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Abstract
We analyze the convergence of stochastic heavy ball (SHB) momentum in the smooth, strongly-
convex setting. Kidambi et al. [8] show that SHB (with small mini-batches) cannot attain an accel-
erated rate of convergence even for quadratics, and conjecture that the practical gain of SHB is a
by-product of mini-batching. We substantiate this claim by showing that SHB can obtain an accel-
erated rate when the mini-batch size is larger than some threshold. In particular, for strongly-convex
quadratics with condition number κ, we prove that SHB with the standard step-size and momentum
parameters results in an O (exp(−T/

√
κ) + σ) convergence rate, where T is the number of itera-

tions and σ2 is the variance in the stochastic gradients. To ensure convergence to the minimizer,
we propose a multi-stage approach that results in a noise-adaptive O

(
exp (−T/

√
κ) + σ

T

)
rate. For

general strongly-convex functions, we use the averaging interpretation of SHB along with expo-
nential step-sizes to prove an O

(
exp (−T/κ) + σ2

/T
)

convergence to the minimizer. Finally, we
empirically demonstrate the effectiveness of the proposed algorithms.

1. Introduction

We consider the unconstrained minimization of a finite-sum objective f : Rd → R, minw∈Rd f(w) :=
1
n

∑n
i=1 fi(w). For supervised learning, n represents the number of training examples and fi is the

loss of example i. We denote w∗ to be the unique minimizer of the above problem. We exclu-
sively consider f to be a smooth, strongly-convex function and pay special attention to when f is a
strongly-convex quadratic.

Smooth, strongly-convex quadratics: Heavy Ball (HB) momentum [16] has been extensively
studied for minimizing smooth, strongly-convex quadratics in the deterministic setting. In this set-
ting, HB results in an accelerated linear rate [16, 22]. In the stochastic setting, Kidambi et al. [8]
show that SHB (with small mini-batches) cannot attain an accelerated rate of convergence even for
quadratics. They conjecture that the practical gains of SHB is a by-product of mini-batching. Simi-
larly, Paquette and Paquette [15] demonstrate that SHB with small batch-sizes cannot obtain a faster
rate than stochastic gradient descent (SGD). While Loizou and Richtárik [12] prove an accelerated
rate for SHB in the ”L1 sense”, this does not imply acceleration according to the standard metrics of
measuring sub-optimality. Bollapragada et al. [2], Lee et al. [9] use results from random matrix the-
ory to prove that SHB with a constant step-size and momentum can achieve an accelerated rate when
the mini-batch size is sufficiently large. Compared to these works, we will use the non-asymptotic
analysis standard in the optimization literature, and prove stronger worst-case results.
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Contribution: Our result in Theorem 1 substantiates the claim by Kidambi et al. [8]. Specifi-
cally, we prove that for SHB with a batch-size b larger than a certain threshold b∗, using the standard
constant step-size and momentum parameter can achieve an O (exp(−T/

√
κ) + σ) non-asymptotic

convergence rate up to a neighborhood of the solution, where T is the number of iterations, κ is
the condition number and σ2 is the variance in the stochastic gradients. In the deterministic setting
where σ = 0, we recover the optimal accelerated rate in [16, 22]. In contrast, Bollapragada et al. [2,
Theorem 3.1] achieve a convergence rate of O (T exp(−T/

√
κ) + σ log(d)) where d is the problem

dimension. Hence, we obtain a faster convergence rate without an additional T dependence in the
bias term, nor an additional log(d) dependence in the variance term. Our results require the batch-
size to scale as O (1/(1/n+1/κ2)), and hence, when n >> O(κ2), our results imply that SHB with a
relatively small batch-size can attain an accelerated rate of convergence to a neighbourhood of the
minimizer; while Bollapragada et al. [2] require a batch-size larger than O(d κ3/2) in the worst-case.
This condition is vacuous in the over-parameterized regime when d > n hence Bollapragada et al.
[2] require a more stringent condition on the batch-size when d >

√
κ. Lee et al. [9] provide an

average-case analysis of SHB as d, n → ∞, and prove an accelerated rate when b ≥ n κ̄√
κ

where κ̄

is the average condition number. In the worst-case, κ̄ = κ, Lee et al. [9] require b = n.
In order to counteract the noise, SGD requires decreasing the step-size at an appropriate rate. For

example, Gower et al. [6] assume the knowledge of σ2 to set the step-size resulting in convergence
to the minimizer. On the other hand, Aybat et al. [1] propose a multi-stage approach for acceler-
ated SGD that adapts the choice of the parameters of Nesterov’s accelerated gradient [14] at each
stage in order to achieve the optimal rate. Importantly, the proposed algorithm is noise-adaptive and
unlike [6], does not require the knowledge of σ2.

Contribution: In Theorem 6, we first assume knowledge of σ2 and prove that with a sufficiently
large mini-batch, the step-size and momentum parameter of SHB can be adjusted to achieve an ϵ
sub-optimality (for some ϵ > 0) at an O (

√
κ log(1/ϵ) + 1/ϵ) rate. We also propose a multi-stage

SHB method in Theorem 2. This SHB variant achieves a noise-adaptive accelerated convergence
rate of O

(
exp

(
− T√

κ

)
+ σ

T

)
to the minimizer.

Contribution: In Section 5, we empirically validate the effectiveness of the proposed algo-
rithms on simple benchmarks. In particular, for strongly-convex quadratics, we consider solving a
synthetic feasible linear system such that interpolation [13, 18] is satisfied. We demonstrate that
SHB attains an accelerated rate when the mini-batch size is larger than a threshold, and that this
threshold depends on the condition number of the problem, thus validating our theoretical results.

Smooth, strongly-convex functions: In the deterministic setting, Wang et al. [23] show an accel-
erated linear convergence rate for 1 dimensional problems. More recently, Goujaud et al. [5] prove
that HB momentum (with any step-size or momentum parameter) cannot achieve an accelerated con-
vergence rate on general (non-quadratic and with dimension greater than 1) smooth, strongly-convex
problems. Hence, for this class of functions, HB and thus SHB can only achieve a non-accelerated
linear convergence rate. For smooth, strongly-convex functions, Ghadimi et al. [4] prove a non-
accelerated linear convergence rate in the deterministic setting. In the stochastic setting, Sebbouh
et al. [17] use a constant step-size and momentum parameter to prove linear convergence rate of
SHB to the neighborhood of the minimizer. They also show that by keeping the step-size constant
for some fixed number of iterations, and then switching to a decreasing sequence, SHB can converge
to the minimizer but with the non-optimal O

(
κ2

T 2 + σ2

T

)
rate. On the other hand, for SGD, Khaled

and Richtárik [7], Li et al. [10], Vaswani et al. [21] propose noise-adaptive variants that result in an
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O
(
exp

(−T
κ

)
+ σ2

T

)
convergence rate. In particular, Li et al. [10], Vaswani et al. [21] use exponen-

tial step-sizes and the knowledge of the problem smoothness to prove the desired rate.
Contribution: In Section 4, we propose a SHB method which combines the averaging per-

spective of SHB [17] and the exponentially decreasing step-sizes to achieve a noise-adaptive, non-
accelerated convergence rate of O

(
exp

(−T
κ

)
+ σ2

T

)
. Importantly, the proposed algorithm provides

an adaptive way to set the momentum parameters, alleviating the need to tune this additional hyper-
parameter. In Appendix E, we study the effect of misestimating the smoothness on the convergence
of SHB, and prove convergence to the minimizer, albeit at a slower rate.

Contribution: Our experimental results using the standard benchmarks with both the squared
and logistic loss in Appendix F demonstrate that SHB with exponential step-sizes results in stable
convergence to the minimizer at the same rate as SGD, and that it can be easily combined with
SLS [20] or other alternative methods to estimate the smoothness constant.

2. Problem Formulation

Throughout the paper, we assume that f and each fi are differentiable and lower-bounded by f∗ and
f∗
i , respectively. We also assume that each function fi is Li-smooth, implying that f is L-smooth

with L := maxi Li. Furthermore, f is considered to be µ-strongly convex while each fi is convex.
We include definitions of these properties in Appendix A. In order to prove accelerated results,
we will focus on strongly-convex quadratic objectives where fi(w) := 1

2w
TAiw − ⟨di, w⟩ and

f(w) := wTAw − ⟨d,w⟩ = 1
n

∑n
1 fi(w), where A,Ai are symmetric positive definite matrices.

In this case, L = λmax[A] and µ = λmin[A], where λmax and λmin refer to the maximum and
minimum eigenvalues. We define the condition number κ := L

µ and [T ] := {0, 1, .., T}.
In each iteration k ∈ [T ], SHB selects a function fik (typically uniformly) at random, computes

its gradient, and takes a descent step in that direction together with a momentum term. Specifically,
the SHB update is given as:

wk+1 = wk − αk∇fik(wk) + βk (wk − wk−1) ; w−1 = w0 (1)

where wk+1, wk, and wk−1 are the SHB iterates, and ∇fik(·) is the gradient of the loss function
chosen at iteration k, and {αk}T−1

k=0 and {βk}T−1
k=0 are sequences of step-sizes and momentum param-

eters respectively. Each stochastic gradient ∇fik(w) is unbiased, implying that Ei [∇fi(w)|wk] =
∇f(w). We will also make use of the mini-batch variant of SHB that samples a batch B of examples
(|B| = b) in every iteration and uses it to compute the stochastic gradient. In this case, we abuse the
notation ∇fik(wk) to refer to the average stochastic gradient for the batch Bk sampled at iteration
k, meaning that ∇fik(wk) =

1
b

∑
i∈Bk

∇fi(wk). In the next section, we analyze the convergence of
SHB for strongly-convex quadratics.

3. Strongly-convex Quadratics

Our first result substantiates the claim in Kidambi et al. [8]. Specifically, in Appendix B, we prove
that for SHB with a batch-size b larger than a certain threshold b∗, using the standard constant step-
size and momentum parameter can achieve an O (exp(−T/

√
κ) + χ) non-asymptotic convergence

rate up to a neighborhood of the solution. The proof heavily relies on the non-asymptotic result for
HB in the deterministic setting, coupled with an inductive argument over the iterations.

3
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Theorem 1 For L-smooth, µ strongly-convex quadratics, SHB (Eq. (1)) with αk = α = a
L for

a ≤ 1, βk = β =
(
1− 1

2

√
αµ
)2, batch-size b s.t. b ≥ b∗ := n max

{
1

1+ n
C κ2

, 1
1+na

3

}
has the

following convergence rate,

E ∥wT − w∗∥ ≤ 6
√
2√
a

√
κ exp

(
−
√
a

4

T√
κ

)
∥w0 − w∗∥+ 12

√
aχ

µ
min

{
1,

ζ√
a

}

where χ =
√
E ∥∇fi(w∗)∥2 is the noise in the stochastic gradients, ζ =

√
3 n−b

n b captures the

dependence on the batch-size and C := 3526 is the constant in the batch-size constraint.

We conjecture that the dependence on the constant C is loose, whereas the dependence on κ2 in the
definition of b∗ can be improved to κ. The above result only implies convergence to a neighbourhood
of the solution. In Theorem 6, we first assume knowledge of χ2 and prove that with a sufficiently
large mini-batch, the step-size and momentum parameter of SHB can be adjusted to achieve an ϵ
sub-optimality (for some ϵ > 0) at an O (

√
κ log(1/ϵ) + 1/ϵ) rate.

Multi-stage SHB: When the noise is unknown, we propose to use a multi-stage approach (Algo-
rithm 1) similar to [1] in order to achieve convergence to the minimizer.

Algorithm 1 Multi-stage SHB
Input: T (iteration budget), b (batch-size)

Initialization: w0, w−1 = w0, k = 0

Set I =
⌊

1
ln(

√
2)
W
(
T ln(

√
2)

384
√
κ

)⌋
/* W(.) is the Lambert W function1

*/

T0 =
T
2

Ti =
⌈
4 2i/2

√
κ

(2−
√
2)

((i/2 + 5) ln(2) + ln(
√
κ))
⌉

∀i ∈ [1, I]

for i = 0; i ≤ I; i = i+ 1 do
Set ai = 2−i, αi =

ai
L , βi =

(
1− 1

2

√
αiµ
)2

for t = 1; t ≤ Ti; t = t+ 1 do
wk+1 = wk − αi∇fik(wk) + βi (wk − wk−1)
Update k = k + 1

end
end

In Appendix C, we theoretically analyze Algorithm 1 and prove Theorem 2. We see that Algo-
rithm 1 achieves a convergence rate of O

(
exp

(
− T√

κ

)
+ χ

T

)
to the minimizer. In the deterministic

setting when χ = 0, we recover the optimal accelerated rate. This method does not require knowl-
edge of σ and is thus noise-adaptive. We note that the choice of Ti is similar to that for Accelerated
SGD using Nesterov’s method [1, Theorem 3.4]. In the next section, we consider the convergence
of SHB for general smooth, strongly-convex objectives.

1. The principal branch of the Lambert W function can be defined as: for x, y ∈ R, y = W(x) =⇒ y exp(y) = x.
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Theorem 2 For L-smooth, µ strongly-convex quadratics with κ > 1, for
T ≥ max

{
3·210κ

√
κ

ln(2) , 3·2
8 e2

√
κ

ln(2)

}
, Algorithm 1 with batch-size b such that

b ≥ b∗ := n max

{
1

1+ n
C κ2

, 1
1+

naI
3

}
results in the following convergence,

E ∥wT − w∗∥ ≤ 6
√
2
√
C1

√
κ

1√
T

exp

(
− T

8
√
κ

)
∥w0 − w∗∥+ 24χκ

µ(κ− 1)

√
C1√
T

.

where C1 :=
29 3

√
κ
(
1+2 log2

(
T ln(

√
2)

384
√
κ

))
ln(2) and C := 3526.

4. Strongly-convex Functions

For general strongly-convex functions, we develop an SHB method that (i) converges to the min-
imizer at an O (exp (−T/κ) + σ2/T) (ii) is noise-adaptive that it does not require knowledge of σ2

and (iii) does not require manually tuning the momentum parameter. We use an equivalent form of
the SHB update as Sebbouh et al. [17], showing that SHB can be interpreted as a moving average of
the iterates wk, i.e. for z0 = w0, wk+1 :=

λk+1

λk+1+1wk+
1

λk+1+1zk, zk := zk−1−ηk∇fik(wk). In par-

ticular, for any {ηk, λk} sequence, and αk = ηk
1+λk+1

, βk = λk
1+λk+1

, the above update is equivalent
to the SHB update in Eq. (1) [17]. The proposed SHB method combines the above interpretation of
SHB [17] and the exponentially decreasing step-sizes [10, 21].

Theorem 3 For τ ≥ 1, set ηk = υk γk where υ = υk = 1
2L , γ =

(
τ
T

)1/T and γk = γk+1.
Define λk := 1−2ηL

ηkµ

(
1− (1− ηkµ)

k
)
. Assuming each fi to be convex and L-smooth and f to be

µ strongly-convex, SHB with the above choices of {ηk, λk} results in the following convergence:

E ∥wT−1 − w∗∥2 ≤ c2
cL

∥w0 − w∗∥2 exp
(
− T

2κ

γ

ln(T/τ)

)
+

32Lσ2c2ζ
2κ3

e2 cL

(ln(T/τ))2

γ2T

where ζ =
√

n−b
n b captures the dependence on the batch-size, c2 := exp

(
1
2κ

2τ
ln(T/τ)

)
and cL :=

4(1−γ)
µ2

[
1− exp

(
−µγ

2L

)]
.

The above theorem implies that SHB with exponentially decreasing step-sizes achieves an
O
(
exp

(−T
κ

)
+ σ2

T

)
convergence rate. This rate is optimal since Goujaud et al [5] show that for

general strongly-convex functions, we cannot get an accelerated O
(
exp

(
−T√
κ

))
convergence rate.

We note that the momentum parameter βk does not require tuning as it is automatically and adap-
tively inferred from ηk and λk. Hence, we effectively eliminate the need to tune the momentum
parameter, one of the key hyper-parameters of SHB. Finally, we reiterate that the proposed method
does not require knowledge of σ2 and is hence noise-adaptive.

5. Experiments

For strongly-convex quadratics, we consider solving a synthetic feasible linear system such that in-
terpolation [13, 18] is satisfied. Our experiments will be conducted on randomly generated synthetic

5
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datasets of shape (10000, 20). With the generated datasets, we can control the L-smoothness and
µ-strong-convexity hence we are able to manually set different κ for each experiment. The baselines
used for comparison include: SGD with constant step-size (SGD), Accelerated SGD using Nesterov
acceleration with constant step-sizes [18] (Nesterov), SHB with constant step-sizes (SHB). For
each dataset, we will run the experiments with a set of distinct batch-sizes. Each experiment will
be run 5 times independently, and the average result and standard deviation will be plotted. We will
use the full gradient norm as the performance measure and plot it against the number of iterations.

(a) κ = 1000 and b = n (b) κ = 1000 and b = 0.9n (c) κ = 1000 and b = 0.5n

(d) κ = 200 and b = n (e) κ = 200 and b = 0.9n (f ) κ = 200 and b = 0.5n

(g) κ = 50 and b = n (h) κ = 50 and b = 0.9n (i) κ = 50 and b = 0.5n

(j)

Figure 1: Comparision of the above methods for square loss on synthetic datasets of shape
(10000, 20) with different κ and batch-size b. Observe that SHB attains an accelerated
rate when the mini-batch size is sufficiently large.

When employing sufficiently large batch-sizes, SHB and ASGD demonstrate an accelerated
convergence rate, surpassing that of the conventional SGD method. ASGD, which incorporates
Nesterov acceleration parameters, performs slightly better compared to SHB. Our experiments for
strongly-convex setting is deferred to Appendix F.

6. Conclusion

We showed that for strongly-convex quadratic objective functions, if the mini-batch size is above a
certain threshold, then SHB can achieve an accelerated convergence rate upto a neighborhood of the
minimizer. We proposed a multi-stage SHB approach that can achieve a noise-adaptive accelerated
convergence rate for quadratics. For general smooth, strongly-convex functions, we developed a
novel SHB algorithm that uses exponentially decreasing step-sizes and achieves an optimal noise-
adaptive convergence rate.

6
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Supplementary Material

Organization of the Appendix

A Definitions

B Proof of SHB for quadratics

C Proofs for multi-stage SHB

D Proofs for non-accelerated rates

E Proof of SHB with smoothness mis-estimation

F Additional experiments

Appendix A. Definitions

Our main assumptions are that each individual function fi is differentiable, has a finite minimum
f∗
i , and is Li-smooth, meaning that for all v and w,

fi(v) ≤ fi(w) + ⟨∇fi(w), v − w⟩+ Li

2
∥v − w∥2 , (Individual Smoothness)

which also implies that f is L-smooth, where L is the maximum smoothness constant of the indi-
vidual functions. A consequence of smoothness is the following bound on the norm of the stochastic
gradients,

∥∇fi(w)∥2 ≤ 2L(fi(w)− f∗
i ).

We also assume that each fi is convex, meaning that for all v and w,

fi(v) ≥ fi(w)− ⟨∇fi(w), w − v⟩, (Convexity)

Depending on the setting, we will also assume that f is µ strongly-convex, meaning that for all v
and w,

f(v) ≥ f(w) + ⟨∇f(w), v − w⟩+ µ

2
∥v − w∥2 , (Strong Convexity)

9
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Appendix B. Proof of SHB for quadratics

Lemma 4 For L-smooth and µ strongly-convex quadratics, SHB (Eq. (1)) with αk = α = a
L

and a ≤ 1, βk = β =
(
1− 1

2

√
αµ
)2, batch-size b satisfies the following recurrence relation,

E[∥∆T ∥] ≤ C0 ρ
T ∥∆0∥+ 2aC0 ζ(b)

[
T−1∑
k=0

ρT−1−k E ∥∆k∥

]
+

aC0 χ ζ(b)

L

[
T−1∑
k=0

ρT−1−k

]
,

where ∆k :=

[
wk − w∗

wk−1 − w∗

]
, C0 ≤ 3

√
κ
a , ζ(b) =

√
3 n−b

nb and ρ = 1−
√
a

2
√
κ

Proof With the definition of SHB (1), if ∇fik(w) is the mini-batch gradient at iteration k, then, for
quadratics,[

wk+1 − w∗

wk − w∗

]
︸ ︷︷ ︸

∆k+1

=

[
(1 + β)Id − αA −βId

Id 0

]
︸ ︷︷ ︸

H

[
wk − w∗

wk−1 − w∗

]
︸ ︷︷ ︸

∆k

+α

[
∇f(wk)−∇fik(wk)

0

]
︸ ︷︷ ︸

δk

∆k+1 = H∆k + αδk

Recursing from k = 0 to T−1, taking norm and expectation w.r.t to the randomness in all iterations.

E[∥∆T ∥] ≤
∥∥HT∆0

∥∥+ αE

[∥∥∥∥∥
T−1∑
k=0

HT−1−kδk

∥∥∥∥∥
]

Using Theorem 7 and Corollary 8, for any vector v,
∥∥Hkv

∥∥ ≤ C0 ρ
k ∥v∥ where ρ =

√
β. Hence,

E[∥∆T ∥] ≤ C0 ρ
T ∥∆0∥+

C0 a

L

[
T−1∑
k=0

ρT−1−k E ∥δk∥

]
(α = a

L )

10
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In order to simplify δk, we will use the result for sampling with replacement from Lohr [11],

Ek[∥δk∥2] = Ek[∥∇f(wk)−∇fik(wk)∥2] =
n− b

n b
Ei ∥∇f(wk)−∇fi(wk)∥2

(Sampling with replacement where b is the batch-size and n is the total number of examples)

=
n− b

n b
Ei ∥∇f(wk)−∇f(w∗)−∇fi(wk) +∇fi(w

∗)−∇fi(w
∗)∥2

(∇f(w∗) = 0)

≤ 3
n− b

n b

[
Ei ∥∇f(wk)−∇f(w∗)∥2 + Ei ∥∇fi(wk)−∇fi(w

∗)∥2 + Ei ∥∇fi(w
∗)∥2

]
( (a+ b+ c)2 ≤ 3[a2 + b2 + c2])

≤ 3
n− b

n b

[
L2 Ei ∥wk − w∗∥2 + L2 Ei ∥wk − w∗∥2 + Ei ∥∇fi(w

∗)∥2
]

(Using the L smoothness of f and fi)

≤ 3
n− b

n b

[
2L2 ∥wk − w∗∥2 + χ2

]
(wk is independent of the randomness and by definition χ2 = Ei ∥∇fi(w

∗)∥2)

≤ 3
n− b

n b

[
2L2[∥wk − w∗∥2 + ∥wk−1 − w∗∥2] + χ2

]
(∥wk−1 − w∗∥2 ≥ 0)

=⇒ Ek[∥δk∥2] ≤ 3
n− b

n b

[
2L2 ∥∆k∥2 + χ2

]
(Definition of ∆k)

=⇒ Ek[∥δk∥] ≤
√
3
n− b

n b︸ ︷︷ ︸
:=ζ(b)

[√
2L2 ∥∆k∥+ χ

]
(Taking square-roots, using Jensen’s inequality on the LHS and

√
a+ b ≤

√
a+

√
b on the RHS)

=⇒ Ek[∥δk∥] ≤
√
2Lζ(b) ∥∆k∥+ ζ(b)χ

Putting everything together,

E[∥∆T ∥] ≤ C0 ρ
T ∥∆0∥+

√
2aC0 ζ(b)E

[
T−1∑
k=0

ρT−1−k ∥∆k∥

]
+

aC0 χ ζ(b)

L

[
T−1∑
k=0

ρT−1−k

]

11
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Theorem 1 For L-smooth, µ strongly-convex quadratics, SHB (Eq. (1)) with αk = α = a
L for

a ≤ 1, βk = β =
(
1− 1

2

√
αµ
)2, batch-size b s.t. b ≥ b∗ := n max

{
1

1+ n
C κ2

, 1
1+na

3

}
has the

following convergence rate,

E ∥wT − w∗∥ ≤ 6
√
2√
a

√
κ exp

(
−
√
a

4

T√
κ

)
∥w0 − w∗∥+ 12

√
aχ

µ
min

{
1,

ζ√
a

}

where χ =
√
E ∥∇fi(w∗)∥2 is the noise in the stochastic gradients, ζ =

√
3 n−b

n b captures the

dependence on the batch-size and C := 3526 is the constant in the batch-size constraint.

Proof Using Theorem 4, we have that,

E ∥∆T ∥ ≤ C0 ρ
T ∥∆0∥+

√
2aC0 ζ

[
T−1∑
k=0

ρT−1−kE ∥∆k∥

]
+

aC0 ζ χ

L

[
T−1∑
k=0

ρT−1−k

]

We use induction to prove that for all T ≥ 1,

E ∥∆T ∥ ≤ 2C0

[
ρ+

√
ζ
√
a
]T

∥∆0∥+
2C0 ζ a χ

L(1− ρ)

where ρ+
√
ζ
√
a < 1.

Base case: By Theorem 7, C0 ≥ 1 hence ∥∆0∥ ≤ 2C0 ∥∆0∥+ 2C0 aζ χ
L(1−ρ)

Inductive hypothesis: For all k ∈ {0, 1, . . . , T − 1}, ∥∆k∥ ≤ 2C0

[
ρ+

√
ζ
√
a
]k ∥∆0∥+ 2C0 aζ χ

L(1−ρ)
Inductive step: Using the above inequality,

E ∥∆T ∥ ≤C0 ρ
T ∥∆0∥+

√
2aC0 ζ

[
T−1∑
k=0

ρT−1−kE ∥∆k∥

]
+

aC0 ζ χ

L

[
T−1∑
k=0

ρT−1−k

]

≤C0 [ρ+
√
ζ
√
a]T ∥∆0∥+

√
2aC0 ζ

[
T−1∑
k=0

ρT−1−kE ∥∆k∥

]
+

aC0 ζ χ

L

[
T−1∑
k=0

ρk

]
(Since ζ, a > 0)

≤C0 [ρ+
√
ζ
√
a]T ∥∆0∥+

√
2aC0 ζ

ρ
ρT

[
T−1∑
k=0

ρ−k

(
2C0

[
ρ+

√
ζ
√
a
]k

∥∆0∥+
2C0 aζ χ

L(1− ρ)

)]

+
aC0 ζ χ

L

1− ρT

1− ρ
(Sum of geometric series and using the inductive hypothesis)

=C0 [ρ+
√
ζ
√
a]T ∥∆0∥+

2
√
2 aC2

0 ζ

ρ
ρT

[
T−1∑
k=0

(
ρ+

√
ζ
√
a

ρ

)k
]
∥∆0∥

+
2
√
2 a2C2

0 ζ
2χ

ρL(1− ρ)
ρT

[
T−1∑
k=0

(
1

ρ

)k
]
+

aC0 ζ χ

L

1− ρT

1− ρ

12
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First, we need to prove that 2
√
2 aC2

0 ζ
ρ ρT

[∑T−1
k=0

(
ρ+

√
ζ
√
a

ρ

)k]
∥∆0∥ ≤ C0

[
ρ+

√
ζ
√
a
]T ∥∆0∥.

2
√
2 aC2

0 ζ

ρ
ρT

[
T−1∑
k=0

(
ρ+

√
ζ
√
a

ρ

)k
]
∥∆0∥ =

2
√
2 aC2

0 ζ

ρ
ρT

(
ρ+

√
ζ
√
a

ρ

)T
− 1(

ρ+
√
ζ
√
a

ρ

)
− 1

∥∆0∥

(Sum of geometric series)

≤ 2
√
2
√
aC2

0

√
ζ
(
ρ+

√
ζ
√
a
)T

∥∆0∥

Hence, we require that,

2
√
2
√
aC2

0

√
ζ ≤ C0 =⇒ ζ ≤ 1

8C2
0

1

a

Hence it suffices to choose ζ s.t.

=⇒ ζ ≤ a

3223κ

1

a
(Since C0 ≤ 3

√
κ
a )

=⇒ ζ ≤ 1

3223κ

=⇒ n− b

n b
≤ 1

3526 κ2
=⇒ b

n
≥ 1

1 + n
3526 κ2

(Using the definition of ζ)

Since the batch-size b satisfies the condition that: b
n ≥ 1

1+ n
C κ2

for C := 15552 = 3526, the above

requirement is satisfied, and ζ ≤ 1
3223κ

.

Next, we need to show D :=
2
√
2a2C2

0 ζ2χ
ρL(1−ρ) ρT

[∑T−1
k=0

(
1
ρ

)k]
+ aC0 ζ χ

L
1−ρT

1−ρ ≤ 2C0 aζ χ
L(1−ρ)

D =
2
√
2 a2C2

0 ζ
2χ

ρL(1− ρ)
ρT

[
T−1∑
k=0

(
1

ρ

)k
]
+

aC0 ζ χ

L

1− ρT

1− ρ

=
2
√
2 a2C2

0 ζ
2χ

ρL(1− ρ)
ρT

(
1
ρ

)T
− 1(

1
ρ

)
− 1

+
aC0 ζ χ

L

1− ρT

1− ρ

(Sum of geometric series)

<
2
√
2 a2C2

0 ζ
2χ

ρL(1− ρ)
ρT

1− ρT

1− ρ

ρ

ρT
+

aC0 ζ χ

L(1− ρ)

<
2
√
2 a2C2

0 ζ
2χ

L(1− ρ)2
+

aC0 ζ χ

L(1− ρ)

Since we want D ≤ 2aC0 ζ χ
L(1−ρ) , we require that

2
√
2 a2C2

0 ζ
2χ

L(1− ρ)2
≤ aC0 ζ χ

L(1− ρ)

=⇒ 2
√
2C0a ζ

1− ρ
≤ 1

13
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Ensuring this imposes an additional constraint on ζ. We require ζ such that,

ζ ≤ 1− ρ

2
√
2C0 a

=⇒ ζ ≤ 1

4
√
2
√
a
√
κ

1

C0
(Since ρ = 1−

√
a

2
√
κ

)

Hence it suffices to choose ζ such that,

ζ ≤ 1

12
√
2κ

(Since C0 ≤ 3
√

κ
a )

Since the condition on the batch-size ensures that ζ ≤ 1
3223κ

, this condition is satisfied. Hence,

E ∥∆T ∥ ≤ 2C0

[
ρ+

√
ζ
√
a
]T

∥∆0∥+
2C0 a ζ χ

L(1− ρ)

This completes the induction.
In order to bound the noise term as 12

√
aχ

µ min
{
1, ζ√

a

}
, we will require an additional constraint

on the batch-size that ensures ζ ≤
√
a. Using the definition of ζ, we require that,√

3
n− b

nb
≤
√
a

=⇒ b

n
≥ 1

1 + na
3

which is satisfied by the condition on the batch-size. From the result of the induction,

E ∥∆T ∥ ≤ 2C0

[
ρ+

√
ζ
√
a
]T

∥∆0∥+
2C0 a ζ χ

L(1− ρ)

= 2C0

[
1−

√
a

2
√
κ
+
√
ζ
√
a

]T
∥∆0∥+

2C0 a ζ χ

L

2
√
κ√
a

(ρ = 1−
√
a

2
√
κ

)

≤ 2C0

[
1−

√
a

2
√
κ
+

√
a√

3223κ

]T
∥∆0∥+

2C0 a ζ χ

L

2
√
κ√
a

(ζ ≤ 1
3223κ

)

= 6

√
κ

a

[
1−

√
a

2
√
κ
+

√
a

6
√
2
√
κ

]T
∥∆0∥+

2a ζ χ

L
3

√
κ

a

2
√
κ√
a

(C0 ≤ 3
√

κ
a )

≤ 6√
a

√
κ

[
1−

√
a

4
√
κ

]T
∥∆0∥+

12
√
aχ

µ
min

{
1,

ζ√
a

}
( 1
6
√
2
< 1

4 and ζ ≤
√
a)

=⇒ E ∥wT − w∗∥ ≤ 6
√
2√
a

√
κ exp

(
−
√
a

4

T√
κ

)
∥w0 − w∗∥+ 12

√
aχ

µ
min

{
1,

ζ√
a

}
(for all x, 1− x ≤ exp(−x))

14
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Corollary 5 For L-smooth, µ strongly-convex quadratics, under interpolation, SHB (Eq. (1))
with αk = α = 1

L , βk = β =
(
1− 1

2

√
αµ
)2, batch-size b s.t. b ≥ b∗ := n 1

1+ n
C κ2

where

C := 3526 has the following convergence rate,

E ∥wT − w∗∥ ≤ 6
√
2√
a

√
κ exp

(
−
√
a

4

T√
κ

)
∥w0 − w∗∥

Proof Under interpolation χ = 0. This removes the additional constraint on b∗ that depends on the
constant a, finishing the proof.

Corollary 6 Under the same conditions of Theorem 1, for a target error ϵ > 0, setting a :=

min
{
1, ( µ

24χ)
2ϵ
}

and T ≥ 4
√
κ√
a

log
(
12

√
2
√
κ ∥w0−w∗∥√
aϵ

)
ensures that ∥wT − w∗∥ ≤

√
ϵ.

Proof Using Theorem 1, we have that,

E ∥wT − w∗∥ ≤ 6
√
2√
a

√
κ exp

(
−
√
a

4

T√
κ

)
∥w0 − w∗∥+ 12

√
aχ

µ

Using the step-size similar to that for SGD in [6, Theorem 3.1], we see that to get
√
ϵ accuracy first

we consider 12
√
aχ

µ ≤
√
ϵ
2 that implies a ≤ ( µ

24χ)
2ϵ. We also need 6

√
2√
a

√
κ exp

(
−

√
a
4

T√
κ

)
∥w0 − w∗∥ ≤

√
ϵ
2 . Taking log on both sides,(

−
√
a

4

T√
κ

)
≤ log

(√
ϵ

2

√
a

6
√
2
√
κ

1

∥w0 − w∗∥

)
=⇒ T ≥ 4

√
κ√
a

log

(
12
√
2
√
κ ∥w0 − w∗∥√

aϵ

)

15
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B.1. Helper Lemmas

We restate [22, Theorem 5] that we used in our proof.

Theorem 7 Let H :=

[
(1 + β)Id − αA βId

Id 0

]
∈ R2n×2n. Suppose that A ∈ Rn×n is a posi-

tive semi-definite matrix. Fix a vector v0 ∈ Rn. If β is chosen to satisfy

1 ≥ β ≥ max

{(
1−

√
αλmin(A)

)2
,
(
1−

√
αλmax(A)

)2}
then

∥∥∥Hkv0

∥∥∥ ≤
(√

β
)k

C0 ∥v0∥

where the constant

C0 :=

√
2(β + 1)√

min {h (β, αλmin(A)) , h (β, αλmax(A))}
≥ 1

and h (β, z) := −
(
β − (1−

√
z)2
) (

β − (1 +
√
z)2
)

Lemma 8 For a positive definite matrix A, denote κ := λmax(A)
λmin(A) = L

µ . Set α = a
λmax(A) =

a
L for

a ≤ 1 and

β =
(
1− 1

2

√
αλmin(A)

)2
=
(
1−

√
a

2
√
κ

)2
. Then, C0 :=

√
2(β+1)√

min{h(β,αλmin(A)),h(β,αλmax(A))}
≤

3
√

κ
a where h (β, z) := −

(
β − (1−

√
z)2
) (

β − (1 +
√
z)2
)
.

Proof Using the definition of h (β, z) with the above setting for β and simplifying,

h(β, αµ) = 3αµ

(
1− 1

2

√
αµ− 3

16
αµ

)
= 3

a

κ

(
1−

√
a

2
√
κ
− 3a

16κ

)
(α = a

L )

≥ 3
a

κ

(
1− 1

2
√
κ
− 3

16κ

)
(a ≤ 1)

≥ 3
a

κ

(
1− 1

2
− 3

16

)
(κ ≥ 1)

=
15

16

a

κ

=⇒
√
2(1 + β)√
h(β, αµ)

≤ 2
√
2√

15
16

a
κ

=
8
√
2
√
κ√

15a
≤ 3

√
κ

a
(β ≤ 1)

16
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Now we need to bound
√
2(1+β)√
h(β,αL)

. Using the definition of h (β, z) and simplifying,

h(β, αL) = (2
√
αL−√

αµ− αL+
1

4
αµ)(

√
αµ+ 2

√
αL+ αL− 1

4
αµ)

= 4a− a

κ
− 2

a3/2√
κ

+
1

2

a3/2

κ3/2
− a2

[
1− 1

2κ
+

1

16κ2

]
(setting α = a/L and expanding above)

= a

[
4− 1

κ
− 2

a1/2√
κ

+
1

2

a1/2

κ3/2
− a

(
1− 1

2κ
+

1

16κ2

)]

= a

[
4− 1

κ
−
√
a

(
2√
κ
− 1

2κ3/2

)
− a

(
1− 1

2κ
+

1

16κ2

)]
Since κ ≥ 1, 2√

κ
− 1

2κ3/2 > 0 and 1− 1
2κ + 1

16κ2 > 0, hence

h(β, αL) ≥ a

[
4− 1

κ
−
(

2√
κ
− 1

2κ3/2

)
−
(
1− 1

2κ
+

1

16κ2

)]
(a ≤

√
a ≤ 1)

= a

[
4−

(
2√
κ
− 1

2κ3/2

)
−
(
1 +

1

2κ
+

1

16κ2

)]
Both 2√

κ
− 1

2κ3/2 and 1 + 1
2κ + 1

16κ2 are decreasing functions of κ for κ ≥ 1.

Hence, RHS(κ) :=
[
4−

(
2√
κ
− 1

2κ3/2

)
−
(
1 + 1

2κ + 1
16κ2

)]
is an increasing function of κ. Since,

h(β, αL) ≥ RHS(κ) ≥ RHS(1) for all κ ≥ 1,

h(β, αL) ≥ a

[
4− 2 +

1

2
− 1− 1

2
− 1

16

]
=

15a

16
(β ≤ 1)

Using the above lower-bound for
√
2(1+β)√
h(β,αL)

we have

√
2(1 + β)√
h(β, αL)

≤ 8
√
2√

15a
≤ 3√

a

Putting everything together we get,

C0 ≤ max

{
3

√
κ

a
,
3√
a

}
=⇒ C0 ≤ 3

√
κ

a
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Appendix C. Proofs for multi-stage SHB

Theorem 2 For L-smooth, µ strongly-convex quadratics with κ > 1, for
T ≥ max

{
3·210κ

√
κ

ln(2) , 3·2
8 e2

√
κ

ln(2)

}
, Algorithm 1 with batch-size b such that

b ≥ b∗ := n max

{
1

1+ n
C κ2

, 1
1+

naI
3

}
results in the following convergence,

E ∥wT − w∗∥ ≤ 6
√
2
√
C1

√
κ

1√
T

exp

(
− T

8
√
κ

)
∥w0 − w∗∥+ 24χκ

µ(κ− 1)

√
C1√
T

.

where C1 :=
29 3

√
κ
(
1+2 log2

(
T ln(

√
2)

384
√
κ

))
ln(2) and C := 3526.

Proof Stage zero consists of T0 = T
2 iterations with α = 1

L and β =
(
1− 1

2
√
κ

)2
. Let Ti be the

last iteration in stage i, TI = T . Using the result of Theorem 1 with a = 1 for T0 iterations in stage
zero and defining ∆t := wt − w∗,

E ∥wT − w∗∥ ≤ 6
√
2√
a

√
κ exp

(
−
√
a

4

T√
κ

)
∥w0 − w∗∥+ 12

√
aχ

µ
min

{
1,

ζ√
a

}
E ∥∆T0∥ ≤ 6

√
2
√
κ exp

(
− T

8
√
κ

)
∥w0 − w∗∥+ 12χ

µ
min

{
1,

ζ√
a

}
≤ 6

√
2
√
κ exp

(
− T

8
√
κ

)
∥w0 − w∗∥+ 12χ

µ

We split the remaining T
2 iterations into I stages. For stage i ∈ [1, I], we set αi =

ai
L and choose

ai = 2−i. Using Theorem 1 for stage i,

E ∥∆Ti∥ ≤ 6
√
2

√
κ

ai
exp

(
−
√
ai
4

Ti√
κ

)
E ∥∆Ti−1∥+

12
√
aiχ

µ
min

{
1,

ζ
√
ai

}
≤ 6

√
2 2i/2

√
κ exp

(
− 1

4 2i/2
Ti√
κ

)
E ∥∆Ti−1∥+

12χ

µ 2i/2

≤ exp

(
(i/2 + 5) ln(2) + ln(

√
κ)− Ti

2i/24
√
κ

)
E
∥∥∆Ti−1

∥∥+ 12χ

µ 2i/2

Now we want to find Ti such that (i/2 + 5) ln(2) + ln(
√
κ)− Ti

2i/24
√
κ
≤ − Ti

2(i+1)/24
√
κ

.

=⇒ Ti ≥
4

(2−
√
2)
2i/2

√
κ((i/2 + 5) ln(2) + ln(

√
κ))

=⇒ Ti =

⌈
4

(2−
√
2)
2i/2

√
κ((i/2 + 5) ln(2) + ln(

√
κ))

⌉
=⇒ Ti

2(i+1)/24
√
κ
≥ 1√

2− 1
((i/2 + 5) ln(2) + ln(

√
κ)) ≥ 2 ln(2)(i/2 + 5) + 2 ln(

√
κ) ≥ (i/2 + 5) + ln(κ)

=⇒ exp

(
− Ti

2(i+1)/24
√
κ

)
≤ 1

κ
exp(−(i/2 + 5))

18



NOISE-ADAPTIVE (ACCELERATED) STOCHASTIC HEAVY-BALL MOMENTUM

Define ρi :=
1
κ exp(−(i/2 + 5)). If we unroll the above for I stages we have:

E[∥∆TI
∥] ≤

I∏
i=1

ρiE ∥∆T0∥+
12χ

µ

I∑
i=1

2−i/2
I∏

j=i+1

ρj

= exp

(
−

I∑
i=1

(i/2 + 5)− I lnκ)

)
E ∥∆T0∥+

12χ

µ

I∑
i=1

2−i/2 exp

−
I∑

j=i+1

(j/2 + 5)− i lnκ


≤ exp

(
−I2/4− I lnκ

)
E ∥∆T0∥+

12χ

µ

I∑
i=1

2−i/2 exp

−
I∑

j=i+1

(j/2)− i lnκ


≤ exp

(
−I2/4− I lnκ

)
E ∥∆T0∥+

12χ

µ

I∑
i=1

2−i/2 exp

(
−(I − i)(I + i+ 1)

4
− i lnκ

)

≤ exp
(
−I2/4− I lnκ

)
E ∥∆T0∥+

12χ

µ

I∑
i=1

2−i/2 2

(
− (I2−i2+I−i)

4

)
exp (−i lnκ)

(since 2 ≤ e)

= exp
(
−I2/4− I lnκ

)
E ∥∆T0∥+

12χ

µ

I∑
i=1

2(−
I
4) exp (−i lnκ) (since I2 ≥ i2)

≤ exp
(
−I2/4− I lnκ

)
E ∥∆T0∥+

12χκ

µ(κ− 1)

1

2(
I
4)

(Simplifying
∑ 1

κi )

≤ exp
(
−I2/4

)
E ∥∆T0∥+

12χκ

µ(κ− 1)

1

2(
I
4)

Putting together the convergence from stage 0 and stages [1, I],

E[∥∆T ∥] ≤ exp
(
−I2/4

) (
6
√
2
√
κ exp

(
− T

8
√
κ

)
∥w0 − w∗∥+ 12χ

µ

)
+

12χκ

µ(κ− 1)

1

2(
I
4)

≤ 1

2(
I
4)

(
6
√
2
√
κ exp

(
− T

8
√
κ

)
∥w0 − w∗∥+ 12χ

µ

)
+

12χκ

µ(κ− 1)

1

2(
I
4)

≤ 1

2(
I
4)

(
6
√
2
√
κ exp

(
− T

8
√
κ

)
∥w0 − w∗∥

)
+

24χκ

µ(κ− 1)

1

2(
I
4)

(2)
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Now we need to bound the number of iterations in
∑I

i=1 Ti.

I∑
i=1

Ti ≤
I∑

i=1

[
4

(2−
√
2)
2i/2

√
κ((i/2 + 5) ln(2) + ln(

√
κ)) + 1

]

≤ 8

I∑
i=1

2i/2
√
κ((i/2 + 5) ln(2) + ln(

√
κ)) + I

≤ 8
√
κ

I∑
i=1

2i/2
{
4i+ ln(

√
κ)

}
+ I (For i ≥ 1)

≤ 8
√
κ

{
4I + ln(

√
κ)

} I∑
i=1

2i/2 + I

≤ 8
√
κ

{
4I + ln(

√
κ)

}
2(I+1)/2

√
2− 1

+ I

≤ 16
√
κ [5I + ln(

√
κ)] 2(I+1)/2

Assume that I ≥ ln(
√
κ). In this case,

I∑
i=1

Ti ≤ 192
√
κ I 2(I/2) (3)

We need to set I s.t. the upper-bound on the total number of iterations in the I stages is smaller than
the available budget on the iterations which is equal to T/2. Hence,

T

2
≥ 192

ln(
√
2)

√
κ exp

(
ln(

√
2) I
) (

I ln(
√
2)
)

=⇒ exp
(
ln(

√
2) I
) (

I ln(
√
2)
)
≤ T ln(

√
2)

384
√
κ

=⇒ I ln(
√
2) ≤ W

(
T ln(

√
2)

384
√
κ

)
(where W is the Lambert function)

Hence, it suffices to set I =
⌊

1
ln(

√
2)
W
(
T ln(

√
2)

384
√
κ

)⌋
. We know that,

I

2
≥

1
ln(

√
2)
W
(
T ln(

√
2)

384
√
κ

)
− 1

2

=⇒ exp

(
I

2

)
≥
√
1/e

(
exp

(
W

(
T ln(

√
2)

384
√
κ

)))1/(2 ln(
√
2))

=
√

1/e

 T ln(
√
2)

384
√
κ

W
(
T ln(

√
2)

384
√
κ

)
1/(2 ln(

√
2))

(since exp(W(x)) = x
W(x) )
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For x ≥ e2, W (x) ≤
√

1 + 2 log2(x). Assuming T ≥ 384
√
κ

ln(
√
2)
e2 so T ln(

√
2)

384
√
κ

≥ e2,

exp

(
I

2

)
≥
√
1/e

 T ln(
√
2)

384
√
κ√

1 + 2 log2
(
T ln(

√
2)

384
√
κ

)


1/ ln(2)

Since 2x = (exp(x))ln(2),

2(
I
2) = (exp(I/2))ln(2) ≥ (

√
1/e)ln(2)

 T ln(
√
2)

384
√
κ√

1 + 2 log2
(
T ln(

√
2)

384
√
κ

)


ln(2)/ ln(2)

= (exp(I/2))ln(2) ≥ (
√
1/e)ln(2)

 T ln(
√
2)

384
√
κ√

1 + 2 log2
(
T ln(

√
2)

384
√
κ

)


=⇒ 1

2I/2
≤ 2

√
1 + 2 log2

(
T ln(

√
2)

384
√
κ

)
384

√
κ

T ln(
√
2)

=

29 3

√
κ
(
1 + 2 log2

(
T ln(

√
2)

384
√
κ

))
ln(2)

1

T

Define C1 :=
29 3

√
κ
(
1+2 log2

(
T ln(

√
2)

384
√
κ

))
ln(2) , meaning that 1

2I/2
≤ C1

T Using the overall convergence
rate,

E[∥wT − w∗∥] ≤ 1

2(
I
4)

(
6
√
2
√
κ exp

(
− T

8
√
κ

)
∥w0 − w∗∥

)
+

24χκ

µ(κ− 1)

1

2(
I
4)

≤
√
C1√
T

(
6
√
2
√
κ exp

(
− T

8
√
κ

)
∥w0 − w∗∥

)
+

24χκ

µ(κ− 1)

√
C1√
T

=⇒ E ∥wT − w∗∥ ≤ 6
√
2
√
C1

√
κ

1√
T

exp

(
− T

8
√
κ

)
∥w0 − w∗∥+ 24χκ

µ(κ− 1)

√
C1√
T

We assumed that I ≥ ln(
√
κ) meaning that we want T s.t.⌊

1

ln(
√
2)

W

(
T ln(

√
2)

384
√
κ

)⌋
≥ ln(

√
κ)
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Since W(x) ≥ log (
√
4x+1+1

2 ) for x > 0 we need to have:

1

ln(
√
2)

W

(
T ln(

√
2)

384
√
κ

)
− 1 ≥ ln

√
κ

=⇒ log (

√
4T ln(

√
2)

384
√
κ

+ 1 + 1

2
) ≥ ln (

√
κ) + 1

=⇒ T ≥ 384
√
κ

4 ln(
√
2)

(
(2ln(

√
κ)+2 − 2)2 − 1

)
Hence, it suffices to choose

=⇒ T >
96
√
κ

ln(
√
2)
16 · 2ln(κ)

Since e > 2

=⇒ T >
96

√
κ

ln(
√
2)
16 · eln(κ) = 3 · 29κ

√
κ

ln(
√
2)

Therefore to satisfy all the assumptions we need that

T ≥ max

{
3 · 29κ

√
κ

ln(
√
2)

,
384

√
κ

ln(
√
2)

e2
}

= max

{
3 · 210κ

√
κ

ln(2)
,
3 · 28 e2

√
κ

ln(2)

}
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Appendix D. Proofs for non-accelerated rates

We will require [17, Theorem H.1]. We include its proof for completeness.

Theorem 9 Assuming convexity and smoothness of each fi, strongly-convex f . Suppose (ηk)k is
a decreasing sequence such that η0 = η and 0 < ηk < 1

2L . Define λk := 1−2ηL
ηkµ

(
1− (1− ηkµ)

k
)
,

Ak := ∥wk − w∗ + λk(wk − wk−1)∥2, Ek := Ak + 2ηkλk(f(wk−1) − f(w∗)), αk := ηk
1+λk+1

,

βk := λk
1−ηkµ
1+λk+1

, σ2 := Ei[fi(w
∗)− f∗

i ] ≥ 0 and ik is a mini-batch of size b. Then SHB Eq. (1)
converges as

E[Ek+1] ≤ (1− ηkµ)E[Ek] + 2Lκζ2η2kσ
2 (4)

where ζ =
√

n−b
nb .

Proof

Ak+1 = ∥wk+1 − w∗ + λk+1(wk+1 − wk)∥2

= ∥wk − w∗ − αk∇fik(wk) + βk(wk − wk−1) + λk+1 [−αk∇fik(wk) + βk(wk − wk−1)]∥2
(SHB step)

= ∥wk − w∗ − αk(1 + λk+1)∇fik(wk) + βk(1 + λk+1)(wk − wk−1)∥2

= ∥wk − w∗ − ηk∇fik(wk) + λk(1− ηkµ)(wk − wk−1)∥2
(definition of αk and βk)

= ∥wk − w∗ + λk(wk − wk−1)− ηk [µλk(wk − wk−1) +∇fik(wk)]∥2

=Ak + η2k ∥µλk(wk − wk−1) +∇fik(wk)∥2

− 2ηk⟨wk − w∗ + λk(wk − wk−1), µλk(wk − wk−1) +∇fik(wk)⟩
=Ak + η2k ∥∇fik(wk)∥2 + η2kµ

2︸︷︷︸
≤ ηkµ

λ2
k ∥wk − wk−1∥2

+ 2η2kµλk⟨wk − wk−1,∇fik(wk)⟩ − 2ηkµλk⟨wk − w∗, wk − wk−1⟩
− 2ηk⟨wk − w∗,∇fik(wk)⟩ − 2ηkλk⟨wk − wk−1,∇fik(wk)⟩ − 2ηkµλ

2
k ∥wk − wk−1∥2

≤Ak − ηkµ
(
λ2
k ∥wk − wk−1∥2 + 2λk⟨wk − w∗, wk − wk−1⟩

)
− 2ηk⟨wk − w∗,∇fik(wk)⟩

+ η2k ∥∇fik(wk)∥2︸ ︷︷ ︸
≤ 2Lη2k[fik(wk)−f∗

ik]

+2η2kµλk⟨wk − wk−1,∇fik(wk)⟩ − 2ηkλk⟨wk − wk−1,∇fik(wk)⟩

(by L-smoothness of fik)

Add Bk+1 = 2ηk+1λk+1 (f(wk)− f∗) on both sides

Ak+1 +Bk+1 ≤Ak − ηkµ
(
λ2
k ∥wk − wk−1∥2 + 2λk⟨wk − w∗, wk − wk−1⟩

)
− 2ηk⟨wk − w∗,∇fik(wk)⟩

+ 2Lη2k[fik(wk)− f∗
ik] + 2η2kµλk⟨wk − wk−1,∇fik(wk)⟩

− 2ηkλk⟨wk − wk−1,∇fik(wk)⟩+ 2ηk+1λk+1 (f(wk)− f∗)

≤Ak − ηkµ
(
λ2
k ∥wk − wk−1∥2 + 2λk⟨wk − w∗, wk − wk−1⟩

)
− 2ηk⟨wk − w∗,∇fik(wk)⟩

+ 2Lη2k[fik(wk)− f∗
ik]− 2ηkλk(1− ηkµ)⟨wk − wk−1,∇fik(wk)⟩+ 2ηk+1λk+1[f(wk)− f∗]
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Taking expectation w.r.t ik, fik(wk)− f∗
ik = [fik(wk)− fik(w

∗)] + [fik(w
∗)− f∗

ik] then

E[Ak+1 +Bk+1] ≤E[Ak]− E
[
ηkµ

(
λ2
k ∥wk − wk−1∥2 + 2λk⟨wk − w∗, wk − wk−1⟩

)]
− 2ηkE[⟨wk − w∗,∇f(wk)⟩] + 2Lκζ2η2kσ

2 + 2Lη2kE[f(wk)− f∗]

− 2ηkλk(1− ηkµ)E[⟨wk − wk−1,∇f(wk)⟩] + 2ηk+1λk+1E[f(wk)− f∗]
(Using Lemma 11)

Since f is strongly-convex, −2ηk⟨wk − w∗,∇f(wk)⟩ ≤ −ηkµ ∥wk − w∗∥2 − 2ηk[f(wk) − f∗],
then

E[Ek+1] ≤E[Ak]− ηkµE[∥wk − w∗∥2 + λ2
k ∥wk − wk−1∥2 + 2λk⟨wk − w∗, wk − wk−1⟩︸ ︷︷ ︸

Ak

] + 2Lκζ2η2kσ
2

+ 2Lη2kE[f(wk)− f∗]− 2ηkλk(1− ηkµ)E [⟨wk − wk−1,∇f(wk)⟩]
− 2ηkE[f(wk)− f∗] + 2ηk+1λk+1E[f(wk)− f∗]

≤ (1− ηkµ)E[Ak] + 2Lκζ2η2kσ
2 + 2Lη2kE[f(wk)− f∗]− 2ηkλk(1− ηkµ)E [⟨wk − wk−1,∇f(wk)⟩]

− 2ηkE[f(wk)− f∗] + 2ηk+1λk+1E[f(wk)− f∗]

By convexity, −⟨∇f(wk), wk − wk−1⟩ ≤ f(wk−1)− f(wk) = [f(wk−1)− f∗]− [f(wk)− f∗]

E[Ek+1] ≤ (1− ηkµ)E[Ak] + 2Lκζ2η2kσ
2 + 2Lη2kE[f(wk)− f∗]︸ ︷︷ ︸

≤ 4Lη2kE[f(wk)−f∗]

+2ηkλk(1− ηkµ)E[f(wk−1)− f∗]

− 2ηkλk(1− ηkµ)E[f(wk)− f∗]− 2ηkE[f(wk)− f∗] + 2ηk+1λk+1E[f(wk)− f∗]

≤ (1− ηkµ)E[Ak + 2ηkλk[f(wk−1)− f∗]︸ ︷︷ ︸
Bk

] + 2Lκζ2η2kσ
2 + 4Lη2kE[f(wk)− f∗]

− 2ηkλk(1− ηkµ)E[f(wk)− f∗]− 2ηkE[f(wk)− f∗] + 2ηk+1λk+1E[f(wk)− f∗]

≤ (1− ηkµ)E[Ek] + 2Lκζ2η2kσ
2 + 2E[f(wk)− f∗]

(
2Lη2k − ηkλk(1− ηkµ)− ηk + ηk+1λk+1

)
(Theorem 9 first part)
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We want to show that 2Lη2k−ηkλk(1−ηkµ)−ηk+ηk+1λk+1 ≤ 0 which is equivalent to ηk+1λk+1 ≤
ηk (1− 2Lηk + λk(1− ηkµ)).

RHS = ηk (1− 2Lηk + λk(1− ηkµ))

= ηk(1− 2Lηk) + ηkλk(1− ηkµ)

= ηk(1− 2Lηk) +
1− 2ηL

µ

(
1− (1− ηkµ)

k
)
(1− ηkµ) (definition of λk)

= ηk(1− 2Lηk)−
1− 2ηL

µ
ηkµ+

1− 2ηL

µ

(
1− (1− ηkµ)

k+1
)

=
1− 2ηL

µ

(
1− (1− ηkµ)

k+1
)
+ 2Lηk(η − ηk︸ ︷︷ ︸

≥0

) (since η ≥ ηk)

≥ 1− 2ηL

µ

(
1− (1− ηkµ)

k+1
)

≥ 1− 2ηL

µ

(
1− (1− ηk+1µ)

k+1
)

(since ηk ≥ ηk+1)

= ηk+1λk+1 = LHS

Hence,
E[Ek+1] ≤ (1− ηkµ)E[Ek] + 2Lκζ2η2kσ

2

Theorem 3 For τ ≥ 1, set ηk = υk γk where υ = υk = 1
2L , γ =

(
τ
T

)1/T and γk = γk+1. Define
λk := 1−2ηL

ηkµ

(
1− (1− ηkµ)

k
)
. Assuming each fi to be convex and L-smooth and f to be µ

strongly-convex, SHB with the above choices of {ηk, λk} results in the following convergence:

E ∥wT−1 − w∗∥2 ≤ c2
cL

∥w0 − w∗∥2 exp
(
− T

2κ

γ

ln(T/τ)

)
+

32Lσ2c2ζ
2κ3

e2 cL

(ln(T/τ))2

γ2T

where ζ =
√

n−b
n b captures the dependence on the batch-size, c2 := exp

(
1
2κ

2τ
ln(T/τ)

)
and cL :=

4(1−γ)
µ2

[
1− exp

(
−µγ

2L

)]
.

Proof From the result of Theorem 9 we have

E[Ek] ≤ (1− ηkµ)E[Ek−1] + 2Lκζ2η2kσ
2
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Unrolling the recursion starting from w0 and using the exponential step-sizes γk

E[ET ] ≤E[E0]
T∏

k=1

(
1− µγk

2L

)
+ 2Lκζ2σ2

T∑
k=1

[
T∏

i=k+1

γ2k
(
1− µγi

2L

)]

≤ ∥w0 − w∗∥2 exp

−µ

2L

T∑
k=1

γk︸ ︷︷ ︸
:=C

+ 2Lκζ2σ2
T∑

k=1

γ2k exp

(
− µ

2L

T∑
i=k+1

γi

)
︸ ︷︷ ︸

:=D

(λ0 = 0 and 1− x < exp(−x))

Using Lemma 12 to lower-bound C then the first term can be bounded as

∥w0 − w∗∥2 exp
(
−µ

2L
C

)
≤ ∥w0 − w∗∥2 c2 exp

(
− T

2κ

γ

ln(T/τ)

)
where κ = L

µ and c2 = exp
(

1
2κ

2τ
ln(T/τ)

)
. Using Lemma 13 to upper-bound D, we have D ≤

16κ2c2(ln(T/τ))2

e2γ2T
then the second term can be bounded as

2Lκζ2σ2D ≤ 32Lσ2c2ζ
2κ3

e2
(ln(T/τ))2

γ2T

Hence

E[ET ] ≤∥w0 − w∗∥2 c2 exp
(
− T

2κ

γ

ln(T/τ)

)
+

32Lσ2c2ζ
2κ3

e2
(ln(T/τ))2

γ2T

By Theorem 10, then

E ∥wT−1 − w∗∥2 ≤ c2
cL

∥w0 − w∗∥2 exp
(
− T

2κ

γ

ln(T/τ)

)
+

32Lσ2c2ζ
2κ3

e2 cL

(ln(T/τ))2

γ2T

D.1. Helper Lemmas

Lemma 10 For ET := ∥wT − w∗ + λT (wT − wT−1)∥2 + 2ηTλT (f(wt−1) − f(w∗)), ET ≥
cL ∥wT−1 − w∗∥2 where cL = 4(1−γ)

µ2

[
1− exp

(
−µγ

2L

)]
Proof

E[ET ] = E[AT ] + E[BT ] ≥ E[BT ] = 2λT ηT E[f(wT−1)− f∗]
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Hence, we want to lower-bound λT ηT and we do this next

λT ηT =
1− γ

µ

[
1−

(
1− µγT+1

2L

)T
]

(Using the definition of ηk and λk)

≥ 1− γ

µ

[
1− exp

(
−T γT

µγ

2L

)]
(Since 1− x ≤ exp(−x))

=
1− γ

µ

[
1− exp

(
−µγ

2L

)]
(Since γ =

(
1
T

)1/T )

Putting everything together, and using strong-convexity of f

E[ET ] ≥
4(1− γ)

µ2

[
1− exp

(
−µγ

2L

)]
︸ ︷︷ ︸

:=cL

E ∥wT−1 − w∗∥2

We restate [21, Lemma 2, Lemma 5, and Lemma 6] that we used in our proof.

Lemma 11 If
σ2 := E[fi(w∗)− f∗

i ],

and each function fi is µ strongly-convex and L-smooth, then

σ2
B := EB[fB(w

∗)− f∗
B] ≤ κ

n− b

nb︸ ︷︷ ︸
:=ζ2

σ2.

Lemma 12

A :=

T∑
t=1

γt ≥ γT

ln(T/τ)
− 2τ

ln(T/τ)

Lemma 13 For γ =
(
τ
T

)1/T and any κ > 0,

T∑
k=1

γ2k exp

(
−1

κ

T∑
i=k+1

γi

)
≤ 4κ2c2(ln(T/τ))

2

e2γ2T

where c2 = exp
(

1
κ

2τ
ln(T/τ

)
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Appendix E. Proof of SHB with smoothness mis-estimation

Similar to the dependence of SGD on smoothness mis-estimation obtained by [21], Theorem 14
shows that with any mis-estimation on L we can still recover the convergence rate of O

(
exp

(−T
κ

)
+ σ2

T

)
to the minimizer w∗. When νL ≤ 1, ln(νL) ≤ 0, the last term will be zero which implies that the
rate matches Theorem 3 up to constant that depends on νL. When νL > 1, we pay a price of
mis-estimation of the unknown smoothness as ln(νL) > 0 so the last term is non-zero and the
convergence rate slows down by a factor that depends on νL.

Theorem 14 Under the same settings as Theorem 3, SHB with the estimated L̂ = L
νL

results in
the following convergence,

E ∥wT−1 − w∗∥2

≤ ∥w0 − w∗∥2 c2
cL

exp

(
−min{νL, 1}T

2κ

γ

ln(T/τ)

)
+

c2
cL

32Lκ3ζ2 ln(T/τ)

e2γ2T
×
[(

max

{
1,

ν2L
4L

}
ln(T/τ)σ2

)
+

(
max{0, ln(νL)}

(
σ2 + 2∆f

νL − 1

νLκ

))]
where c2 = exp

(
1
2κ

2τ
ln(T/τ)

)
, k0 = T ln(νL)

ln(T/τ) , and ∆f = maxi∈[k0] E[f(wi) − f∗] and cL =

4(1−γ)
µ2

[
1− exp

(
−µγ

2L

)]
Proof Suppose we estimate L to be L̂. Now redefine

ηk =
1

2L̂
γk

λ̂k =
1− 2ηL̂

ηkµ

(
1− (1− ηkµ)

k
)

Âk =
∥∥∥wk − w∗ + λ̂k(wk − wk−1)

∥∥∥2
B̂k = 2ηkλ̂k(f(wk−1)− f(w∗))

Êk = Âk + B̂k

Follow the proof of Theorem 9 until Theorem 9 first part step with the new definition,

E[Êk+1] ≤ (1− ηkµ)E[Êk] + 2Lκζ2η2kσ
2 + 2E[f(wk)− f∗]

(
2Lη2k − ηkλ̂k(1− ηkµ)− ηk + ηk+1

ˆλk+1

)
︸ ︷︷ ︸

G

(5)

28



NOISE-ADAPTIVE (ACCELERATED) STOCHASTIC HEAVY-BALL MOMENTUM

G can be bound as

G = 2Lη2k − ηkλ̂k(1− ηkµ)− ηk + ηk+1
ˆλk+1

= ηk(2Lηk − 1)− ηkλ̂k(1− ηkµ) + ηk+1
ˆλk+1

= ηk(2Lηk − 1) + ηk(1− 2L̂η)− 1− 2ηL̂

µ

(
1− (1− ηkµ)

k+1
)
+ ηk+1

ˆλk+1

(definition of λ̂k)

≤ 2ηk(Lηk − L̂η)− 1− 2ηL̂

µ

(
1− (1− ηk+1µ)

k+1
)
+ ηk+1

ˆλk+1 (ηk+1 ≤ ηk)

= 2ηk(Lηk − L̂η)− ηk+1
ˆλk+1 + ηk+1

ˆλk+1

= 2ηk(Lηk − L̂η)

Hence Eq. (5) can be written as

E[Êk+1] ≤ (1− ηkµ)E[Êk] + 2Lκζ2η2kσ
2 + 4E[f(wk)− f∗]ηk(Lηk − L̂η)

First case if νL ≤ 1 then Lηk − L̂η ≤ 0 and we will recover the proof of Theorem 3 with a slight
difference including νL.

E[Êk] ≤ ∥w0 − w∗∥2 c2 exp
(
−νLT

2κ

γ

ln(T/τ)

)
+

32Lκζ2σ2c2κ
2

e2
(ln(T/τ))2

γ2T

Second case if νL > 1
Let k0 = T ln(νL)

ln(T/τ) then for k < k0 regime, Lηk − L̂η > 0

E[Êk+1] ≤ (1− ηkµ)E[Êk] + 2Lκζ2η2kσ
2 + 4E[f(wk)− f∗]ηk(Lηk − L̂η)

Let ∆f = maxi∈[k0] E[f(wi)− f∗] and observe that Lηk − L̂η ≤ Lηk
νL−1
νL

then

E[Êk+1] ≤ (1− ηkµ)E[Êk] + 2Lκζ2η2kσ
2 + 4Lη2k∆f

νL − 1

νL

=(1− µνL
2L

γk)E[Êk] + 2L(κζ2σ2 + 2∆f
νL − 1

νL
)︸ ︷︷ ︸

c5

η2k

Since νL > 1

E[Êk+1] ≤ (1− µ

2L
γk)E[Êk+1] + c5η

2
k

Unrolling the recursion for the first k0 iterations we get

E[Êk0 ] ≤E[Ê0]
k0−1∏
k=1

(
1− µ

2L
γk
)
+ c5

k0−1∑
k=1

γ2k

k0−1∏
i=k+1

(
1− µ

2L
γi

)
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Bounding the first term using Lemma 12,
k0−1∏
k=1

(
1− µ

2L
γk
)
≤ exp

(
− µ

2L

γ − γk0

1− γ

)
Bounding the second term using Lemma 13 similar to [21, Section C3]

k0−1∑
k=1

γ2k

k0−1∏
i=k+1

(
1− µ

2L
γi

)
≤ exp

(
γk0

2κ(1− γ)

)
16κ2

e2γ2
k0 ln(T/τ)

2

T 2

Put everything together,

E[Êk0 ] ≤ ∥w0 − w∗∥2 exp
(
− µ

2L

γ − γk0

1− γ

)
+ c5 exp

(
γk0

2κ(1− γ)

)
16κ2

e2γ2
k0 ln(T/τ)

2

T 2

Now consider the regime k ≥ k0 where Lηk − L̂η ≤ 0

E[Êk+1] ≤ (1− µ

2L
γk)E[Êk] + 2Lκζ2σ2 ν

2
L

4L
γ2k

≤ (1− µ

2L
γk)E[Êk] +

ν2Lσ
2

2L
γ2k

Unrolling the recursion from k = k0 to T

E[ÊT ] ≤E[Êk0 ]
T∏

k=k0

(1− µ

2L
γk) +

ν2Lκζ
2σ2

2L

T∑
k=k0

γ2k

T∏
i=k+1

(1− µ

L
γi)

Bounding the first term using Lemma 12,
T∏

k=k0

(
1− µ

2L
γk
)
≤ exp

(
− µ

2L

γk0 − γT+1

1− γ

)
Bounding the second term using Lemma 13 similar to [21, Section C3]

T∑
k=k0

γ2k

T∏
i=k+1

(
1− µ

2L
γi

)
≤ exp

(
γT+1

2κ(1− γ)

)
16κ2

e2γ2
(T − k0 + 1) ln(T/τ)2

T 2

Hence, put everything together

E[ÊT ] ≤E[Êk0 ] exp
(
− µ

2L

γk0 − γT+1

1− γ

)
+

ν2Lκζ
2σ2

2L
exp

(
γT+1

2κ(1− γ)

)
16κ2

e2γ2
(T − k0 + 1) ln(T/τ)2

T 2

Combining the bounds for two regimes

E[ÊT ] ≤ exp

(
− µ

2L

γk0 − γT+1

1− γ

)(
∥w0 − w∗∥2 exp

(
− µ

2L

γ − γk0

1− γ

)
+ c5 exp

(
γk0

2κ(1− γ)

)
16κ2

e2γ2
k0 ln(T/τ)

2

T 2

)
+

ν2Lκζ
2σ2

2L
exp

(
γT+1

2κ(1− γ)

)
16κ2

e2γ2
(T − k0 + 1) ln(T/τ)2

T 2

= ∥w0 − w∗∥2 exp
(
− µ

2L

γ − γT+1

1− γ

)
+ c5 exp

(
γT+1

2κ(1− γ)

)
16κ2

e2γ2
k0 ln(T/τ)

2

T 2

+
ν2Lκζ

2σ2

2L
exp

(
γT+1

2κ(1− γ)

)
16κ2

e2γ2
(T − k0 + 1) ln(T/τ)2

T 2
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Using Lemma 12 to bound the first term and noting that γT+1

1−γ ≤ 2τ
ln(T/τ) , let c2 = exp

(
1
2κ

2τ
ln(T/τ)

)
E[ÊT ] ≤ ∥w0 − w∗∥2 exp

(
− T

2κ

γ

ln(T/τ)

)
+ c5

16c2κ
2

e2γ2
k0 ln(T/τ)

2

T 2
+

ν2Lκζ
2σ2

2L

16c2κ
2

e2γ2
(T − k0 + 1) ln(T/τ)2

T 2

Substitute the value of c5 and k0 we have

E[ÊT ] ≤ ∥w0 − w∗∥2 exp
(
− T

2κ

γ

ln(T/τ)

)
+

ν2Lκζ
2σ2

LT

8c2κ
2 ln(T/τ)2

e2γ2

+ 32

(
κζ2σ2 + 2∆f

νL − 1

νL

)
L

T

c2κ
2 ln(νL) ln(T/τ)

e2γ2

Combining the statements from νL ≤ 1 and νL > 1 gives us

E[ÊT ] ≤ ∥w0 − w∗∥2 c2 exp
(
−min{νL, 1}T

2κ

γ

ln(T/τ)

)
+

32Lc2κ
2 ln(T/τ)

e2γ2T

(
max

{
1,

ν2L
4L

}
ln(T/τ)κζ2σ2 +max{0, ln(νL)}

(
κζ2σ2 + 2∆f

νL − 1

νL

))
The next step is to remove the L̂ from the LHS, and obtain a better measure of sub-optimality. By
Theorem 10,

E[ÊT ] ≥
4(1− γ)

µ2

[
1− exp

(
−µγ

2L

)]
︸ ︷︷ ︸

:=cL

∥wT−1 − w∗∥2

Note that cL > 0 is constant w.r.t T . Hence,

E ∥wT−1 − w∗∥2 ≤ ∥w0 − w∗∥2 c2
cL

exp

(
−min{νL, 1}T

2κ

γ

ln(T/τ)

)
+

c2
cL

32Lκ2 ln(T/τ)

e2γ2T

(
max

{
1,

ν2L
4L

}
ln(T/τ)κζ2σ2 +max{0, ln(νL)}

(
κζ2σ2 + 2∆f

νL − 1

νL

))

Appendix F. Additional experiments

To conduct experiments for smooth, strongly-convex functions, we adopt the settings from [21].
Our experiment involves the SHB variant and other commonly used optimization methods. The
comparison will be based on two common supervised learning losses, squared loss for regression
tasks and logistic loss for classification. We will utilize a linear model with ℓ2-regularization λ

2 ∥w∥
2

in which λ = 0.01. To assess the performance of the optimization methods, we use ijcnn and rcv1
data sets from LIBSVM [3]. For each dataset, the training iterations will be fixed at T = 100n,
where n is the number of samples in the training dataset, and we will use a batch-size of 100. To
ensure statistical significance, each experiment will be run 5 times independently, and the average
result and standard deviation will be plotted. We will use the full gradient norm as the performance
measure and plot it against the number of gradient evaluations.
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The methods for comparison are: SGD with constant step-sizes (K-CNST), SGD with expo-
nentially decreasing step-sizes [21] (K-EXP), SGD with exponentially decreasing step-sizes and
SLS [19, 21] (SLS-EXP), SHB with constant step-sizes [17] (SHB-CNST), SHB with exponen-
tially decreasing step-sizes (SHB-EXP), SHB with exponentially decreasing step-sizes and SLS
(SHB-SLS-EXP).

(a) ijcnn (b) rcv1

(c)

Figure 2: Squared loss on ijcnn and rcv1 datasets

(a) ijcnn (b) rcv1

(c)

Figure 3: Logistic loss on ijcnn and rcv1 datasets

We observe that exponentially decreasing step-sizes for both SHB and SGD have close perfor-
mance and they both outperform their constant step-sizes variants. We also note that using stochastic
line-search by [19], SHB-SLS-EXP matches the performance of the variant with known smoothness.
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