
Can Language Models Be Used for Code Migration?

Anonymous ACL submission

Abstract

Large language models (LLMs) have demon-001
strated remarkable proficiency in handling a002
wide range of tasks within the software en-003
gineering domain, but their ability to per-004
form code migration—adapting code to dif-005
ferent environments—remains underexplored.006
In this work, we propose a novel bench-007
mark, CODEMENV: Code Migration Across008
Environment, designed to evaluate LLMs’009
performance in handling code migration tasks.010
The benchmark comprises 922 data points011
across 19 Python and Java packages, offer-012
ing three tasks to systematically evaluate code013
migration: identifying version-incompatible014
functions, determining function changes, and015
adapting code to target environments. Ex-016
perimental evaluation of CODEMENV across017
seven LLMs revealed an average pass@1 rate018
of 26.50%, with GPT-4O performing best at019
43.84%. We highlight our key findings as fol-020
lows: (i) LLMs are more familiar with newer021
function versions, making them better at mi-022
grating legacy code, and (ii) a logical inconsis-023
tency where LLMs sometimes identify irrele-024
vant function changes for the target migration025
environment.026

1 Introduction027

Large Language Models (LLMs) have shown im-028

pressive capabilities in tasks such as code gen-029

eration (Jiang et al., 2024; Du et al., 2024)030

and code translation (Yuan et al., 2024; Eniser031

et al., 2024). For example, state-of-the-art mod-032

els such as GPT-4 (Achiam et al., 2023), Claude-033

3 (The), and DeepSeek (Shao et al., 2024) have034

demonstrated exceptional performance across var-035

ious benchmarks, significantly outperforming tra-036

ditional methods.037

However, whether LLMs can effectively han-038

dle code migration—adapting code from one en-039

vironment to another—remains an underexplored040

question. Code migration is essential in many sce-041

After Numpy 1.26, numpy.compare_chararrays is deprecated in
favor of numpy.char.compare_ chararrays.

(a) code in Numpy 1.26

(b) code in Numpy 2.0

def has_common_char(arr1, arr2):
arr1 = numpy.array(arr1, dtype=str)

 arr2 = numpy.array(arr2, dtype=str)
 if len(arr1) != len(arr2):

raise ValueError("The lengths of the two arrays must be the same")
 comparison_result = numpy.compare_chararrays(arr1, arr2, '==')
 return numpy.any(comparison_result)

def has_common_char(arr1, arr2):
arr1 = numpy.array(arr1, dtype=str)

 arr2 = numpy.array(arr2, dtype=str)
 if len(arr1) != len(arr2):
 raise ValueError("The lengths of the two arrays must be the same")
 comparison_result = numpy.char.compare_chararrays(arr1, arr2, '==')
 return numpy.any(comparison_result)

The calling method has changed

Figure 1: The function compare_chararrays was
updated after Python version 1.26, altering its calling
method, emphasizing code adjustments for compatibil-
ity.

narios. For instance, when running code from ex- 042

ternal sources, such as a GitHub repository, users 043

often spend significant time configuring a com- 044

patible environment. If LLMs could assist in 045

seamlessly migrating code to an existing setup, 046

they could greatly reduce the manual effort re- 047

quired for environment configuration and com- 048

patibility adjustments. A key reason for code 049

incompatibility across different environments is 050

the challenge posed by evolving library struc- 051

tures, i.e., continuous maintenance and updates 052

of the library functions. For example, as shown 053

in Figure 1, the method call for the function 054

compare_chararrays has been updated from 055

the numpy package to the numpy.char pack- 056

age. Consequently, the function call differs be- 057

tween NumPy 1.26 and NumPy 2.0. 058

Research in this area is still in its early stages, 059

with only a few studies exploring the challenges 060

and potential solutions. Some benchmarks, like 061

CodeUpdate (Liu et al., 2024), focus on how to 062

inject knowledge of new API functions that the 063

model has never seen before. However, the func- 064

tions used in these studies are synthetically gener- 065

ated by GPT rather than sourced from real-world 066

1

libraries. This limitation makes it challenging to067

assess the feasibility of code migration in real-068

world scenarios.069

To bridge this gap, we propose a novel bench-070

mark. i.e., CODEMENV: Code Migration Across071

Environment. CODEMENV is constructed based072

on manually collected official function changes,073

with a total of 922 data points, involving Python074

and Java, across 19 packages. As illustrated in075

Figure 2, it comprises three tasks designed to eval-076

uate the ability of different models to perform code077

migration, detailed as follows:078

Task-1: Locate version-incompatible function.079

Given a piece of code and a target execution080

environment, the model must identify functions081

or code segments that may become incompatible082

across different versions.083

Task-2: Answering function changes. The model084

must describe the specific changes these functions085

have undergone across different versions.086

Task-3: Code migration. Finally, the model is087

required to modify the given code to ensure088

compatibility with the target environment by ad-089

dressing the identified version incompatibilities.090

For evaluation of CODEMENV, we experiment091

using seven different LLMs, with experimental re-092

sults highlighting: The average pass@1 rate for093

the migration task across seven models is 26.50%.094

Among them, GPT-4O stands out, achieving the095

highest performance with an average pass@1 rate096

of 43.84%. Our experimental analyses reveal fol-097

lowing interesting findings:098

(i) Familiarity with functions, LLMs exhibit a099

stronger familiarity with newer function versions100

than older ones, making them more effective at mi-101

grating legacy code to modern environments but102

less proficient at adapting newer code to older set-103

tings.104

(ii) Logical Inconsistency, LLMs exhibit a logi-105

cal inconsistency between function change iden-106

tification and migration requirements. For exam-107

ple, when migrating from version 1.16 to 2.0, the108

model answering a function change from version109

1.0, which is irrelevant to the target migration en-110

vironment.111

2 Related Work112

2.1 Large Language Models (LLMs)113

Large language models, with their vast parame-114

ters and training on extensive corpora, have show-115

cased impressive capabilities in code generation,116

translation, and completion. Proprietary models 117

such as GPT-4 (Achiam et al., 2023), Claude-3 118

(The), and Gemini (Reid et al., 2024) have demon- 119

strated exceptional performance in assisting users 120

with a wide range of programming tasks. Addi- 121

tionally, open-source models like Qwen2.5-Coder 122

(Team, 2024) have outperformed many models 123

with significantly more parameters by leveraging 124

synthetic data during training. Other open-source 125

models like Llama-3.1 (Abhimanyu Dubey et al., 126

2024), Phi-3 (Abdin et al., 2024) also perform 127

well, with DeepSeek (Shao et al., 2024) even sur- 128

passing most proprietary models. 129

In this paepr, we evaluate the knowledge of 130

these large models about function changes and 131

their ability to migrate code. 132

2.2 Knowledge Editing 133

The research on knowledge editing aims to ef- 134

ficiently modify model parameters to update its 135

knowledge. Most studies in this field focus 136

on editing natural language knowledge. ROME 137

(Meng et al., 2022a) and MEMIT (Meng et al., 138

2022b) adopt a locate-then-edit paradigm, where 139

the parameter position of the knowledge is first lo- 140

cated, and then the parameter is updated to modify 141

the model’s knowledge. Some work (Zhong et al., 142

2023; Cheng et al., 2024) adopts plan-and-solve 143

paradigm, where complex problems are decom- 144

posed into the knowledge required for each step, 145

which are then solved one by one. 146

There is less research on changes to func- 147

tion: CodeUpdateArena (Liu et al., 2024) intro- 148

duces a benchmark for updating LLMs with new 149

API function knowledge to solve program synthe- 150

sis tasks. CLMEEval (Li et al., 2024) propose 151

a benchmark for evaluating model editing tech- 152

niques on LLMs4Code, and proposes A-GRACE, 153

an enhanced method for better generalization in 154

code knowledge correction. Some work (Zhou 155

et al., 2022; Su et al., 2024; Hsieh et al., 2023) 156

uses retrieval-augmented approaches (Lewis et al., 157

2020; Guu et al., 2020) to provide models with 158

code change knowledge for improving code gen- 159

eration. 160

CODEMENV does not provide the model with 161

knowledge of function changes within the context 162

during evaluation. Instead, we focus more on eval- 163

uating how well the model utilizes its own knowl- 164

edge of function changes to perform code migra- 165

tion. 166

2

TASK 1 Locating Version-Incompatible Function
The running environment of this code is Numpy 2.0. Please locate the API that locates
the functions that are imcompatible with the environment.

TASK 2 Answring Function Changes
What changes have been made to this function?

Rigorous Unit Tests (task3)Agent Tests (task 1&2)

def has_common_char(arr1, arr2):
arr1 = numpy.array(arr1, dtype=str)

 arr2 = numpy.array(arr2, dtype=str)
 if len(arr1) != len(arr2):

raise ValueError("The lengths of the two arrays must be the same")
 comparison_result = numpy.compare_chararrays(arr1, arr2, '==')
 return numpy.any(comparison_result)

This function has risks.

numpy.compare_chararrays is deprecated after Numpy 1.4 Wrong！

TASK 3 Code Migration
Please provide the code that fixes the above error so that it can run normally under
version of Numpy 2.0.

Figure 2: A data example of CODEMENV, which in-
cludes three tasks to evaluate LLMs on environment-
related programming skills.

3 CODEMENV167

Despite the challenges environmental issues pose168

for programmers, there is a lack of systematic169

evaluation of model capabilities in code migra-170

tion across different environments. To address this171

gap, we propose CODEMENV: Code Migration172

Across Environments. CODEMENV assesses a173

model’s understanding of function usage differ-174

ences across versions and its ability to perform175

cross-version code migration. This section pro-176

vides a detailed introduction to CODEMENV.177

3.1 Task Definition178

CODEMENV use three tasks to comprehensively179

evaluate the model’s capabilities to perform code180

migration.181

Task-1: Locate version-incompatible function.182

The first task presents a piece of code along with a183

target environment version. The model must iden-184

tify functions that are incompatible with the speci-185

fied environment. CODEMENV includes two diffi-186

culty levels: easy, featuring a single incompatible187

function, and hard, involving multiple incompati-188

ble functions.189

Task-2 Answering function changes. This190

task requires the model to output version-related191

changes for the identified incompatible function.192

Specifically, it should determine how the function193

has evolved across versions, such as deprecation,194

parameter modifications, or replacement by a new195

function.196

Task-3 Code Migration. This task requires the197

model to adjust the given code to ensure compati- 198

bility with the target environment. Code migration 199

scenarios fall into two categories: 200

(a) NEW2OLD. The target environment version 201

is lower than the original, requiring adaptation of 202

newer code to run in a legacy environment. 203

204

(b) OLD2NEW. The original environment version 205

is lower than the target environment version. This 206

scenario involves upgrading older code to be com- 207

patible with a newer environment. 208

3.2 Dataset Statistics 209

CODEMENV includes two programming lan- 210

guages: Python and Java. The Python dataset con- 211

sists of 11 packages with a total of 587 data points, 212

categorized into two difficulty levels: easy and 213

hard. The easy category contains 396 data points, 214

where only a single line of code is incompatible 215

with the target environment. The hard category 216

contains 191 data points, where there are k lines 217

of incompatible code k ∈ {2, 3}. The Java dataset 218

consists of 8 packages with 335 data points. The 219

Java dataset only contains easy difficulty because 220

we find that its incompatible functions have poor 221

linkage and it is difficult to make difficult data. See 222

Appendix B for the details of data statistics. 223

3.3 Function Changes 224

We divide function changes into three types: 225

• Addition (None → f): A new function f is 226

introduced in a later version, meaning older 227

environments cannot use it 228

• Deprecation (f → None): The function f 229

is no longer supported after a certain version, 230

making it unusable in newer environments 231

• Replacement (f → f ′): The functions f has 232

been modified to f ′, with changes such as al- 233

terations to the calling method, the number of 234

function parameters, and other adjustments. 235

See Table 2 for the distribution of the types of 236

changes we collected. 237

3.4 Evaluation 238

In this section, we introduce some details of our 239

evaluation. We mainly use the following two eval- 240

uation methods. 241

Agent-based Evaluation. To verify whether 242

the LLM correctly identifies version-incompatible 243

3

Step 1 Data Collection
Data

Example

Step 2 Code Generation

LLM

After Numpy 1.26, np.compare_chararrays is deprecated in favor
of np.char.compare_chararrays

Function Changes:

Function description:

Function changes

Function description
Prompt

def activation_stats(input_tensor):
sigmoid_output = torch.nn.functional.sigmoid(input_tensor)
relu_output = torch.nn.functional.relu(input_tensor)
...

You are a very experienced
programmer who is familiar
with the functions...

Step 3 Test data Generation

Code
Code description

Please use python code to help me with a function that
processes a 1-dimensional tensor using certain activation
functions from the torch library.

Problem description:

Code:

Prompt
LLM

Generate
Test

Cases

Check
whether
runnable

Try three times until all three cases can run

Figure 3: The construction process of CODEMENV. Step 1: We collect function change information and function
descriptions from the official website; Step 2: Based on the collected functions, generate code that can run in the
original version and its problem description; Step 3: Generate 3 test cases for each data and repeat three times
until all cases can run correctly.

functions and whether the change knowledge pro-244

vided for these functions is accurate, we use an245

agent-based evaluation approach. We provide246

each agent with the correct answers, including247

the incompatible functions and the changes these248

functions underwent. The agent’s task is to eval-249

uate whether the model’s answers are correct. It250

does this by comparing the model’s output with251

the correct answers based on the evaluation crite-252

ria we provide.253

For the first task, we require the correct identi-254

fication of all functions that are incompatible with255

the environment. Missing even one is considered256

a failure. For the second task, we mainly con-257

sider three aspects: First, whether the model can258

correctly identify the type of change, i.e., dep-259

recated, added, or replaced. Next, whether the260

model can accurately identify what the function261

has been replaced by, skipping this step for dep-262

recated and added functions. Finally, the third as-263

pect is whether the model can accurately provide264

the version number in which the change occurred.265

A difference of less than 0.5 in version numbers is266

considered correct.267

Unit Tests. To verify the correctness of the mi-268

grated code, we prepare three test cases for each269

data. These test cases ensure that the modified270

code not only eliminates environment-related is-271

sues but also preserves its original functionality.272

We ensure correctness by comparing the answers273

obtained from executing the migrated code in the274

target environment with the answers in the test275

cases. The code is considered correct if all three276

test cases pass.277

See Appendix A for the details of prompts for278

evaluation.279

Datasets 1-incom. 2-incom. 3-incom. Total

Easy(Py.) 396 - - 396
Hard(Py.) - 103 88 191
Java 335 - - 335

Table 1: Statistics of incompatible functions of CODE-
MENV .

Package Replacement Deprecation Addition

numpy 2 8 -
pandas - 12 13
tensorflow 87 2 2
python 9 7 7
math - 1 17
re - - 2
os - - 14
random - - 2
csv - - 1
itertools - - 5
torch - 5 5

total 98 35 79

Table 2: Statistics of change types collected by differ-
ent packages.

3.5 Process-flow 280

Figure 3 illustrates the process of constructing our 281

dataset, which consists of three main steps. 282

Step 1 Data Collection. Our first step is to collect 283

a set of functions along with their changes, func- 284

tional descriptions, and supported version ranges. 285

To achieve this, we identify which functions 286

have changed by reviewing the version release 287

notes on the official website of each package. 288

Here, we can determine in which version these 289

functions were modified and what changes were 290

made. At the same time, we record the functional 291

4

descriptions and usage of these functions, mak-292

ing it easier to generate code based on them later.293

Official documentations do not always specify the294

version ranges in which these functions are com-295

patible, thus we determine them through manual296

execution and verification.297

Through our analysis, we identified a total of298

212 functions for Python datasets and 114 func-299

tions for Java datasets, which provide essential300

data support for the subsequent code generation301

process. The websites from which we collected302

data are organized in Appendix.303

Step 2 Code Generation. The core of our ap-304

proach in this step is to provide the powerful305

model GPT-4 with functions and their usage meth-306

ods, allowing it to generate code that calls these307

functions.308

Depending on the type of change, we will de-309

termine whether to generate the OLD2NEW or310

NEW2OLD scenario. For deprecation (f →311

None), we provide the model with the function312

f before it was deprecated and ask it to generate313

the code. The target environment version is then314

selected as the version after the change, where the315

function f can no longer be used (OLD2NEW Sce-316

nario). For addition (None → f), we provide the317

model with the function f that was newly intro-318

duced and ask it to generate the code. The target319

environment version is selected as the version be-320

fore the change, where the function is unavailable321

(NEW2OLD Scenario). For replacement (f → f ′),322

a similar approach to the previous steps can be323

used to generate two sets of data for the functions324

before and after the change, corresponding to the325

OLD2NEW and NEW2OLD scenarios.326

In addition to generating code, we also require327

the model to generate the problem and input range328

corresponding to this code. These elements are329

crucial for the third step, where we generate test330

cases.331

Step 3 Test Cases Generation. In this step, we332

construct the test cases. We provide GPT-4 with333

the code, problem description, and input range.334

A total of three test cases are generated. These335

test cases are then used to verify the correctness of336

the code execution and obtain the output results.337

However, we find that even though we provide the338

model with the correct input data range, the gener-339

ated input data might be problematic. Therefore,340

we provide the compilation information error as341

feedback to the model to fix the test cases. Re-342

peat this step three times until all three cases pass, 343

otherwise discard the code. For the Python dataset 344

of easy difficulty, we generated 629 code samples 345

in the previous step, with 396 remaining after fil- 346

tering. For the hard-difficulty Python dataset, 441 347

code samples were generated, leaving 191 after fil- 348

tering. 349

4 Experimentation 350

In this section, we introduce the experimental set- 351

tings and the analysis results of our experiments. 352

4.1 Experimental Settings 353

Large Models. We conduct experiments on seven 354

LLMs, including three proprietary models:GPT- 355

TURBO-3.5 (Ye et al., 2023), GPT-4O-MINI 356

(OpenAI et al., 2024a), GPT-4O (OpenAI et al., 357

2024b), and four open-source models: LLAMA- 358

3.1-8B-INSTRUCT (Abhimanyu Dubey et al., 359

2024), LLAMA-3.1-70B (Abhimanyu Dubey 360

et al., 2024), QWEN2.5-CODER-7B-INSTRUCT 361

(Team, 2024) and DEEPSEEK-R1 (Shao et al., 362

2024). 363

Evaluation Metrics. we use Pass@k (Hendrycks 364

et al., 2021) to evaluate the effectiveness of differ- 365

ent models. Pass@k refers to the probability that 366

at least one correct solution is included among the 367

top k generated solutions for each problem: 368

Pass@k := E

[
1−

(
n−c
k

)(
n
k

)]
(1) 369

where n is the number of coding solutions, c is the 370

number of passed solutions, and k is the number 371

of solutions being evaluated. For task-1 and task- 372

2, we set k = 1. For task-3, we set k ∈ {1, 5}. 373

Experiment Setup. For all LLMs, we set the gen- 374

eration temperature to 0.7, the maximum gener- 375

ated length is 2048 tokens. For proprietary models 376

such as the GPT series, we conduct evaluations us- 377

ing the APIs provided on their official website. For 378

smaller open-source models, we deploy them lo- 379

cally with two RTX 4090 GPUs. For larger open- 380

source models, such as LLAMA-3.1-70B, we ac- 381

cess them through APIs provided by third-party 382

websites 1. 383

4.2 Main Experiments 384

We present the experimental results for Task 1 and 385

Task 2 in Table 3. 386

1https://cloud.siliconflow.cn/models

5

https://cloud.siliconflow.cn/models

Base Model Task 1 Locating Function Task 2 Answering Change

Easy(Py.) Hard(Py.) Java Avg. Easy(Py.) Hard(Py.) Java Avg.
GPT-TURBO-3.5 85.10 32.98 80.89 66.32 26.01 13.09 63.28 34.13
GPT-4O-MINI 77.21 21.99 84.77 61.32 18.73 6.28 68.95 31.32
GPT-4O 70.71 25.65 81.19 59.18 22.22 13.61 75.22 37.02
LLAMA-3.1-8B 70.71 21.99 67.16 53.29 16.16 2.09 53.13 23.79
LLAMA-3.1-70B 75.51 29.84 81.19 62.18 22.73 8.38 75.22 35.44
QWEN2.5-CODER-7B 66.16 15.71 79.40 53.76 16.92 1.05 56.42 24.8
DEEPSEEK-CHAT 78.48 26.17 82.08 62.24 38.99 16.75 70.44 42.06

Table 3: Experiment results for function locating and function change answering task. We bold the best result and
underline the second-best result.

Overall Performance of Function Locating. The387

average locating success rate for the seven LLMs388

across two languages is 59.76%. Both Easy(Py.)389

and Java datasets show relatively high scores, with390

averages of 74.84% and 79.53%, respectively.391

However, for the Hard(Py.) dataset, where there392

are multiple incompatible functions, all models393

perform poorly. For example, QWEN2.5-CODER-394

7B only achieves a pass rate of 15.71%. We find395

that the low performance is due to the models’396

inability to successfully locate all incompatible397

functions, leading to missed cases.398

The model with the best performance on the399

locating task is GPT-TURBO-3.5, with an aver-400

age locating success rate of 66.32%. Compared401

with other models, it can better cope with the lo-402

cating task of Python language, both Easy(Py.)403

and Hard(Py.) tasks achieve the first 85.10% and404

32.98% pass rates.405

Overall Performance of Answering Change.406

The pass rate for successfully identifying function407

changes is lower than that for locating, with an av-408

erage score of 32.65% across the seven models. In409

our evaluation, we find that although the models410

may successfully locate the function, they often411

output incorrect changes. For example, when the412

change is a deprecating type, the model incorrectly413

classifies it as a replacement change, answering414

that the function has been replaced by another.415

Although the success rate of most models in an-416

swering is only about half of their locating success417

rate, two models stand out: DEEPSEEK-CHAT418

and GPT-4O. The former achieves a response suc-419

cess rate of 42.06%, the highest among all mod-420

els, while the latter reaches a response success rate421

of 37.02%, ranking second. DEEPSEEK-CHAT422

not only accurately identifies the type of change423

but also provides accurate responses regarding the424

version where the change occurs.425

Overall Performance of Code Migration. Table 426

4 illustrates the results of code migration. In the 427

code migration OLD2NEW scenario, the average 428

pass@1 success rate for the seven LLMs at the 429

easy difficulty level is 33.56%, while at the hard 430

difficulty level, the pass@1 rate is 16.20%. As 431

the number of attempts increases, the success rate 432

rises significantly, with pass@5 reaching 45.5% 433

for the easy difficulty and 26.47% for the hard dif- 434

ficulty. 435

In the code migration NEW2OLD scenario, the 436

average pass@1 and pass@5 success rate for the 437

seven LLMs are only 12.77% and 17.30% at the 438

hard difficulty level. In this case, increasing the 439

number of model attempts did not improve the per- 440

formance. 441

The model that performs best in the OLD2NEW 442

migration is GPT-4O, achieving impressive re- 443

sults with pass@1 rate of 43.84% and pass@5 rate 444

of 59.59% at the easy difficulty level. However, 445

GPT-TURBO-3.5, which performs best in locat- 446

ing task, does not deliver outstanding results in 447

code migration, especially at the hard difficulty 448

level, where its pass@1 rate is only 7.32%. This 449

shows that GPT-TURBO-3.5 is difficult to com- 450

plete code migration, but it can help users find 451

functions that are not compatible with the environ- 452

ment. 453

Preference of New Functions. We find that 454

LLMs are more familiar with the new functions 455

compared to the old ones. Our experimental 456

results show that LLMs perform better in the 457

OLD2NEW task compared to the NEW2OLD task. 458

For example, GPT-4O achieves a pass@1 rate of 459

44.52% in the OLD2NEW task at easy difficulty, 460

while for NEW2OLD at the same difficulty, it only 461

reaches 28.00%. A possible reason for this is 462

that the demand for writing code for new environ- 463

ments is more widespread, and during the train- 464

6

Base Model
Task 3 Migration (OLD2NEW) Task 3 Migration (NEW2OLD)

Easy(Py.) Hard(Py.) Easy(Py.) Hard(Py.)

Pass@1 Pass@5 Pass@1 Pass@5 Pass@1 Pass@5 Pass@1 Pass@5
GPT-TURBO-3.5 26.03 34.93 7.32 10.98 24.80 38.40 7.34 9.17
GPT-4O-MINI 30.82 49.32 15.85 26.83 29.60 44.00 11.93 16.51
GPT-4O 43.84 59.59 26.83 47.56 31.60 43.60 22.94 27.52
LLAMA-3.1-8B 23.97 28.08 8.54 10.97 20.80 24.00 7.34 11.93
LLAMA-3.1-70B 32.88 45.89 19.51 35.37 28.80 40.80 17.43 19.27
QWEN2.5-CODER-7B 32.19 46.58 14.63 24.39 29.20 38.00 8.26 12.84
DEEPSEEK-CHAT 41.20 54.11 20.73 29.27 29.60 39.60 14.68 23.85

Table 4: Experiment results for code migration, we report the results in two cases: OLD2NEW and NEW2OLD.

22.7%
41.7%

13.6%
22.0%

Easy(Py.)

CallError RunError WrongAnswer Success

64.4%

24.6%3.1%
7.9%

Hard(Py.)

37.1%17.2%

9.6%
36.1%

Easy(Py.)

33.0%23.0%

19.4%24.6%

Hard(Py.)

28.0%24.0%

12.6%
35.4%

Easy(Py.)

43.5%

33.0%
6.3%

17.3%

Hard(Py.)

(a) Llama-3.1-8B-Instruct (b) GPT-4o (c) Deepseek-Chat

Figure 4: Error Analysis of Code Migration. CallError represents a function where an incompatible the en-
vironment is still called. RunError represents that the migrated code enters an infinite loop during execution.
WrongAnswer represents this code runs normally and gets the result, but it is different from the standard answer.
We combine the experimental results of NEW2OLD and OLD2NEW in this pie chart.

ing process, the proportion of new functions in465

the training data is higher than that of old func-466

tions, leading to this function preference. Further-467

more, this trend varies in magnitude across differ-468

ent models. For instance, GPT-4O-MINI shows a469

smaller performance gap between NEW2OLD and470

OLD2NEW.471

Error Analysis for Code Migration. As shown472

in Figure 4, a significant portion of the data fail-473

ures can be attributed to CallError, where a474

function incompatible with the environment is still475

being invoked. For example, 50.8% of the code476

generated by LLAMA-3.1-8B for the Hard(Py.)477

migration task fails due to CallError. These478

errors occur either because the incompatible func-479

tion was not successfully located or because, even480

when the model correctly identifies the incompati-481

ble function, it generates code that calls an incom-482

patible one instead.483

Another portion of the failed code is due to484

RunError, where the code compiles correctly485

but enters an infinite loop, causing it to run for486

an excessively long time. For instance, 33.0% of487

the code generated by DEEPSEEK-CHAT failed488

due to this error. 489

Additionally, some migrated code, while calling 490

functions compatible with the environment and 491

passing compilation successfully, produces results 492

that deviate from the expected output, leading to a 493

WrongAnswer. For instance, 19.4% of the code 494

generated by GPT-4O failed due WrongAnswer. 495

Case Studies. Figure 5 illustrates the responses 496

of four models performing the locating and an- 497

swering change tasks. In this example, two mod- 498

els fail to locate, namely LLAMA-3.1-8B and 499

GPT-TUBRO-3.5. They locate another function 500

np.array2string in the code. These two 501

models provide the change knowledge for this 502

function at version of 1.17 and 1.18, but the tar- 503

get environment is 1.16, which does not affect 504

the function’s operation in the target environment. 505

Although this function did undergo a change in 506

NumPy 1.18, it does not affect its functionality 507

in the target version, Numpy 1.16. From this ex- 508

ample, we can see that one possible reason for 509

the model’s error is an incorrect version compar- 510

ison, specifically the confusion between the sizes 511

of NumPy 1.16 and 1.18. 512

7

def custom_array_representation(arr: np.ndarray, precision: int, threshold: int):
 import numpy as np
 np.set_printoptions(precision=precision, threshold=threshold)
 formatted_array = np.array2string(arr)
 return formatted_array

LLAMA-3.1-8B LLAMA-3.1-70B

GPT-TURBO-3.5 GPT-4o-MINI

np.set_printoptionsLocated
Function:

Function
Change:

Original
version Numpy 2.0

Target
version Numpy 1.16

np.set_string_function was
the standard way to apply the
set_string_function function;

np.array2stringLocated
Function:

Function
Change:

The function
numpy.array2string has been
deprecated since numpy
version 1.17 and will be
removed in a future version.

np.set_printoptionsLocated
Function:
Function
Change:

After Numpy 2.0,
np.set_string_function is
deprecated in
favor np.set_printoptions;

np.array2stringLocated
Function:
Function
Change:

The function np.array2string
has been changed to
np.array_str in numpy version
1.18.

Wrong Locating!

Wrong Locating! Wrong Change!

Figure 5: Case Study. We plot an example from Easy (Python) datasets and present the response of task-1 and
task-2 for four LLMs. In this case study, we observe the phenomenon of logical inconsistency, where LLAMA-
3.1-8B and GPT-TURBO-3.5 provide function changes that are unrelated to the migration process.

Two models, LLAMA-3.1-70B and GPT-513

4O-MINI, successfully locate functions514

np.set_printoptions that are incompatible515

with NumPy 1.16. However, GPT-4o-mini’s516

response of function changes is unsatisfactory, as517

it failed to accurately provide the version in which518

the function change occurred. This problem is519

actually quite common in our evaluation, where520

the version number provided for the change is521

different from the actual version.522

5 Conclusion523

In this paper, we introduce CODEMENV, a novel524

benchmark designed to evaluate whether language525

models can perform code migration, i.e., adapt-526

ing code to the desired environment. CODEMENV527

provides three tasks that systematically assess the528

model’s ability to accurately locate incompatible529

functions, answering function change knowledge,530

and, finally, correctly migrate the code.531

We systematically evaluate seven LLMs on532

CODEMENV, and experimental results show the533

model’s understanding of old version functions is534

lower than that of new version functions, making 535

it more difficult to perform the NEW2OLD mi- 536

gration task effectively. In addition, through de- 537

tailed error analysis, we reveal the phenomenon of 538

logical inconsistency in code migration, where the 539

changes provided by the model are not helpful for 540

our migration task. 541

In future, we plan to expand the dataset to in- 542

clude more packages and programming languages, 543

as well as increase the code length to a repository 544

level. 545

Limitations 546

CODEMENV is relatively small, particularly the 547

Java dataset. Additionally, the language features 548

of Java make it challenging to establish rigorous 549

unit tests. CODEMENV currently involves only 550

two programming languages, Python and Java. We 551

plan to add more programming languages in the 552

future. 553

Ethics Statement 554

Throughout our work, we have strictly adhered 555

to ethical standards. The creation of our dataset 556

8

also complies with open-source regulations, and557

the data has undergone manual checks to prevent558

harmful content.559

References560

The claude 3 model family: Opus, sonnet, haiku.561

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad562
Awan, Jyoti Aneja, Ahmed Awadallah, Hany Has-563
san Awadalla, Nguyen Bach, Amit Bahree, Arash564
Bakhtiari, Harkirat Singh Behl, Alon Benhaim,565
Misha Bilenko, and Johan Bjorck. 2024. Phi-3 tech-566
nical report: A highly capable language model lo-567
cally on your phone. ArXiv, abs/2404.14219.568

Abhinav Jauhri Abhimanyu Dubey et al. 2024. The569
llama 3 herd of models. ArXiv, abs/2407.21783.570

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama571
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,572
Diogo Almeida, Janko Altenschmidt, Sam Altman,573
Shyamal Anadkat, et al. 2023. Gpt-4 technical re-574
port. arXiv preprint arXiv:2303.08774.575

Keyuan Cheng, Gang Lin, Haoyang Fei, Yuxuan Zhai,576
Lu Yu, Muhammad Asif Ali, Lijie Hu, and Di Wang.577
2024. Multi-hop question answering under temporal578
knowledge editing. ArXiv, abs/2404.00492.579

Xueying Du, Mingwei Liu, Kaixin Wang, Han-580
lin Wang, Junwei Liu, Yixuan Chen, Jiayi Feng,581
Chaofeng Sha, Xin Peng, and Yiling Lou. 2024.582
Evaluating large language models in class-level code583
generation. 2024 IEEE/ACM 46th International584
Conference on Software Engineering (ICSE), pages585
982–994.586

Hasan Ferit Eniser, Hanliang Zhang, Cristina David,587
Meng Wang, Maria Christakis, Brandon Paulsen,588
Joey Dodds, and Daniel Kroening. 2024. Towards589
translating real-world code with llms: A study of590
translating to rust. ArXiv, abs/2405.11514.591

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-592
pat, and Ming-Wei Chang. 2020. Realm: Retrieval-593
augmented language model pre-training. ArXiv,594
abs/2002.08909.595

Dan Hendrycks, Steven Basart, Saurav Kadavath,596
Mantas Mazeika, Akul Arora, Ethan Guo, Collin597
Burns, Samir Puranik, Horace He, Dawn Xiaodong598
Song, and Jacob Steinhardt. 2021. Measuring599
coding challenge competence with apps. ArXiv,600
abs/2105.09938.601

Cheng-Yu Hsieh, Sibei Chen, Chun-Liang Li, Yasuhisa602
Fujii, Alexander J. Ratner, Chen-Yu Lee, Ranjay603
Krishna, and Tomas Pfister. 2023. Tool documen-604
tation enables zero-shot tool-usage with large lan-605
guage models. ArXiv, abs/2308.00675.606

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and607
Sunghun Kim. 2024. A survey on large language608
models for code generation. ArXiv, abs/2406.00515.609

Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio 610
Petroni, Vladimir Karpukhin, Naman Goyal, Hein- 611
rich Kuttler, Mike Lewis, Wen tau Yih, Tim Rock- 612
täschel, Sebastian Riedel, and Douwe Kiela. 2020. 613
Retrieval-augmented generation for knowledge- 614
intensive nlp tasks. ArXiv, abs/2005.11401. 615

Xiaopeng Li, Shangwen Wang, Shasha Li, Jun Ma, Jie 616
Yu, Xiaodong Liu, Jing Wang, Bing Ji, and Weimin 617
Zhang. 2024. Model editing for llms4code: How far 618
are we? ArXiv, abs/2411.06638. 619

Zeyu Leo Liu, Shrey Pandit, Xi Ye, Eunsol Choi, 620
and Greg Durrett. 2024. Codeupdatearena: Bench- 621
marking knowledge editing on api updates. ArXiv, 622
abs/2407.06249. 623

Kevin Meng, David Bau, Alex Andonian, and Yonatan 624
Belinkov. 2022a. Locating and editing factual as- 625
sociations in gpt. Advances in Neural Information 626
Processing Systems, 35:17359–17372. 627

Kevin Meng, Arnab Sen Sharma, Alex J Andonian, 628
Yonatan Belinkov, and David Bau. 2022b. Mass- 629
editing memory in a transformer. In The Eleventh 630
International Conference on Learning Representa- 631
tions. 632

OpenAI, Josh Achiam, Steven Adler, Sandhini Agar- 633
wal, Lama Ahmad, Ilge Akkaya, Florencia Leoni 634
Aleman, et al. 2024a. Gpt-4 technical report. 635

OpenAI, Aaron Hurst, Adam Lerer, Adam P. Goucher, 636
Adam Perelman, Aditya Ramesh, Aidan Clark, 637
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec 638
Radford, Aleksander Mądry, Alex Baker-Whitcomb, 639
Alex Beutel, et al. 2024b. Gpt-4o system card. 640

Machel Reid, Nikolay Savinov, Denis Teplyashin, 641
Dmitry Lepikhin, Timothy P. Lillicrap, Jean- 642
Baptiste Alayrac, Radu Soricut, Angeliki Lazari- 643
dou, Orhan Firat, Julian Schrittwieser, Ioannis 644
Antonoglou, Rohan Anil, Sebastian Borgeaud, and 645
Andrew M. 2024. Gemini 1.5: Unlocking multi- 646
modal understanding across millions of tokens of 647
context. ArXiv, abs/2403.05530. 648

Zhihong Shao, Damai Dai, Daya Guo, Bo Liu (Ben- 649
jamin Liu), Zihan Wang, and Huajian Xin. 2024. 650
Deepseek-v2: A strong, economical, and effi- 651
cient mixture-of-experts language model. ArXiv, 652
abs/2405.04434. 653

Hongjin Su, Shuyang Jiang, Yuhang Lai, Haoyuan Wu, 654
Boao Shi, Che Liu, Qian Liu, and Tao Yu. 2024. 655
Evor: Evolving retrieval for code generation. In 656
Conference on Empirical Methods in Natural Lan- 657
guage Processing. 658

Qwen Team. 2024. Qwen2.5: A party of foundation 659
models. 660

Junjie Ye, Xuanting Chen, Nuo Xu, Can Zu, Zekai 661
Shao, Shichun Liu, Yuhan Cui, Zeyang Zhou, Chao 662
Gong, Yang Shen, Jie Zhou, Siming Chen, Tao Gui, 663

9

https://api.semanticscholar.org/CorpusID:268232499
https://api.semanticscholar.org/CorpusID:269293048
https://api.semanticscholar.org/CorpusID:269293048
https://api.semanticscholar.org/CorpusID:269293048
https://api.semanticscholar.org/CorpusID:269293048
https://api.semanticscholar.org/CorpusID:269293048
https://api.semanticscholar.org/CorpusID:271571434
https://api.semanticscholar.org/CorpusID:271571434
https://api.semanticscholar.org/CorpusID:271571434
https://api.semanticscholar.org/CorpusID:268819534
https://api.semanticscholar.org/CorpusID:268819534
https://api.semanticscholar.org/CorpusID:268819534
https://api.semanticscholar.org/CorpusID:269128474
https://api.semanticscholar.org/CorpusID:269128474
https://api.semanticscholar.org/CorpusID:269128474
https://api.semanticscholar.org/CorpusID:269922036
https://api.semanticscholar.org/CorpusID:269922036
https://api.semanticscholar.org/CorpusID:269922036
https://api.semanticscholar.org/CorpusID:269922036
https://api.semanticscholar.org/CorpusID:269922036
https://api.semanticscholar.org/CorpusID:211204736
https://api.semanticscholar.org/CorpusID:211204736
https://api.semanticscholar.org/CorpusID:211204736
https://api.semanticscholar.org/CorpusID:234790100
https://api.semanticscholar.org/CorpusID:234790100
https://api.semanticscholar.org/CorpusID:234790100
https://api.semanticscholar.org/CorpusID:260351459
https://api.semanticscholar.org/CorpusID:260351459
https://api.semanticscholar.org/CorpusID:260351459
https://api.semanticscholar.org/CorpusID:260351459
https://api.semanticscholar.org/CorpusID:260351459
https://api.semanticscholar.org/CorpusID:270214176
https://api.semanticscholar.org/CorpusID:270214176
https://api.semanticscholar.org/CorpusID:270214176
https://api.semanticscholar.org/CorpusID:218869575
https://api.semanticscholar.org/CorpusID:218869575
https://api.semanticscholar.org/CorpusID:218869575
https://api.semanticscholar.org/CorpusID:273963883
https://api.semanticscholar.org/CorpusID:273963883
https://api.semanticscholar.org/CorpusID:273963883
https://api.semanticscholar.org/CorpusID:271064726
https://api.semanticscholar.org/CorpusID:271064726
https://api.semanticscholar.org/CorpusID:271064726
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2410.21276
https://api.semanticscholar.org/CorpusID:268297180
https://api.semanticscholar.org/CorpusID:268297180
https://api.semanticscholar.org/CorpusID:268297180
https://api.semanticscholar.org/CorpusID:268297180
https://api.semanticscholar.org/CorpusID:268297180
https://api.semanticscholar.org/CorpusID:269613809
https://api.semanticscholar.org/CorpusID:269613809
https://api.semanticscholar.org/CorpusID:269613809
https://api.semanticscholar.org/CorpusID:267750919
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/

Qi Zhang, and Xuanjing Huang. 2023. A compre-664
hensive capability analysis of gpt-3 and gpt-3.5 se-665
ries models.666

Zhiqiang Yuan, Weitong Chen, Hanlin Wang, Kai Yu,667
Xin Peng, and Yiling Lou. 2024. Transagent: An668
llm-based multi-agent system for code translation.669
ArXiv, abs/2409.19894.670

Zexuan Zhong, Zhengxuan Wu, Christopher D Man-671
ning, Christopher Potts, and Danqi Chen. 2023.672
Mquake: Assessing knowledge editing in language673
models via multi-hop questions. arXiv preprint674
arXiv:2305.14795.675

Shuyan Zhou, Uri Alon, Frank F. Xu, Zhiruo676
Wang, Zhengbao Jiang, and Graham Neubig. 2022.677
Docprompting: Generating code by retrieving the678
docs. In International Conference on Learning Rep-679
resentations.680

10

http://arxiv.org/abs/2303.10420
http://arxiv.org/abs/2303.10420
http://arxiv.org/abs/2303.10420
http://arxiv.org/abs/2303.10420
http://arxiv.org/abs/2303.10420
https://api.semanticscholar.org/CorpusID:272988134
https://api.semanticscholar.org/CorpusID:272988134
https://api.semanticscholar.org/CorpusID:272988134
https://api.semanticscholar.org/CorpusID:252734952
https://api.semanticscholar.org/CorpusID:252734952
https://api.semanticscholar.org/CorpusID:252734952

A Prompts for CODEMENV 681

See Prompt1 for the generation of python code. 682

683

See Prompt2 for the evaluation of python of various llms. 684

685

See Prompt3 for the judgment of Python code evaluation results for llms. 686

687

See Prompt4 for the generation of unit test. 688

689

See Prompt5 for the improving of unit test. 690

691

See Prompt6 for the generation of java code. 692

693

See Prompt7 for the evaluation of java of various llms. 694

695

See Prompt8 for the judgment of Java code evaluation results for llms. 696

697

698

Prompt 1: Generate Python Code based on Given function

==== SYSTEM ====
You are a very experienced programmer who is familiar with the functions of many functions and is good at applying
them. At the same time, you are thoughtful and creative and like to apply some functions to solve algorithmic problems.

First of all, I will give you an existing library function, you will get the function with signatures and functionality, as
well as import methods. I hope you can think about the application of this library function according to the function
of this library function, be bold and creative, and then write a piece of code that calls this new function, we call this
code the solution. This solution is a function. This solution should be able to solve medium and difficult algorithmic
problems, which require "multiple inferences", at least three or four steps to solve, rather than simply calling your
library function. There should be no comments in this solution.

Then, design a problem for the solution you generated, and ask others to be able to generate a solution from the
problem , and your problem description should be biased towards the functionality of the solution, as well as the inputs
and outputs, rather than leading to a step-by-step solution generation in the description. You should be clear about
the data type and dimension of each parameter you input, as well as the data type and parameters of the output. Your
problem description goes like "Please use python code to help me with a function...". Indicate in the description which
library is being called, but not which library function is being called. Don’t mention the details of the task fulfillment.

Note: Do not alias when importing; Here’s a return template,only output the JSON in raw text. Don’t return anything
else.

{
solution_function: The function that you generate. Make sure the code you return is runnable.
solution_signature: The signature of the function you generated, indicating the input and output. And the name of the
solution should derive from its functionality,
problem: Generate a literal description of this function. Describe the data type and dimensions of each input parameter
and the data type and dimension of the output.
}

==== USER ====
The package name for the new library function is:
<PACKAGE>
The import method is as follows:
<IMPORT>
The signature of the new library function is:
<SIGNATURE>
The feature description of the new library function is:
[DOC]
<DOC_STRING>
[/DOC]
Note: Do not alias when importing; Only output the JSON in raw text.Don’t return anything else.

699

11

700

Prompt 2: Evaluate the ability of large language models to locate and correct errors in the python code.

==== SYSTEM ====
You’re a good assistant, and now you need to help me change the code.
I’ll give you a piece of python code that has an error due to an exception in the python library version. You need to
locate the wrong API in this code. Then give the information about the change of the wrong api. It must include the
change type deprecation/addition/replacement,the replace api(if the change type is replace), and the version of the API
that changed. Finally return your corrected code, noting that you only need to fix the wrong API in the code, but your
return includes the entire code as modified.
Note that Only output the JSON in raw text. Don’t return anything else. And here’s an example of what you returned.
{
ai_api_wrong: There is the wrong API in the code because of the version,
ai_api_change: 1.The specified API(error api) has changed due to version changes, such as being added in version...,
being abandoned in version..., or the calling method has changed; 2.The replace method is... 3.The version tha the api
changed is...
code_fixed: Entire code modified
}

Here’s an example of an answer.
{
ai_api_wrong: numpy.compare_chararrays.
ai_api_change: 1.replacement 2.use numpy.char.compare_chararrays instead
3.The function numpy.compare_chararrays has been removed in numpy version 2.0.
code_fixed: def string_array_similarities(strings1, strings2):
result = []
for s1 in strings1:
temp_result = 0
for s2 in strings2:
length_diff = abs(len(s1) - len(s2))
comparison = numpy.char.compare_chararrays(numpy.array(list(s1)), numpy.array(list(s2)), cmp=’==’, as-
sume_equal=False)
similarity = numpy.sum(comparison) - length_diff
temp_result = max(temp_result, similarity)
result.append(temp_result)
return result
}

==== USER ====
Here’s the code you need to identify errors.
[CODE]
<CODE>
[/CODE]
Here’s the Python library you need to modify your code.
[PACKAGE]
<PACKAGE>
[/PACKAGE]
Here’s the version of above package.
[VERSION]
<VERSION>
[/VERSION]

701

702

12

Prompt 3: Judge the correctness of AI’s reasoning of python code.

==== SYSTEM ====
You are a good helper for a human being. I’m now having another big AI model try to figure out the API in a piece
of code that is incorrectly called because of the version, and have it return the error api,the api change about different
version and code after he fixed. I’ll give you another reason for the AI’s return, and I’ll give you a basis for judging
whether the AI’s reason is correct. I’m going to give you a judgment based on the python library function that is
wrong and whether the version of the library function is too low or too high.

Please compare the wrong apis returned by the AI and the correct apis I give you. If ai_api_wrong contains api_wrong,
the judge_locate_answer is 1,unless return 0.
Compare whether the change of the api returned by the and the real change I give you. You can loosely compare the
two changes. If they are related or only have a little difference, the judge_update_answer is 1. If two changes are
absolutly are completely irrelevant, return 0. Remenber if judge_locate_answer is 0, judge_update_answer must be 0.
Note that Only output the JSON in raw text. Don’t return anything else. And here’s an example of what you returned.
{
judge_reason: The reason why the AI determines whether it is correct or wrong,
judge_locate_answer: {0/1}
judge_update_answer: {0/1}
}

==== USER ====
Here’s the code that lets the AI judge that there is an error.
[CODE]
<CODE>
[/CODE]
Here are the apis given by LLM that are not suitable for the target environment.
[API_LOCATE_BY_LLM]
<API_LOCATE_BY_LLM>
[API_LOCATE_BY_LLM]
Here’s the information regarding the changes in this API, which was returned by LLM.
[CHANGE_INFORMATION_BY_LLM]
<CHANGE_INFORMATION_BY_LLM>
[CHANGE_INFORMATION_BY_LLM]
Here are the answers.
[API_REFERENCE_ANSWER]
<API_REFERENCE_ANSWER>
[API_REFERENCE_ANSWER]
[CHANGE_INFORMATION_REFERENCE_ANSWER]
<CHANGE_INFORMATION_REFERENCE_ANSWER>
[CHANGE_INFORMATION_REFERENCE_ANSWER]
The version is too high or too low.
[VERSION_ERROR]
<VERSION_ERROR>
[/VERSION_ERROR]

703

704

13

Prompt 4: Generate test data

==== SYSTEM ====
Role
A very experienced programmer who is good at algorithmic reasoning and can write high-quality code.

Responsibilities
Write 3 sets of *high-quality* and *comprehensive* input test data based on the problem description and benchmark
code.

The specific description of these requirements is as follows:

Problem:
That is, the problem situation. The type of input data and the range limit of the input data are often given in the
problem.
(Problem is between "[PROBLEM]" and "[/PROBLEM]")

Benchmark code:
That is, the given callable code, and its parameters are each set of input data to be passed in (Benchmark code is
between "[CODE]" and "[/CODE]")

Implementation steps
Please answer the questions strictly according to the above requirements and the following steps:

1. Determine the input data
- First analyze the problem and the given code to determine the type of input data,

2. Final input data group generation
Based on step 1, return the string of the input data group
- Return format: case1:

====== Task start =====
Below is the given problem and function.

==== USER ====
[PROBLEM]
<PROBLEM>
[/PROBLEM]
[CODE]
<CODE>
[/CODE]

705

706

14

Prompt 5: Improve data quality

==== SYSTEM ====
Role
An experienced data tester who is good at writing more accurate and higher quality test data based on error information.

Responsibilities
Adjust the test data group according to the provided executable script and running information, and return the adjusted
test data

Executable script:
That is, a script that can be compiled and run, and the script code already contains an array of test data.(BETWEEN
"[TARGET_IMPLEMENTATION]" and "[/TARGET_IMPLEMENTATION]")

Running information: That is, the running information of each set of test data when the function is running, mainly
focusing on error information.(BETWEEN "[MESSAGE]" and "[/MESSAGE]")

Example:
- input:
[TARGET_IMPLEMENTATION]

import tensorflow as tf

def weighted_average_division(matrix, weights):
matrix_tensor = tf.convert_to_tensor(matrix, dtype=tf.float32)
weights_tensor = tf.convert_to_tensor(weights, dtype=tf.float32)
weighted_matrix = tf.multiply(matrix_tensor, weights_tensor)
sum_of_weights = tf.reduce_sum(weights_tensor)
weighted_sum = tf.reduce_sum(weighted_matrix)
return tf.divide(weighted_sum, sum_of_weights).numpy()

Input data
test_data = [

([[1.0, 2.0], [3.0, 4.0]], [0.5, 0.5]),
([[1.5, 2.5], [3.5, 4.5], [5.5, 6.5]], [0.2, 0.3, 0.5]),
([[10.0]], [1.0])

]

Process each data case and save results
results = []
for matrix, weights in test_data:

try:
result = weighted_average_division(matrix, weights)
results.append(result)

except Exception as e:
results.append(f"error:{e}")

[/TARGET_IMPLEMENTATION]
[MESSAGE]
"""
5.0
error:function_node __wrapped__Mul_device_/job:localhost/replica:0/task:0/device:CPU:0 Incompatible shapes:
[3,2] vs. [3] [Op:Mul]
10.0
"""
[/MESSAGE]

- output:
case1:[[1.0, 2.0], [3.0, 4.0]], [0.5, 0.5],
case2:[[-1.0, -2.0], [-3.0, -4.0]], [0.5, 0.5],
case3:[[10.0]], [1.0]

Notes
Here, you only need to pay attention to the test data with running errors. For arrays without error information records,
there is no need to adjust.

Implementation steps
Please strictly follow the above requirements and the following steps to answer the questions:
1. Test data extraction and identification
-Extract the parameters passed by the calling function from the executable script as the test data group

70715

Prompt 5: Improve data quality

2. Match the test data group with the corresponding operation information
-Pair the test data input groups in sequence according to the operation results
3. Save the test data group that runs correctly and replace the test data group that runs incorrectly
-Keep the test data group that runs correctly unchanged
-For the test data group that runs incorrectly, analyze the cause according to the error information, avoid similar errors,
and replace the new test data group
4. Finally, just return the modified test data, do not return unnecessary explanations!

====== Task start =====
Below is the given executable script and running information.

==== USER ====
[TARGET_IMPLEMENTATION]
<TARGET_IMPLEMENTATION>
[/TARGET_IMPLEMENTATION]
[MESSAGE]
<MESSAGE>
[/MESSAGE]

708

709

Prompt 6: Generate Java Code based on Given function

==== SYSTEM ====
You are a very experienced JAVA programmer who is familiar with various library functions of java and is good
at applying them. At the same time, you are thoughtful and creative, and like to apply some functions to solve
algorithmic problems.

First of all, I will specify that you use an old API to complete a class, this API may have been removed in the new
JDK. Assuming that I am running in an old JDK environment, please call the API anyway.

Then, generate a functional description for your generated code, and I can ask others to be able to generate the code
from the problem.

Note: Do not alias when importing; Here’s a return template,only output the JSON in raw text. Don’t return anything
else.

{
java_code: The function that you generate. Make sure the code you return is runnable.
class_name: The name of the class you generate.
function_description: The function description of your generated code.
}

==== USER ====
The sigature of the new library function is: <SIGNATURE>

Note: Do not alias when importing; Only output the JSON in raw text.Don’t return anything else.
710

711

16

Prompt 7: Evaluate the ability of large language models to locate and correct errors in the java code.

==== SYSTEM ====
You’re a good assistant, and now you need to help me find the error of the code. I’ll give you a piece of java code that
has errors due to an exception in the java JDK version. You need to locate the wrong APIs in this code, and explain
what version changes have taken place in the API that caused the error you pointed out.
Note that your answers must be concise, and you only need to point out the mistake directly.
Here’s an example of an answer:
Output:
ai_api_wrong: com.sun.javadoc.AnnotatedType
ai_api_change: The declarations in this package have been superseded by those in the package jdk.javadoc.doclet. For
more information, see the Migration Guide in the documentation for that package.
==== USER ====
Here’s the code you need to identify errors.
[CODE]
<CODE>
[/CODE]
Here’s the version of the JDK
[VERSION]
<VERSION>
[VERSION]

712

713

Prompt 8: Judge the correctness of AI’s reasoning of java code.

==== SYSTEM ====
You are a good helper for a human being. I’m now having another large AI model try to figure out the API in a piece
of code that is incorrectly called because of the JDK version, and have it return the error_api,the api’s change about
different version. I’m going to give you a judgment based on the java api(class or interface) that is deparcted.

Please compare the wrong apis returned by the AI and the correct apis I give you. If api_locate_by_llm contains
api_reference_answer, the judge_locate_answer is 1,unless return 0.
Compare whether the change of the api returned by the and the real change I give you. You can loosely compare the
two changes. If they are related or only have a little difference, the judge_update_answer is 1. If two changes are
absolutly are completely irrelevant, return 0. Remenber if judge_locate_answer is 0, judge_update_answer must be 0.
{
judge_reason: The reason why the AI determines whether it is correct or wrong,
judge_locate_answer: {0/1}
judge_update_answer: {0/1}
}

==== USER ====
Here’s the code that lets the AI judge that there is an error.
[CODE]
<CODE>
[/CODE]
Here’s the wrong apis that the AI returned.
[API_LOCATE_BY_LLM]
<API_LOCATE_BY_LLM>
[API_LOCATE_BY_LLM]
Here’s the change of the wrong apis that the AI returned.
[CHANGE_INFORMATION_BY_LLM]
<CHANGE_INFORMATION_BY_LLM>
[CHANGE_INFORMATION_BY_LLM]
Here are the answers.
[API_REFERENCE_ANSWER]
<API_REFERENCE_ANSWER>
[API_REFERENCE_ANSWER]
[CHANGE_INFORMATION_REFERENCE_ANSWER]
<CHANGE_INFORMATION_REFERENCE_ANSWER>
[CHANGE_INFORMATION_REFERENCE_ANSWER]
The version is too high or too low.
[VERSION_ERROR]
<VERSION_ERROR>
[/VERSION_ERROR]

714

17

B Datsets Statistics715

Datasets jdk.nashorn org.xml com.sun java.applet java.beans java.rmi java.util java.security

Java 188 9 86 9 3 15 7 18

Table 5: Distribution of Code Segments across Various Java Packages

Datasets numpy python math re os random itertools torch tensorflow pandas csv

Easy(Py.) 39 26 51 5 34 3 15 21 154 46 2
Hard(Py.) 20 - - - - - - 21 115 35 -

Table 6: Distribution of Code Segments across Various Python Packages

18

C Data Example 716

C.1 Data Example of Easy(Py.)

Related API

np.row_stack(tup, *, dtype=None, casting='same_kind')->numpy.ndarray

Update Message
np.row_stack has been deprecated to reduce redundancy and encourage direct usage of np.vstack.

Document Message
np.row_stack was used as an alias for np.vstack, which vertically stacks arrays row-wise.

Original And Target Environment

Original version: numpy1.26
Target version: numpy2.0

Code Before Migration

def maximize_channel_sum(matrices):
import numpy as np
stacked_matrix = np.row_stack(matrices)
return np.max(np.sum(stacked_matrix, axis=0))

Problem Description
Please use python code to help me with a function that takes a list of 2D numpy arrays, all having the same number of
columns, and returns the maximum sum of any column after stacking all arrays vertically.
Each array in the list is a 2D numpy array, and the output is a single integer representing the maximum column sum.
Use the numpy library for the operations.

Incompatible Function

numpy.row_stack

Function Change
The function numpy.row_stack has been removed in numpy version 2.0 instead stack function is recommended.

Code After Migration

def maximize_channel_sum(matrices):
import numpy as np
stacked_matrix = np.stack(matrices, axis=0).reshape(-1,

matrices[0].shape[1])↪→
return np.max(np.sum(stacked_matrix, axis=0))

717

19

C.1 Data Example of Easy(Py.)

Unit Test

test_data = [
[np.array([[1, 2], [3, 4]]), np.array([[5, 6], [7, 8]])],
[np.array([[10, 20, 30], [40, 50, 60]]), np.array([[5, 15, 25], [35, 45,

55]]), np.array([[1, 2, 3], [4, 5, 6]])],↪→
[np.array([[10, -5], [-2, 3]]), np.array([[5, -10], [8, 10]])]

]

Complete Code

import numpy as np

def maximize_channel_sum(matrices):
import numpy as np
stacked_matrix = np.stack(matrices, axis=0).reshape(-1,

matrices[0].shape[1])↪→
return np.max(np.sum(stacked_matrix, axis=0))

Input data
test_data = [

[np.array([[1, 2], [3, 4]]), np.array([[5, 6], [7, 8]])],
[np.array([[10, 20, 30], [40, 50, 60]]), np.array([[5, 15, 25], [35, 45,

55]]), np.array([[1, 2, 3], [4, 5, 6]])],↪→
[np.array([[10, -5], [-2, 3]]), np.array([[5, -10], [8, 10]])]

]

for matrices in test_data:
try:

result = maximize_channel_sum(matrices)
print(result)

except Exception as e:
print("error:", e)

Operation Results

20
179
21

718

20

C.2 Data Example of Hard(Py.)

Related API

pd.bfill()
pd.api.types.is_any_real_numeric_dtype(arr_or_dtype)->bool

Update Message
1)Before pandas 2.0, pd.Series.backfill was the standard way to apply the backfill function; however, after pandas 2.0,
it is recommended to use pd.bfill instead.
2)New in pandas 2.0.

Document Message
1)It is used to backward-fill missing values in a Series.
2)Check whether the provided array or dtype is of a real number dtype.

Original And Target Environment

Original version: pandas2.0
Target version: pandas1.0.0

Code Before Migration

def interpolate_and_check_numeric(data):
df = pd.DataFrame(data)
df = df.bfill()
numeric_cols = [col for col in df.columns if

pd.api.types.is_any_real_numeric_dtype(df[col])]↪→
numeric_data = df[numeric_cols]
return numeric_data.mean().to_dict()

Problem Description
Please use python code to help me with a function that takes a dictionary representing a dataset with possible missing
values in its columns. Each key in the dictionary is a column name, and the value is a list representing column data.
The function should fill in missing values by carrying backward the next valid observation. Then, identify which
columns contain numeric data and return a dictionary with the mean of each numeric column after filling missing
values. Use the pandas library in your solution. The input is a dictionary where keys are strings and values are lists of
equal length, which may contain None to represent missing data. The output is a dictionary where keys are column
names containing numeric data and values are their respective means as floats.

Incompatible Function

pd.bfill
pd.api.types.is_any_real_numeric_dtype

Function Change
In Pandas version 1.0.0, DataFrame.bfill is not directly callable via pd.bfill since it’s a method of DataFrame objects.
pd.api.types.is_any_real_numeric_dtype was introduced in later versions;
in version 1.0.0, use pd.api.types.is_numeric_dtype instead.

Code After Migration

import pandas as pd

def interpolate_and_check_numeric(data):
df = pd.DataFrame(data)
df = df.bfill()
numeric_cols = [col for col in df.columns if

pd.api.types.is_numeric_dtype(df[col])]↪→
numeric_data = df[numeric_cols]
return numeric_data.mean().to_dict()

719

21

C.2 Data Example of Hard(Py.)

Unit Test

test_data = [
{

'A': [1.2, None, 3.4, None, 5.6],
'B': [None, 10, None, 12, None],
'C': ['a', 'b', 'c', 'd', 'e'],
'D': [None, None, 2.2, None, 3.3]

},
{

'Height': [170, 165, 180, 175],
'Weight': [70, 60, 80, 75],
'Labels': ['tall', 'short', 'tall', 'medium']

},
{

'A': [None, None, None],
'B': [None, None, None],
'C': [None, None, None]

}
]

Complete Code

import pandas as pd

def interpolate_and_check_numeric(data):
df = pd.DataFrame(data)
df = df.bfill()
numeric_cols = [col for col in df.columns if

pd.api.types.is_any_real_numeric_dtype(df[col])]↪→
numeric_data = df[numeric_cols]
return numeric_data.mean().to_dict()

Input data
test_data = [

{
'A': [1.2, None, 3.4, None, 5.6],
'B': [None, 10, None, 12, None],
'C': ['a', 'b', 'c', 'd', 'e'],
'D': [None, None, 2.2, None, 3.3]

},
{

'Height': [170, 165, 180, 175],
'Weight': [70, 60, 80, 75],
'Labels': ['tall', 'short', 'tall', 'medium']

},
{

'A': [None, None, None],
'B': [None, None, None],
'C': [None, None, None]

}
]

for data in test_data:
try:

result = interpolate_and_check_numeric(data)
print(result)

except Exception as e:
print("error:", e)

Operation Results

{'A': 3.84, 'B': 11.0, 'D': 2.6399999999999997}
{'Height': 172.5, 'Weight': 71.25}
{}

720

22

C.3 Data Example of Java

Related API

jdk.nashorn.api.tree.WhileLoopTree

Update Message
Nashorn JavaScript script engine and APIs, and the jjs tool are deprecated with the intent to remove them in a future
release.

Original And Target Environment

Original version: jdk1.7
Target version: jdk11

Code

import jdk.nashorn.api.tree.WhileLoopTree;
import jdk.nashorn.api.tree.Tree;
import jdk.nashorn.api.tree.ExpressionTree;
import jdk.nashorn.api.tree.StatementTree;
public class OldWhileLoopTreeExample {
public void analyzeWhileLoop(Tree tree) {
if (tree instanceof WhileLoopTree) {
WhileLoopTree whileLoop =(WhileLoopTree) tree;

ExpressionTree condition = whileLoop.getCondition();
StatementTree statement = whileLoop.getStatement();
System.out.println("While Loop Condition: " + condition.toString());
System.out.println("While Loop Statement: " +
statement.toString()); }
else {
System.out.println("The provided tree is not a WhileLoopTree.");

}
}

public static void main(String[] args) {
Tree someTree = null;

OldWhileLoopTreeExample example = new OldWhileLoopTreeExample();
example.analyzeWhileLoop(someTree);

}
}

Function Description
This class, OldWhileLoopTreeExample, demonstrates the usage of the deprecated Nashorn API’s WhileLoopTree
class. It includes a method analyzeWhileLoop that takes a Tree object as input, checks if it is an instance of
WhileLoopTree, and if so, extracts and prints the condition and statement of the while loop. The main function
provides a framework for how this method might be used, although actual tree creation is complex and not included in
this example.

Incompatible Function

jdk.nashorn.api.tree.WhileLoopTree

Function Change
The Nashorn JavaScript engine and the ‘jdk.nashorn.api‘ package were deprecated in JDK 11 and removed in JDK
17. For more information, see the Java API documentation for Nashorn’s removal.

721

D Further Experiments 722

Performance across Different Packages. As Figure 6 show, LLMs show significant performance differ- 723

ences across different packages. For example, GPT-4o achieves a pass@1 rate of around 71% in Pandas 724

package, but only 0% and 20% pass@1 rates in CSV and TensorFlow package, respectively. One possi- 725

23

ite
rto

ols

pa
nd

as

ten
sor

flo
w

math tor
ch

nu
mpy

py
tho

n os

ran
do

m csv re

Packages

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Pa

ss
@

1
GPT-4o-Mini
Meta-Llama-3.1-70B-Instruct
GPT-Turbo-3.5
Qwen2.5-Coder-7B-Instruct
GPT-4o
Deepseek-Chat

Figure 6: The experimental results of code migration at easy difficulty across different packages.

ble reason for this discrepancy is the varying difficulty of data across different packages. Additionally,726

the extent to which different packages are covered in the LLM’s training data may also contribute to the727

performance differences.728

24

