
Published as a conference paper at ICLR 2022

ADAMATCH: A UNIFIED APPROACH TO SEMI-
SUPERVISED LEARNING AND DOMAIN ADAPTATION

David Berthelot†∗, Rebecca Roelofs†∗, Kihyuk Sohn†, Nicholas Carlini†, Alex Kurakin†
† Google Research

ABSTRACT

We extend semi-supervised learning to the problem of domain adaptation to learn
significantly higher-accuracy models that train on one data distribution and test
on a different one. With the goal of generality, we introduce AdaMatch, a unified
solution for unsupervised domain adaptation (UDA), semi-supervised learning
(SSL), and semi-supervised domain adaptation (SSDA). In an extensive experi-
mental study, we compare its behavior with respective state-of-the-art techniques
from SSL, SSDA, and UDA and find that AdaMatch either matches or significantly
exceeds the state-of-the-art in each case using the same hyper-parameters regard-
less of the dataset or task. For example, AdaMatch nearly doubles the accuracy
compared to that of the prior state-of-the-art on the UDA task for DomainNet and
even exceeds the accuracy of the prior state-of-the-art obtained with pre-training
by 6.4% when AdaMatch is trained completely from scratch. Furthermore, by
providing AdaMatch with just one labeled example per class from the target domain
(i.e., the SSDA setting), we increase the target accuracy by an additional 6.1%, and
with 5 labeled examples, by 13.6%.1

1 INTRODUCTION

Since the inception of domain adaptation and knowledge transfer, researchers have been well aware of
various configurations of labeled or unlabeled data and assumptions on domain shift (Csurka, 2017).
Unsupervised domain adaptation (UDA), semi-supervised learning (SSL), and semi-supervised
domain adaptation (SSDA) all use different configurations of labeled and unlabeled data, with
the major distinction being that, unlike SSL, UDA and SSDA assume a domain shift between the
labeled and unlabeled data (see Table 1). However, currently the fields of SSL and UDA/SSDA are
fragmented: different techniques are developed in isolation for each setting, and there are only a
handful of algorithms that are evaluated on both (French et al., 2018).

Techniques that leverage unlabeled data are of utmost importance in practical applications of machine
learning because labeling data is expensive. It is also the case that in practice the available unlabeled
data will have a distribution shift. Addressing this distribution shift is necessary because neural
networks are not robust (Recht et al., 2019a; Biggio & Roli, 2018; Szegedy et al., 2013; Hendrycks
& Dietterich, 2019; Azulay & Weiss, 2018; Shankar et al., 2019; Gu et al., 2019; Taori et al., 2020)
to even slight differences between the training distribution and test distribution. Although there are
techniques to improve out-of-distribution robustness assuming no access to unlabeled data from the
target domain (Hendrycks et al., 2020; Zhang, 2019; Engstrom et al., 2019; Geirhos et al., 2018; Yang
et al., 2019; Zhang et al., 2019), it is common in practice to have access to unlabeled data in a shifted
domain (i.e. the UDA or SSDA setting), and leveraging this unlabeled data allows for much higher
accuracy. Moreover, while SSDA (Donahue et al., 2013; Yao et al., 2015; Ao et al., 2017; Saito et al.,
2019) has received less attention than both SSL and UDA, we believe it describes a realistic scenario
in practice and should be equally considered.

In this work, we introduce AdaMatch, a unified solution designed to solve the tasks of UDA, SSL, and
SSDA using the same set of hyperparameters regardless of the dataset or task. AdaMatch extends
FixMatch (Sohn et al., 2020) by (1) addressing the distribution shift between source and target
domains present in the batch norm statistics, (2) adjusting the pseudo-label confidence threshold
on-the-fly, and (3) using a modified version of distribution alignment from Berthelot et al. (2020).

∗equal contribution
1Code to reproduce results: https://github.com/google-research/adamatch
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Task Labeled Unlabeled Distributions

SSL source target source = target
UDA source target source 6= target
SSDA source+target target source 6= target

Table 1: Relations between the set-
tings of Semi-Supervised Learning
(SSL), Unsupervised Domain Adap-
tation (UDA), and Semi-Supervised
Domain Adaptation (SSDA).

AdaMatch sets a new state-of-the-art accuracy of 28.7% for UDA without pre-training and 33.4%
with pre-training on DomainNet, an increase of 11.1% when compared on the same code base. With
just one label per class on the target dataset, AdaMatch is more data efficient than other method,
achieving a gain of 6.1% over UDA and 13.6% with 5 labels. We additionally promote democratic
research by reporting results on a smaller 64 × 64 DomainNet. This results in a minimal drop in
accuracy compared to the full resolution, and compared to the practice of sub-selecting dataset pairs,
does not bias the results towards easier or harder datasets. Finally, we perform an extensive ablation
analysis to understand the importance of each improvement and modification that distinguishes
AdaMatch from prior semi-supervised learning methods.

2 RELATED WORK

Unsupervised Domain Adaptation (UDA). UDA studies the performance of models trained on a
labeled source domain and an unlabeled target domain with the goal of obtaining high accuracy
on the target domain. Inspired by the theoretical analysis of domain adaptation (Ben-David et al.,
2010), a major focus has been reducing the discrepancy of representations between domains, so that
a classifier that is learned on the source features works well on the target features. UDA methods can
be categorized by the technique they use to measure this discrepancy. For example, (Long et al., 2013;
Tzeng et al., 2014; 2015) use the maximum mean discrepancy (Gretton et al., 2012), (Sun & Saenko,
2016) use correlation alignment across domains, and domain adversarial neural networks (Ajakan
et al., 2014; Ganin et al., 2016; Bousmalis et al., 2017; Saito et al., 2018) measure the domain
discrepancy using a discriminator network. Maximum classifier discrepancy (Saito et al., 2018)
(MCD) measures the domain discrepancy via multiple task classifiers, achieving SOTA performance.

Semi-Supervised Learning (SSL). In SSL, a portion of the training dataset is labeled and the
remaining portion is unlabeled. SSL has seen great progress in recent years, including temporal
ensemble (Laine & Aila, 2017), mean teacher (Tarvainen & Valpola, 2017), MixMatch (Berthelot
et al., 2019), ReMixMatch (Berthelot et al., 2020), FixMatch (Sohn et al., 2020), and unsupervised
data augmentation (Xie et al., 2019). While there is no technical barrier to applying SSL to UDA, only
a few SSL methods have been applied to solve UDA problems; for example, on top of the discrepancy
reduction techniques of UDA, several works (French et al., 2018; Long et al., 2018; Saito et al., 2019;
Tran et al., 2019) propose to combine SSL techniques such as entropy minimization (Grandvalet &
Bengio, 2005) or pseudo-labeling (Lee, 2013). While NoisyStudent (Xie et al., 2020) uses labeled
data from ImageNet and unlabeled data from JFT in training, they do not leverage this distribution
shift during training, and they only evaluate on the source domain (i.e., ImageNet).

Semi-Supervised Domain Adaptation (SSDA) has been studied in several settings, including vi-
sion (Donahue et al., 2013; Yao et al., 2015; Ao et al., 2017; Saito et al., 2019) and natural language
processing (Jiang & Zhai, 2007; Daumé III et al., 2010; Guo & Xiao, 2012). Since SSDA assumes
access to labeled data from multiple domains, early works have used separate models for each
domain and regularized them with constraints (Donahue et al., 2013; Yao et al., 2015; Ao et al.,
2017; Daumé III et al., 2010; Guo & Xiao, 2012). However, such methods are difficult to adapt to
the UDA setting where labeled data is only available in a single domain. One recent exception is
minimax entropy (MME) regularization (Saito et al., 2019), which can work in both the UDA and
SSDA setting. However, unlike AdaMatch, MME requires a pre-trained network to work well.

Transfer learning is used to boost accuracy on small datasets by initializing model parameters with
pre-trained weights first learned on a separate, larger dataset, which can compensate for the limited
amount of labeled source data and boost the overall performance (Recht et al., 2019b; Kolesnikov
et al., 2019). For example, standard experimental protocols on several UDA benchmarks, including
Office-31 (Saenko et al., 2010), PACS (Li et al., 2017), and DomainNet (Peng et al., 2019), use
ImageNet-pretrained models to initialize model parameters. Though useful for some cases in practice,
it may not be the most general protocol to evaluate the advancement of UDA algorithms, especially
in situations where no datasets exist for pre-training (for example, images with arbitrary number of
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Figure 1: AdaMatch diagram illustrating the loss computations.

channels), or for domains other than vision, where no pre-training datasets exist. Thus, in this work,
we mainly focus on evaluating methods under a non-transfer learning setting, which we consider to
be more general. Although we also achieve state of the art results with transfer learning, we only
present them for historical reasons and to illustrate that our method can use that setting too.

3 ADAMATCH

We now introduce AdaMatch, a new algorithm inspired by modern semi-supervised learning tech-
niques, aimed at solving UDA, SSL, and SSDA. As typical in SSL, AdaMatch takes both an unlabeled
and labeled dataset as input. We assume that the labeled data is drawn from a source domain while
the unlabeled data is drawn from a target domain (for the SSL task, these domains are the same).

Notation. We use capital letters X , Y , Z to denote minibatches of examples, labels and logits.
Specifically, XSL ⊂ RnSL×d and YSL ⊂ {0, 1}nSL×k denote the minibatch of source images and
labels, respectively. Similarly, the minibatch of unlabeled target images is XTU ⊂ RnTU×d. Here, k
is the number of classes and d is the input dimension (for images d = h · w · c, where h is height, w
is width, and c is the number of channels). The minibatch size for the labeled data is nSL and the
minibatch size of the unlabeled images is nTU . Additionally, we use Y (i) to refer to its i-th row, and
Y (i,j) to refer to the i, j−th element of Y . The model f : Rd → Rk takes images as input and outputs
logits for each of k classes. Importantly, the source and target domain are the same classification task,
so the number of classes k and the image dimension d is the same for both domains.

3.1 METHOD DESCRIPTION

AdaMatch introduces three new techniques to account for differences between the source and target
distributions – random logit interpolation, a relative confidence threshold, and a modified distribution
alignment from ReMixMatch (Berthelot et al., 2020) – but builds upon the algorithmic backbone
from FixMatch (Sohn et al., 2020). We first provide a high-level overview of the algorithm and then
discuss the implementation details of the various components. For a brief summary of how each
component helps with distribution shift and accompanying motivational examples, see Appendix A.

Overview. A high-level depiction of AdaMatch is in Figure 1. Two augmentations are made for
each image: a weak and a strong one with the intent to make the class prediction harder on the
strongly augmented image2. Next, we obtain logits by running two batches through the model: a
batch of the source images and batch composed of both the source and target images. Each of the
resulting batches of logits are influenced by their respective batch norm statistics, i.e. the source
batch is only influenced by the source data batch norm statistics while the batch that combines source
and target is influenced by both domains batch norm statistics. Two loss terms are then computed:

• The source loss term is responsible for predicting correct source labels and for aligning
source and target logit domains. We first combine logits for the source images using
random logit interpolation, which encourages the model to produce the same label for
the hyperspace connecting source logits obtained from 1) only source examples and 2) a
combination of source and target examples. In practice, this creates an implicit constraint
to align the source and target domains in logit space. The newly obtained source logits are
then used to compute the cross-entropy loss for the source data.

2We use the general “weak” and “strong” terms because they can be dependent on the task. For all of our
results: Weak is shift and mirror about the x axis. Strong is weak augmentation plus the addition of cutout.
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• The target loss term is responsible for predicting the correct target labels and for aligning
the target predictions to a desired class distribution. Since we don’t assume access to labels
for the target images, we create a pseudo-label for these images as follows. First, we rectify
the class distribution obtained from weakly augmented target images to a desired class
distribution using distribution alignment. If the target class distribution is known, it can be
used directly. In the general case where it is not known, we use the source class distribution
instead. We then select entries of the batch for which the rectified probabilities of the
weakly augmented target image predictions are above a user-defined confidence threshold.
A pseudo label is then made for these outputs by selecting the most confident class, and
these pseudo-labels are used with a standard cross-entropy loss applied to the logits of the
strongly augmented images.

Augmentation. For a dataset D ∈ {SL, TU}, we augment each image batch XD fed into AdaMatch
twice, once with a weak augmentation and once with a strong augmentation, using the same types
of weak and strong augmentations as (Berthelot et al., 2020). This forms a pair of batches XD,w

and XD,s respectively, which we denote together as Xaug
D = {XD,w, XD,s}. From these pairs of

batches, we then compute logits Z ′SL, Z
′′
SL and ZTU as follows:

{Z ′SL, ZTU} = f({Xaug
SL , X

aug
TU }; θ) (1)

Z ′′SL = f(Xaug
SL ; θ) (2)

That is, we compute logits by calling the model twice for both the strong and weakly augmented
images. The first time we pass both source and target inputs together in the same batch so the batch
normalization statistics are shared, and the second time we only pass the source label data. We
only update batch normalization statistics when computing {Z ′SL, ZTU} = f({Xaug

SL , X
aug
TU }; θ) to

avoid double counting source labeled data. Note that without batch normalization, we would have
Z ′SL ≡ Z ′′SL. But batch normalization may make them slightly different.

Random logit interpolation. The role of random logit interpolation is to randomly combine the joint
batch statistics from the source and target domains with the batch statistics from the source domain,
which has the effect of producing batch statistics that are more representative of both domains. More
precisely, during training, we obtain logits ZSL by randomly interpolating the logits Z ′SL and Z ′′SL
computed with different batch statistics:

ZSL = λ · Z ′SL + (1− λ) · Z ′′SL (3)

where we sample λ ∼ UnSL·k(0, 1). Note that each individual logit gets its own random factor.

Our underlying goal here is to minimize the loss for every point between Z ′SL and Z ′′SL, which can
be accomplished by either 1) having Z ′SL and Z ′′SL be equal to each other, or 2) having the whole
line between Z ′SL and Z ′′SL be a minima. Rather than picking one of the two ways, we formulate the
problem as minimizing the loss for all connecting points, which gives the model the freedom to find
the best possible solution. The key point is that we randomly choose the interpolation value , and then
minimize the loss on this randomly interpolated value. Because we randomly choose the point on the
line each time, over the course of training we can ensure that the entire line segment between Z ′SL
and Z ′′SL reaches low loss. Another way to achieve the same result would be to divide the interval
into N (a large number) of different segments, and then minimize the loss on all N points. However
this would be computationally expensive and so by randomly choosing a new each time we achieve
the same result without increasing the computation cost by a factor of N .

Distribution alignment. Distribution alignment (Berthelot et al., 2020) can be seen as an additional
form of model regularization that helps constrain the distribution of the class predictions to be more
aligned with the true distribution. Without it, the classifier could just predict the most prevalent class
or exhibit other failure modes. Ideally, if the target label distribution is known, we would use it
directly. However, when the target label distribution is unknown, we approximate it using the only
available distribution – the source label distribution. A limitation of this approach is that the more the
source label distribution differs from the target distribution, the more incorrect the approximation will
be, which may cause the model performance to degrade. However, in practice, we find that aligning
the target pseudo-labels to match the source label distribution helps significantly.

Unlike ReMixMatch (Berthelot et al., 2020), we estimate the source label distribution from the output
of the model rather than using the true labels. We make this change since the model may not be
capable of matching the ground truth source label distribution (particularly when source accuracy is
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low) but matching the source output distribution is a more attainable goal. To implement this, we first
extract the logits for weakly and strongly augmented samples from the batch (by indexing):

ZSL = {ZSL,w, ZSL,s} ZTU = {ZTU,w, ZTU,s} (4)

Then, we compute pseudo-labels for labeled sources and unlabeled targets:

ŶSL,w = softmax(ZSL,w) ∈ RnSL·k ŶTU,w = softmax(ZTU,w) ∈ RnTU ·k (5)

Using distribution alignment, we rectify the target unlabeled pseudo-labels by multiplying them by
the ratio of the expected value of the weakly augmented source labels E[ŶSL,w] ∈ Rk to the expected
value of the target labels E[ŶTU,w] ∈ Rk, obtaining the final pseudo-labels ỸTU,w ∈ RnTU ·k:

ỸTU,w = normalize
(
ŶTU,w

E[ŶSL,w]
E[ŶTU,w]

)
(6)

normalize ensures that the distribution still sums to 1. As could be seen E[ỸTU,w] = E[ŶSL,w],
which confirms that distribution alignment makes the target pseudo-labels follow the source label
distribution. If the target label distribution is known, one can simply replace the term E[ŶSL,w] with
it in the formula above.

Relative confidence threshold. A confidence threshold is typically used to select which predicted
labels are confident enough to be used as pseudo-labels (Lee, 2013). However, since machine learning
models are poorly calibrated (Guo et al., 2017), especially on out-of-distribution data Ovadia et al.
(2019), the confidence varies from dataset to dataset depending on the ability of the model to learn its
task. To address this issue, we introduce a relative confidence threshold which adjusts a user-provided
confidence threshold relative to the confidence level of the classifier on the weakly augmented source
data.

Specifically, we define the relative confidence threshold cτ as the mean confidence of the top-1
prediction on the weakly augmented source data multiplied by a user provided threshold τ :

cτ =
τ

nSL

nSL∑
i=1

max
j∈[1..k]

(Ŷ
(i,j)
SL,w) (7)

We then compute a binary mask ∈ {0, 1}nTU by thresholding the weakly augmented target images
with the relative confidence threshold cτ :

mask(i) = max
j∈[1..k]

(Ỹ
(i,j)
TU,w) ≥ cτ (8)

Loss function. The loss L(θ) sums Lsource(θ) for the source and Ltarget(θ) for the target.

Lsource(θ) =
1

nSL

nSL∑
i=1

H(Y
(i)
SL , Z

(i)
SL,w) +

1

nSL

nSL∑
i=1

H(Y
(i)
SL , Z

(i)
SL,s) (9)

Ltarget(θ) =
1

nTU

nTU∑
i=1

H
(

stop_gradient(Ỹ (i)
TU,w), Z

(i)
TU,s

)
·mask(i) (10)

L(θ) = Lsource(θ) + µ(t)Ltarget(θ) (11)

whereH(p, q)=−
∑
p(x) log q(x) is the cross-entropy loss and stop_gradient is a function that

prevents gradient from back-propagating on its argument. Prevention of gradient back-propagation
on guessed labels is a standard practice in SSL works that favors convergence. µ(t) is a warmup
function that controls the unlabeled loss weight at every step of the training. The purpose is to shorten
the convergence time for the model, and it should not significantly effect the model’s final accuracy.
In practice we use µ(t) = 1/2 − cos

(
min(π, 2πt/T )

)
/2 where T is the total training steps. This

particular function smoothly raises from 0 to 1 for the first half of the training and remains at 1 for
the second half.

Lsource(θ) is the typical cross-entropy loss with the nuance that we call it twice: once on weakly
augmented samples and once on strongly augmented ones. Similarly, Ltarget(θ) is the masked cross-
entropy loss, where entries for which the confidence is less than cτ are zeroed. This loss term is
exactly the same as in FixMatch (Sohn et al., 2020).
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3.2 HYPER-PARAMETERS

AdaMatch only requires the following two hyper-parameters: (1) Confidence threshold τ (set to 0.9
for all experiments). (2) Unlabeled target batch size ratio uratio (set to 3 for all experiments) which
defines how much larger is the unlabeled batch, e.g. ntu = nsl · uratio.

3.3 EXTENSION TO SSL AND SSDA
SSL takes as input two types of data: labeled samples and their labels XL and unlabeled samples
XU . AdaMatch can be used without change for the SSL task by feeding XL in place of XSL and
XU in place of XTU . The same trick is provided for other methods in the experimental study.

SSDA differs from UDA by the presence of targeted labeled data XTL. AdaMatch can be used
without change by feeding the concatenated batch XSTL = {XSL, XTL} in place of XSL. As in
SSL, the same trick works for other methods. Note there’s a subtle effect on the uratio which ends
up being implicitly halved since the labeled batch is twice bigger in SSDA than in standard UDA.

4 EXPERIMENTAL SETUP

We evaluate AdaMatch on the SSL, UDA, and SSDA tasks using the standard DigitFive (Ganin et al.,
2016) and DomainNet (Peng et al., 2019) visual domain adaptation benchmarks and we compare
to various existing methods. DigitFive experiments and ablation studies were run on a single V100
GPU, other experiments were run on a single TPU.

Datasets. Digit-Five is composed of 5 domains, USPS (Hull, 1994), MNIST (LeCun et al., 1998),
MNIST-M (Ganin et al., 2016), SVHN (Netzer et al., 2011), and synthetic numbers (Ganin et al.,
2016). We resize all images into 32×323 and convert them to RGB. DomainNet (Peng et al., 2019) is
composed of six domains from 345 object categories. Unlike prior work (Ganin et al., 2016; Saito
et al., 2018; Peng et al., 2019), unless otherwise stated, we train models from scratch to focus on
evaluating the efficacy of the algorithms themselves.

Democratic research. For DomainNet, we experiment with two image resolutions, 64×64 and
224×224. Though Peng et al. (2019) only evaluate with resolution 224×224, we include 64×64
to make future experiments using DomainNet more accessible to researchers with limited compute
budget. Moreover, we find that AdaMatch can outperform the previous SOTA for DomainNet at
224×224 resolution even when trained with 64×64 resolution images.

Network and training hyperparameters. We use ResNetV2-101 (He et al., 2016) for resolution
224×224 , WRN-34-2 (Zagoruyko & Komodakis, 2016) for 64×64, and WRN-28-2 for 32×32.
We tried three confidence thresholds (0.8, 0.9, 0.95) on 64×64 UDA clipart→infograph and picked
the best. Additionally, we picked the largest uratio allowed on 8 GPUs for a batch size of 64
using 224×224 images. We coarsely tuned (using 3 candidate values) the learning rate, learning
rate decay, and weight decay using only the 64×64 supervised source data. For weight decay, we
used a empirical rule: halving it for 32×32 neural networks and doubling it for the 224×224 to
coarsely adapt the regularization to the capacity of the network (we used a weight decay of 0.0005
for WRN-28-2, 0.001 for WRN-34-2 and 0.002 for ResNetV2-101). We set learning rate to 0.03 and
learning rate cosine decay to 0.25. We trained DigitFive for 32M images, and DomainNet for 8M.

Baselines. We compare against popular SOTA methods from UDA and SSL, including maximum
classifier discrepancy (MCD) (Saito et al., 2018), FixMatch with distribution alignment (FixMatch+),
(Sohn et al., 2020), and NoisyStudent (Xie et al., 2019). For UDA, we include MCD since it is the
current single-source SOTA on DomainNet (Peng et al., 2019). For SSL, we include FixMatch+
since it achieves SOTA performance on standard SSL benchmarks and our algorithm borrows many
components from it. We also include NoisyStudent since it is a popular approach to SSL that achieves
competitive results on large-scale datasets like ImageNet (Deng et al., 2009). Finally, we include our
own baseline, BaselineBN, which uses fully supervised learning on the source domain but additionally
feeds unlabeled target data through the network to update batch norm statistics (see Appendix B).

Evaluation. For each source and target dataset pair, we calculate the final accuracy as the median
accuracy reported over the last ten checkpoints (we save a checkpoint every 216 samples). In summary
tables, we report the average final accuracy over all target datasets. Unlike SSL, most prior work

3Images of USPS are resized from 16×16 with bi-cubic interpolation. For MNIST, we pad an image with
two zero-valued pixels on all sides.
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in UDA evaluates using ImageNet pre-training. As explained in Section 2, we choose to report the
majority of our results without pre-training. However, for easier comparison with prior work, we also
evaluate ImageNet pre-trained AdaMatch, FixMatch+, and MCD for UDA in Section 5.1.1.

5 RESULTS

We now summarize our results for the UDA, SSL, and SSDA tasks. We ran all five algorithms on
all source-target pairs for every dataset (20 for DigitFive and 30 for DomainNet64/224), varying
the number for labels in SSL/SSDA tasks, for a comprehensive total of 2,420 experiments. This
represents a major experimental undertaking and we hope that the results (especially the finer grained
results on individual dataset pairs in Appendix E and the democratized setting) will serve future work.

5.1 UNSUPERVISED DOMAIN ADAPTATION (UDA)

DigitFive DomainNet64 DomainNet224

BaselineBN 62.5 15.8 18.9
MCD 52.1 14.9 14.9
NoisyStudent 73.3 21.4 23.9
FixMatch+ 95.6 20.1 20.8
AdaMatch 97.8 26.1 28.7
Oracle 98.8 60.5 65.9

Table 2: For the UDA task,
AdaMatch outperforms all
other baseline algorithms on
the DigitFive, DomainNet64,
and DomainNet224 bench-
marks. For each algorithm and
benchmark, we report the aver-
age target accuracy across all
source→target pairs.

Table 2 shows the average target accuracy achieved by each algorithm for the UDA task on the
DigitFive, DomainNet64, and DomainNet224 benchmarks. For the UDA task, we additionally
compare to a fully-supervised learning setup that uses an oracle model that has access to all labels
from both the source and target datasets (Oracle).

We find that AdaMatch outperforms all other algorithms we compare against, and the improvement
is highest for the larger dataset size, DomainNet224, where AdaMatch achieves an average target
accuracy of 28.7% compared to 23.9% for NoisyStudent. Additionally, on all three benchmark
datasets, AdaMatch, FixMatch+, and NoisyStudent all significantly outperform both MCD and
BaselineBN. This success illustrates that SSL methods can be applied out-of-the-box on UDA
problems, but we can also significantly improve upon them if, as in AdaMatch, the distributional
differences between the source and target data are accounted for.

For DomainNet64, we also observe that both AdaMatch and FixMatch+ without pre-training on
DomainNet64 are able to out-perform the previous state-of-the-art accuracy of 21.9% set by MCD with
pre-training on DomainNet224 (Peng et al., 2019). Overall, the accuracy gap between AdaMatch on
DomainNet64 and DomainNet224 is relatively low – only 2% – and, for the purposes of democratizing
research, we encourage future UDA research to evaluate on DomainNet64 since it is significantly
less computationally intensive to run experiments on the smaller image size.

5.1.1 UDA WITH PRE-TRAINING

random init (8M) pre-train (8M) pre-train (2M) pre-train (max)
MCD 14.9 22.3 21.9 22.7

AdaMatch 28.7 28.2 33.4 35.6

Table 3: DomainNet224: In the pre-training UDA setting, AdaMatch also outperforms prior
work.. We report the target accuracy achieved after training for 8 million images (8M) (our standard
training protocol), after early stopping at 2 million images (2M), and the maximum medium target
accuracy (over a window of 10 checkpoints) achieved across the entire run (MAX).
In order to compare with prior UDA work which uses ImageNet pre-training, in Table 3 we eval-
uate AdaMatch versus MCD on the DomainNet224 benchmark when initializing from pre-trained
ImageNet ResNet101 weights. As is typical with pre-training, we also found in our experiments
that early stopping is necessary to get the best results for AdaMatch. Thus, for the pre-training
results in Table 3, we report the final target accuracy achieved after training for 8 million images (our
standard training protocol), the final accuracy achieved after early stopping at 2 million images, and
the maximum median accuracy (over a window of 10 checkpoints) achieved across the entire run.
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Using the standard training protocol of 8 million images, AdaMatch with pre-training is able to
outperform MCD with pre-training, a difference of 28.2% versus 22.3%, respectively (we also confirm
that the accuracy we are able to achieve on MCD closely matches the reported accuracy of 21.9%
from (Peng et al., 2019)). However, we also observe that pre-trained AdaMatch peaks early on in
training, and a significantly higher accuracy of 35.6% is achievable if an Oracle were to tell when to
stop training. To account for this, we recommend early-stopping AdaMatch in the pre-trained setting.

5.2 SEMI-SUPERVISED LEARNING (SSL)

Figure 2: Adamatch achieves state-of-the-art or competitive accuracy for the SSL task. We
evaluate on the DomainNet224, DomainNet64 and DigitFive benchmarks and vary the number of
target labels. We report the average target accuracy across all source→target pairs. Average accuracy
on the target datasets generally increases as we increase the number of target labels.

In the SSL setting, we only train on a single dataset (since there is no notion of source nor target)
which we randomly divide into two groups: labeled and unlabeled. Figure 2 shows the average target
accuracy for each algorithm on the SSL task as we vary the number of target labels (we also include
the corresponding numerical results in Appendix D). We find that AdaMatch achieves state-of-the-art
performance for DomainNet224, and competitive performance to FixMatch+ on the DigitFive and
DomainNet64 benchmarks. Additionally, we observe that increasing the number of target labels
generally results in better accuracy for all methods, and on the DomainNet224 dataset in particular,
the gap in performance between AdaMatch and FixMatch+ widens as we increase the number labels.

Overall, AdaMatch’s improvement over FixMatch+ is smaller on the SSL task compared to the SSDA
or DA tasks, which is expected since AdaMatch by design is an extension of FixMatch+ to handle
distribution shifts. This also suggests that the additional components of AdaMatch, i.e. random
logit interpolation and relative confidence thresholding, improve accuracy more in settings where the
unlabeled and labeled data are not drawn from the same distribution.

5.3 SEMI-SUPERVISED DOMAIN ADAPTATION (SSDA)

Figure 3: Adamatch achieves state-of-the-art or competitive accuracy for the SSDA task. We
report the average target accuracy across all source→target pairs. Average accuracy on the target
datasets generally increases as we increase the number of target labels.

In the SSDA setting, we randomly sample a subset of the target dataset and treat it as labeled. Figure
3 shows the performance of AdaMatch compared to all other algorithms on the SSDA task as we
vary the number of target labels (corresponding numerical results are in Appendix D). AdaMatch
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Method Accuracy

AdaMatch 26.3
w/o random logit interpolation 25.2
w/o distribution alignment 17.7
w/o relative confidence threshold 23.2

Table 4: Ablation study on each component of
AdaMatch on 6 UDA protocols of DomainNet.
We evaluate algorithms by excluding the com-
ponents one at a time.

outperforms all other algorithms on both DomainNet64 and DomainNet224. As expected, increasing
the number of target labels improves the accuracy for all methods. In very low label regime, AdaMatch
further improves its lead over other methods.

6 ABLATION STUDY

In this section, we perform an ablation analysis on each component of AdaMatch to better understand
their importance and we provide a sensitivity analysis of hyperparameters, such as uratio, weight
decay, confidence threshold, or augmentation strategies. We conduct our study on DomainNet using
64×64 as input and report the average accuracy across 6 domain adaptation protocols.4

Exclude-One-Out Analysis. AdaMatch improves upon FixMatch with several innovative techniques:
random logit interpolation, adaptive confidence thresholding and distribution alignment (initially
introduced by ReMixMatch and discussed in FixMatch as an extension but not per-se part of it). To
better understand the role of each component, we conduct experiments by excluding one component
at a time from AdaMatch. As we see in Table 4 all components contribute to the success of AdaMatch.

Sensitivity Analysis. AdaMatch only has two hyper-parameters to tune: uratio and confidence
threshold. While it is not specific to AdaMatch, we also measure the sensitivity to weight decay
as it was shown to be important to achieve a good performance in (Sohn et al., 2020). Results are
in Figure 4. Similarly to the findings from FixMatch (Sohn et al., 2020), AdaMatch requires high
confidence threshold. Also, we observe improved accuracy with higher uratio at the expense of more
compute. (As a reminder, uratio defines the ratio of unlabeled to labeled data within a mini-batch,
and not the ratio between the total number of unlabeled and labeled examples seen over the course of
training.) For L2 weight decay, we find fairly reliable performance between 0.0001 and 0.001.
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Figure 4: Ablation studies of AdaMatch on 6 DA protocols of DomainNet.

7 CONCLUSION

Machine learning models still suffer a drop in accuracy on out-of-distribution data. However, if we
have access to unlabeled data from a shifted domain (the UDA setting) or even a small amount of
labeled data from the shifted domain (the SSDA setting), we can greatly improve accuracy. In this
work, we present AdaMatch, a general method designed to boost accuracy on domain shifts when
given access to unlabeled data from the new domain. AdaMatch unifies the domains of UDA, SSL,
and SSDA, demonstrating that one method can perform well at all three.

Overall, our work shows that it is possible to apply SSL algorithms out-of-the-box to the domain
adaptation problem. By taking into account the distribution shift, AdaMatch can significantly
improve upon SSL methods. This suggests that a promising direction for future work is to take new
advances from SSL and translate or modify them for the domain adaptation setting. While AdaMatch
outperforms prior work by a large margin, there is still an even larger margin left for improvement on
out-of-distribution shifts. This leaves open an important question: which is more important for future
progress, making use of unlabeled data more efficiently, or attempting to better model domain shifts?

4The 6 protocols include clipart→infograph, infograph→painting, painting→quickdraw, quickdraw→real,
real→sketch, and sketch→clipart.
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ETHICS STATEMENT

AdaMatch is designed to make ML models robust to a domain shift between train and test time using
a limited amount of labeled data and a large amount of unlabeled data. The development of data
efficient ML algorithms are of utmost importance in democratization of ML methods. However, the
confirmation bias of self-training (Arazo et al., 2019) could be a concern for building a fair ML model
across major and minor classes. AdaMatch partially resolves the issue with the distribution alignment,
but more in-depth investigation on the fairness and robustness of data-efficient ML algorithms should
be done in the future.

REPRODUCIBILITY

We wrote our experimental codes using the open-source Objax library (Objax Developers, 2020) and
used the same hyperparameters for most of our experiments, which we specify in Section 4. Moreover,
we released the open source code publicly at https://github.com/google-research/
adamatch.

REFERENCES

Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, and Mario Marchand. Domain-
adversarial neural networks. arXiv preprint arXiv:1412.4446, 2014.

Shuang Ao, Xiang Li, and Charles Ling. Fast generalized distillation for semi-supervised domain
adaptation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31, 2017.

Eric Arazo, Diego Ortego, Paul Albert, Noel E. O’Connor, and Kevin McGuinness. Pseudo-labeling
and confirmation bias in deep semi-supervised learning. arXiv preprint arXiv:1908.02983, 2019.

Aharon Azulay and Yair Weiss. Why do deep convolutional networks generalize so poorly to small
image transformations? arXiv preprint arXiv:1805.12177, 2018.

Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman
Vaughan. A theory of learning from different domains. Machine learning, 79(1):151–175, 2010.

David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and Colin A
Raffel. Mixmatch: A holistic approach to semi-supervised learning. In Advances in Neural
Information Processing Systems, pp. 5050–5060, 2019.

David Berthelot, Nicholas Carlini, Ekin D. Cubuk, Alex Kurakin, Kihyuk Sohn, Han Zhang, and
Colin Raffel. Remixmatch: Semi-supervised learning with distribution matching and augmentation
anchoring. In Eighth International Conference on Learning Representations, 2020.

Battista Biggio and Fabio Roli. Wild patterns: Ten years after the rise of adversarial machine learning.
Pattern Recognition, 84:317–331, 2018.

Konstantinos Bousmalis, Nathan Silberman, David Dohan, Dumitru Erhan, and Dilip Krishnan.
Unsupervised pixel-level domain adaptation with generative adversarial networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 3722–3731, 2017.

Gabriela Csurka. Domain adaptation in computer vision applications. Springer, 2017.

Hal Daumé III, Abhishek Kumar, and Avishek Saha. Frustratingly easy semi-supervised domain
adaptation. In Proceedings of the 2010 Workshop on Domain Adaptation for Natural Language
Processing, pp. 53–59, 2010.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition,
2009.

10

https://github.com/google-research/adamatch
https://github.com/google-research/adamatch


Published as a conference paper at ICLR 2022

Jeff Donahue, Judy Hoffman, Erik Rodner, Kate Saenko, and Trevor Darrell. Semi-supervised domain
adaptation with instance constraints. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 668–675, 2013.

Logan Engstrom, Brandon Tran, Dimitris Tsipras, Ludwig Schmidt, and Aleksander Madry. Exploring
the landscape of spatial robustness. In International Conference on Machine Learning, pp. 1802–
1811. PMLR, 2019.

Geoffrey French, Michal Mackiewicz, and Mark Fisher. Self-ensembling for visual domain adaptation.
In Sixth International Conference on Learning Representations, 2018.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural networks.
The journal of machine learning research, 17(1):2096–2030, 2016.

Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A Wichmann, and
Wieland Brendel. Imagenet-trained cnns are biased towards texture; increasing shape bias improves
accuracy and robustness. arXiv preprint arXiv:1811.12231, 2018.

Yves Grandvalet and Yoshua Bengio. Semi-supervised learning by entropy minimization. In Advances
in neural information processing systems, 2005.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola. A
kernel two-sample test. The Journal of Machine Learning Research, 13(1):723–773, 2012.

Keren Gu, Brandon Yang, Jiquan Ngiam, Quoc Le, and Jonathon Shlens. Using videos to evaluate
image model robustness. arXiv preprint arXiv:1904.10076, 2019.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In International Conference on Machine Learning, pp. 1321–1330. PMLR, 2017.

Yuhong Guo and Min Xiao. Cross language text classification via subspace co-regularized multi-view
learning. In Proceedings of the 29th International Coference on International Conference on
Machine Learning, pp. 915–922, 2012.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European Conference on Computer Vision, 2016.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. In International Conference on Learning Representations (ICLR),
2019. https://arxiv.org/abs/1807.01697.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
analysis of out-of-distribution generalization. arXiv preprint arXiv:2006.16241, 2020.

Jonathan J. Hull. A database for handwritten text recognition research. IEEE Transactions on pattern
analysis and machine intelligence, 16(5):550–554, 1994.

Jing Jiang and ChengXiang Zhai. Instance weighting for domain adaptation in nlp. ACL, 2007.

Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly,
and Neil Houlsby. Big transfer (bit): General visual representation learning. arXiv preprint
arXiv:1912.11370, 6(2):8, 2019.

Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning. In Fifth Interna-
tional Conference on Learning Representations, 2017.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Dong-Hyun Lee. Pseudo-label: The simple and efficient semi-supervised learning method for deep
neural networks. In ICML Workshop on Challenges in Representation Learning, 2013.

11

https://arxiv.org/abs/1807.01697


Published as a conference paper at ICLR 2022

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier domain
generalization. In Proceedings of the IEEE international conference on computer vision, pp.
5542–5550, 2017.

Mingsheng Long, Jianmin Wang, Guiguang Ding, Jiaguang Sun, and Philip S Yu. Transfer feature
learning with joint distribution adaptation. In Proceedings of the IEEE international conference on
computer vision, pp. 2200–2207, 2013.

Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. Conditional adversarial
domain adaptation. In Proceedings of the 32nd International Conference on Neural Information
Processing Systems, pp. 1647–1657, 2018.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Reading
digits in natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning
and Unsupervised Feature Learning, 2011.

Objax Developers. Objax, 2020. URL https://github.com/google/objax.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin, Joshua V
Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncertainty?
evaluating predictive uncertainty under dataset shift. arXiv preprint arXiv:1906.02530, 2019.

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
for multi-source domain adaptation. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 1406–1415, 2019.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
generalize to imagenet? 2019a. URL http://arxiv.org/abs/1902.10811.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
generalize to imagenet? In International Conference on Machine Learning, pp. 5389–5400. PMLR,
2019b.

Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. Adapting visual category models to new
domains. In European conference on computer vision, pp. 213–226. Springer, 2010.

Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tatsuya Harada. Maximum classifier
discrepancy for unsupervised domain adaptation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 3723–3732, 2018.

Kuniaki Saito, Donghyun Kim, Stan Sclaroff, Trevor Darrell, and Kate Saenko. Semi-supervised
domain adaptation via minimax entropy. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 8050–8058, 2019.

Vaishaal Shankar, Achal Dave, Rebecca Roelofs, Deva Ramanan, Benjamin Recht, and Ludwig
Schmidt. A systematic framework for natural perturbations from videos. CoRR, abs/1906.02168,
2019. URL http://arxiv.org/abs/1906.02168.

Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raffel, Ekin Do-
gus Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-supervised learning
with consistency and confidence. Advances in Neural Information Processing Systems, 33, 2020.

Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation. In
European conference on computer vision, pp. 443–450. Springer, 2016.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. In International Conference on Learning
Representations (ICLR), 2013. http://arxiv.org/abs/1312.6199.

Rohan Taori, Achal Dave, Vaishaal Shankar, Nicholas Carlini, Benjamin Recht, and Ludwig Schmidt.
When robustness doesn’t promote robustness: Synthetic vs. natural distribution shifts on imagenet,
2020. URL https://openreview.net/forum?id=HyxPIyrFvH.

12

https://github.com/google/objax
http://arxiv.org/abs/1902.10811
http://arxiv.org/abs/1906.02168
http://arxiv.org/abs/1312.6199
https://openreview.net/forum?id=HyxPIyrFvH


Published as a conference paper at ICLR 2022

Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged consis-
tency targets improve semi-supervised deep learning results. In Advances in neural information
processing systems, 2017.

Luan Tran, Kihyuk Sohn, Xiang Yu, Xiaoming Liu, and Manmohan Chandraker. Gotta adapt’em all:
Joint pixel and feature-level domain adaptation for recognition in the wild. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2672–2681, 2019.

Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. Deep domain confusion:
Maximizing for domain invariance. arXiv preprint arXiv:1412.3474, 2014.

Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate Saenko. Simultaneous deep transfer across
domains and tasks. In Proceedings of the IEEE international conference on computer vision, pp.
4068–4076, 2015.

Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Luong, and Quoc V. Le. Unsupervised data
augmentation for consistency training. arXiv preprint arXiv:1904.12848, 2019.

Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V Le. Self-training with noisy student
improves imagenet classification. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 10687–10698, 2020.

Fanny Yang, Zuowen Wang, and Christina Heinze-Deml. Invariance-inducing regularization using
worst-case transformations suffices to boost accuracy and spatial robustness. arXiv preprint
arXiv:1906.11235, 2019.

Ting Yao, Yingwei Pan, Chong-Wah Ngo, Houqiang Li, and Tao Mei. Semi-supervised domain
adaptation with subspace learning for visual recognition. In Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition, pp. 2142–2150, 2015.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Proceedings of the British
Machine Vision Conference (BMVC), 2016.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan.
Theoretically principled trade-off between robustness and accuracy. In International Conference
on Machine Learning, pp. 7472–7482. PMLR, 2019.

Richard Zhang. Making convolutional networks shift-invariant again. In International Conference on
Machine Learning, pp. 7324–7334. PMLR, 2019.

13



Published as a conference paper at ICLR 2022

A MOTIVATION AND ILLUSTRATING EXAMPLES

We first briefly summarize the motivation for each of the components we introduce and explain how
they help with distribution shift:

1. Random logit has the effect of producing batch statistics that are more representative of both
domains (Section 3.1: Random Logit Interpolation) and creates an implicit constraint to
align the source and target domains in logit space (Section 3.1: Overview).

2. Distribution alignment helps constrain the distribution of the class predictions to be more
aligned with the true distribution (Section 3.1: Distribution Alignment). If we left it out, then
the model would have no incentive to match the target distribution to the source distribution.

3. Relative confidence thresholding addresses the issue that models are poorly calibrated on
out-of-distribution data. (Section 3.1: Relative Confidence Threshold) By including relative
confidence thresholding, we can ensure that the target data is used as pseudo labels as often
as it should be.

We next provide some illustrating examples to clarify the concepts of distribution alignment and
relative confidence thresholding.

Distribution alignment example: Assume we have a source dataset that has two classes that should
follow a frequency distribution of {0.4, 0.6}, e.g. 40% of samples are from class 1 and 60% from
class 2. Let’s say the model for the weakly augmented source data currently predicts an empirical
frequency distribution of {0.3, 0.7}, e.g. 30% for class 1 and 70% for class 2. However, for the
weakly augmented target data the model predicts on average {0.6, 0.4}.

We rectify a new prediction PTU,w by multiplying it elementwise by {0.3,0.7}{0.6,0.4} , which has the effect
of making the first class of PTU,w half as likely and the second class (roughly) twice as likely. In
other words, it changes the class distribution on the weakly augmented unlabeled target domain from
{0.6, 0.4} to {0.3, 0.7}.
Relative confidence thresholding example: Confidence thresholding determines what is a confident
pseudo-label for unlabeled data. However, since machine learning models are poorly calibrated (Guo
et al., 2017), especially on out-of-distribution data, the confidence varies from dataset to dataset
depending on the ability of the model to learn its task.

Suppose that we have a dataset X where a given model’s average top-1 confidence is 0.7 on labeled
data. Using a default confidence threshold of τ = 0.9 for pseudo-labels will exclude almost all
unlabeled data since they are unlikely to exceed the maximum labeled data confidence. In this
scenario, relative confidence thresholding is particularly useful. By multiplying the default confidence
threshold τ by the average top-1 labeled confidence, we can obtain a relative confidence ratio of
cτ = 0.9× 0.7 = 0.63 which is more likely to capture a meaningful fraction of the unlabeled data.

In the case of CIFAR-10, typically the softmax of most if not all labeled training examples will reach
1.0. When the average top-1 confidence on the labeled data is 1.0, the relative confidence threshold
cτ and the default confidence threshold τ are the same. Therefore, one can see relative confidence
thresholding as a generalization of the confidence thresholding concept.

B BASELINEBN
For BaselineBN, the same model and hyper-parameters are used, but the loss is computed differently.
Both source and target are concatenated as a batch, and the loss is only computed on the (source)
labeled logits for both weak and strong augmentations.

{ZSL, ZTU} = f({XSL, XTU}; θ)

Lbaseline(θ) =
1

nSL
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C UDA MODEL EVAL CURVES WITH AND WITHOUT PRE-TRAINED
WEIGHTS

We randomly select a dataset pair from DomainNet224 (Sketch→Clipart) and plot the target accuracy
versus the number of training images for both pre-trained and randomly initialized AdaMatch and
MCD in Figure 5. For all pre-trained runs, we set weight decay to 0 and initialize model weights
using an ImageNet pre-trained ResNet101 architecture.

Figure 5 shows that AdaMatch benefits significantly from early stopping. Although not plotted, we
observe a similar pattern in other dataset pairs. Using a consistent early stopping rule of 2 million
images, we found that, on average across all dataset pairs, AdaMatch with pre-training and early
stopping outperforms randomly initialized AdaMatch by 4.7% (see Table 3).

Figure 5: When using pre-training, AdaMatch benefits significantly from early stopping. We
compare AdaMatch and MCD with and without pre-training in the UDA setting on a randomly
selected dataset pair from DomainNet224, Sketch→Clipart.
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D SUMMARY RESULTS

In this section, we include the corresponding tables for the SSL and SSDA summary figures (Figure
2 and 3, respectively).

D.1 SSL

DigitFive DomainNet64 DomainNet224 Avg
1 5 10 25 1 5 10 25 1 5 10 25

BaselineBN 40.0 61.9 73.7 86.4 5.9 16.5 23.9 34.9 6.5 18.1 26.2 38.5 36.0
MCD 27.4 50.8 78.4 93.0 3.1 10.2 16.7 27.5 2.8 8.9 14.9 26.0 30.0
NoisyStudent 43.3 67.4 80.5 92.1 7.3 21.1 29.3 40.3 8.1 24.2 33.6 45.4 41.0
FixMatch+ 51.5 94.8 98.3 98.1 7.6 24.1 32.1 41.5 7.6 24.2 32.3 42.9 46.3
AdaMatch 68.6 97.2 97.6 97.6 8.1 23.8 31.7 41.4 8.2 25.7 34.9 46.4 48.4

Table 5: SSL summary. Adamatch achieves state-of-the-art or competitive accuracy for the SSL
task. We evaluate on the DomainNet224, DomainNet64 and DigitFive benchmarks and vary the
number of available labels. We report the average target accuracy across all source→target pairs.
Average accuracy on the target datasets generally increases as we increase the number of target labels.
See Figure 2 for the corresponding plot of accuracy versus number of target labels.

D.2 SSDA

DigitFive DomainNet64 DomainNet224 Avg
1 5 10 25 1 5 10 25 1 5 10 25

BaselineBN 69.8 78.8 85.1 90.9 20.8 28.6 34.0 42.1 25.3 33.8 39.3 47.6 49.7
MCD 66.5 76.5 80.6 89.9 13.8 19.5 24.3 33.2 13.5 17.8 23.1 32.5 40.9
NoisyStudent 72.8 75.3 76.4 80.5 22.8 28.6 33.6 41.4 26.0 33.0 38.4 46.0 47.9
FixMatch+ 82.0 96.8 98.5 98.4 24.8 34.2 39.6 46.1 28.3 38.7 44.1 50.8 56.9
AdaMatch 97.9 98.1 97.3 97.6 30.4 36.5 40.6 46.4 34.8 42.3 46.7 52.8 60.1

Table 6: SSDA summary. Adamatch achieves state-of-the-art or competitive accuracy for the
SSDA task. We evaluate on the DomainNet224, DomainNet64 and DigitFive benchmarks and vary
the number of target labels. We report the average target accuracy across all source→target pairs.
Average accuracy on the target datasets generally increases as we increase the number of target labels.
See Figure 3 for the corresponding plot of accuracy versus number of target labels.
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E INDIVIDUAL DATASET RESULTS

In this section, we evaluate all methods on the individual dataset pairs from the DigitFive, Domain-
Net64, and DomainNet224 benchmarks for the UDA, SSL, and SSDA tasks.

SSDA DigitFive AdaMatch (num_target_labels=1)
mnist mnistm svhn syndigit usps Avg

mnist - 99.1 96.7 99.4 97.8 98.3
mnistm 99.5 - 96.8 99.7 97.9 98.5
svhn 99.2 98.9 - 99.6 90.7 97.1
syndigit 99.3 98.9 97.0 - 97.1 98.1
usps 99.3 98.9 96.6 95.0 - 97.4

Avg 99.3 98.9 96.8 98.4 95.9 97.9

Table 7: Individual results for each dataset pair for DigitFive in the SSDA setting using AdaMatch.

SSDA DigitFive AdaMatch (num_target_labels=5)
mnist mnistm svhn syndigit usps Avg

mnist - 99.2 96.7 99.5 97.8 98.3
mnistm 99.5 - 96.7 99.7 97.7 98.4
svhn 99.3 98.9 - 99.5 94.5 98.0
syndigit 99.3 98.9 96.8 - 97.0 98.0
usps 99.4 99.0 96.1 95.5 - 97.5

Avg 99.4 99.0 96.6 98.5 96.8 98.0

Table 8: Individual results for each dataset pair for DigitFive in the SSDA setting using AdaMatch.

SSDA DigitFive AdaMatch (num_target_labels=10)
mnist mnistm svhn syndigit usps Avg

mnist - 99.2 96.7 99.7 97.7 98.3
mnistm 99.4 - 96.6 99.7 97.7 98.3
svhn 99.3 98.8 - 99.6 91.5 97.3
syndigit 99.3 99.0 96.9 - 97.4 98.2
usps 99.4 98.9 83.5 95.6 - 94.3

Avg 99.3 99.0 93.4 98.7 96.1 97.3

Table 9: Individual results for each dataset pair for DigitFive in the SSDA setting using AdaMatch.

SSDA DigitFive AdaMatch (num_target_labels=25)
mnist mnistm svhn syndigit usps Avg

mnist - 99.2 96.1 99.4 97.9 98.2
mnistm 99.4 - 96.4 98.7 97.9 98.1
svhn 99.3 98.7 - 99.6 96.8 98.6
syndigit 99.3 98.8 96.4 - 97.6 98.0
usps 99.3 98.9 83.8 99.3 - 95.3

Avg 99.3 98.9 93.2 99.3 97.6 97.6

Table 10: Individual results for each dataset pair for DigitFive in the SSDA setting using AdaMatch.
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SSDA DigitFive BaselineBN (num_target_labels=1)
mnist mnistm svhn syndigit usps Avg

mnist - 72.8 42.1 78.3 95.8 72.2
mnistm 97.1 - 60.6 86.5 94.8 84.8
svhn 76.5 37.0 - 97.3 63.6 68.6
syndigit 85.7 31.1 77.0 - 80.3 68.5
usps 83.5 33.0 31.7 70.3 - 54.6

Avg 85.7 43.5 52.8 83.1 83.6 69.8

Table 11: Individual results for each dataset pair for DigitFive in the SSDA setting using BaselineBN.

SSDA DigitFive BaselineBN (num_target_labels=5)
mnist mnistm svhn syndigit usps Avg

mnist - 79.7 59.4 90.0 96.4 81.4
mnistm 96.5 - 68.4 91.4 95.7 88.0
svhn 90.6 49.1 - 97.4 82.8 80.0
syndigit 91.5 50.8 80.0 - 87.4 77.4
usps 91.3 45.5 48.0 84.8 - 67.4

Avg 92.5 56.3 64.0 90.9 90.6 78.8

Table 12: Individual results for each dataset pair for DigitFive in the SSDA setting using BaselineBN.

SSDA DigitFive BaselineBN (num_target_labels=10)
mnist mnistm svhn syndigit usps Avg

mnist - 85.6 68.3 92.2 96.9 85.8
mnistm 98.2 - 75.6 93.0 95.2 90.5
svhn 94.8 65.3 - 97.4 89.4 86.7
syndigit 95.9 68.1 83.5 - 92.2 84.9
usps 94.3 65.0 61.3 89.1 - 77.4

Avg 95.8 71.0 72.2 92.9 93.4 85.1

Table 13: Individual results for each dataset pair for DigitFive in the SSDA setting using BaselineBN.

SSDA DigitFive BaselineBN (num_target_labels=25)
mnist mnistm svhn syndigit usps Avg

mnist - 93.2 76.8 95.8 97.1 90.7
mnistm 98.8 - 79.3 95.8 96.8 92.7
svhn 96.8 83.2 - 98.2 94.9 93.3
syndigit 97.0 84.7 86.4 - 95.6 90.9
usps 96.8 84.8 72.2 94.5 - 87.1

Avg 97.4 86.5 78.7 96.1 96.1 90.9

Table 14: Individual results for each dataset pair for DigitFive in the SSDA setting using BaselineBN.
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SSDA DigitFive FixMatch+ (num_target_labels=1)
mnist mnistm svhn syndigit usps Avg

mnist - 99.2 54.5 99.7 98.1 87.9
mnistm 99.4 - 54.7 99.7 97.8 87.9
svhn 97.9 10.9 - 99.6 97.3 76.4
syndigit 99.4 98.8 97.1 - 97.4 98.2
usps 99.3 9.8 28.8 99.7 - 59.4

Avg 99.0 54.7 58.8 99.7 97.7 82.0

Table 15: Individual results for each dataset pair for DigitFive in the SSDA setting using FixMatch+.

SSDA DigitFive FixMatch+ (num_target_labels=5)
mnist mnistm svhn syndigit usps Avg

mnist - 99.2 80.8 99.7 98.0 94.4
mnistm 99.4 - 86.7 99.3 97.8 95.8
svhn 97.9 97.4 - 99.6 93.2 97.0
syndigit 99.3 98.9 96.9 - 97.7 98.2
usps 99.3 99.0 96.8 99.7 - 98.7

Avg 99.0 98.6 90.3 99.6 96.7 96.8

Table 16: Individual results for each dataset pair for DigitFive in the SSDA setting using FixMatch+.

SSDA DigitFive FixMatch+ (num_target_labels=10)
mnist mnistm svhn syndigit usps Avg

mnist - 99.2 96.7 99.7 97.9 98.4
mnistm 99.5 - 97.0 99.8 97.7 98.5
svhn 99.3 98.8 - 99.6 97.3 98.8
syndigit 99.3 98.9 97.2 - 97.3 98.2
usps 99.4 98.9 96.8 99.7 - 98.7

Avg 99.4 98.9 96.9 99.7 97.6 98.5

Table 17: Individual results for each dataset pair for DigitFive in the SSDA setting using FixMatch+.

SSDA DigitFive FixMatch+ (num_target_labels=25)
mnist mnistm svhn syndigit usps Avg

mnist - 99.2 96.5 99.8 97.8 98.3
mnistm 99.5 - 96.5 99.8 97.5 98.3
svhn 99.2 98.7 - 99.6 97.5 98.8
syndigit 99.4 98.8 96.6 - 97.5 98.1
usps 99.3 98.9 96.4 99.8 - 98.6

Avg 99.4 98.9 96.5 99.8 97.6 98.4

Table 18: Individual results for each dataset pair for DigitFive in the SSDA setting using FixMatch+.
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SSDA DigitFive MCD (num_target_labels=1)
mnist mnistm svhn syndigit usps Avg

mnist - 70.8 12.2 21.7 96.6 50.3
mnistm 98.7 - 7.7 87.9 94.3 72.2
svhn 93.2 62.8 - 98.0 92.4 86.6
syndigit 98.2 70.6 83.7 - 94.9 86.8
usps 98.3 10.0 10.8 27.9 - 36.8

Avg 97.1 53.5 28.6 58.9 94.5 66.5

Table 19: Individual results for each dataset pair for DigitFive in the SSDA setting using MCD.

SSDA DigitFive MCD (num_target_labels=5)
mnist mnistm svhn syndigit usps Avg

mnist - 69.7 14.2 81.7 96.5 65.5
mnistm 98.5 - 7.6 88.3 95.1 72.4
svhn 97.6 65.9 - 98.1 91.5 88.3
syndigit 98.5 87.9 84.7 - 94.9 91.5
usps 97.9 61.0 9.8 91.1 - 65.0

Avg 98.1 71.1 29.1 89.8 94.5 76.5

Table 20: Individual results for each dataset pair for DigitFive in the SSDA setting using MCD.

SSDA DigitFive MCD (num_target_labels=10)
mnist mnistm svhn syndigit usps Avg

mnist - 76.6 7.3 95.4 96.4 68.9
mnistm 98.7 - 13.5 95.9 95.5 75.9
svhn 97.6 91.1 - 98.3 94.2 95.3
syndigit 98.6 94.4 85.9 - 95.3 93.5
usps 98.3 73.2 10.7 95.3 - 69.4

Avg 98.3 83.8 29.4 96.2 95.4 80.6

Table 21: Individual results for each dataset pair for DigitFive in the SSDA setting using MCD.

SSDA DigitFive MCD (num_target_labels=25)
mnist mnistm svhn syndigit usps Avg

mnist - 97.5 64.8 96.8 95.9 88.8
mnistm 99.0 - 23.7 97.2 95.6 78.9
svhn 98.1 93.1 - 98.3 95.0 96.1
syndigit 98.0 96.0 87.1 - 95.3 94.1
usps 98.5 93.5 77.0 97.0 - 91.5

Avg 98.4 95.0 63.1 97.3 95.5 89.9

Table 22: Individual results for each dataset pair for DigitFive in the SSDA setting using MCD.
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SSDA DigitFive NoisyStudent (num_target_labels=1)
mnist mnistm svhn syndigit usps Avg

mnist - 32.8 59.7 71.8 94.0 64.6
mnistm 99.2 - 58.6 88.0 95.1 85.2
svhn 80.2 44.2 - 98.8 85.9 77.3
syndigit 91.8 51.4 88.8 - 88.1 80.0
usps 95.5 25.3 33.4 73.3 - 56.9

Avg 91.7 38.4 60.1 83.0 90.8 72.8

Table 23: Individual results for each dataset pair for DigitFive in the SSDA setting using NoisyStudent.

SSDA DigitFive NoisyStudent (num_target_labels=5)
mnist mnistm svhn syndigit usps Avg

mnist - 28.1 63.1 88.6 95.0 68.7
mnistm 99.2 - 64.9 90.1 93.1 86.8
svhn 80.7 49.6 - 98.9 85.3 78.6
syndigit 92.5 62.3 89.3 - 86.6 82.7
usps 94.2 30.4 38.2 76.7 - 59.9

Avg 91.6 42.6 63.9 88.6 90.0 75.3

Table 24: Individual results for each dataset pair for DigitFive in the SSDA setting using NoisyStudent.

SSDA DigitFive NoisyStudent (num_target_labels=10)
mnist mnistm svhn syndigit usps Avg

mnist - 26.8 59.9 86.8 96.9 67.6
mnistm 99.3 - 62.8 88.5 95.7 86.6
svhn 78.5 58.0 - 98.9 88.8 81.0
syndigit 92.5 70.9 89.4 - 87.9 85.2
usps 94.2 31.8 41.4 78.6 - 61.5

Avg 91.1 46.9 63.4 88.2 92.3 76.4

Table 25: Individual results for each dataset pair for DigitFive in the SSDA setting using NoisyStudent.

SSDA DigitFive NoisyStudent (num_target_labels=25)
mnist mnistm svhn syndigit usps Avg

mnist - 32.2 66.7 87.6 96.9 70.8
mnistm 99.2 - 79.3 91.7 95.6 91.4
svhn 86.6 68.9 - 98.8 89.2 85.9
syndigit 93.4 75.3 90.5 - 89.2 87.1
usps 94.9 62.7 34.0 78.0 - 67.4

Avg 93.5 59.8 67.6 89.0 92.7 80.5

Table 26: Individual results for each dataset pair for DigitFive in the SSDA setting using NoisyStudent.
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SSDA DomainNet224 AdaMatch (num_target_labels=1)
clipart infograph painting quickdraw real sketch Avg

clipart - 14.7 35.0 34.5 47.3 47.0 35.7
infograph 37.9 - 26.9 22.8 37.8 29.9 31.1
painting 48.9 15.5 - 28.5 51.0 43.3 37.4
quickdraw 37.0 2.9 13.8 - 27.8 24.1 21.1
real 59.6 17.9 47.9 36.5 - 45.3 41.4
sketch 61.5 16.4 42.2 39.0 50.4 - 41.9

Avg 49.0 13.5 33.2 32.3 42.9 37.9 34.8

Table 27: Individual results for each dataset pair for DomainNet224 in the SSDA setting using
AdaMatch.

SSDA DomainNet224 AdaMatch (num_target_labels=5)
clipart infograph painting quickdraw real sketch Avg

clipart - 15.6 38.6 50.9 53.0 50.1 41.6
infograph 48.1 - 32.9 43.1 46.2 39.3 41.9
painting 55.0 16.6 - 44.8 56.0 48.3 44.1
quickdraw 51.3 6.8 26.5 - 43.0 36.4 32.8
real 65.0 19.4 49.8 51.7 - 50.4 47.3
sketch 64.2 17.4 44.5 49.9 54.7 - 46.1

Avg 56.7 15.2 38.5 48.1 50.6 44.9 42.3

Table 28: Individual results for each dataset pair for DomainNet224 in the SSDA setting using
AdaMatch.

SSDA DomainNet224 AdaMatch (num_target_labels=10)
clipart infograph painting quickdraw real sketch Avg

clipart - 17.6 41.9 55.6 57.5 53.8 45.3
infograph 53.2 - 37.2 50.3 52.5 45.2 47.7
painting 59.4 17.8 - 52.6 59.9 51.2 48.2
quickdraw 56.7 10.0 34.6 - 51.0 44.5 39.4
real 67.6 20.9 51.8 56.9 - 54.3 50.3
sketch 66.4 19.4 47.2 55.8 58.6 - 49.5

Avg 60.7 17.1 42.5 54.2 55.9 49.8 46.7

Table 29: Individual results for each dataset pair for DomainNet224 in the SSDA setting using
AdaMatch.

SSDA DomainNet224 AdaMatch (num_target_labels=25)
clipart infograph painting quickdraw real sketch Avg

clipart - 20.8 49.2 62.0 64.2 58.1 50.9
infograph 61.5 - 44.9 58.4 60.9 51.5 55.4
painting 65.3 21.0 - 59.5 66.2 56.9 53.8
quickdraw 64.1 14.8 44.5 - 61.1 52.6 47.4
real 71.1 24.2 56.1 62.9 - 58.6 54.6
sketch 70.6 22.7 52.4 61.9 64.9 - 54.5

Avg 66.5 20.7 49.4 60.9 63.5 55.5 52.8

Table 30: Individual results for each dataset pair for DomainNet224 in the SSDA setting using
AdaMatch.
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SSDA DomainNet224 BaselineBN (num_target_labels=1)
clipart infograph painting quickdraw real sketch Avg

clipart - 11.7 25.2 22.5 36.4 38.2 26.8
infograph 24.9 - 17.1 14.3 24.3 20.9 20.3
painting 39.7 12.2 - 17.7 44.2 34.1 29.6
quickdraw 24.7 2.4 7.4 - 15.2 15.8 13.1
real 47.9 14.7 40.4 20.2 - 35.1 31.7
sketch 51.4 12.1 31.4 20.5 37.4 - 30.6

Avg 37.7 10.6 24.3 19.0 31.5 28.8 25.3

Table 31: Individual results for each dataset pair for DomainNet224 in the SSDA setting using
BaselineBN.

SSDA DomainNet224 BaselineBN (num_target_labels=5)
clipart infograph painting quickdraw real sketch Avg

clipart - 12.8 29.8 39.8 42.9 43.2 33.7
infograph 38.9 - 22.2 33.7 34.5 29.9 31.8
painting 49.4 13.7 - 36.0 50.2 40.4 37.9
quickdraw 38.6 5.2 15.8 - 27.4 25.9 22.6
real 56.0 15.8 43.0 37.9 - 41.6 38.9
sketch 57.6 13.8 34.7 38.5 43.6 - 37.6

Avg 48.1 12.3 29.1 37.2 39.7 36.2 33.8

Table 32: Individual results for each dataset pair for DomainNet224 in the SSDA setting using
BaselineBN.

SSDA DomainNet224 BaselineBN (num_target_labels=10)
clipart infograph painting quickdraw real sketch Avg

clipart - 14.5 33.9 47.5 48.6 47.5 38.4
infograph 47.3 - 27.1 43.6 41.8 36.7 39.3
painting 55.0 15.5 - 45.1 54.2 45.2 43.0
quickdraw 46.1 7.8 21.9 - 37.1 33.9 29.4
real 59.9 18.0 45.7 46.3 - 46.9 43.4
sketch 61.0 15.7 38.3 47.3 49.8 - 42.4

Avg 53.9 14.3 33.4 46.0 46.3 42.0 39.3

Table 33: Individual results for each dataset pair for DomainNet224 in the SSDA setting using
BaselineBN.

SSDA DomainNet224 BaselineBN (num_target_labels=25)
clipart infograph painting quickdraw real sketch Avg

clipart - 18.1 43.0 56.5 57.0 53.8 45.7
infograph 59.5 - 38.3 54.0 53.8 47.7 50.7
painting 63.5 18.9 - 55.3 60.9 52.5 50.2
quickdraw 57.3 12.9 35.2 - 49.6 44.8 40.0
real 66.3 21.3 51.2 56.0 - 53.9 49.7
sketch 67.0 20.4 46.2 56.0 57.9 - 49.5

Avg 62.7 18.3 42.8 55.6 55.8 50.5 47.6

Table 34: Individual results for each dataset pair for DomainNet224 in the SSDA setting using
BaselineBN.
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SSDA DomainNet224 FixMatch+ (num_target_labels=1)
clipart infograph painting quickdraw real sketch Avg

clipart - 12.5 28.6 30.2 41.3 41.6 30.8
infograph 27.8 - 17.4 17.8 25.9 22.0 22.2
painting 43.6 12.2 - 23.3 45.9 35.1 32.0
quickdraw 35.3 2.5 10.5 - 19.7 18.3 17.3
real 51.2 14.4 40.9 25.9 - 37.2 33.9
sketch 54.9 12.7 33.1 28.2 39.6 - 33.7

Avg 42.6 10.9 26.1 25.1 34.5 30.8 28.3

Table 35: Individual results for each dataset pair for DomainNet224 in the SSDA setting using
FixMatch+.

SSDA DomainNet224 FixMatch+ (num_target_labels=5)
clipart infograph painting quickdraw real sketch Avg

clipart - 13.9 35.2 48.8 49.1 48.1 39.0
infograph 46.5 - 24.5 41.7 39.0 34.3 37.2
painting 54.7 13.7 - 44.6 51.9 43.4 41.7
quickdraw 51.2 5.7 22.8 - 36.8 34.1 30.1
real 60.4 15.6 44.4 45.9 - 44.4 42.1
sketch 61.9 14.1 38.5 47.9 48.2 - 42.1

Avg 54.9 12.6 33.1 45.8 45.0 40.9 38.7

Table 36: Individual results for each dataset pair for DomainNet224 in the SSDA setting using
FixMatch+.

SSDA DomainNet224 FixMatch+ (num_target_labels=10)
clipart infograph painting quickdraw real sketch Avg

clipart - 16.0 40.3 55.3 54.6 51.8 43.6
infograph 55.1 - 30.7 50.5 46.6 41.5 44.9
painting 60.3 15.4 - 52.6 56.4 48.6 46.7
quickdraw 56.5 8.9 31.1 - 46.1 41.4 36.8
real 64.2 18.0 47.0 53.3 - 49.6 46.4
sketch 64.8 16.0 42.7 54.3 54.4 - 46.4

Avg 60.2 14.9 38.4 53.2 51.6 46.6 44.1

Table 37: Individual results for each dataset pair for DomainNet224 in the SSDA setting using
FixMatch+.

SSDA DomainNet224 FixMatch+ (num_target_labels=25)
clipart infograph painting quickdraw real sketch Avg

clipart - 19.2 47.9 60.8 61.6 56.7 49.2
infograph 64.3 - 41.7 58.4 57.0 51.3 54.5
painting 66.5 18.4 - 59.2 62.3 54.8 52.2
quickdraw 63.7 13.5 42.9 - 56.5 50.1 45.3
real 69.1 21.2 50.2 60.2 - 56.3 51.4
sketch 69.2 20.1 49.8 60.5 61.4 - 52.2

Avg 66.6 18.5 46.5 59.8 59.8 53.8 50.8

Table 38: Individual results for each dataset pair for DomainNet224 in the SSDA setting using
FixMatch+.
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SSDA DomainNet224 MCD (num_target_labels=1)
clipart infograph painting quickdraw real sketch Avg

clipart - 5.5 11.2 16.0 22.0 18.8 14.7
infograph 9.1 - 6.1 7.2 9.7 4.6 7.3
painting 20.8 5.5 - 9.6 27.4 13.8 15.4
quickdraw 8.4 1.0 1.5 - 3.8 4.3 3.8
real 35.8 9.4 27.2 12.6 - 19.8 21.0
sketch 32.5 6.2 15.2 17.6 22.0 - 18.7

Avg 21.3 5.5 12.2 12.6 17.0 12.3 13.5

Table 39: Individual results for each dataset pair for DomainNet224 in the SSDA setting using MCD.

SSDA DomainNet224 MCD (num_target_labels=5)
clipart infograph painting quickdraw real sketch Avg

clipart - 5.8 12.4 29.2 24.6 23.0 19.0
infograph 13.9 - 7.1 22.5 13.5 7.1 12.8
painting 23.7 5.8 - 25.7 29.0 15.3 19.9
quickdraw 16.9 1.9 3.0 - 9.9 9.6 8.3
real 38.6 9.7 26.5 26.4 - 22.3 24.7
sketch 36.3 6.1 15.6 29.0 25.0 - 22.4

Avg 25.9 5.9 12.9 26.6 20.4 15.5 17.8

Table 40: Individual results for each dataset pair for DomainNet224 in the SSDA setting using MCD.

SSDA DomainNet224 MCD (num_target_labels=10)
clipart infograph painting quickdraw real sketch Avg

clipart - 7.0 14.3 37.8 30.5 28.2 23.6
infograph 20.8 - 9.2 32.0 19.2 15.5 19.3
painting 29.3 6.8 - 33.2 33.3 24.1 25.3
quickdraw 26.0 2.9 5.8 - 16.8 17.6 13.8
real 42.9 10.8 28.9 34.5 - 27.8 29.0
sketch 42.5 7.0 17.5 38.4 31.2 - 27.3

Avg 32.3 6.9 15.1 35.2 26.2 22.6 23.1

Table 41: Individual results for each dataset pair for DomainNet224 in the SSDA setting using MCD.

SSDA DomainNet224 MCD (num_target_labels=25)
clipart infograph painting quickdraw real sketch Avg

clipart - 10.3 22.6 46.7 41.2 39.5 32.1
infograph 34.2 - 16.9 43.5 30.8 29.9 31.1
painting 42.6 8.9 - 45.7 42.7 37.9 35.6
quickdraw 40.4 5.3 15.4 - 30.5 30.6 24.4
real 50.1 12.9 34.3 46.2 - 38.4 36.4
sketch 50.6 11.2 28.0 47.0 41.5 - 35.7

Avg 43.6 9.7 23.4 45.8 37.3 35.3 32.5

Table 42: Individual results for each dataset pair for DomainNet224 in the SSDA setting using MCD.
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SSDA DomainNet224 NoisyStudent (num_target_labels=1)
clipart infograph painting quickdraw real sketch Avg

clipart - 12.1 28.8 24.9 39.8 42.6 29.6
infograph 27.5 - 19.9 8.1 25.5 22.1 20.6
painting 40.9 11.0 - 9.7 43.9 33.5 27.8
quickdraw 25.8 2.0 6.1 - 12.7 15.9 12.5
real 48.1 13.1 41.1 14.4 - 34.0 30.1
sketch 56.5 13.7 37.1 27.0 43.0 - 35.5

Avg 39.8 10.4 26.6 16.8 33.0 29.6 26.0

Table 43: Individual results for each dataset pair for DomainNet224 in the SSDA setting using
NoisyStudent.

SSDA DomainNet224 NoisyStudent (num_target_labels=5)
clipart infograph painting quickdraw real sketch Avg

clipart - 13.3 31.9 36.4 44.3 45.8 34.3
infograph 39.7 - 25.4 26.5 36.0 29.9 31.5
painting 48.7 12.9 - 24.5 49.9 38.0 34.8
quickdraw 35.1 4.3 15.0 - 25.8 24.2 20.9
real 54.8 14.4 43.5 32.7 - 40.6 37.2
sketch 59.2 14.4 39.4 37.5 46.9 - 39.5

Avg 47.5 11.9 31.0 31.5 40.6 35.7 33.0

Table 44: Individual results for each dataset pair for DomainNet224 in the SSDA setting using
NoisyStudent.

SSDA DomainNet224 NoisyStudent (num_target_labels=10)
clipart infograph painting quickdraw real sketch Avg

clipart - 15.3 36.5 44.4 48.5 49.2 38.8
infograph 47.9 - 29.8 38.3 41.0 37.0 38.8
painting 53.7 14.7 - 35.8 52.6 42.6 39.9
quickdraw 43.4 6.5 20.8 - 34.6 32.3 27.5
real 58.5 16.4 45.9 43.8 - 45.1 41.9
sketch 62.1 16.9 42.1 45.2 51.7 - 43.6

Avg 53.1 14.0 35.0 41.5 45.7 41.2 38.4

Table 45: Individual results for each dataset pair for DomainNet224 in the SSDA setting using
NoisyStudent.

SSDA DomainNet224 NoisyStudent (num_target_labels=25)
clipart infograph painting quickdraw real sketch Avg

clipart - 18.8 43.0 53.0 55.3 53.7 44.8
infograph 58.0 - 39.4 51.6 50.8 46.4 49.2
painting 61.5 17.9 - 49.9 57.3 49.6 47.2
quickdraw 54.5 11.8 33.7 - 47.2 42.6 38.0
real 64.0 20.0 49.6 54.0 - 51.6 47.8
sketch 65.9 20.3 48.4 53.8 55.7 - 48.8

Avg 60.8 17.8 42.8 52.5 53.3 48.8 46.0

Table 46: Individual results for each dataset pair for DomainNet224 in the SSDA setting using
NoisyStudent.
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SSDA DomainNet64 AdaMatch (num_target_labels=1)
clipart infograph painting quickdraw real sketch Avg

clipart - 11.7 28.1 37.1 40.7 39.7 31.5
infograph 29.2 - 20.5 23.3 31.0 24.1 25.6
painting 42.8 12.6 - 26.5 44.7 36.4 32.6
quickdraw 35.7 2.6 13.2 - 25.1 22.2 19.8
real 54.6 15.3 40.7 34.0 - 39.2 36.8
sketch 54.7 13.6 34.9 35.7 43.0 - 36.4

Avg 43.4 11.2 27.5 31.3 36.9 32.3 30.4

Table 47: Individual results for each dataset pair for DomainNet64 in the SSDA setting using
AdaMatch.

SSDA DomainNet64 AdaMatch (num_target_labels=5)
clipart infograph painting quickdraw real sketch Avg

clipart - 12.4 30.4 47.8 45.8 42.1 35.7
infograph 40.4 - 24.1 39.4 38.5 29.7 34.4
painting 48.5 12.9 - 41.4 48.5 39.6 38.2
quickdraw 46.8 5.4 21.2 - 37.0 30.4 28.2
real 58.5 15.8 42.4 49.1 - 43.3 41.8
sketch 58.1 13.5 36.9 46.6 47.2 - 40.5

Avg 50.5 12.0 31.0 44.9 43.4 37.0 36.5

Table 48: Individual results for each dataset pair for DomainNet64 in the SSDA setting using
AdaMatch.

SSDA DomainNet64 AdaMatch (num_target_labels=10)
clipart infograph painting quickdraw real sketch Avg

clipart - 13.9 34.4 52.9 49.7 45.3 39.2
infograph 45.9 - 28.3 47.6 43.3 35.8 40.2
painting 52.8 14.3 - 49.0 52.0 43.2 42.3
quickdraw 52.0 7.2 27.3 - 44.3 36.8 33.5
real 61.2 17.5 44.7 54.9 - 46.5 45.0
sketch 60.1 15.1 39.4 52.8 50.7 - 43.6

Avg 54.4 13.6 34.8 51.4 48.0 41.5 40.6

Table 49: Individual results for each dataset pair for DomainNet64 in the SSDA setting using
AdaMatch.

SSDA DomainNet64 AdaMatch (num_target_labels=25)
clipart infograph painting quickdraw real sketch Avg

clipart - 16.8 40.7 59.0 56.5 50.3 44.7
infograph 54.5 - 35.1 55.4 51.7 42.7 47.9
painting 58.6 16.3 - 56.5 57.8 48.7 47.6
quickdraw 58.1 12.0 37.0 - 53.5 44.3 41.0
real 65.5 19.5 47.9 60.7 - 51.2 49.0
sketch 64.0 17.6 43.8 58.9 56.6 - 48.2

Avg 60.1 16.4 40.9 58.1 55.2 47.4 46.4

Table 50: Individual results for each dataset pair for DomainNet64 in the SSDA setting using
AdaMatch.
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SSDA DomainNet64 BaselineBN (num_target_labels=1)
clipart infograph painting quickdraw real sketch Avg

clipart - 9.3 19.7 22.2 31.1 31.1 22.7
infograph 18.1 - 11.8 11.4 17.4 14.1 14.6
painting 31.8 9.7 - 15.8 37.7 25.1 24.0
quickdraw 22.3 2.0 5.6 - 13.0 13.2 11.2
real 42.4 12.6 34.5 19.2 - 29.2 27.6
sketch 43.1 9.7 22.1 19.3 29.3 - 24.7

Avg 31.5 8.7 18.7 17.6 25.7 22.5 20.8

Table 51: Individual results for each dataset pair for DomainNet64 in the SSDA setting using
BaselineBN.

SSDA DomainNet64 BaselineBN (num_target_labels=5)
clipart infograph painting quickdraw real sketch Avg

clipart - 10.6 23.7 37.3 37.6 35.9 29.0
infograph 30.2 - 16.2 29.0 27.1 21.7 24.8
painting 41.5 10.6 - 33.5 42.5 32.6 32.1
quickdraw 34.5 4.2 12.4 - 23.9 21.6 19.3
real 50.1 13.4 36.9 35.6 - 35.5 34.3
sketch 49.9 10.5 26.4 36.1 36.4 - 31.9

Avg 41.2 9.9 23.1 34.3 33.5 29.5 28.6

Table 52: Individual results for each dataset pair for DomainNet64 in the SSDA setting using
BaselineBN.

SSDA DomainNet64 BaselineBN (num_target_labels=10)
clipart infograph painting quickdraw real sketch Avg

clipart - 12.3 27.6 45.4 43.2 40.6 33.8
infograph 39.0 - 20.1 39.6 34.1 28.3 32.2
painting 48.0 12.2 - 42.4 46.9 37.3 37.4
quickdraw 42.4 6.2 17.6 - 32.6 27.9 25.3
real 54.4 15.6 39.1 44.5 - 40.1 38.7
sketch 54.5 12.5 30.1 44.1 42.3 - 36.7

Avg 47.7 11.8 26.9 43.2 39.8 34.8 34.0

Table 53: Individual results for each dataset pair for DomainNet64 in the SSDA setting using
BaselineBN.

SSDA DomainNet64 BaselineBN (num_target_labels=25)
clipart infograph painting quickdraw real sketch Avg

clipart - 15.1 36.3 54.4 51.1 46.7 40.7
infograph 51.9 - 30.6 50.2 45.5 38.4 43.3
painting 56.6 15.0 - 52.9 53.8 45.0 44.7
quickdraw 52.2 10.3 29.2 - 44.5 38.6 35.0
real 61.5 17.8 44.0 54.1 - 47.1 44.9
sketch 60.5 15.7 38.2 53.9 51.0 - 43.9

Avg 56.5 14.8 35.7 53.1 49.2 43.2 42.1

Table 54: Individual results for each dataset pair for DomainNet64 in the SSDA setting using
BaselineBN.
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SSDA DomainNet64 FixMatch+ (num_target_labels=1)
clipart infograph painting quickdraw real sketch Avg

clipart - 11.0 24.5 29.4 36.7 36.6 27.6
infograph 22.4 - 13.5 14.1 21.7 17.1 17.8
painting 37.6 10.7 - 20.4 40.8 29.1 27.7
quickdraw 31.9 2.2 7.7 - 16.6 16.2 14.9
real 47.5 13.3 37.0 24.4 - 32.9 31.0
sketch 49.8 10.7 27.3 25.9 34.2 - 29.6

Avg 37.8 9.6 22.0 22.8 30.0 26.4 24.8

Table 55: Individual results for each dataset pair for DomainNet64 in the SSDA setting using
FixMatch+.

SSDA DomainNet64 FixMatch+ (num_target_labels=5)
clipart infograph painting quickdraw real sketch Avg

clipart - 12.3 29.9 46.5 44.8 41.4 35.0
infograph 39.0 - 19.2 37.7 32.2 26.6 30.9
painting 48.6 11.7 - 42.0 45.9 36.6 37.0
quickdraw 46.5 5.2 18.0 - 32.6 27.9 26.0
real 56.0 14.5 39.8 45.0 - 39.9 39.0
sketch 55.9 12.0 32.2 45.0 42.3 - 37.5

Avg 49.2 11.1 27.8 43.2 39.6 34.5 34.2

Table 56: Individual results for each dataset pair for DomainNet64 in the SSDA setting using
FixMatch+.

SSDA DomainNet64 FixMatch+ (num_target_labels=10)
clipart infograph painting quickdraw real sketch Avg

clipart - 13.9 34.9 53.3 49.9 45.3 39.5
infograph 48.5 - 25.1 47.3 39.7 33.1 38.7
painting 54.8 13.5 - 50.3 50.4 41.5 42.1
quickdraw 52.4 7.3 24.9 - 41.8 35.3 32.3
real 59.5 16.4 42.4 52.5 - 44.5 43.1
sketch 59.5 13.9 36.2 51.7 48.2 - 41.9

Avg 54.9 13.0 32.7 51.0 46.0 39.9 39.6

Table 57: Individual results for each dataset pair for DomainNet64 in the SSDA setting using
FixMatch+.

SSDA DomainNet64 FixMatch+ (num_target_labels=25)
clipart infograph painting quickdraw real sketch Avg

clipart - 16.8 42.0 58.9 56.5 50.2 44.9
infograph 57.2 - 35.4 56.0 49.9 42.6 48.2
painting 60.9 16.0 - 57.2 56.2 48.0 47.7
quickdraw 58.9 11.8 36.8 - 52.0 44.2 40.7
real 64.9 18.8 47.2 58.6 - 50.1 47.9
sketch 63.6 17.0 42.9 58.3 55.1 - 47.4

Avg 61.1 16.1 40.9 57.8 53.9 47.0 46.1

Table 58: Individual results for each dataset pair for DomainNet64 in the SSDA setting using
FixMatch+.
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SSDA DomainNet64 MCD (num_target_labels=1)
clipart infograph painting quickdraw real sketch Avg

clipart - 6.0 12.3 15.0 23.4 21.0 15.5
infograph 10.2 - 7.2 7.0 11.2 7.1 8.5
painting 22.8 6.3 - 8.3 28.7 17.1 16.6
quickdraw 9.5 1.1 2.1 - 5.1 4.9 4.5
real 35.4 9.2 26.4 9.8 - 19.5 20.1
sketch 31.9 6.5 15.2 13.5 21.5 - 17.7

Avg 22.0 5.8 12.6 10.7 18.0 13.9 13.8

Table 59: Individual results for each dataset pair for DomainNet64 in the SSDA setting using MCD.

SSDA DomainNet64 MCD (num_target_labels=5)
clipart infograph painting quickdraw real sketch Avg

clipart - 6.5 14.7 28.7 28.4 25.6 20.8
infograph 17.4 - 8.5 19.9 16.1 11.9 14.8
painting 28.5 7.2 - 23.1 31.8 22.3 22.6
quickdraw 20.1 2.2 5.1 - 12.5 12.1 10.4
real 39.7 9.9 27.1 24.1 - 24.8 25.1
sketch 37.4 7.0 17.5 27.2 26.9 - 23.2

Avg 28.6 6.6 14.6 24.6 23.1 19.3 19.5

Table 60: Individual results for each dataset pair for DomainNet64 in the SSDA setting using MCD.

SSDA DomainNet64 MCD (num_target_labels=10)
clipart infograph painting quickdraw real sketch Avg

clipart - 8.2 18.6 36.5 33.5 31.3 25.6
infograph 24.2 - 11.7 29.4 22.6 17.4 21.1
painting 34.2 8.0 - 32.7 0 27.9 20.6
quickdraw 27.8 3.4 8.9 - 20.5 18.6 15.8
real 43.4 11.1 29.6 33.7 - 30.4 29.6
sketch 42.9 8.5 20.6 35.7 32.3 - 28.0

Avg 34.5 7.8 17.9 33.6 21.8 25.1 23.5

Table 61: Individual results for each dataset pair for DomainNet64 in the SSDA setting using MCD.

SSDA DomainNet64 MCD (num_target_labels=25)
clipart infograph painting quickdraw real sketch Avg

clipart - 11.4 27.0 46.8 42.6 39.4 33.4
infograph 37.1 - 19.7 41.8 33.8 29.4 32.4
painting 44.9 10.5 - 44.2 43.3 36.8 35.9
quickdraw 41.1 6.3 18.1 - 32.4 29.7 25.5
real 49.8 13.4 34.0 45.2 - 38.7 36.2
sketch 49.7 11.6 29.2 46.0 41.1 - 35.5

Avg 44.5 10.6 25.6 44.8 38.6 34.8 33.2

Table 62: Individual results for each dataset pair for DomainNet64 in the SSDA setting using MCD.
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SSDA DomainNet64 NoisyStudent (num_target_labels=1)
clipart infograph painting quickdraw real sketch Avg

clipart - 10.5 23.5 22.5 35.8 36.6 25.8
infograph 23.9 - 16.2 6.7 22.9 19.1 17.8
painting 37.5 10.8 - 8.8 41.8 29.8 25.7
quickdraw 23.3 1.5 2.6 - 9.5 10.9 9.6
real 45.2 12.3 36.3 12.6 - 32.0 27.7
sketch 51.4 11.5 28.5 23.3 36.3 - 30.2

Avg 36.3 9.3 21.4 14.8 29.3 25.7 22.8

Table 63: Individual results for each dataset pair for DomainNet64 in the SSDA setting using
NoisyStudent.

SSDA DomainNet64 NoisyStudent (num_target_labels=5)
clipart infograph painting quickdraw real sketch Avg

clipart - 11.7 26.8 33.5 40.0 39.8 30.4
infograph 33.3 - 20.0 19.6 30.3 24.8 25.6
painting 44.5 11.7 - 21.6 45.8 34.0 31.5
quickdraw 31.9 3.1 5.6 - 16.5 18.9 15.2
real 50.8 13.4 39.1 30.7 - 37.2 34.2
sketch 54.6 12.2 31.1 33.5 41.5 - 34.6

Avg 43.0 10.4 24.5 27.8 34.8 30.9 28.6

Table 64: Individual results for each dataset pair for DomainNet64 in the SSDA setting using
NoisyStudent.

SSDA DomainNet64 NoisyStudent (num_target_labels=10)
clipart infograph painting quickdraw real sketch Avg

clipart - 12.9 29.6 42.6 43.8 43.0 34.4
infograph 40.6 - 25.4 33.3 36.1 30.6 33.2
painting 49.2 13.3 - 32.4 48.9 38.6 36.5
quickdraw 38.8 5.1 13.3 - 22.3 24.8 20.9
real 55.3 15.2 40.7 39.4 - 40.8 38.3
sketch 57.9 14.0 34.6 40.8 45.4 - 38.5

Avg 48.4 12.1 28.7 37.7 39.3 35.6 33.6

Table 65: Individual results for each dataset pair for DomainNet64 in the SSDA setting using
NoisyStudent.

SSDA DomainNet64 NoisyStudent (num_target_labels=25)
clipart infograph painting quickdraw real sketch Avg

clipart - 16.1 37.1 52.3 50.3 48.2 40.8
infograph 51.4 - 33.9 48.0 45.8 39.4 43.7
painting 56.7 16.0 - 46.7 54.6 44.8 43.8
quickdraw 48.7 9.4 21.6 - 38.0 37.4 31.0
real 60.2 17.9 45.4 51.0 - 47.1 44.3
sketch 61.8 17.3 41.6 51.6 51.7 - 44.8

Avg 55.8 15.3 35.9 49.9 48.1 43.4 41.4

Table 66: Individual results for each dataset pair for DomainNet64 in the SSDA setting using
NoisyStudent.
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SSL DigitFive AdaMatch (num_target_labels=1)
Accuracy

mnist 97.8
mnistm 10.1
svhn 39.8
syndigit 99.2
usps 96.3

Avg 68.6

Table 67: Individual results for each dataset pair for DigitFive in the SSL setting using AdaMatch.

SSL DigitFive AdaMatch (num_target_labels=5)
Accuracy

mnist 98.0
mnistm 97.3
svhn 96.3
syndigit 99.1
usps 95.5

Avg 97.2

Table 68: Individual results for each dataset pair for DigitFive in the SSL setting using AdaMatch.

SSL DigitFive AdaMatch (num_target_labels=10)
Accuracy

mnist 99.2
mnistm 97.1
svhn 95.7
syndigit 99.4
usps 96.5

Avg 97.6

Table 69: Individual results for each dataset pair for DigitFive in the SSL setting using AdaMatch.

SSL DigitFive AdaMatch (num_target_labels=25)
Accuracy

mnist 99.2
mnistm 98.8
svhn 95.2
syndigit 97.8
usps 97.3

Avg 97.7

Table 70: Individual results for each dataset pair for DigitFive in the SSL setting using AdaMatch.
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SSL DigitFive BaselineBN (num_target_labels=1)
Accuracy

mnist 64.4
mnistm 14.6
svhn 16.9
syndigit 41.0
usps 63.0

Avg 40.0

Table 71: Individual results for each dataset pair for DigitFive in the SSL setting using BaselineBN.

SSL DigitFive BaselineBN (num_target_labels=5)
Accuracy

mnist 83.2
mnistm 29.9
svhn 36.5
syndigit 77.9
usps 81.9

Avg 61.9

Table 72: Individual results for each dataset pair for DigitFive in the SSL setting using BaselineBN.

SSL DigitFive BaselineBN (num_target_labels=10)
Accuracy

mnist 91.1
mnistm 51.5
svhn 54.0
syndigit 83.5
usps 88.5

Avg 73.7

Table 73: Individual results for each dataset pair for DigitFive in the SSL setting using BaselineBN.

SSL DigitFive BaselineBN (num_target_labels=25)
Accuracy

mnist 95.3
mnistm 78.3
svhn 69.5
syndigit 94.4
usps 94.3

Avg 86.4

Table 74: Individual results for each dataset pair for DigitFive in the SSL setting using BaselineBN.
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SSL DigitFive FixMatch+ (num_target_labels=1)
Accuracy

mnist 97.8
mnistm 9.9
svhn 31.5
syndigit 37.9
usps 80.4

Avg 51.5

Table 75: Individual results for each dataset pair for DigitFive in the SSL setting using FixMatch+.

SSL DigitFive FixMatch+ (num_target_labels=5)
Accuracy

mnist 97.9
mnistm 97.4
svhn 82.2
syndigit 99.1
usps 97.2

Avg 94.8

Table 76: Individual results for each dataset pair for DigitFive in the SSL setting using FixMatch+.

SSL DigitFive FixMatch+ (num_target_labels=10)
Accuracy

mnist 99.3
mnistm 98.9
svhn 96.8
syndigit 99.5
usps 97.0

Avg 98.3

Table 77: Individual results for each dataset pair for DigitFive in the SSL setting using FixMatch+.

SSL DigitFive FixMatch+ (num_target_labels=25)
Accuracy

mnist 99.2
mnistm 98.8
svhn 95.9
syndigit 99.4
usps 97.2

Avg 98.1

Table 78: Individual results for each dataset pair for DigitFive in the SSL setting using FixMatch+.
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SSL DigitFive MCD (num_target_labels=1)
Accuracy

mnist 61.6
mnistm 10.4
svhn 8.5
syndigit 9.7
usps 46.8

Avg 27.4

Table 79: Individual results for each dataset pair for DigitFive in the SSL setting using MCD.

SSL DigitFive MCD (num_target_labels=5)
Accuracy

mnist 90.9
mnistm 18.8
svhn 11.5
syndigit 40.5
usps 92.5

Avg 50.8

Table 80: Individual results for each dataset pair for DigitFive in the SSL setting using MCD.

SSL DigitFive MCD (num_target_labels=10)
Accuracy

mnist 94.8
mnistm 80.4
svhn 31.4
syndigit 92.4
usps 92.8

Avg 78.4

Table 81: Individual results for each dataset pair for DigitFive in the SSL setting using MCD.

SSL DigitFive MCD (num_target_labels=25)
Accuracy

mnist 97.1
mnistm 94.4
svhn 82.3
syndigit 96.6
usps 94.6

Avg 93.0

Table 82: Individual results for each dataset pair for DigitFive in the SSL setting using MCD.
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SSL DigitFive NoisyStudent (num_target_labels=1)
Accuracy

mnist 71.2
mnistm 13.1
svhn 16.2
syndigit 40.8
usps 75.0

Avg 43.3

Table 83: Individual results for each dataset pair for DigitFive in the SSL setting using NoisyStudent.

SSL DigitFive NoisyStudent (num_target_labels=5)
Accuracy

mnist 91.0
mnistm 29.6
svhn 41.9
syndigit 84.5
usps 89.7

Avg 67.3

Table 84: Individual results for each dataset pair for DigitFive in the SSL setting using NoisyStudent.

SSL DigitFive NoisyStudent (num_target_labels=10)
Accuracy

mnist 96.8
mnistm 59.9
svhn 62.0
syndigit 90.9
usps 92.9

Avg 80.5

Table 85: Individual results for each dataset pair for DigitFive in the SSL setting using NoisyStudent.

SSL DigitFive NoisyStudent (num_target_labels=25)
Accuracy

mnist 97.9
mnistm 90.5
svhn 80.0
syndigit 95.9
usps 96.3

Avg 92.1

Table 86: Individual results for each dataset pair for DigitFive in the SSL setting using NoisyStudent.
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SSL DomainNet224 AdaMatch (num_target_labels=1)
Accuracy

clipart 10.5
infograph 1.5
painting 3.9
quickdraw 18.7
real 8.3
sketch 6.5

Avg 8.2

Table 87: Individual results for each dataset pair for DomainNet224 in the SSL setting using
AdaMatch.

SSL DomainNet224 AdaMatch (num_target_labels=5)
Accuracy

clipart 41.5
infograph 4.0
painting 13.0
quickdraw 42.0
real 28.6
sketch 25.1

Avg 25.7

Table 88: Individual results for each dataset pair for DomainNet224 in the SSL setting using
AdaMatch.

SSL DomainNet224 AdaMatch (num_target_labels=10)
Accuracy

clipart 51.8
infograph 5.8
painting 21.7
quickdraw 51.5
real 42.4
sketch 36.5

Avg 35.0

Table 89: Individual results for each dataset pair for DomainNet224 in the SSL setting using
AdaMatch.

SSL DomainNet224 AdaMatch (num_target_labels=25)
Accuracy

clipart 62.6
infograph 10.3
painting 39.5
quickdraw 59.8
real 56.5
sketch 49.6

Avg 46.4

Table 90: Individual results for each dataset pair for DomainNet224 in the SSL setting using
AdaMatch.
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SSL DomainNet224 BaselineBN (num_target_labels=1)
Accuracy

clipart 7.4
infograph 1.3
painting 3.4
quickdraw 14.5
real 7.0
sketch 5.3

Avg 6.5

Table 91: Individual results for each dataset pair for DomainNet224 in the SSL setting using
BaselineBN.

SSL DomainNet224 BaselineBN (num_target_labels=5)
Accuracy

clipart 26.6
infograph 3.3
painting 9.1
quickdraw 33.1
real 20.1
sketch 16.6

Avg 18.1

Table 92: Individual results for each dataset pair for DomainNet224 in the SSL setting using
BaselineBN.

SSL DomainNet224 BaselineBN (num_target_labels=10)
Accuracy

clipart 37.9
infograph 5.0
painting 13.5
quickdraw 42.6
real 31.1
sketch 26.9

Avg 26.2

Table 93: Individual results for each dataset pair for DomainNet224 in the SSL setting using
BaselineBN.

SSL DomainNet224 BaselineBN (num_target_labels=25)
Accuracy

clipart 53.2
infograph 8.2
painting 28.0
quickdraw 53.8
real 46.2
sketch 41.4

Avg 38.5

Table 94: Individual results for each dataset pair for DomainNet224 in the SSL setting using
BaselineBN.
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SSL DomainNet224 FixMatch+ (num_target_labels=1)
Accuracy

clipart 9.3
infograph 1.4
painting 3.6
quickdraw 17.8
real 7.6
sketch 6.1

Avg 7.6

Table 95: Individual results for each dataset pair for DomainNet224 in the SSL setting using
FixMatch+.

SSL DomainNet224 FixMatch+ (num_target_labels=5)
Accuracy

clipart 40.2
infograph 3.5
painting 10.5
quickdraw 41.6
real 26.7
sketch 22.7

Avg 24.2

Table 96: Individual results for each dataset pair for DomainNet224 in the SSL setting using
FixMatch+.

SSL DomainNet224 FixMatch+ (num_target_labels=10)
Accuracy

clipart 50.6
infograph 5.1
painting 15.7
quickdraw 50.7
real 38.4
sketch 33.5

Avg 32.3

Table 97: Individual results for each dataset pair for DomainNet224 in the SSL setting using
FixMatch+.

SSL DomainNet224 FixMatch+ (num_target_labels=25)
Accuracy

clipart 60.5
infograph 8.5
painting 32.2
quickdraw 58.3
real 51.2
sketch 46.5

Avg 42.9

Table 98: Individual results for each dataset pair for DomainNet224 in the SSL setting using
FixMatch+.
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SSL DomainNet224 MCD (num_target_labels=1)
Accuracy

clipart 2.3
infograph 0.9
painting 1.7
quickdraw 7.5
real 3.0
sketch 1.2

Avg 2.8

Table 99: Individual results for each dataset pair for DomainNet224 in the SSL setting using MCD.

SSL DomainNet224 MCD (num_target_labels=5)
Accuracy

clipart 9.2
infograph 1.9
painting 3.8
quickdraw 25.1
real 9.3
sketch 4.0

Avg 8.9

Table 100: Individual results for each dataset pair for DomainNet224 in the SSL setting using MCD.

SSL DomainNet224 MCD (num_target_labels=10)
Accuracy

clipart 16.4
infograph 3.4
painting 7.1
quickdraw 35.7
real 16.2
sketch 10.6

Avg 14.9

Table 101: Individual results for each dataset pair for DomainNet224 in the SSL setting using MCD.

SSL DomainNet224 MCD (num_target_labels=25)
Accuracy

clipart 31.8
infograph 5.7
painting 15.1
quickdraw 47.4
real 28.8
sketch 27.2

Avg 26.0

Table 102: Individual results for each dataset pair for DomainNet224 in the SSL setting using MCD.
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SSL DomainNet224 NoisyStudent (num_target_labels=1)
Accuracy

clipart 9.8
infograph 1.5
painting 4.0
quickdraw 17.5
real 8.6
sketch 7.1

Avg 8.1

Table 103: Individual results for each dataset pair for DomainNet224 in the SSL setting using
NoisyStudent.

SSL DomainNet224 NoisyStudent (num_target_labels=5)
Accuracy

clipart 36.4
infograph 3.9
painting 13.6
quickdraw 39.8
real 27.8
sketch 24.0

Avg 24.2

Table 104: Individual results for each dataset pair for DomainNet224 in the SSL setting using
NoisyStudent.

SSL DomainNet224 NoisyStudent (num_target_labels=10)
Accuracy

clipart 48.3
infograph 5.6
painting 20.9
quickdraw 49.6
real 41.5
sketch 35.4

Avg 33.6

Table 105: Individual results for each dataset pair for DomainNet224 in the SSL setting using
NoisyStudent.

SSL DomainNet224 NoisyStudent (num_target_labels=25)
Accuracy

clipart 60.8
infograph 9.7
painting 38.8
quickdraw 59.4
real 55.2
sketch 48.5

Avg 45.4

Table 106: Individual results for each dataset pair for DomainNet224 in the SSL setting using
NoisyStudent.
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SSL DomainNet64 AdaMatch (num_target_labels=1)
Accuracy

clipart 10.2
infograph 1.5
painting 4.0
quickdraw 18.9
real 8.5
sketch 5.6

Avg 8.1

Table 107: Individual results for each dataset pair for DomainNet64 in the SSL setting using
AdaMatch.

SSL DomainNet64 AdaMatch (num_target_labels=5)
Accuracy

clipart 36.5
infograph 3.6
painting 13.3
quickdraw 41.7
real 26.9
sketch 21.0

Avg 23.8

Table 108: Individual results for each dataset pair for DomainNet64 in the SSL setting using
AdaMatch.

SSL DomainNet64 AdaMatch (num_target_labels=10)
Accuracy

clipart 46.4
infograph 5.8
painting 20.8
quickdraw 49.9
real 37.9
sketch 29.6

Avg 31.7

Table 109: Individual results for each dataset pair for DomainNet64 in the SSL setting using
AdaMatch.

SSL DomainNet64 AdaMatch (num_target_labels=25)
Accuracy

clipart 56.2
infograph 9.3
painting 33.3
quickdraw 57.7
real 50.3
sketch 41.4

Avg 41.4

Table 110: Individual results for each dataset pair for DomainNet64 in the SSL setting using
AdaMatch.
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SSL DomainNet64 BaselineBN (num_target_labels=1)
Accuracy

clipart 6.9
infograph 1.4
painting 3.1
quickdraw 13.2
real 6.6
sketch 4.3

Avg 5.9

Table 111: Individual results for each dataset pair for DomainNet64 in the SSL setting using
BaselineBN.

SSL DomainNet64 BaselineBN (num_target_labels=5)
Accuracy

clipart 23.6
infograph 3.2
painting 9.1
quickdraw 31.2
real 18.2
sketch 13.9

Avg 16.5

Table 112: Individual results for each dataset pair for DomainNet64 in the SSL setting using
BaselineBN.

SSL DomainNet64 BaselineBN (num_target_labels=10)
Accuracy

clipart 33.9
infograph 4.8
painting 14.2
quickdraw 40.3
real 28.2
sketch 22.1

Avg 23.9

Table 113: Individual results for each dataset pair for DomainNet64 in the SSL setting using
BaselineBN.

SSL DomainNet64 BaselineBN (num_target_labels=25)
Accuracy

clipart 48.2
infograph 7.8
painting 25.7
quickdraw 51.1
real 41.5
sketch 34.9

Avg 34.9

Table 114: Individual results for each dataset pair for DomainNet64 in the SSL setting using
BaselineBN.
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SSL DomainNet64 FixMatch+ (num_target_labels=1)
Accuracy

clipart 9.7
infograph 1.4
painting 3.9
quickdraw 17.1
real 7.5
sketch 6.0

Avg 7.6

Table 115: Individual results for each dataset pair for DomainNet64 in the SSL setting using
FixMatch+.

SSL DomainNet64 FixMatch+ (num_target_labels=5)
Accuracy

clipart 37.6
infograph 3.5
painting 13.1
quickdraw 42.3
real 27.2
sketch 21.1

Avg 24.1

Table 116: Individual results for each dataset pair for DomainNet64 in the SSL setting using
FixMatch+.

SSL DomainNet64 FixMatch+ (num_target_labels=10)
Accuracy

clipart 48.1
infograph 5.3
painting 18.9
quickdraw 50.9
real 39.0
sketch 30.6

Avg 32.1

Table 117: Individual results for each dataset pair for DomainNet64 in the SSL setting using
FixMatch+.

SSL DomainNet64 FixMatch+ (num_target_labels=25)
Accuracy

clipart 57.2
infograph 8.8
painting 32.7
quickdraw 58.0
real 50.5
sketch 41.6

Avg 41.5

Table 118: Individual results for each dataset pair for DomainNet64 in the SSL setting using
FixMatch+.
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SSL DomainNet64 MCD (num_target_labels=1)
Accuracy

clipart 3.0
infograph 1.0
painting 1.8
quickdraw 7.8
real 3.5
sketch 1.6

Avg 3.1

Table 119: Individual results for each dataset pair for DomainNet64 in the SSL setting using MCD.

SSL DomainNet64 MCD (num_target_labels=5)
Accuracy

clipart 10.5
infograph 2.3
painting 5.0
quickdraw 25.1
real 11.3
sketch 6.9

Avg 10.2

Table 120: Individual results for each dataset pair for DomainNet64 in the SSL setting using MCD.

SSL DomainNet64 MCD (num_target_labels=10)
Accuracy

clipart 19.6
infograph 3.5
painting 9.5
quickdraw 35.1
real 18.7
sketch 13.6

Avg 16.7

Table 121: Individual results for each dataset pair for DomainNet64 in the SSL setting using MCD.

SSL DomainNet64 MCD (num_target_labels=25)
Accuracy

clipart 34.7
infograph 5.6
painting 17.3
quickdraw 47.1
real 32.3
sketch 27.9

Avg 27.5

Table 122: Individual results for each dataset pair for DomainNet64 in the SSL setting using MCD.
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SSL DomainNet64 NoisyStudent (num_target_labels=1)
Accuracy

clipart 8.7
infograph 1.5
painting 4.1
quickdraw 16.7
real 7.6
sketch 5.4

Avg 7.3

Table 123: Individual results for each dataset pair for DomainNet64 in the SSL setting using
NoisyStudent.

SSL DomainNet64 NoisyStudent (num_target_labels=5)
Accuracy

clipart 31.8
infograph 3.5
painting 11.8
quickdraw 37.1
real 24.3
sketch 17.9

Avg 21.1

Table 124: Individual results for each dataset pair for DomainNet64 in the SSL setting using
NoisyStudent.

SSL DomainNet64 NoisyStudent (num_target_labels=10)
Accuracy

clipart 42.3
infograph 5.3
painting 18.6
quickdraw 46.7
real 35.6
sketch 27.2

Avg 29.3

Table 125: Individual results for each dataset pair for DomainNet64 in the SSL setting using
NoisyStudent.

SSL DomainNet64 NoisyStudent (num_target_labels=25)
Accuracy

clipart 54.6
infograph 8.7
painting 31.7
quickdraw 57.4
real 49.4
sketch 40.3

Avg 40.4

Table 126: Individual results for each dataset pair for DomainNet64 in the SSL setting using
NoisyStudent.
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UDA DigitFive AdaMatch
mnist mnistm svhn syndigit usps Avg

mnist - 99.2 96.9 99.7 97.8 98.4
mnistm 99.4 - 96.9 99.7 97.8 98.5
svhn 99.3 98.9 - 99.6 90.4 97.0
syndigit 99.4 99.0 97.0 - 95.8 97.8
usps 99.3 98.9 96.6 94.9 - 97.4

Avg 99.4 99.0 96.8 98.5 95.5 97.8

Table 127: Individual results for each dataset pair for DigitFive in the UDA setting using AdaMatch.

UDA DigitFive BaselineBN
mnist mnistm svhn syndigit usps Avg

mnist - 54.3 55.0 76.0 96.3 70.4
mnistm 96.5 - 52.4 81.8 88.1 79.7
svhn 40.4 32.0 - 86.3 39.9 49.6
syndigit 67.7 30.0 79.7 - 70.5 62.0
usps 78.6 27.3 31.9 64.8 - 50.6

Avg 70.8 35.9 54.8 77.2 73.7 62.5

Table 128: Individual results for each dataset pair for DigitFive in the UDA setting using BaselineBN.

UDA DigitFive FixMatch+
mnist mnistm svhn syndigit usps Avg

mnist - 99.2 97.0 99.7 97.9 98.4
mnistm 99.4 - 97.0 99.6 85.1 95.3
svhn 99.2 98.9 - 99.5 87.3 96.2
syndigit 99.3 99.0 96.9 - 97.2 98.1
usps 99.3 99.0 62.6 99.8 - 90.2

Avg 99.3 99.0 88.4 99.7 91.9 95.6

Table 129: Individual results for each dataset pair for DigitFive in the UDA setting using FixMatch+.

UDA DigitFive MCD
mnist mnistm svhn syndigit usps Avg

mnist - 10.7 13.3 11.1 90.0 31.3
mnistm 92.2 - 13.7 13.2 52.0 42.8
svhn 97.0 53.3 - 97.9 90.4 84.7
syndigit 98.3 27.9 66.0 - 91.7 71.0
usps 98.1 10.0 6.4 9.8 - 31.1

Avg 96.4 25.5 24.9 33.0 81.0 52.1

Table 130: Individual results for each dataset pair for DigitFive in the UDA setting using MCD.
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UDA DigitFive NoisyStudent
mnist mnistm svhn syndigit usps Avg

mnist - 30.4 51.4 81.8 97.2 65.2
mnistm 99.2 - 63.0 89.0 97.0 87.0
svhn 82.8 45.2 - 98.9 83.9 77.7
syndigit 92.6 50.5 90.0 - 87.1 80.0
usps 95.5 25.2 30.0 75.3 - 56.5

Avg 92.5 37.8 58.6 86.3 91.3 73.3

Table 131: Individual results for each dataset pair for DigitFive in the UDA setting using NoisyStu-
dent.

UDA DomainNet224 AdaMatch
clipart infograph painting quickdraw real sketch Avg

clipart - 14.8 35.3 26.8 46.5 46.5 34.0
infograph 21.7 - 11.7 0.3 20.0 0.2 10.8
painting 45.3 13.5 - 13.2 48.1 41.0 32.2
quickdraw 33.6 2.4 10.1 - 19.1 21.1 17.3
real 56.0 16.6 47.6 22.9 - 42.4 37.1
sketch 60.2 17.0 42.9 34.2 49.1 - 40.7

Avg 43.4 12.9 29.5 19.5 36.6 30.2 28.7

Table 132: Individual results for each dataset pair for DomainNet224 in the UDA setting using
AdaMatch.

UDA DomainNet224 BaselineBN
clipart infograph painting quickdraw real sketch Avg

clipart - 11.4 23.4 12.1 33.4 34.9 23.0
infograph 16.2 - 13.8 0.9 16.5 11.5 11.8
painting 33.6 11.2 - 1.0 41.2 25.7 22.5
quickdraw 11.2 0.8 2.5 - 5.5 7.1 5.4
real 43.4 13.7 39.4 2.1 - 29.6 25.6
sketch 47.9 11.0 28.7 3.8 33.1 - 24.9

Avg 30.5 9.6 21.6 4.0 25.9 21.8 18.9

Table 133: Individual results for each dataset pair for DomainNet224 in the UDA setting using
BaselineBN.

UDA DomainNet224 FixMatch+
clipart infograph painting quickdraw real sketch Avg

clipart - 11.6 26.4 11.2 37.6 37.8 24.9
infograph 15.8 - 6.5 0.6 8.6 11.4 8.6
painting 39.0 11.6 - 4.2 42.7 31.4 25.8
quickdraw 15.8 1.3 5.0 - 11.5 12.2 9.2
real 48.1 13.8 39.8 7.3 - 33.4 28.5
sketch 50.3 11.8 30.7 11.8 34.2 - 27.8

Avg 33.8 10.0 21.7 7.0 26.9 25.2 20.8

Table 134: Individual results for each dataset pair for DomainNet224 in the UDA setting using
FixMatch+.
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UDA DomainNet224 MCD
clipart infograph painting quickdraw real sketch Avg

clipart - 7.7 15.2 15.2 25.8 23.4 17.5
infograph 9.2 - 7.0 1.6 11.2 6.5 7.1
painting 25.6 7.0 - 5.3 32.1 18.8 17.8
quickdraw 7.4 0.7 0.7 - 1.6 4.1 2.9
real 38.4 10.5 32.4 7.7 - 22.9 22.4
sketch 37.2 8.2 22.9 14.7 26.7 - 21.9

Avg 23.6 6.8 15.6 8.9 19.5 15.1 14.9

Table 135: Individual results for each dataset pair for DomainNet224 in the UDA setting using MCD.

UDA DomainNet224 NoisyStudent
clipart infograph painting quickdraw real sketch Avg

clipart - 12.9 28.5 20.4 39.5 42.3 28.7
infograph 24.5 - 18.9 3.1 23.9 18.3 17.7
painting 37.6 11.4 - 3.4 40.9 30.9 24.8
quickdraw 20.9 1.0 2.7 - 8.7 13.2 9.3
real 47.8 13.7 39.8 7.7 - 32.6 28.3
sketch 55.2 14.8 37.1 22.8 41.8 - 34.3

Avg 37.2 10.8 25.4 11.5 31.0 27.5 23.9

Table 136: Individual results for each dataset pair for DomainNet224 in the UDA setting using
NoisyStudent.

UDA DomainNet64 AdaMatch
clipart infograph painting quickdraw real sketch Avg

clipart - 12.2 29.1 27.7 40.9 40.8 30.1
infograph 22.3 - 18.2 5.4 24.7 19.9 18.1
painting 39.7 11.7 - 12.6 43.4 34.9 28.5
quickdraw 24.6 2.4 8.4 - 16.4 15.5 13.5
real 52.2 15.0 41.6 13.3 - 38.6 32.1
sketch 53.4 13.6 35.6 25.4 41.5 - 33.9

Avg 38.4 11.0 26.6 16.9 33.4 29.9 26.0

Table 137: Individual results for each dataset pair for DomainNet64 in the UDA setting using
AdaMatch.

UDA DomainNet64 BaselineBN
clipart infograph painting quickdraw real sketch Avg

clipart - 9.5 19.0 6.3 29.4 29.9 18.8
infograph 12.9 - 10.8 0.6 14.0 9.5 9.6
painting 27.3 9.3 - 1.0 36.3 21.8 19.1
quickdraw 10.3 0.8 1.9 - 4.8 5.9 4.7
real 39.3 11.9 34.6 2.2 - 25.5 22.7
sketch 40.9 8.5 20.4 3.3 26.0 - 19.8

Avg 26.1 8.0 17.3 2.7 22.1 18.5 15.8

Table 138: Individual results for each dataset pair for DomainNet64 in the UDA setting using
BaselineBN.
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UDA DomainNet64 FixMatch+
clipart infograph painting quickdraw real sketch Avg

clipart - 10.2 24.6 14.6 35.7 35.3 24.1
infograph 17.9 - 14.3 2.2 18.7 14.2 13.5
painting 34.7 10.7 - 4.2 39.7 27.7 23.4
quickdraw 23.7 1.4 5.1 - 11.2 10.2 10.3
real 45.4 13.5 37.4 6.6 - 30.7 26.7
sketch 48.1 10.3 26.6 10.4 31.5 - 25.4

Avg 34.0 9.2 21.6 7.6 27.4 23.6 20.6

Table 139: Individual results for each dataset pair for DomainNet64 in the UDA setting using
FixMatch+.

UDA DomainNet64 MCD
clipart infograph painting quickdraw real sketch Avg

clipart - 7.5 15.9 12.9 26.2 25.6 17.6
infograph 11.3 - 9.4 2.3 13.3 8.6 9.0
painting 25.8 7.5 - 4.3 32.1 21.4 18.2
quickdraw 8.0 0.6 0.6 - 1.6 4.6 3.1
real 37.2 10.1 29.8 6.8 - 22.9 21.4
sketch 37.3 7.8 20.2 11.6 25.0 - 20.4

Avg 23.9 6.7 15.2 7.6 19.6 16.6 14.9

Table 140: Individual results for each dataset pair for DomainNet64 in the UDA setting using MCD.

UDA DomainNet64 NoisyStudent
clipart infograph painting quickdraw real sketch Avg

clipart - 10.9 24.3 18.9 35.4 36.8 25.3
infograph 21.2 - 16.9 2.6 21.8 16.0 15.7
painting 36.1 11.7 - 3.6 41.5 28.5 24.3
quickdraw 19.0 0.9 1.5 - 6.8 7.2 7.1
real 44.0 13.8 38.3 6.6 - 30.6 26.7
sketch 50.0 12.0 30.4 18.2 36.0 - 29.3

Avg 34.1 9.9 22.3 10.0 28.3 23.8 21.4

Table 141: Individual results for each dataset pair for DomainNet64 in the UDA setting using
NoisyStudent.
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