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Abstract

This study presents a reproducibility analysis of the p-Poisson surface reconstruction method
presented by Park et al. (NeurIPS 2023). The method utilizes the p-Poisson equation and a
curl-free constraint for improved surface reconstruction from point clouds, claiming signif-
icant advancements over existing implicit neural representation techniques. Our objective
is to replicate the results reported in the original paper, focusing on efficient implemen-
tation and evaluation using the Surface Reconstruction Benchmark (SRB) dataset. We
re-implemented the neural network architecture and training procedures, emphasizing code
efficiency. While our replication generally outperforms alternative methods, it falls short of
reproducing the reported results. Notably, training with the authors’ provided code yields
results comparable to our results, but still deviating from the presented findings. Despite
these challenges, our implementation demonstrates a significant improvement in training
performance, achieving a five-fold acceleration in training times compared to the original
code. Our code is published here [H

1 Reproducibility Summary

1.1 Scope of Reproducibility

This reproducibility study focuses on the approach presented in the paper "p-Poisson surface reconstruction
in curl-free flow from point clouds" |Park et al.| (2023) presented at NeurIPS 2023. The original work
introduces a methodology that employs the p-Poisson equation and a curl-free constraint for enhanced
surface reconstruction from points clouds, purportedly achieving significant improvements over comparable
implicit neural representations that rely on supplementary information such as surface normals. This study
aims to reproduce the results of the original paper, focusing on creating an efficient implementation of
the PDE-based framework and the learning process, as well as the evaluation of the proposed approach’s
performance in terms of surface reconstruction on the Surface Reconstruction Benchmark (SRB) dataset
(Berger et al., 2013).

1.2 Methodology

To reproduce the results, we re-implemented the neural network architecture and training procedures as
detailed by [Park et al. (2023)). This includes the implementation of the auxiliary variable strategy, the en-
forcement of the p-Poisson equation, and the integration of a curl-free constraint to ensure the representation
of a conservative vector field. A central aspect of our reproducibility study is to provide a codebase that
compiles the training process and neural network using XLA through JAX |Bradbury et al.[(2018) for efficient
numerical computations and automatic differentiation.

Thttps://anonymous.4open.science/r/pinc-B7CD/
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1.3 Results

The quantitative metrics for all benchmarks except Daratech exhibit lower distances than other similar
methods but fall short of the distance metrics presented in |[Park et al.[(2023). Upon training the model using
the original code published by the authors, we achieved results that are very similar to our replication for all
benchmarks. Unfortunately, due to the lack of response from the original authors, we are unable to validate
the results reported in the original paper as no trained models, reconstructed meshes, or evaluation script
was published. Notably, when evaluating training time and computational resources, our implementation
demonstrates significant improvements, with 5x faster training times.

1.4 What was easy

The article provided detailed explanations of the p-Poisson equation and the incorporation of the
curl-free constraint.

The formulation of the proposed loss function, the integration of the minimal area criterion, and
the explicit handling of occlusions, were relatively well articulated. This made the implementation
of the loss function straightforward.

The experimental setup section offered sufficient detail about the neural network architecture, the
variable-splitting strategy, and the use of auxiliary variables, which facilitated the implementation
of the model and forward pass.

The use of Chamfer and Hausdorff distances as evaluation metrics, made it possible to benchmark
the reproduced results against the original findings and compare them to the metrics reported by
other comparable implicit neural representation methods for surface reconstruction.

The reliance on the widely used Surface Reconstruction Benchmark (SRB) (Berger et al., 2013),
enabled us to directly compare the performance of our reproduced model with the reported results,
without the need for additional data preprocessing or acquisition.

1.5 What was difficult

Several challenges were encountered during the reproduction process:

Multiple undocumented numerical differences were not mentioned in the original paper. For example,
the geometric initialization was slightly different than in other implementations, the number of
sampled global points was not mentioned in the paper, there is a mistake in the 50th nearest
neighbor calculation, the division by /2 after the skip connection in the multi-layer perceptron was
not mentioned. The authors did also not provide the evaluation code, which made it difficult to
verify the results.

When training a model using the original code provided by the authors, we achieved results com-
parable to our replication. However, these results are not on par with the results presented in [Park
et al.| (2023).

The evaluation of the model is done using sampling of a mesh constructed using marching cubes,
where the random seed for the sampling is not mentioned and the evaluation code is not provided,
which means that the evaluation metrics vary each time they are calculated.

The original authors’ code had very long training times, which meant that we had to use a lot of
computational resources to run their published code for comparison after our replication results did
not meet expectations.

1.6 Communication with original authors

A mail to the original authors inquiring about the availability of evaluation code, trained models, and
reconstruction results has been sent but has not been answered at the time of writing.
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2 Introduction

Surface reconstruction from unorganized point clouds, crucial in computer vision and graphics, has seen
extensive research over two decades. While traditional representations like point clouds or meshes lack wa-
tertight surfaces and flexibility, implicit function-based approaches such as signed distance functions (SDFs)
or occupancy functions offer watertight results and topology flexibility. The advent of deep learning intro-
duced implicit neural representations (INRs), utilizing neural networks to parameterize implicit functions for
efficient training and expressive reconstruction. Early INRs treated reconstruction as supervised regression,
facing challenges with ground-truth distance values. Some methods employ partial differential equations
(PDEs) like the eikonal equation to alleviate the need for 3D supervision, but they struggle with non-unique
solutions and reliance on accurate normal vectors, which may be unavailable in raw point cloud data. Ad-
ditionally, these methods are sensitive to noise and outliers, limiting their effectiveness in reconstructing
fine details or realistic surfaces without normal vectors. In this study, therefore we aim to reproduce the
results of the method termed p-Poisson equation based Implicit Neural representation with Curl-free con-
straint (PINC) introduced by |[Park et al.| (2023) which purportedly achieves significant improvements over
comparable implicit neural representations that rely on supplementary information such as surface normals.

3 Scope of reproducibility

This study aims to reproduce the results of the original paper by |Park et al. (2023) and evaluate the
performance of the proposed method for surface reconstruction from unorganized point clouds, focusing on
the efficient implementation of the PDE-based variable-splitting strategy and training process as well as the
evaluation of the proposed approach’s surface reconstruction performance on the Surface Reconstruction
Benchmark (SRB) dataset (Berger et al., 2013). The original paper claims that the proposed method
outperforms existing implicit neural representation approaches in terms of accuracy on the metrics of Chamfer
and Hausdorff distances, robustness to noise, and handling of incomplete observations. Our study seeks to
validate these claims and assess the computational efficiency of the proposed method. Our reproducibility
study also offers a new implementation of the proposed method using JAX which significantly improves
training speed.

4 Methodology

The original paper by [Park et al.| (2023)) introduces a novel approach to surface reconstruction from point
clouds using INRs. The proposed method leverages the p-Poisson equation and a curl-free constraint to
enhance the accuracy and robustness of the reconstructed surfaces. Unlike comparable methods that require
additional information such as surface normals, the proposed approach learns the SDF implicitly, allowing
for more flexible and accurate surface reconstructions.

4.1 Problem Formulation

Given an unorganized point cloud X = {a:z}ivzl sampled from a closed surface I', the goal is to learn a signed
distance function u : R® — R, where the zero level set of u accurately represents the surface I', such that
I = {w ER3 |u(z) = O}. In the following equations, €2 represents a subset of the entire definition space of
u(z) for which we sample points to constrain the optimization.

p-Poisson Equation The p-Poisson equation serves as the foundation for PINC, allowing us to model the
signed distance function with high precision. The equation is defined as:

min/ |u|dx + )\1/ Ve - (IVoul|P~2Vau) + 1| de, (1)
w Jr Q

which using the augmented neural network structure with auxiliary variable G proposed by |Park et al.| (2023))
can be rewritten as a loss function of the form

Ep—Poisson :/|U|d$+>\1/ HVwU—GHde (2)
T Q
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where A; > 0 is a weighting hyperparameter and G is defined from the neural network output vector ¥ and
the fixed function F'(x) = %, chosen such that V, - F' =1

Vex V¥ -—F

G= —
|Ve x ¥ — P[5t

(3)

PINC integrates this equation as a hard constraint within the neural network model, ensuring the learned
signed distance function adheres to the physical properties of the surface.

Curl-Free Constraint In the original paper, the authors argue that to enhance the accuracy of surface
reconstructions from point clouds, a curl-free constraint should be applied to the auxiliary variable G, which
represents the gradient of the signed distance function (SDF), to ensures that G forms a conservative vector
field. A conservative vector field condition, expressed as G = V,u, indicates that G is curl-free (V, x G = 0)
if it can be written as the gradient of some scalar potential function wu.

Implementing a direct penalty for the curl of G to enforce this constraint ([, [|Vz x G |? dz) is claimed to
introduce computational challenges and a complex loss landscape due to high-order derivatives required by
automatic differentiation (Park et all |2023). To mitigate these issues, an additional auxiliary variable G is
introduced to satisfy both G = G and the curl-free condition Vg x G = 0, through the loss function

Lrmo =z:p_Poisso,,+A2/ HG—@HzclsH—/\g/ Ve x G| do. (4)
Q Q

where A3, A3 > 0 are weighting hyperparameters.

The optimality conditions suggest that G should have a unit norm, as dictated by the Eikonal equation. To
simplify adherence to this non-convex equality constraint, it is relaxed to a convex condition [|G|| < 1, using
a projection operator P that maps the auxiliary output ¥ to G within the three-dimensional unit sphere:

v

G- ¥ __
max {1, ||\IJ||}

()

How to neural network structure relates to the auxiliary variable is summarized in figure
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Figure 1: The visualization of the augmented network structure with two auxiliary variables.

Variable-Splitting Strategy PINC adopts a variable-splitting strategy to simplify the optimization pro-
cess; splitting the network into multiple outputs, as illustrated in Fig. [1} for the signed distance function and
its gradient. The authors of the paper argue that this approach enables more effective training and better
adherence to the p-Poisson and curl-free constraints.

4.2 Loss Function

Real point clouds from range scanners often have incomplete data due to occlusions and concavities, resulting
in holes. Estimating accurate closed surfaces becomes challenging, requiring a strategy to interpolate across
gaps and reconstruct the surface cohesively.
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PINC’s approach is to minimize the surface area of the zero-level set, which is encapsulated in the final
augmented loss function:

Lootar = Lome + A / 5¢(w) |V ] dz, (6)
Q

where Ay > 0 is the weighting hyperparameter of the surface area minimization component in the total loss
function, and §.(z) = 1— tanh? (f) represents a smoothed Dirac delta function with a smoothing parameter
€ > 0. This addition aims to guide the surface reconstruction process by encouraging the minimization of
the zero-level set area of u, thereby promoting a more coherent filling of the missing parts of the scanned
point cloud.

To implement the loss function in code, we approximate all integrals using Monte Carlo integration. This
involves simply replacing the integrals with sums over the data points of the specific type.

4.3 Distance Metrics and Evaluation

We quantify the separation between two sets of points, denoted as X and ), through the application of
conventional one-sided and double-sided ¢; Chamfer distances, denoted as ds, dc, and Hausdorff distances,
denoted as dgj, dg. The definitions for each are as follows:

1 . 1
da(X.Y) = m;(ryné% lz=yll2; e (X.Y) = 5 (da(X, D) +da(V, X))

The estimation of the distance from the INR to the target point clouds is done identically as in [Park et al.
(2023) by first creating a mesh by extracting the zero level set of u using the marching cubes algorithm
Lorensen & Cline| (1987) on a 512 x 512 x 512 uniform grid, then by sampling 107 points uniformly from the
surface and finally measure the presented distances from the sampled points and the target points cloud.

Furthermore, to measure the accuracy of the trained gradient field, we evaluate Normal Consistency (NC)
between the learned G and the surface normal as follows: from given an oriented point cloud X, N =
{x;, ni}fvzl comprising of sampled points x; and the corresponding outward normal vectors n;, NC is defined
by

b

N
1 T
NC(G, X N) = ~ §‘_1: ‘G(a:i) n,
the average of the absolute dot product of the trained G and the surface normals.

4.4 Datasets

The SRB dataset (Berger et al., 2013]) is used to benchmark our implementation against the original results.
It consists of 5 different benchmark figures which each have a scan point cloud and ground truth point could.
The scan is used for training the reconstruction models while the ground truth is used to evaluate the trained
model.

An evaluation of the Thingyl0K |Zhou & Jacobson| (2016) dataset was also initially planned, but as the
reference of which of the 10k object was not specified in detail by the authors, we were unable to evaluate
our implementation on this dataset.

All scanned data points are utilized as boundary points in the loss function. To enhance consistency,
neighboring points around these boundary points are sampled by adding a normally distributed variable
with a variance equal to the distance to their 50th closest neighbor within the scanned dataset. One local
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Table 1: Results table for the SRB dataset using different surface reconstruction methods. Our implemen-
tation is labeled as "[Re] PINC", their code running on our hardware is labeled as "PINC (rerun)", and their
presented results are labeled as "PINC". The Ground Truth data is referred to as "GT", while the training
data is referred to as "Scan".

Anchor Daratech Dc Gargoyle Lord quas
GT Scan GT Scan GT Scan GT Scan GT Scan

de dy da dy | doc dg dg dy | dc dy da dy | doc dg dp dy | dc dg  dg  dy
IGR 045 7.45 0.17 4.55[4.90 42.15 0.70 3.68|0.63 10.35 0.14 3.44|0.77 17.46 0.18 2.04|0.16 4.22 0.08 1.14
SIREN 0.72 10.98 0.11 1.27|0.21 4.37 0.09 1.78|0.34 6.27 0.06 2.71]0.46 7.76 0.08 0.68|0.35 8.96 0.06 0.65
SAL 042 7.21 0.17 4.67|0.62 13.21 0.11 2.15|0.18 3.06 0.08 2.82|0.45 9.74 0.21 3.84|0.13 414.00 0.07 4.04
PHASE 0.29 743 0.09 1.49]0.35 7.24 0.08 1.21|0.19 4.65 0.05 2.78|0.17 4.79 0.07 1.58|0.11 0.71 0.05 0.74
DiGS 0.29 7.19 0.11 1.17|0.20 3.72 0.09 1.80|0.15 1.70 0.07 2.75|0.17 4.10 0.09 0.92|0.12 0.91 0.06 0.70
PINC 0.29 7.54 0.09 1.20]0.37 7.24 0.11 1.88|0.14 2.56 0.04 2.73|0.16 4.78 0.05 0.80|0.10 0.92 0.04 0.67
PINC (rerun) e=1 0.32 7.63 0.10 1.26 | 5.97 55.25 0.64 4.38 |0.15 2.62 0.05 2.80|0.16 4.77 0.06 0.81|0.11 0.79 0.04 0.74
PINC (rerun) e =0.1 0.37 9.10 0.10 3.94|7.48 62.82 0.66 7.39|0.16 2.26 0.06 2.75|0.19 595 0.07 3.86|0.14 3.41 0.05 1.50
[Re] PINC e =1 0.31 6.01 0.17 1.41|4.73 53.51 048 3.42|0.17 2.18 0.10 2.73]0.21 4.67 0.14 0.91]0.18 1.81 0.12 0.86
[Re] PINC € = 0.1 0.35 7.67 0.16 1.39|7.52 69.12 0.24 3.10|0.17 2.37 0.11 2.72]0.21 525 0.13 1.36|0.17 1.17 0.12 1.01

point is sampled per scanned point in the batch of scan points. In the published code there is probably a
mistake in this calculation, that we outline in our READMEH

To ensure that the model has been trained on points representing the entire data distribution, 2048 points
are uniformly sampled from the cubic space [—1.1,1.1]3.

4.5 Hyperparameters

Numerous hyperparameters can be adjusted, all of which were configured to match the experimental setup of
the original paper. However, one notable exception is the epsilon parameter in the loss function. In the source
code, it was suggested that using a value of € = 0.1 might yield better results than the original value of € = 1,
leading us to try both values. The appendix ﬁgurepresents how the function d.(z) =1 —tanh? (%) depends
on €. The loss weight hyperparameters of each of the loss terms were set to A\; = 0.1, \p = 1074, A3 = 5-107%
and A\y = 0.1, p = oo and F' = % as in the original paper. The Adam (Kingma & Baj 2014) optimizer was
used with a learning rate of 10~ and a learning rate schedule that reduced the learning rate by a factor
of 0.99 every 2000 step. The model was trained for 100 000 steps with a batch size of 16384. The network
architecture consisted of 7 layers with 512 hidden dimensions and skip connections from the first layer to
the fourth layer. The softplus activation function was used with a beta parameter of 100.0 which makes it

very close to a ReLLU activation function.

4.6 Experimental setup and code assets

The model has been implemented in JAX Bradbury et al.| (2018]) by first only following the directions
presented in the original paper and then consulting the published code ﬂ Similarly, as [Park et al.| (2023,
all experiments were trained on a single NVIDIA® RTX 3090 GPU with 24GB of memory.

We also verified the correctness of our implementation by comparing the results of a forward pass using both
our code and the original authors’ code, which yielded identical numerical results and which is included in
our published code El

5 Results

In Table [I) we present the published results of various comparable surface reconstruction methods applied
to the SRB dataset |Gropp et al.| (2020); [Sitzmann et al.| (2020)); |Atzmon & Lipman| (2020); [Lipman| (2021));
Ben-Shabat et al.| (2022)); Park et al.| (2023) compared to our obtained results. Notably, our replication of

2https://anonymous.4open.science/r/pinc-B7CD/README .md
Shttps://github.com/yebbi/pinc
4https://anonymous.4open.science/r/pinc-B7CD/scripts/forward_pass_comparison.py
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the model exhibits superior performance compared to most other models for all benchmarks except Daratech
which fails to reconstruct the surface. However, it falls short of achieving the performance levels reported in
the original paper. Interestingly, upon training the model using the original code provided by the authors, we
obtained results comparable to those of our replication. A significant observation is the consistent inadequate
performance of both models in the case of Daratech, where convergence to a stable solution did not happen.
This can also be visually confirmed in [3] and the observation holds for both our implementation and when
utilizing the original authors’ code. We also see that when training with a smaller € we get a less smooth
mesh which means d slightly improves while dy becomes worse.

Table 2: Comparison of total training times for 100 000 steps.

Total Training Time (hours)
Our Implementation 2.2
Their Implementation 13.5

We can also examine the training times of the original code and our replication in Table 2] The results
indicate that our implementation requires approximately 5 less training time compared to the authors’ code.

Presented in the appendix figure [3]is a visualization of all the final reconstructed surfaces, highlighting the
failure on the Daratech example by all the models with the hyperparameters presented by [Park et al.| (2023))

6 Conclusion

In our research, our primary objective was to replicate and verify the findings of the implicit neural rep-
resentation surface reconstruction method proposed by [Park et al.| (2023). The original study introduces
a novel technique that integrates the p-Poisson equation into the model’s loss function, enabling surface
reconstruction from point clouds without relying on additional information such as surface normals. This
purportedly leads to substantial improvements over comparable implicit neural representations. Our study
aimed to corroborate these assertions, revealing that the overarching methodology of PINC generally outper-
forms most alternative methods. However, our attempt to replicate the model’s performance did not align
with the reported results in the original paper. Notably, even when utilizing the authors’ provided code for
training, we observed discrepancies in performance compared to the reported outcomes.

Additionally, our investigation revealed that our implementation of the method surpassed the training per-
formance of the original code provided by the authors, resulting in a remarkable five-fold acceleration in
training times.
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A Appendix
Scan fINC (rerun) € = gﬁNC (rerun) € = U PINCe=1  [Re] PINC ¢ = 0.1
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Table 3: 3D Reconstruction results for SRB Dataset.
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Figure 2: Plot of the function 6 (z) = 1 — tanh? (£) for different values of €
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