang
et al., 2020; Liao et al., 2022; Wang et al., 2023; Muralikrishnan et al., 2024; Yoo et al., 2024) are
independent from explicit skeletal models, relaxing categorical constraints. Nevertheless, these ap-
proaches typically rely on high-quality 3D motion data, which is generally not available for objects
across diverse categories. As a result, generalizing these methods to a wider variety of object cat-
egories remains a notable challenge, primarily due to the substantial cost and scarcity of such 3D
data.

Shape and pose estimation from 2D videos. Another line of research focuses on capturing 3D
pose from monocular video. These methods achieve impressive reconstructions within specific do-
mains, often leveraging parametric templates. Representative works include human pose estima-
tion (Zhang et al., 2021; Goel et al., 2023) with SMPL (Loper et al., 2015), and quadruped pose
estimation (Rüegg et al., 2023; Lyu et al., 2024) with SMAL (Zuffi et al., 2017). Although effective
in domains with abundant 3D scan data, these methods are constrained by their reliance on paramet-
ric templates, which limits generalization to categories without extensive 3D pose annotations.

Recent approaches (Yao et al., 2022; Wu et al., 2023a;b; Aygun & Mac Aodha, 2024; Li et al., 2024)
explore parametric template-free construction of articulated models from image collections. While
promising for intra-class generalization without strong parametric template priors, these methods
often struggle to generalize across categories. Uzolas et al. (2023) and Yao et al. (2025) inherently
avoid this limitation by employing per-scene optimization to directly decompose shape and skeletal
pose from individual dynamic scene observations. However, as their focus lies in reconstruction,
their ability to retarget motion to novel characters remains underexplored.

Specifically targeting character animation, auto-rigging methods (Song et al., 2025a; Zhang et al.,
2025a) predict the skeleton and skinning weights of a 3D asset to apply motion extracted from
videos or reconstructed mesh sequences. However, these methods typically require a complete mor-
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phological (Song et al., 2025a) or skeletal structural correspondence (Zhang et al., 2025a) between
the motion source and the target 3D character.

2D to 3D motion transfer. Existing 3D-to-3D motion transfer frameworks (Wang et al., 2023; Mu-
ralikrishnan et al., 2024) extend to the 2D domain by combining parametric template-based pose
and shape estimators (Zhang et al., 2021; Rueegg et al., 2022) with 3D pose transfer techniques.
These shape estimators are typically demonstrated on humanoid or quadruped characters respec-
tively, where the reliance on categorical templates (Loper et al., 2015; Zuffi et al., 2017) fundamen-
tally limits their ability to generalize to novel categories. Moreover, we observe that sequentially
combining independently trained components often leads to cumulative errors, ultimately degrading
the fidelity of transferred motion.

Maheshwari et al. (2023) propose a category-agnostic approach that removes template priors, trans-
ferring motion from RGB-D videos to 3D meshes by estimating skeletal motion from reconstructed
meshes; its performance, however, hinges on accurate depth input, limiting robustness in casual or
monocular RGB settings. In contrast, Fu et al. (2024) and Zhang et al. (2024a) achieve 2D-to-3D
motion transfer without depth by reconstructing motion with neural bones (Yang et al., 2022) or
by leveraging image-to-3D generative models (Liu et al., 2023). Despite improved generalizability,
these approaches remain tied to intermediate reconstruction stages (e.g., pseudo-3D supervision or
skeletonization), which makes them sensitive to reconstruction errors and less robust under large
morphological variations.

In contrast, we directly leverage 2D RGB videos as motion sources through morphology-adaptive
shape and pose parameter optimization. By bypassing intermediate 3D reconstruction, our approach
mitigates reconstruction errors and enables robust motion transfer across diverse object categories
and morphological variances without relying on category-specific templates.

3 METHODS

Our goal is to transfer articulated motion from a monocular video to arbitrary 3D characters. We
take as input a static 3D target mesh Mtgt and a source monocular RGB video with paired fore-
ground masks {It,Mt}Tt=0, where It is a frame from time t, and Mt is obtained via off-the-shelf
segmentation model (Kirillov et al., 2023). We aim to produce a temporally coherent sequence of
deformed meshes {Mtgt

t }Tt=0 that faithfully reproduces the source motion.

We first encapsulate the target mesh with an Articulated-GS (Yao et al., 2025) representation with
pose parameters (Sec. 3.1). We then parameterize morphology using learnable bone lengths, a global
scale, and local Gaussian offsets (Sec. 3.2). This representation disentangles shape variation from
pose dynamics. Finally, all shape and pose parameters are optimized jointly via differentiable ren-
dering and dense semantic correspondences (Sec. 3.3–3.4), yielding semantically coherent motion
aligned to the source. Fig. 2 illustrates the full pipeline.

3.1 ARTICULATED 3D GAUSSIAN SPLATTING FOR IMAGE-SPACE OPTIMIZATION

Retargeting motion from a monocular video typically requires estimating the 3D geometry of the
source subject. However, inferring accurate 3D pose and shape from 2D inputs is inherently am-
biguous. Reliance on these estimated 3D priors often introduces errors that propagate to the final
result. We propose a direct optimization strategy to address this issue. We optimize the target char-
acter to align directly with the 2D source video observations. This approach bypasses the need for
an explicit intermediate 3D representation of the source.

To this end, we employ Articulated 3D Gaussian Splatting (Articulated-GS) (Yao et al., 2025). This
framework defines the target character using a single, unified canonical shape. We deform this time-
invariant geometry via Linear Blend Skinning (LBS) to match the pose in each video frame. Crit-
ically, our optimization updates this single canonical shape to satisfy projection constraints across
all time steps and camera views. This enforces geometric consistency throughout the entire motion
sequence.

Target Representation. We represent the target character using a set of 3D Gaussians attached
to a kinematic skeleton T = (J ,A), where J denotes the set of joints and A = {Aj}j∈J\{jr}

3
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Figure 2: Overview of the morphology-adaptive articulated Gaussian splatting pipeline. Given a target
mesh, we parameterize it with deformable 3D Gaussians. A time-conditioned MLP (fMLP) predicts skeletal
transformations driven by input time embeddings. Crucially, our pipeline employs morphology adaptation
(Sec. 3.2) to align the target’s canonical structure, followed by LBS-based deformation (Sec. 3.1) for articu-
lation. The framework is optimized end-to-end using differentiable rendering (Lrender) and semantic keypoint
constraints (Lkeypoint) consistent with the source video.

maps each joint j to its parent Aj , with jr being the root. Each Gaussian Gi is parameterized by
its mean µi ∈ R3, rotation qi ∈ R4, scale si ∈ R3, opacity σi ∈ [0, 1], and spherical harmonic
coefficients SHi ∈ RK . Unlike previous works that initialize from sparse point clouds, we leverage
the explicit geometry of the target mesh to initialize these Gaussian positions µi (Sec. 3.2). For
unrigged meshes, we employ automatic rigging methods (Xu et al., 2020; Zhang et al., 2025b) to
establish the skeletal structure.

Kinematic Deformation. To capture temporal dynamics, a time-conditioned MLP, fMLP, predicts
the skeletal pose for each timestamp t. Given a sinusoidal time embedding emb(t), the network
outputs the root translation and relative joint rotations:{

{θtj}j∈J , δ
t
global

}
= fMLP(emb(t)), (1)

where θtj is the unit quaternion for joint j and δtglobal is the global translation. These predictions drive
the deformation of the canonical Gaussians. The deformed position µti of Gaussian i is computed
via LBS:

µti = δtglobal +
∑
j∈J

wijT
t
jµ̄i, Tt

j =
∏

k∈P(root,j)

T̄t
k, T̄t

k =

(
Rt
k JAk

−Rt
k JAk

0 1

)
. (2)

Here, µ̄i is the canonical center, wij is the skinning weight, and Rt
k is the rotation matrix derived

from θtk. This formulation ensures that the Gaussians move coherently according to the skeletal
hierarchy.

Differentiable Rendering. The deformed Gaussians are rasterized into 2D images to compute the
optimization loss. For a viewpoint v and pixel u, the color C(u) is derived via alpha compositing:

C(u) =
∑
i∈N

Ti αi SH(shi,v), Ti =

i−1∏
j=1

(1− αj). (3)

This differentiable rendering process allows us to backpropagate gradients from the 2D projection
error directly to the 3D pose and shape parameters, bridging the domain gap between the 2D source
and 3D target.

3.2 MORPHOLOGY-ADAPTIVE SHAPE PARAMETERIZATION

Standard Articulated-GS assumes a fixed skeletal topology, which restricts its ability to trans-
fer motion between characters with differing limb proportions. To address this, we introduce a
morphology-adaptive parameterization that explicitly disentangles structural variations from pose
dynamics. In this paper, we use the term morphology to refer to the character’s limb proportion,
global body scale, and local shape details. By optimizing these time-invariant parameters along-
side time-variant poses, our framework enables the target character to adapt its shape to the source
motion while preserving kinematic coherence (Fig. 3 (b)).

Learnable Bone Lengths. We first relax the fixed skeleton constraint by assigning a learnable scalar
length ℓb ∈ R+ to each bone b ∈ B. Given the unit direction vector vb ∈ R3 from a parent to a child

4
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Morphology-adaptive Parameterization
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(a) Skeleton rigging (b) Morphology-adaptive parameterization (c) Shape deformation
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Figure 3: Deformable morphology parameterization. (a) We initialize the target character with skeleton
rigging, acquiring the topological structure and skinning weights. (b) Morphology-adaptive parameterization
of structural variations. (c) During optimization, shape parameters deform the target’s morphological structure
to align with the morphology of the source.

joint, the rest-pose position of any joint j is determined by the cumulative length of bones along the
kinematic chain:

jrest(j) = jrest(jroot) +
∑

b∈P(root,j)

ℓbvb. (4)

This allows the skeleton to stretch or shrink segments (e.g., legs or arms) to match the source sub-
ject’s proportions purely through optimization.

Morphology-Aware Gaussian Initialization. Crucially, the surface geometry must adapt to these
skeletal changes. Instead of treating Gaussian positions as independent variables, we parameterize
the mean µi of each Gaussian Gi relative to the underlying bone structure. We define µi as a
displacement from a skeleton-anchored reference point pi:

µi = pi + oi, where pi =
∑
j∈J

wij jrest(j), (5)

where pi represents the coarse geometry derived from joint positions jrest(j) LBS weights wij ,
while the learnable offset oi ∈ R3 captures fine-grained local shape deviations. This formulation
ensures that when bone lengths ℓb change, the associated Gaussians move coherently with the skele-
ton, preventing geometric artifacts.

Global Scale and Canonical Shape. Finally, to resolve the scale ambiguity inherent in monocular
video, we introduce a global scaling factor sglobal ∈ R+. This factor uniformly scales the entire
morphology-parameterized character. The final canonical position µ̄i used for deformation (Eq. 2)
is obtained by:

µ̄i = sglobal · µi. (6)

By jointly optimizing bone lengths (ℓb), local offsets (oi), and global scale (sglobal), our parameter-
ization allows the target mesh to conform to the source’s morphology while maintaining its original
topological structure (Fig. 3 (c)).

Discussion. Our morphology parameterization provides a structural basis for mitigating the shape-
pose ambiguity inherent in 2D-to-3D motion transfer. By explicitly decoupling global scale, skeletal
lengths, and local offsets, our formulation promotes geometric identifiability under non-degenerate
motion conditions, showing that morphological changes are distinguishable from pose dynamics.
This disentanglement facilitates stable optimization by reducing the solution space to physically
plausible configurations. We provide a detailed discussion on theoretical analysis in Appendix B.

3.3 TARGET-SOURCE DENSE SEMANTIC CORRESPONDENCE

While our proposed shape parameterization accounts for morphological differences, a key challenge
in transferring articulated motion from 2D to 3D remains: shape–pose ambiguity. This refers to the
inherent uncertainty in disentangling an object’s underlying pose from its observation. Photometric
loss provides essential low-level supervision, but relying on it alone may produce motion artifacts,
as it captures only visual cues and lacks explicit semantic correspondences between characters.
These artifacts can be mitigated by incorporating additional semantic cues, which help disambiguate
overlapping projections, particularly when source and target morphologies differ.

5
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Figure 4: Dense target-source correspondences matching. We extract robust 2D-to-3D semantic correspon-
dences by matching semantic features between source frames and rendered target views.

To address this, we establish robust 2D-3D semantic correspondences by leveraging pre-trained
vision foundation models. Specifically, we utilize an orientation-sensitive feature extractor (Yang
et al., 2020) that produces spatially consistent descriptors across varied poses and morphologies,
then obtain dense pixel-to-vertex mappings through semantic feature matching between input im-
ages and target mesh renderings (Shtedritski et al., 2024). This provides automatic correspondence
estimation without requiring manual registration or additional training.

The detailed pipeline of our dense correspondence extraction module is illustrated in Fig. 4. We
first compute the similarity score of the dense semantic features extracted by the feature extractor
ϕ(·) from a source video frame It with those from multiple rendered views {I tgt

v } of the target mesh
Mtgt. Then, given a source pixel p ∈ It with the extracted feature ϕ(It), we compute a pooled
similarity score ΣIt(p,xk) for each vertex xk ∈Mtgt as:

ΣIt(p,xk) = pool
v,xk∈vis(I tgt

v )

S
(
ϕ(It)[p], ϕ(I

tgt
v )[πv(xk)]

)
, (7)

where S(·) denotes a cosine similarity, πv(xk) denotes the 2D projection of vertex xk onto the
rendered image I tgt

v , and ϕ(I tgt
v )[πv(xk)] is the corresponding feature vector at the 2D projected

location. The operator pool aggregates similarity scores via max-pooling across all v target-rendered
views where xk is visible.

The best-matching 3D vertex x̃3D
p,t for each pixel p in frame t is obtained by selecting the vertex

with the highest pooled similarity score:

x̃3D
p,t = arg max

xk∈V(Mtgt)
ΣIt(p,xk), (8)

where V(Mtgt) denotes the set of vertices of the target mesh. These retrieved 3D points x̃3D
p,t serve as

semantic keypoints, providing supervision to guide semantic structure alignment of cross-modality
during optimization, as the keypoint loss Lkeypoint (Sec. 3.4).

3.4 OPTIMIZATION

As formalized in Eq. 1 and visualized in Fig. 2, our primary objective is to recover the target mesh’s
time-varying skeletal pose parameters aligned with the source motion, relying solely on 2D ob-
servations without ground-truth 3D annotations or any form of pose template prior. The entire
framework, composed of morphology-parameterized articulated Gaussians, is optimized end-to-end
by minimizing a composite loss function. Our optimization objective combines photometric re-
construction, semantic correspondence, and multiple regularization terms: Ltotal = λrenderLrender +
λkeypointLkeypoint + λregLreg, where the weights balance their respective contributions.

The render loss enforces photometric consistency between the rendered frame Ît (from Eq. 3) and
the source frame It by combining an ℓ1 term with a SSIM (Wang et al., 2004) term:

Lrender =

T∑
t=0

[
(1− λdSSIM)

∥∥Ît − It∥∥1 + λdSSIM
(
1− SSIM(Ît, It)

)]
. (9)

The keypoint loss supervises geometric alignment by minimizing projection error between source
image pixels and their matched 3D vertices derived from dense semantic correspondences:

Lkeypoint =

T∑
t=0

∑
p∈Pt

∥∥p− πt (x̃3D
p,t

)∥∥
2
, (10)
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Table 1: Quantitative evaluation on Mixamo and DT4D datasets. Our method consistently outperforms all
baselines across diverse categories. Results are averaged across scenes, with per-scene results in the Appendix.

Mixamo DT4D-Quadrupeds DT4D-Others
PMD ↓ FID ↓ PMD ↓ FID ↓ PMD ↓ FID ↓

SPT+ 0.0029 0.0366 - - - -
NPR+ 0.0099 0.0551 0.0032 0.0669 - -

Transfer4D 0.0084 0.0855 0.0058 0.0505 0.0133 0.0805
Ours 0.0028 0.0304 0.0018 0.0171 0.0023 0.0124

where x̃3D
p,t is the best-matching 3D vertex obtained via Eq. 8, and Pt represents sampled foreground

pixels. Finally, Lreg comprises multiple regularization terms that encourage temporal smoothness
and geometric consistency (detailed formulations provided in the Appendix).

4 EXPERIMENTS

4.1 DATASETS AND IMPLEMENTATIONS

Datasets. We evaluate our approach on mesh-animation pairs sampled from DeformingThings-
4D (DT4D) (Li et al., 2021) and Mixamo (Adobe). From DT4D, we select 20 animation pairs
spanning diverse animal categories of quadrupeds and non-quadrupeds exhibiting varied motions.
From Mixamo, we utilize 12 humanoid mesh-animation pairs across different character models and
motion types. To simulate a casually captured monocular video scenario, we render each source
animation using a single camera with constrained movement (±30° angular range), generating input
frames with corresponding ground-truth 3D target mesh animations. We further conduct qualitative
evaluation on real-world videos sourced from the DAVIS dataset (Perazzi et al., 2016) and two
publicly available online videos (Daley, n.d.; Nicky Pe, n.d.), as well as 2D-to-2D motion transfer
scenarios using additional synthetic sequences (Pumarola et al., 2021; Liu et al., 2024). Details on
dataset preparation and configuration are provided in the Appendix.

Implementation details. We employ a two-stage optimization strategy that first performs global
alignment of scale and translation, then jointly refines local pose and shape parameters (bone length,
Gaussians) to adapt morphology while preserving essential motion characteristics. All experiments
use the Adam optimizer (Kingma & Ba, 2014) with adaptive learning rates over 10k iterations. Our
method achieves efficient optimization, completing training in under 10 minutes on a single RTX
4090 GPU. Detailed hyperparameter specifications are provided in the Appendix.

4.2 2D-TO-3D MOTION TRANSFER

Baselines and metrics. We compare our method against two baseline categories: compos-
ite pipelines combining 2D-to-3D reconstruction with 3D motion transfer, and a template-free
optimization-based approach (Transfer4D (Maheshwari et al., 2023)). For composite baselines, we
adopt a two-stage setup with mesh reconstruction followed by motion transfer using SPT (Liao
et al., 2022) and NPR (Yoo et al., 2024), denoted as SPT+ and NPR+ (see Appendix for base-
line implementation details). SPT+ is evaluated only on humanoid motion, as the original method
was designed and tested on stylized human characters. Transfer4D performs motion retargeting by
extracting skeletal structure from RGB-D input. On datasets with non-quadruped animals, where
parametric templates of reconstruction methods are not applicable, we compare only to Transfer4D.

We quantify motion transfer by comparing the retargeted and ground-truth mesh sequences. Consis-
tent with prior work (Liao et al., 2022; Yoo et al., 2024), we adopt Point-wise Mesh Distance (PMD)
to measure per-vertex accuracy and Fréchet Inception Distance (FID) (Heusel et al., 2017) to assess
perceptual fidelity. To compute FID, both ground-truth and retargeted animations are rendered from
12 viewpoints and their image distributions are compared.

Comparison results. We evaluate our method and baselines on DT4D and Mixamo datasets. As
shown in Tab. 1, our approach achieves superior performance on both PMD and FID metrics. These
results show that our approach achieves strong performance in a data-efficient manner, relying only
on direct optimization without explicit 3D supervision. On non-quadrupeds (DT4D-Others), we

7
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Figure 5: Qualitative results on Mixamo and DT4D-Quadruped datasets. Our method shows superior pose
alignment compared to baselines across diverse objects. Refer to the supplementary video for full animation.
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Figure 6: Qualitative results on real-world datasets. Our motion transfer pipeline effectively transfers
motion from both synthetic and real-world videos in a category-agnostic manner.

significantly outperform Transfer4D even without depth input, demonstrating strong performance
beyond parametric model categories.

Fig. 5 demonstrates that our method preserves the target shape and transfers motion faithfully, while
baselines often produce distorted shapes by estimating incorrect transformation (Liao et al., 2022;
Maheshwari et al., 2023) or relying on predicted surface Jacobians (Yoo et al., 2024). This shape
fidelity is attributed to our morphology-parameterization, which we also analyze in Sec. 4.3.

Qualitative results on real-world videos. To evaluate real-world applicability, we apply our
method to in-the-wild monocular videos featuring diverse animal categories with complex back-
grounds and occlusions. These noisy or open-domain scenarios represent cases where obtaining
corresponding 3D animations is challenging. As shown in Fig. 6, our approach successfully transfers
motion across these varied scenarios while preserving target mesh structure and proportions. These
results demonstrate effective motion transfer directly from monocular input without requiring 3D
motion generation, highlighting the practical value of our 2D-grounded motion transfer approach.

4.3 ABLATION STUDY

We ablate key components of our framework in Tab. 2 and Fig. 7. Removing the rendering loss
severely degrades performance (PMD ↑ ∼5×), indicating it as the primary driver of motion transfer,
while the keypoint loss adds complementary semantic guidance. Fig. 7 shows that dropping the
keypoint loss yields suboptimal transfers due to unresolved shape-pose ambiguities.

Excluding our shape parameterization (bone lengths lb, Gaussian means µ, global scale sglobal)
causes distorted geometry and misaligned orientations, especially under large morphological dif-
ferences. With shape parameters fixed, global translation lowers render loss by pulling the object
toward the camera, partially recovering motion but distorting orientation and pose (Fig. 7; see sup-
plementary videos). Overall, adding each component yields consistent gains (Tab. 2), confirming
their complementary roles to enhance robustness. Extended ablation studies appear in the Appendix.
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11.28
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Figure 7: Qualitative ablations. Keypoint loss complements mo-
tion details and accuracy. Excluding shape parameters induces severe
geometric artifacts for large morphological variation.

Table 2: Quantitative evaluation of
component contributions.

Ablation PMD (↓) FID (↓)

Full Model 0.0018 0.0171

w/o Lrender 0.0090 0.0463
w/o Shape param. 0.0047 0.0747
w/o µ update 0.0039 0.0552
w/o lb & sglobal update 0.0040 0.0488
w/o Lkeypoint 0.0031 0.0252
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(a) Cross-category motion transfer

(b) 2D-to-2D motion transfer

(c) AI-generated mesh animation

t t

t t

1.98Figure 8: Results on diverse applications. Our method transfers motion for (a) cross-category source-target
pairs, (b) 2D-to-2D videos, and (c) AI-generated mesh animations.

4.4 DIVERSE APPLICATION SCENARIOS

Cross-category motion transfer. Our method demonstrates strong generalization across diverse
categories, as shown in Fig. 8 (a). We successfully transfer motion between different animal species
(rabbit-to-deer) and even across broader categories (animal-to-human). This flexibility stems from
our universal optimization approach that does not rely on category-specific skeletal structures or
explicit category matching between source and target.

2D-to-2D motion transfer. A key advantage of our method is its representation-agnostic appli-
cability across articulated 3D assets. While primarily demonstrated on mesh targets, our frame-
work seamlessly extends to Gaussian-based 3D representation without modification of core design.
Fig. 8(b) shows motion transfer to 3DGS reconstructed from multi-view images (Yao et al., 2025),
enabling video-to-video transfer when both source and target originate from RGB sequences. To-
gether, these results yield a single, category-agnostic framework that operates consistently across
varied 3D representations.

AI-generated mesh animation. Another interesting application is animating meshes synthesized
by generative models. As shown in Fig. 8 (c), we achieve effective motion transfer using meshes
generated from an off-the-shelf image-to-mesh model (Zhao et al., 2025). This demonstrates the
versatility of our approach to meshes from diverse sources, supporting modern content creation
workflows that increasingly incorporate AI-generated assets.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

5 DISCUSSION

We introduce CAMO, a framework that transfers motion from monocular videos to 3D assets with-
out relying on category-specific templates. By reformulating motion retargeting as an efficient
morphology-adaptive optimization on articulated Gaussian splats, our method avoids error accumu-
lation in traditional reconstruct-then-retarget pipelines without any 3D supervision or large datasets.
The integration of morphology-adaptive modeling and semantic correspondences provides comple-
mentary cues that reduce shape-pose ambiguities and enable broad applicability across different
skeletal structures and 3D representations.

Limitations and future work. While CAMO achieves robust category-agnostic motion transfer, the
current morphology-adaptive formulation is limited to articulated kinematic structures. This restricts
its ability to capture richer non-rigid dynamics such as soft-tissue deformation or secondary motion
(e.g., hair dynamics, tail sway). Beyond these kinematic limitations, our framework currently prior-
itizes visual motion transfer rather than enforcing full physical plausibility. A promising direction is
to augment our optimization with physically grounded constraints, such as Jacobian-space motion
consistency and contact-aware regularization. Another promising avenue for future work is to enrich
the framework with additional geometric cues, such as monocular depth predictors or generative 3D
priors. These sources of structure-aware regularization could improve robustness in complex scenes
or under limited camera motion, further extending the applicability of our approach.

Ethics Statement
This work presents a novel framework for motion synthesis, intended for beneficial applications in
digital content creation, robotics, and virtual reality. While our research focuses on advancing 3D
motion synthesis techniques, we acknowledge the potential risks associated with generative tech-
nologies, such as the creation of deceptive content or deepfakes. To address privacy and data ethics,
all experiments were conducted using publicly available benchmark datasets (e.g., Mixamo (Adobe),
DT4D (Li et al., 2021), DAVIS (Perazzi et al., 2016)) and open-license video resources (Pexels). All
data sources were utilized in strict accordance with their respective licenses and usage guidelines.
Technically, our method is designed to transfer motion rather than identity; however, we emphasize
that responsible deployment is essential to mitigate misuse, and we advocate for adherence to ethical
guidelines and legal frameworks.

Reproducibility Statement
We are committed to ensuring the reproducibility of our results. We provide detailed descriptions of
our pipeline, including articulated 3D Gaussian Splatting, morphology-adaptive parameterization,
and dense semantic keypoint correspondence in Sec. 3. Furthermore, detailed objective functions,
data preprocessing steps, specific hyperparameter settings, and additional ablation studies verifying
the robustness of our method are comprehensively reported in Appendix A.1 and A.2.
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A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

This appendix provides additional implementation details, ablations, and extended results supporting
the main paper. The overall structure for the Appendices is as follows:

• Datasets and baselines (Sec. A.1)

• Implementational details (Sec. A.2)

• Ablation on design choices (Sec. A.3)

– Shape parameterization
– Dense keypoint loss
– Rigging modules
– Geometry-aware semantic features

• Performance analysis (Sec. A.4)

– Performance on diverse morphological variations
– Performance on different motion scales
– Performance on challenging cases
– Failure case analysis
– Computational analysis (New)
– Analysis on camera initialization (New)
– Robustness under occlusion (New)
– Multi-view scalability (New)
– Robustness against fast motion and motion blur (New)

• Extended Tables and Qualitative Videos (Sec. A.5)

• Comparison with generative 4D pipelines. (New) (Sec. A.6)
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SMPL mesh reconstruction with 4D-Humans SMAL mesh reconstruction with AniMer

12.78

Figure 9: Intermediate mesh reconstruction with template-based 3D pose and shape estimation models.

A.1 DATASETS AND BASELINES

Synthetic datasets. DeformingThings4D (DT4D) (Li et al., 2021) is a large-scale synthetic dataset
of non-rigidly deforming objects, featuring 1,972 animation sequences across 147 characters from
31 categories made by CG experts. We specifically select animal motion sequences (DT4D-animals)
for evaluation. We collect 20 pairs of animations, each pair sharing identical pose parameters but
differing in character shape. For humanoid characters, we utilize Mixamo (Adobe) to acquire
12 character-motion pairs of discrete motions. Example datasets URL for animal and humanoid
datasets are provided in our index.html.

To generate the monocular video, we render source animations from the DT4D and Mixamo datasets
at a resolution of 256×256 using PyTorch3D’s PerspectiveCamera, ensuring consistent view-
point changes by varying camera azimuth within ±30°. Untextured DT4D sequences are textured
with texture maps generated from TexPainter (Zhang et al., 2024b) to improve visual realism.

Real-world videos. For real-world videos collected from different sources (Daley, n.d.; Nicky Pe,
n.d.; Perazzi et al., 2016), we clip and resize the videos at a resolution of 256x256. While syn-
thetic datasets provide ground-truth camera configurations and global orientation alignment between
source and target sequences, real-world videos lack such information; thus, we assume a fixed cam-
era for real-world videos. To align the 3D target mesh with the source video’s object orientation and
scale for motion transfer, we adopt a render-and-compare strategy guided by semantic correspon-
dences. Specifically, we pre-render target mesh with candidate camera poses and evaluate each pose
by calculating patch-wise feature cosine similarity to the source frame. The camera pose yielding the
maximum similarity serves as our initial alignment, providing a stable and semantically grounded
initialization for subsequent optimization.

Implementation of Composite baselines. As described in Sec. 4 in main paper, we compare our
method with composite pipelines that first reconstruct 3D source meshes from 2D videos, followed
by 3D-to-3D motion retargeting. Intermediate reconstructions are obtained by fitting parametric
templates to each video frame: SMPL (Loper et al., 2015) for humans and SMAL (Zuffi et al.,
2017) for quadrupeds (see Fig.9 for reconstruction examples).

For humanoid motion transfer on the Mixamo dataset, we first extract SMPL meshes using 4D-
Humans (Goel et al., 2023), then apply SPT (Liao et al., 2022) and NPR (Yoo et al., 2024) with
pretrained checkpoints based on the SMPL model. For quadruped experiments on DT4D, we train
NPR’s pose extractor and shape applier modules using SMAL meshes reconstructed from monocular
videos via AniMer (Lyu et al., 2024).

A.2 IMPLEMENTATIONAL DETAILS

Skeletal motion field. The skeletal motion field is parameterized by MLPs. Temporal inputs are first
processed using sinusoidal embeddings (13-dimensional), and subsequently passed through a two-
layer embedding network producing a 30-dimensional temporal representation. This representation
is then fed into an 8-layer MLP featuring 256 hidden units and a skip connection at the fourth layer.
The MLP outputs are then directed to a 2-layer global translation head predicting 3D translation
vectors, and a 2-layer joint rotation head predicting normalized quaternions. Together, these outputs
define SE(3) transformation governing the skeletal motion.

Motion regularizers. Our method employs four distinct motion regularizers to ensure stable and
plausible motion. To prevent excessive motions during early training, we apply an L1 penalty jointly
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to global translations and joint rotations:

Ltrans = λtrans
∥δtglobal∥1 +

∑J
j=1 ∥rtj∥1

J
, (11)

where λtrans is the regularization weight, δtglobal the global translation vector at frame t, rtj the
rotation angle for joint j at frame t, and J the number of joints.

To enforce temporal smoothness, we additionally penalize frame-to-frame motion:

Lsmooth = λsmooth

( J∑
j=1

∥∥rtj − rt−1
j

∥∥
1
+

∥∥δtglobal − δt−1
global

∥∥
1

)
, (12)

where λsmooth is the smoothness weight.

Following Yao et al. (Yao et al., 2025), we impose 2D projection constraints on 3D points sampled
along the articulated skeleton. First, we extract 2D skeleton points ptskeleton from the source fore-
ground mask M t

src via a morphological thinning algorithm (Zhang & Suen, 1984). Then, at each
frame t, we sample a set of 3D points ct on the deformed skeleton, project them into the image plane
using the camera projection πt, and penalize their misalignment to the 2D skeleton:

Lchamf = λchamf CDℓ1
(
ptskeleton, πt(c

t)
)
, (13)

where CDℓ1 denotes the Chamfer distance (Fan et al., 2017) under the ℓ1 norm, and λchamf is a
hyperparameter that controls the regularization strength.

To ensure each joint remains within its assigned skinning region, we penalize the mean squared error
between the deformed joint positions j and the centroids of their corresponding Gaussian groups,
computed as weighted averages of the Gaussian means µ with normalized skinning weights:

Lskin = λskin

J∑
j=1

∥∥ N∑
i=1

w̃⊤
ij µi − Jj

∥∥2, w̃ij =
wij∑N
i′=1 wi′j

, (14)

where w ∈ RN×J are the LBS skinning weights, µ ∈ RN×3 the Gaussian mean positions, J ∈
RJ×3 the joint positions, and λskin the skinning regularization weight.

Training details. As described in Sec. 3.4 of the main paper, we balance the rendering and key-
point losses with λrender = 1.0 and λkeypoint = 0.001. The motion regularization weights are set to
λtransform = 0.005, λsmooth = 0.001, λchamf = 0.0001, and λskin = 0.1.

Training follows a two-stage schedule over 10K iterations using Adam optimizer (Kingma & Ba,
2014). The first 500 iterations optimize only global scale, bone length, and global translation for
stable initialization. Subsequently, all parameters including shape parameters are jointly optimized
with exponential learning rate decay.

We employ differentiated update frequencies based on parameter characteristics. Frame-specific pa-
rameters including articulated 3D Gaussians and local motion heads are updated per frame to capture
temporal details. Shape parameters such as bone length and global scale, and the global translation
are updated every 10 frames to maintain cross-frame consistency and motion smoothness.

A.3 ABLATION ON DESIGN CHOICES

A.3.1 SHAPE PARAMETERIZATION

Shape parameters are essential for accurately capturing both global and local motion dynamics and
ensuring consistent spatial orientation (Sec. 4.3). Inadequate scale regularization causes temporal
drift toward the camera, where optimization compensates for scale discrepancies through global
translation (shown in the supplementary videos). This compensation disrupts orientation estimation
and motion coherence. In contrast, our complete formulation with comprehensive shape parameters
preserves geometric consistency and produces stable motion reconstructions.
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Target mesh

Ours (full)w/o 𝐿𝑘𝑒𝑦𝑝

12.63

20.65
𝐼𝑡 ,ℳ𝑡𝑔𝑡

Figure 10: Qualitative ablation
on keypoint loss. Keypoint loss
Lkeyp helps ensure correct motion
reconstruction by resolving ambi-
guity where limbs overlap in the
source video frame.

Table 3: Ablation on key-
point confidence thresholding.
We observe that PMD and FID
decrease slightly with higher
thresholds, reflecting improved
performance, yet remain stable
across the full range.

Thr. PMD ↓ FID ↓

0.0 0.0020 0.0178
0.7 0.0019 0.0179
0.9 0.0018 0.0171

Table 4: Ablation on number of
keypoints. While 1K points yield
slight improvements, performance
remains comparable even at sparse
points (#50).

#Keyp. PMD ↓ FID ↓

50 0.0020 0.0191
100 0.0020 0.0185
500 0.0019 0.0179
1000 0.0018 0.0171
1500 0.0020 0.0185
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Figure 11: Ablations on semantic keypoints. Left two images: effects of confidence thresholds. Right two
images: effects of keypoint counts. The results demonstrate robust performance across these configurations.

A.3.2 DENSE KEYPOINT LOSS

As described in Sec.4.3, eliminating dense correspondence guidance leads to misaligned motion
cues and misperception of semantic parts. Results illustrated in Fig.10 demonstrate that our dense
semantic correspondence effectively encodes object-level semantics, enabling spatially consistent
and semantically faithful motion generation.

We sample 1K keypoints with confidence above 90% to minimize the effect of outliers. Tab. 3 and
Fig. 11 show that performance remains consistent across different confidence thresholds, demon-
strating robustness to noisy correspondences. Tab. 4 and Fig. 11 suggest stable behavior of keypoint
density effects across guidance densities, with slight improvement on 1K points.

A.3.3 RIGGING MODULE ABLATION

We evaluate the impact of rigging quality on our DT4D dataset, including quadrupeds and non-
quadrupeds, by comparing three rigging modules: RigNet (Xu et al., 2020), MagicArticulate (Song
et al., 2025b), and UniRig (Zhang et al., 2025b). Enhanced rigging priors generally improve perfor-
mance, as shown in Tab. 5 (DT4D-sub). We observe that skinning weight quality significantly affects
results. While MagicArticulate and UniRig perform well on the subset, their performance varies on
the full dataset, particularly for large motions (Tab. 5, DT4D-all). These results demonstrate the im-
portance of high-quality skinning weights and suggest potential benefits from incorporating adaptive
skinning refinement mechanisms.

A.3.4 GEOMETRY-AWARE SEMANTIC FEATURES

Distinguishing geometrical differences (e.g., left/right limbs) is crucial for accurate motion trans-
fer. We utilize a pretrained geometry-aware semantic feature extraction module (Yang et al., 2020)
for dense correspondence matching. Tab. 6 ablates this design choice, comparing motion transfer
performance when using alternative pretrained semantic features from foundation models (Stable
Diffusion (Rombach et al., 2022) and DINOv2 (Oquab et al., 2023)) for correspondence match-
ing. Performance significantly drops with SD or DINOv2 features, confirming the effectiveness of
geometry-aware features for motion transfer tasks.
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Table 5: Ablation on rigging methods. We compare per-
formance on the DT4D dataset, where DT4D-sub consists
of scenes with relatively small motions. ’CAMO+Best’ de-
notes results using the optimal method for each scene.

DT4D-sub DT4D-all

Method PMD ↓ FID ↓ PMD ↓ FID ↓

CAMO + RigNet 0.0018 0.0153 0.0019 0.0159
CAMO + MagicArticulate 0.0016 0.0094 0.0021 0.0117
CAMO + UniRig 0.0015 0.0110 0.0026 0.0168
CAMO + Best 0.0012 0.0086 0.0015 0.0108

Table 6: Ablation on semantic features.
Our framework achieves best performance with
geometry-aware semantic features by distin-
guishing relationships between body parts. This
provides superior structural guidance compared
to standard 2D feature extractors.

Method PMD ↓ FID ↓

CAMO + Stable Diffusion 0.0028 0.0561
CAMO + DINOv2 0.0025 0.0191
CAMO + Geo-Aware 0.0018 0.0171

Table 7: Performance on DT4D under morphologi-
cal variations. Shape differences increase substantially
across groups (up to 341% from Low to High), yet per-
formance degrades gracefully, highlighting robustness
to diverse geometric discrepancies.

Shape Differences PMD ↓ FID ↓

Low 0.00084± 0.00036 0.0012 0.0091
Med 0.00211± 0.00016 0.0017 0.0205
High 0.00287± 0.00036 0.0026 0.0218

10.54

13.95Figure 12: Performance on DT4D by motion
scale. Our method outperforms baselines across all
levels, with minimal degradation on large motions.

A.4 PERFORMANCE ANALYSIS

A.4.1 PERFORMANCE ACROSS MORPHOLOGICAL VARIATIONS

Our dataset encompasses diverse morphological differences between source and target subjects. We
quantify these variations using two metrics: (1) global scale measured by mesh volume ratio to
capture overall size differences, and (2) shape distance measured by Chamfer Distance (CD) on
normalized meshes to assess geometric variations independent of scale. The dataset spans volume
ratios from 1.08× to 16.00× and shape distances from 0.0004 to 0.0023, enabling comprehensive
evaluation across morphological diversity.

Regarding global size, we find no correlation between performance and global scale differences.
Dividing our dataset into three groups by scale magnitude, low and high groups achieve similar mean
PMD (0.00150 vs 0.00136). Note that this requires the target mesh to initially lie within the camera
frustum for valid optimization signals. Regarding shape differences, we categorize source-target
pairs into three groups by shape distance. As shown in Tab. 7, our method achieves optimal results
with minimal morphological differences while maintaining robust performance under considerable
shape variations.

A.4.2 PERFORMANCE ON DIFFERENT MOTION SCALES

We define motion magnitude as the maximum average vertex displacement from the first frame
across the sequence, computed in normalized coordinate space for cross-mesh comparability. Our
dataset spans diverse motion scales (min: 0.03, max: 0.23, avg: 0.11), which we categorized into
three distinct groups ranging from small to large motion. Fig. 12 demonstrates consistent perfor-
mance across motion scales, confirming robustness to motion scale variations. This robustness
stems from our time-conditioned MLP jointly optimizing across frames to capture global trajec-
tories and temporal dependencies, while the joint-rotation head provides frame-specific refinements,
maintaining global coherence with localized flexibility.

A.4.3 PERFORMANCE ON CHALLENGING CASES

We evaluate our method on two challenging scenarios that can potentially compromise performance:
thin geometric structures and long video sequences.
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Target Mesh

Source

Motion 
transfer

13.34

8.69

Figure 13: Qualitative results on challenging case with
thin structure. Our method achieves robust performance on
characters with thin structures, which may pose fundamental
difficulties in motion transfer.

Table 8: Quantitative evaluation of tempo-
ral capacity. Values in parentheses indicate
frequency bands (L). We observe that increas-
ing L effectively handles extended sequences,
mitigating performance degradation.

Frames (Temporal PE Bands) PMD ↓ FID ↓

100 (R6) 0.0010 0.0034
330 (R6) 0.0008 0.0060
660 (R6) 0.0012 0.0125

660 (R8) 0.0010 0.0047

5.21

12.71

33 frames / 𝑅!
100 frames / 𝑅!
330 frames / 𝑅!

660 frames / 𝑅"

660 frames / 𝑅!

Figure 14: Loss curves vs. number of frames.
RL denotes temporal resolution with L frequency
bands for positional encoding. 5.21

frame_0001 (1).png

t
Frame 1 Frame 232 Frame 561 

Figure 15: Visualization of temporal drift. We com-
pare our result with the Ground Truth (shown as a gray
silhouette underneath). While the method maintains high
stability across the 660-frame sequence, slight drift accu-
mulates in later frames (e.g., Frame 561), revealing the
underlying GT.

First, challenging structures, such as thin bird wings, present difficulties for both visual guidance and
mesh deformation. Their 2D projected regions cover only a few pixels, yielding limited visual cues,
while their slender geometry is easily distorted during deformation. As shown in Fig.13, our method
robustly addresses these geometrically challenging scenarios within reasonable performance. This
robustness is enabled by 2D skeletal projection constraints and temporal smoothness regularization,
which jointly enforce motion consistency across frames (Sec.A.2).

To support substantially longer sequences, our model can be scaled in two ways: (i) increasing
the MLP capacity, or (ii) partitioning the video into temporal segments and optimizing a dedicated
motion-field MLP per segment. This segmentation strategy effectively prevents error accumulation
and maintains stable optimization over long durations. Our analysis of the model’s behavior across
varying sequence lengths validates the rationale behind this approach. While performance remains
stable at 300 frames (PMD: 0.0010), it degrades for sequences exceeding 600 frames (PMD: 0.0012)
as the mapping of time embeddings to complex motions demands greater representational capabil-
ity. Increasing the frequency bands of sinusoidal positional encoding (e.g., L = 6 → 8) restores
optimization quality (Tab. 8, Fig. 14). However, naive extension eventually leads to temporal drift
(Fig. 15), as the finite capacity of a fixed-size MLP saturates against the complexity of extremely
long trajectories.

A.4.4 FAILURE CASE ANALYSIS

Despite the robust performance, CAMO exhibits limitations when faced with significant occlusion
or ambiguous left-right limb distinction in the source video, leading to less faithful motion transfer.
Specifically, Fig. 16 (a) illustrates a failure case where motion quality degrades due to an unclear
differentiation of the left and right legs. Fig. 16 (b) and Fig. 17 highlight performance degradation
attributed to extensive self-occlusion, where insufficient visual information hinders accurate motion
reconstruction.

A.4.5 COMPUTATIONAL ANALYSIS

Figure 18 demonstrates the stability and efficiency of our framework. As illustrated in Fig. 18a,
the optimization duration remains remarkably stable across varying input complexities. Despite
variations in vertex count (avg. 12K, max. 19K) and sequence length (avg. 46, max. 140 frames), the
process consistently completes within 4–5 minutes (median < 4.6 minutes). Fig. 18b further shows
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12.78

(a)

(b)

12.78

Figure 16: Failure cases. Representative failure
cases include misperception of geometric semantics
leading to left-right confusion (a) and pose estimation
errors due to severe occlusion in the source video (b).
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Figure 17: Analysis of self-occlusion. We investi-
gate the impact of severe self-occlusion across vary-
ing camera angles. As demonstrated in the 0◦ camera
angle, the method fails when the moving limb is com-
pletely occluded from the camera’s perspective.

7.29

(a) Optimization time in accordance with frames and vertices

16.04

7.29

(b) Loss graph on 10K iteration

Figure 18: Computational analysis on operation time and loss convergence. (a) The optimization time
is plotted against input complexity (sequence length and mesh resolution), highlighting the scalability of our
approach. (b) Training loss trajectories for MIXAMO and DT4D datasets confirm that the proposed framework
ensures smooth and stable convergence within approximately 10K iterations.

Source Frame Camera pose initialization

Best view + 60° + 120° + 180°

12.22

7.06
Figure 19: Visualization of noisy camera initialization.
We illustrate the perturbed starting poses for optimization,
created by adding 60◦, 120◦, and 180◦ of angular perturba-
tion to the best view. These perturbations simulate imperfect
calibration to evaluate the robustness of our pipeline.

Table 9: Robustness to camera initialization.
Our method outperforms baselines with negli-
gible degradation, even under 180◦ rotation.

Method / Configuration PMD ↓ FID ↓

Transfer4D 0.0027 0.1535
NPR+ 0.0136 0.1395

Ours (Best Init.) 0.0016 0.0193
Ours (+60◦ error) 0.0018 0.0294
Ours (+120◦ error) 0.0017 0.0259
Ours (+180◦ error) 0.0016 0.0240

that the loss decreases smoothly across diverse assets, including both quadrupeds and humanoids,
with convergence occurring at approximately 10K iterations. Across all evaluated scenarios, the
end-to-end runtime stays well below 10 minutes on an RTX 4090.

A.4.6 ANALYSIS ON CAMERA INITIALIZATION

To evaluate the robustness of our framework against imperfect camera initialization in the optimiza-
tion stage, we intentionally introduce significant perturbations to the initial camera rotation. We test
angular deviations of 60◦, 120◦, and 180◦ relative to the optimal initialization(Fig. 19), which is
configured by render-and-compare (Sec. A.1).

As summarized in Tab. 9, our method exhibits remarkable stability even under extreme noise. No-
tably, initializing from a completely opposite viewpoint (180◦ deviation) results in negligible per-
formance degradation (PMD: 0.00159→ 0.00160), maintaining superiority over baseline methods.
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Table 10: Quantitative robustness analysis based on
EMF. We measure quality across different camera mo-
tion scenarios. EMF (angular) quantifies the effective
angular coverage; lower values indicate limited paral-
lax and increased geometric ambiguity.

EMF Ours NPR+

Scenario (ang.) PMD ↓ FID ↓ PMD ↓ FID ↓

Stationary 35.22 0.0014 0.0075 - -
Slow orbit (30◦) 45.46 0.0011 0.0068 0.0053 0.0257
Teleporting views 253.8 0.0008 0.0083 - -

Table 11: Quantitative evaluation of multi-view
motion transfer. Results demonstrate consistent
gains as the number of views increases (from 1 to
4). Notably, our method surpasses the NPR+ base-
line even in the challenging monocular setting.

Ours NPR+

#Views PMD ↓ FID ↓ PMD ↓ FID ↓

1-View 0.0027 0.0145 0.0045 0.0683
2-Views 0.0022 0.0095 - -
4-Views 0.0020 0.0095 - -

1-View motion transfer 4-Views motion transfer𝐼! ,ℳ!"!

5.21

5.21

Figure 20: Qualitative comparison of multi-view integration.
We compare results from 1-view and 4-view inputs. The use of 4
views effectively resolves the inherent 2D-3D ambiguity observed
in the single-view case, ensuring accurate geometric consistency.

Table 12: Robustness to fast motion.
We simulate acceleration (1.0× to 3.0×)
to induce motion blur. Laplacian Vari-
ance (LV) quantifies sharpness (lower
values indicate severe blur).

Speed (Frames) LV PMD ↓ FID ↓

1.0× (66 frames) 459.95 0.0010 0.0029
2.0× (33 frames) 453.99 0.0010 0.0052
3.0× (22 frames) 438.33 0.0011 0.0050

This robustness arises from our hierarchical optimization strategy, which decouples global align-
ment from local articulation. The root transformation is optimized first to quickly compensate for
camera initialization errors, while internal motions are learned as relative transformations defined
with respect to the canonical rest pose. This separation ensures that local pose optimization remains
stable and unaffected by inaccuracies in the initial global orientation.

A.4.7 ROBUSTNESS UNDER OCCLUSION

We assess robustness to occlusion using the Effective Multi-view Factor (EMF) from Gao et al.
(2022), which measures the extent of viewpoint diversity in a monocular sequence. Low EMF
indicates minimal camera motion, such as fixed or subtle hand-held captures, where severe self-
occlusion and limited parallax make 3D reasoning highly ambiguous. In contrast, high EMF corre-
sponds to larger viewpoint changes that provide multiple effective views, thereby reducing recon-
struction ambiguity.

The quantitative results in Tab. 10 demonstrate that our method yields stable PMD and FID scores
even in these low-EMF settings. Notably, in the stationary camera scenario, our method drastically
reduces error compared to the baseline (PMD: 0.0014 vs. 0.0053), validating our effective handling
of ambiguity without relying on large camera baselines.

A.4.8 MULTI-VIEW SCALABILITY

We investigate whether introducing stronger multi-view cues alleviates inherent 2D-to-3D ambigu-
ities. To this end, we evaluate performance variance across varying numbers of input viewpoints.
As shown in Tab. 11, both PMD and FID metrics exhibit consistent improvement as the number of
views increases from 1 to 4. This trend indicates that our model effectively exploits multi-view con-
straints to resolve 2D-to-3D ambiguities (Fig. 20). Notably, a distinct advantage of our framework
is its scalability; the pipeline seamlessly extends to multi-view setups via differentiable rendering
without requiring any modifications to the underlying network architecture.

A.4.9 ROBUSTNESS AGAINST FAST MOTION AND MOTION BLUR

We evaluate robustness to rapid motion by rendering source videos at different playback speeds
(1×, 2×, 3×) with explicit motion blur in Blender (Blender). As shown in Tab. 12, our method re-

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 13: Quantitative evaluation across all scenes from DT4D-Quadrupeds. Lower is better for both
PMD and FID (↓). Best and second-best results are highlighted in red and orange , respectively.

Method Punch Walk1 Death Walk2 KickBack
PMD ↓ FID ↓ PMD ↓ FID ↓ PMD ↓ FID ↓ PMD ↓ FID ↓ PMD ↓ FID ↓

NPR+ 0.0027 0.0961 0.0027 0.1535 0.0039 0.0215 0.0010 0.0118 0.0024 0.0245
Transfer4D 0.0032 0.0145 0.0136 0.1395 0.0047 0.0399 0.0019 0.0099 0.0045 0.0383

Ours 0.0012 0.0074 0.0009 0.0029 0.0020 0.0343 0.0003 0.0043 0.0020 0.0211

Method Swim Jump Walk3 Aggression Howl
PMD ↓ FID ↓ PMD ↓ FID ↓ PMD ↓ FID ↓ PMD ↓ FID ↓ PMD ↓ FID ↓

NPR+ 0.0030 0.0676 0.0024 0.0526 0.0022 0.0369 0.0025 0.0489 0.0022 0.0285
Transfer4D 0.0062 0.0837 0.0026 0.0055 0.0078 0.0388 0.0042 0.0075 0.0026 0.0079

Ours 0.0040 0.0385 0.0013 0.0085 0.0005 0.0023 0.0019 0.0335 0.0015 0.0141

Method Hit Back Run Stop Run Forward Drink Hop Forward
PMD ↓ FID ↓ PMD ↓ FID ↓ PMD ↓ FID ↓ PMD ↓ FID ↓ PMD ↓ FID ↓

NPR+ 0.0013 0.0234 0.0059 0.3740 0.0083 0.0269 0.0043 0.0152 0.0026 0.0227
Transfer4D 0.0014 0.0434 0.0123 0.2292 0.0123 0.0303 0.0065 0.0207 0.0029 0.0485

Ours 0.0008 0.0077 0.0024 0.0377 0.0057 0.0261 0.0016 0.0134 0.0013 0.0050

Table 14: Quantitative evaluation across all scenes from the Mixamo dataset. Lower is better for both
PMD and FID (↓). Best and second-best results are highlighted in red and orange , respectively.

Method JumpingJacks Running SideStep SkinningTest StandingJump SwingDance
PMD ↓ FID ↓ PMD ↓ FID ↓ PMD ↓ FID ↓ PMD ↓ FID ↓ PMD ↓ FID ↓ PMD ↓ FID ↓

SPT+ 0.0016 0.0047 0.0030 0.0069 0.0022 0.0170 0.0036 0.0376 0.0025 0.1816 0.0019 0.0143
NPR+ 0.0017 0.0027 0.0287 0.0194 0.0042 0.0308 0.0092 0.0656 0.0084 0.2369 0.0029 0.0167

Transfer4D 0.0077 0.0107 0.0122 0.0450 0.0066 0.0294 0.0086 0.0664 0.0098 0.5631 0.0050 0.0108
Ours 0.0010 0.0035 0.0042 0.0229 0.0013 0.0089 0.0042 0.0195 0.0033 0.1728 0.0018 0.0087

Method Walking Floating HipHopDance Header Dying Snatch
PMD ↓ FID ↓ PMD ↓ FID ↓ PMD ↓ FID ↓ PMD ↓ FID ↓ PMD ↓ FID ↓ PMD ↓ FID ↓

SPT+ 0.0018 0.0079 0.0074 0.0192 0.0027 0.0047 0.0036 0.0156 0.0025 0.0314 0.0024 0.0982
NPR+ 0.0036 0.0057 0.0084 0.0059 0.0032 0.0028 0.0089 0.0177 0.0111 0.0772 0.0282 0.1798

Transfer4D 0.0113 0.0274 0.0043 0.0055 0.0034 0.0037 0.0071 0.0170 0.0072 0.0489 0.0173 0.1981
Ours 0.0011 0.0027 0.0037 0.0029 0.0032 0.0025 0.0026 0.0042 0.0043 0.0416 0.0029 0.0746

mains stable. Even with a reduction in Laplacian variance, indicating strong blur, the reconstruction
metrics show minimal change (e.g., PMD: 0.0010→ 0.0011).

A known boundary case arises only when frames become fully degraded and contain no usable
visual cues. In such cases, pose updates fail due to the absence of photometric or semantic gradients,
a fundamental limitation of any image-supervised optimization method, rather than an issue specific
to our approach.

A.5 EXTENDED TABLES AND QUALITATIVE VIDEOS

Quantitative evaluations across all scenes We provide detailed quantitative results for all evalu-
ation scenes from the DT4D (Li et al., 2021) and Mixamo (Adobe) datasets in Tab. 13, Tab. 14,
and Tab. 15. These per-scene metrics supplement the averaged results presented in Tab. 1 of the
main paper, consistently demonstrating our method’s superior performance across diverse motion
categories and scenarios.

Qualitative Video Results Qualitative comparisons between our approach and baseline methods
are available via index.html file, or can be directly accessed in ./static/videos.
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Table 15: Quantitative evaluation across all scenes from the DT4D-others dataset. Lower is better for both
PMD (↓) and FID (↓). Best results are highlighted in bold. The DT4D-Others dataset contains animals that
cannot be reconstructed with parametric templates, including birds, whales, dinosaurs, dragons, and elephants.

Method Fly Attack Running Walk Swimming
PMD ↓ FID ↓ PMD ↓ FID ↓ PMD ↓ FID ↓ PMD ↓ FID ↓ PMD ↓ FID ↓

Transfer4D 0.0283 0.0971 0.0086 0.0409 0.0162 0.0165 0.0119 0.2455 0.0015 0.0024
Ours 0.0045 0.0415 0.0022 0.0122 0.0033 0.0028 0.0006 0.0020 0.0007 0.0034

Source video

G
en

-4
 +

 
St

ag
4D

O
ur

s

Im
ag

e 
to

 v
id

eo
 

(G
en

-4
 A

le
ph

)

Vi
de

o 
to

 v
id

eo
 

(G
en

-4
 A

le
ph

)

O
ur

s

turn the cheetah into a brown moose which doesn't have any horns, with thin legs
A reddish baby fox prances cautiously, lifting its paws high with each step. It then makes a clumsy, 

playful bound forward, landing on its front paws.

G
en

-4
 +

 
St

ag
4D

Target object Source videoTarget object

3.96
Figure 21: Qualitative comparison with a generative 4D pipeline (Gen-4 Aleph (Runway) +
Stag4D (Zeng et al., 2024)). We illustrate the key limitations of generative approaches. Left (Iden-
tity drift): The generative pipeline does not fully preserve the geometry of the target object (moose
mesh), leading to a more generic appearance even with appropriate text conditioning. Right (Motion
control specificity): The highlighted regions (red boxes) show that the generative pipeline often fails
to reconstruct the motion details.

A.6 COMPARISON WITH GENERATIVE 4D PIPELINES

To situate our method within the broader landscape of generative video and 4D content creation, we
compare against a representative state-of-the-art pipeline that integrates video-to-video generation
(Runway Gen-4 (Runway)) with a 4D lifting approach (Stag4D (Zeng et al., 2024)).

We assess this pipeline under two practical usage configurations: (i) editing the source video by pro-
viding a rendered target image along with a text prompt describing the target’s appearance (Fig. 21,
left), and (ii) performing image-to-video generation using a single rendered view of the target while
conditioning on a text prompt that specifies the source motion (Fig. 21, right). These settings corre-
spond to common workflows in generative content production and serve as an appropriate reference
for comparison.

Although this pipeline is capable of generating visually compelling results, its design goal differs
fundamentally from our framework CAMO, which focuses on accurate motion retargeting for a
specified target asset. The key distinctions are summarized below.

Identity Preservation. As shown on the left side of Fig. 21, text- or latent-conditioned video gener-
ation models generally lack mechanisms to maintain strict correspondence to a particular non-human
3D asset. Consequently, the output often drifts toward generic appearances rather than retaining the
asset’s original structure. CAMO avoids such drift by explicitly preserving the asset’s topology and
identity throughout optimization.

Motion Faithfulness. As illustrated on the right side of Fig. 21, video generation models produce
visually plausible sequences but tend to default to generic motion patterns (e.g., walking, running,
dancing). Such models are not designed to follow the precise temporal cues or the nuanced behaviors
present in a specific driving video. In contrast, CAMO is designed to explicitly enforce temporal
and geometric alignment, enabling the accurate transfer of fine-grained and idiosyncratic motion
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characteristics. In addition, the 4D lifting stage introduces further temporal and geometric inconsis-
tencies, as the generative video lacks the stable correspondence and motion specificity required for
reliable reconstruction.

Computational efficiency. The two-stage generative pipeline is computationally demanding (ap-
proximately 1 hour per 120-frame sequence), whereas CAMO achieves significantly faster process-
ing ( 10 minutes per 120 frames) while maintaining reliable control.
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B THEORETICAL ANALYSIS

This section examines the structure of our morphology-parameterized representation. We aim to
understand how the parameters that describe scale, bone lengths, surface offsets, and pose are con-
strained by an articulated object observed in motion. Under assumptions on piecewise rigidity, a
kinematic tree, and sufficiently varied motion, we show that these proposed parameters are iden-
tifiable up to a single global scale factor. This explains why the formulation avoids unnecessary
ambiguity and leads to stable optimization.

B.1 PROBLEM SETUP AND ASSUMPTIONS

Let I = {(It,Mt)}Tt=0 denote the observed monocular sequence. We estimate two groups of un-
knowns: the time-varying pose parameters {Θt} and the time-invariant morphology parameters Φ.
The following analysis clarifies when these parameters are uniquely determined and how each com-
ponent is fixed by the object’s structure and observed motion.

Pose Parameters (Θ): The dynamic state of the articulated structure at time t:

Θ = {Θt}Tt=0 (15)

where Θt includes the root global transformation and local joint rotations.

Morphology Parameters (Φ): The time-invariant parameters defining the target character’s
unique geometry:

Φ = (sglobal, {lb}b∈B, {oi}Ni=1) (16)

• sglobal ∈ R+: Global scale factor to resolve monocular depth-scale ambiguity.

• {lb}b∈B: Learnable lengths of bones b in the kinematic tree B.

• {oi}Ni=1: Local offsets for the N 3D Gaussian primitives, modeling surface details.

The canonical center µi of the i-th Gaussian is parameterized explicitly to couple the skeletal struc-
ture with the volumetric representation:

µi = sglobal(pi(l) + oi) (17)

Here, pi(l) is the skeleton-driven reference position determined by Linear Blend Skinning (LBS)
weights wij and the rest-pose joint locations jrest:

pi(l) =
∑
j∈J

wijjrest(j; l) (18)

The rest-pose joint positions are linear functions of the bone lengths:

jrest(j; l) = jrest(jroot) +
∑

b∈P (root,j)

lbvb (19)

where vb is the unit direction vector of bone b, and P (root, j) denotes the set of parent joints along
the kinematic chain from the root to joint j.

The optimization problem minimizes the energy function E:

(Θ∗,Φ∗) = argmin
Θ,Φ

[Lrender + λkeypointLkeypoint + λregLreg] (20)

Assumptions. To isolate the contribution of our morphology parameterization, we analyze iden-
tifiability under controlled conditions where ambiguities arising from 2D observations (e.g., occlu-
sion, limited viewpoints) are ignored. Specifically, we rely on the following assumptions:

• A1. Piecewise rigidity: The target mesh consists of rigid parts connected by joints, form-
ing a kinematic tree structure.
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• A2. Non-degenerate motion: The motion observed in the source video exhibits sufficient
rotation around linearly independent axes, avoiding planar or single-axis singularities that
would prevent unique 3D structure recovery.

• A3. Sufficient observability: We assume that the temporal sequence of 2D observations
provides sufficient viewpoint diversity (effectively serving as multi-view constraints) to
resolve the 3D structure of rigid components.

Remark. In this theoretical analysis, we assume sufficient observability via photometric cues (A3)
so that the identifiability of morphology parameters can be examined in isolation without confound-
ing factors arising from incomplete or ambiguous 2D evidence. To resolve ambiguities under partial
occlusion, we address this with dense semantic correspondences (Sec. 3.3), regularizations (Ap-
pendix A.2). Empirical robustness under limited viewpoint variation and occlusion is discussed in
Appendix A.4.7– A.4.8.

B.2 AMBIGUITY ANALYSIS OF THE NAIVE FORMULATION

Before introducing our morphology parameterization, we analyze a naive model to demonstrate
why standard vertex-based optimization suffers from shape-pose entanglement under monocular
supervision. In a naive formulation, while an articulated skeleton drives deformation via LBS, the
canonical Gaussian centers (initialized from mesh vertices) are treated as free optimization variables
without explicit morphological constraints relative to the skeleton (e.g., learnable bone lengths).

Naive Gaussian-Center Model. Let the canonical centers {µi}Ni=1 ∈ R3 be directly optimized as
independent variables. The rendering process at time t from viewpoint v is defined as:

Ît,v = Πv
(
LBS({µi},Θt)

)
, (21)

where Πv is the projection operator and Θt represents the articulated pose. Ideally, morphological
discrepancies between the source and target should be absorbed exclusively by the static shape
parameters (the canonical centers {µi}), while pose parameters {Θt} solely capture the dynamic
motion. However, we show that this disentanglement fails under 2D supervision alone.

Proposition 1 (Shape–Pose Ambiguity in the Naive Model). Let ({µ∗
i }, {Θ∗

t }Tt=0) be a solution
that minimizes the reprojection error, where {µ∗

i } represents the time-invariant canonical shape.
There exists a continuous family of alternative solutions ({µ̃i}, {Θ̃t}) that produce nearly identical
rendered images.

Specifically, for a perturbation in canonical shape {∆µi} that modifies the shape while preserving
skeleton topology, there exists a corresponding pose adjustment {∆Θt}Tt=0 such that:

∀t,

∥∥∥∥∥∂Ît∂µ {∆µi}+ ∂Ît
∂Θt

∆Θt

∥∥∥∥∥
2

≈ 0. (22)

Why the Naive Model suffers Ambiguity. The fundamental challenge lies in disentangling mor-
phological adaptation from pose dynamics. Ideally, structural parameters (e.g., bone lengths) should
adapt to the source’s morphology while independently recovering the articulated pose. However,
the naive formulation treats canonical Gaussians {µi} as free variables decoupled from the skeleton.
This surface-skeleton decoupling allows the optimizer to satisfy projection constraints by incor-
rectly sliding surface points along bone axes rather than estimating the true pose. Consequently,
this shape-pose ambiguity creates a degenerate solution space where morphological distortions er-
roneously compensate for pose estimation errors.

B.3 IDENTIFIABILITY ANALYSIS

We now establish that our morphology parameterization alleviates the shape-pose entanglement.
The key insight is that by explicitly coupling surface geometry to skeletal structure, we transform an
underconstrained problem into one with unique solution.
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B.3.1 IDENTIFIABILITY THEOREM

Theorem 1 (Identifiability under Morphology Parameterization). If surface geometry is parameter-
ized as:

µi(Φ) = sglobal (pi({lb}) + oi) , (23)

where pi({lb}) is the skeleton-driven joint position and oi is a local offset, then the morphology
parameters Φ = (sglobal, {lb}, {oi}) and pose parameters Θ = {Θt}Tt=0 are uniquely identifiable
up to a global similarity transformation.

Proof. We construct the solution through sequential decomposition, demonstrating that each param-
eter set is uniquely determined given the previous ones.

Step 1: Rigid Part Decomposition. By A1 (piecewise rigidity), the target object can be decom-
posed into K rigid parts {Pk}Kk=1, each moving rigidly over time. Let µ̃ki denote the canonical
(time-invariant) coordinates of point i on part Pk, and let Rk(t) ∈ SO(3) and tk(t) ∈ R3 denote
the time-varying rigid transformation of part Pk at time t. Then the 3D trajectory of each point on
Pk can be written as:

µki (t) = Rk(t) (skµ̃
k
i ) + tk(t), (24)

where sk > 0 is an (unknown) isotropic scale associated with part Pk.

Assumption A3 (sufficient observability) implies that the temporal observations provide enough
independent constraints to uniquely determine the rigid motion of each part and its canonical shape
up to this isotropic scale. In other words, for each k, the factorization

{µki (t)}i,t ←→
(
{Rk(t), tk(t)}t, {skµ̃ki }i

)
(25)

is unique up to the per-part scale sk. Consequently, under non-degenerate motion (A2), we can
recover the time-varying rigid transformations {Rk(t), tk(t)} and the unscaled geometry for each
part k up to sk.

Step 2: Scale Unification via Kinematic Constraints. Although Step 1 leaves an arbitrary local
scale sk for each part, the kinematic tree imposes compatibility constraints at joints. Consider two
adjacent parts Pk and Pk′ connected at joint j. Let J̃kj and J̃k

′

j denote the corresponding joint
locations in the canonical frames of Pk and Pk′ , respectively. Their world-space joint position at
time t must coincide:

Rk(t)(skJ̃
k
j ) + tk(t) ≡ Rk′(t)(sk′ J̃

k′

j ) + tk′(t) ∀t. (26)

Rearranging equation 26 and with non-degenerate relative motions (A2) eliminates the translations
and shows that the ratio:

ρk→k′ :=
sk′

sk
(27)

is uniquely determined by the recovered canonical geometries and motions. Intuitively, the physical
bone incident to joint j must have the same length when measured from either side, which fixes
sk′/sk.

Because the kinematic graph is a tree, these ratios can be propagated from the root part k = 0 to all
other parts:

sk = ρ0→k s0, (28)

where ρ0→k is determined by the unique path from the root to k. Thus all local scales {sk} become
linear functions of a single global scale s0. This reduces the scale degrees of freedom from K
(independent per-part scales) to a single scalar sglobal ≡ s0.
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Step 3: Bone Lengths and Pose. With a unified global scale sglobal, the joint trajectories {Jj(t)}
are uniquely determined in world coordinates. For a bone b connecting a parent joint jparent and a
child joint jchild, its physical length is:

ℓb = ∥Jjchild(t)− Jjparent(t)∥, (29)

which is invariant over time. Hence the set of bone lengths {ℓb} is uniquely determined (up to the
same global scale already absorbed into sglobal).

Given the kinematic tree, the known bone lengths {ℓb}, and the joint trajectories {Jj(t)}, the pose
parameters {Θt} (e.g., joint rotations in a chosen parameterization) are obtained by solving the
inverse kinematics (IK) problem at each time t. Assumption A2 (non-degenerate motion with suf-
ficient rotational variation) ensures that the IK solution is unique, i.e., discrete ambiguities such as
mirrored configurations are ruled out by temporal continuity and multi-joint consistency. Therefore,
the pose sequence {Θt} is uniquely determined.

Step 4: Surface Offsets. Finally, we consider the morphology parameters associated with the
surface, namely the local offsets {oi}. As defined in Sec. 3.2, each canonical Gaussian mean is
parameterized as:

µ̄i = sglobal
(
pi({ℓb}) + oi

)
, (30)

where pi({ℓb}) is the skeleton-anchored reference position obtained from the kinematic chain and
skinning weights, and oi is a time-invariant offset in the canonical frame.

Given the recovered pose sequence {Θt}, the LBS operator deterministically maps canonical posi-
tions to their deformed positions. Thus each observed deformed point µ̃i(t) satisfies:

µ̃i(t) = LBS
(
sglobal

(
pi({ℓb}) + oi

)
, Θt

)
. (31)

Here, sglobal, {ℓb}, and {Θt} are already fixed by Steps 2–3, so equation 31 is linear in oi for each
time t. Stacking equation 31 over multiple time steps yields an overdetermined linear system for oi.
By A2, the poses {Θt} span sufficiently diverse configurations so that the corresponding system has
full column rank, and thus admits a unique least-squares solution for oi.

Putting all steps together, we conclude that under A1–A3, the morphology parameters (sglobal, ℓb, oi)
and the pose sequence {Θt} are uniquely determined up to a single global scale factor sglobal, com-
pleting the identifiability.

Remark. This sequential identifiability theoretically justifies our hierarchical optimization strat-
egy. By prioritizing global structure (scale, bone lengths) before refining local offsets, we align the
optimization trajectory with the identifiable path derived above, ensuring stable convergence.

B.3.2 OPTIMIZATION ANALYSIS

In this subsection, we study how each parameter group in Ψ = {sglobal, ℓb,Θ, oi} influences the
rendered image by examining their induced image-space motion fields. Rather than evaluating the
full rendering Jacobian J = ∂Î/∂Ψ directly, we analyze the instantaneous 2D displacement (or
gradient flow) generated by perturbing each parameter. This provides geometric intuition for how
CAMO achieves disentangled and stable optimization.

We focus on the geometric component of the rasterization process by only considering the projection
of 3D Gaussian centers. Let µ ∈ R3 be the mean position of a 3D Gaussian and u = π(µ) ∈ R2

be its perspective projection on the image plane. Using the chain rule, the 2D motion field Fψ(u)
induced by a parameter ψ is formulated as:

Fψ(u) =
∂π

∂µ

∂µ

∂ψ
= Jπ(µ) · vψ, (32)

where Jπ(µ) ∈ R2×3 is the Jacobian of the perspective projection function at µ, and vψ ∈ R3 is the
instantaneous 3D velocity of the Gaussian center induced by perturbing ψ. We analyze the structure
of vψ and its projection for each parameter group:
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Global Scale sglobal. Scaling uniformly moves points along the ray from the camera origin. The
induced 3D velocity is radial, vs ∝ µ. Under perspective projection, this results in a purely radial
motion field centered at the principal point c:

Fsglobal
(u) ∝ (u− c). (33)

This creates a global, low-frequency expansion/contraction pattern.

Bone Length ℓb. Let wib be the LBS skinning weight of the Gaussian i with respect to bone b.
Varying the bone length shifts child Gaussians along the bone axis vector baxis. The induced 3D
velocity is vb = wib · baxis. The projected motion field is:

Fℓb(u) = Jπ(µ) · (wib · baxis). (34)

Unlike global scale, this field is spatially localized to the specific limb and constrained to align with
the vanishing point of the bone axis.

Pose Parameters Θ. A pose update corresponds to a rigid rotation of a body part around a joint.
Let ω be the instantaneous angular velocity vector derived from Θ, and p be the joint location. The
induced 3D velocity is tangential to the arc of rotation: vΘ = ω × (µ − p). The projected motion
field captures the perspective projection of this arc:

FΘ(u) = Jπ(µ) · (ω × (µ− p)). (35)

Depending on the rotation axis relative to the view direction, this produces distinct curvilinear flow
patterns (e.g., circular motion or foreshortening effects). These patterns are geometrically distin-
guishable from the strictly linear shifts caused by bone scaling.

Local Offsets oi. Offsets model fine-grained surface details independent of the skeletal structure. A
perturbation in oi induces an arbitrary local 3D displacement voi .

Foi(u) = Jπ(µ) · voi . (36)

Crucially, because oi operates on individual Gaussians rather than kinematic chains, it generates
high-frequency, sparse motion updates. This sparsity makes the offset gradients orthogonal to the
global, low-frequency motion fields induced by scale, bone length, and pose, preventing optimiza-
tion ambiguity.
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