Can Language Models Be Used for Code Migration?

Anonymous ACL submission

Abstract

Large language models (LLMs) have demon-
strated remarkable proficiency in handling a
wide range of tasks within the software en-
gineering domain, but their ability to per-
form code migration—adapting code to dif-
ferent environments—remains underexplored.
In this work, we propose a novel bench-
mark, CODEMENV: Code Migration Across
Environment, designed to evaluate LLMs’
performance in handling code migration tasks.
The benchmark comprises 922 data points
across 19 Python and Java packages, offer-
ing three tasks to systematically evaluate code
migration: identifying version-incompatible
functions, determining function changes, and
adapting code to target environments. Ex-
perimental evaluation of CODEMENYV across
seven LLMs revealed an average pass@]1 rate
of 26.50%, with GPT-40 performing best at
43.84%. We highlight our key findings as fol-
lows: (i) LLMs are more familiar with newer
function versions, making them better at mi-
grating legacy code, and (ii) a logical inconsis-
tency where LLMs sometimes identify irrele-
vant function changes for the target migration
environment.

1 Introduction

Large Language Models (LLMs) have shown im-
pressive capabilities in tasks such as code gen-
eration (Jiang et al., 2024; Du et al., 2024)
and code translation (Yuan et al., 2024; Eniser
et al., 2024). For example, state-of-the-art mod-
els such as GPT-4 (Achiam et al., 2023), Claude-
3 (The), and DeepSeek (Shao et al., 2024) have
demonstrated exceptional performance across var-
ious benchmarks, significantly outperforming tra-
ditional methods.

However, whether LLMs can effectively han-
dle code migration—adapting code from one en-
vironment to another—remains an underexplored
question. Code migration is essential in many sce-

\\ After Numpy 1.26, numpy.compare_chararrays is deprecated in
favor of

def has_common_char(arr1, arr2):
arr! = numpy.array(arr1, dtype=str
arr2 = numpy.array(arr2, dtype=str
iflen(arr1) 1= len(arr2):
raise ValueError("The lengths of the two arrays must be the same"

return numpy.any(comparison_result
(a) code in Numpy 1.26
def has_common_char(arr1, arr2):

arr1 = numpy.array(arr1, dtype=str Q .
a2 = numpy.array(arr2, dtype=str . The calling method has changed

if len(arr1) I=len(arr2):

raise ValueError("The lengths of the two arrays must be the same”
comparison_result = arr1, arr2, '=="
return numpy.any(comparison_result

(b) code in Numpy 2.0

Figure 1: The function compare_chararrays was
updated after Python version 1.26, altering its calling
method, emphasizing code adjustments for compatibil-

ity.

narios. For instance, when running code from ex-
ternal sources, such as a GitHub repository, users
often spend significant time configuring a com-
patible environment. If LLMs could assist in
seamlessly migrating code to an existing setup,
they could greatly reduce the manual effort re-
quired for environment configuration and com-
patibility adjustments. A key reason for code
incompatibility across different environments is
the challenge posed by evolving library struc-
tures, i.e., continuous maintenance and updates
of the library functions. For example, as shown
in Figure 1, the method call for the function
compare_chararrays has been updated from
the numpy package to the numpy.char pack-
age. Consequently, the function call differs be-
tween NumPy 1.26 and NumPy 2.0.

Research in this area is still in its early stages,
with only a few studies exploring the challenges
and potential solutions. Some benchmarks, like
CodeUpdate (Liu et al., 2024), focus on how to
inject knowledge of new API functions that the
model has never seen before. However, the func-
tions used in these studies are synthetically gener-
ated by GPT rather than sourced from real-world

libraries. This limitation makes it challenging to
assess the feasibility of code migration in real-
world scenarios.

To bridge this gap, we propose a novel bench-
mark. i.e, CODEMENV: Code Migration Across
Environment. CODEMENV is constructed based
on manually collected official function changes,
with a total of 922 data points, involving Python
and Java, across 19 packages. As illustrated in
Figure 2, it comprises three tasks designed to eval-
uate the ability of different models to perform code
migration, detailed as follows:

Task-1: Locate version-incompatible function.
Given a piece of code and a target execution
environment, the model must identify functions
or code segments that may become incompatible
across different versions.

Task-2: Answering function changes. The model
must describe the specific changes these functions
have undergone across different versions.

Task-3: Code migration. Finally, the model is
required to modify the given code to ensure
compatibility with the target environment by ad-
dressing the identified version incompatibilities.

For evaluation of CODEMENV, we experiment
using seven different LLMs, with experimental re-
sults highlighting: The average pass@1 rate for
the migration task across seven models is 26.50%.
Among them, GPT-40 stands out, achieving the
highest performance with an average pass@1 rate
of 43.84%. Our experimental analyses reveal fol-
lowing interesting findings:

(i) Familiarity with functions, LLMs exhibit a
stronger familiarity with newer function versions
than older ones, making them more effective at mi-
grating legacy code to modern environments but
less proficient at adapting newer code to older set-
tings.

(i) Logical Inconsistency, LLMs exhibit a logi-
cal inconsistency between function change iden-
tification and migration requirements. For exam-
ple, when migrating from version 1.16 to 2.0, the
model answering a function change from version
1.0, which is irrelevant to the target migration en-
vironment.

2 Related Work
2.1 Large Language Models (LLMs)

Large language models, with their vast parame-
ters and training on extensive corpora, have show-
cased impressive capabilities in code generation,

translation, and completion. Proprietary models
such as GPT-4 (Achiam et al., 2023), Claude-3
(The), and Gemini (Reid et al., 2024) have demon-
strated exceptional performance in assisting users
with a wide range of programming tasks. Addi-
tionally, open-source models like Qwen2.5-Coder
(Team, 2024) have outperformed many models
with significantly more parameters by leveraging
synthetic data during training. Other open-source
models like Llama-3.1 (Abhimanyu Dubey et al.,
2024), Phi-3 (Abdin et al., 2024) also perform
well, with DeepSeek (Shao et al., 2024) even sur-
passing most proprietary models.

In this paepr, we evaluate the knowledge of
these large models about function changes and
their ability to migrate code.

2.2 Knowledge Editing

The research on knowledge editing aims to ef-
ficiently modify model parameters to update its
knowledge. Most studies in this field focus
on editing natural language knowledge. ROME
(Meng et al., 2022a) and MEMIT (Meng et al.,
2022b) adopt a locate-then-edit paradigm, where
the parameter position of the knowledge is first lo-
cated, and then the parameter is updated to modify
the model’s knowledge. Some work (Zhong et al.,
2023; Cheng et al., 2024) adopts plan-and-solve
paradigm, where complex problems are decom-
posed into the knowledge required for each step,
which are then solved one by one.

There is less research on changes to func-
tion: CodeUpdateArena (Liu et al., 2024) intro-
duces a benchmark for updating LLMs with new
API function knowledge to solve program synthe-
sis tasks. CLMEEval (Li et al., 2024) propose
a benchmark for evaluating model editing tech-
niques on LLMs4Code, and proposes A-GRACE,
an enhanced method for better generalization in
code knowledge correction. Some work (Zhou
et al., 2022; Su et al., 2024; Hsieh et al., 2023)
uses retrieval-augmented approaches (Lewis et al.,
2020; Guu et al., 2020) to provide models with
code change knowledge for improving code gen-
eration.

CODEMENYV does not provide the model with
knowledge of function changes within the context
during evaluation. Instead, we focus more on eval-
uating how well the model utilizes its own knowl-
edge of function changes to perform code migra-
tion.

TASK 1 Locating Version-Incompatible Function

The running_environment of this code is Numpy 2.0. Please locate the AP that locates
the functions that are imcompatible with the environment.

Q This function has risks.
arr2 = numpy.array(arr2, dtype=str.
iflen(arr1) I=len(arr2):

raise ValueError("The lengths of the two arrays must be the same"
comparison_result = numpy.compare_chararrays(arr1, arr2, '=="
return numpy.any(comparison_result

def has_common_char(arr1, arr2):
arr1 = numpy.array(arr1, dtype=str.

TASK 2 Answring Function Changes

What changes have been made to this function?

tg; § Dy
[E) numpy.compare_chararrays is deprecated after Numpy 1.4 Wrong!

TASK 3 Code Migration

Please provide the code that fixes the above error so that it can run normally under
version of Numpy 2.0.

Q Q o} B‘:’)‘
o-of Agent Tests (task 1&2) l=~© Rigorous Unit Tests (task3)
Il L=

Figure 2: A data example of CODEMENV, which in-
cludes three tasks to evaluate LLMs on environment-
related programming skills.

3 CODEMENV

Despite the challenges environmental issues pose
for programmers, there is a lack of systematic
evaluation of model capabilities in code migra-
tion across different environments. To address this
gap, we propose CODEMENV: Code Migration
Across Environments. CODEMENV assesses a
model’s understanding of function usage differ-
ences across versions and its ability to perform
cross-version code migration. This section pro-
vides a detailed introduction to CODEMENV.

3.1 Task Definition

CODEMENV use three tasks to comprehensively
evaluate the model’s capabilities to perform code
migration.

Task-1: Locate version-incompatible function.
The first task presents a piece of code along with a
target environment version. The model must iden-
tify functions that are incompatible with the speci-
fied environment. CODEMENYV includes two diffi-
culty levels: easy, featuring a single incompatible
function, and hard, involving multiple incompati-
ble functions.

Task-2 Answering function changes. This
task requires the model to output version-related
changes for the identified incompatible function.
Specifically, it should determine how the function
has evolved across versions, such as deprecation,
parameter modifications, or replacement by a new
function.

Task-3 Code Migration. This task requires the

model to adjust the given code to ensure compati-
bility with the target environment. Code migration
scenarios fall into two categories:

(a) NEW2OLD. The target environment version
is lower than the original, requiring adaptation of
newer code to run in a legacy environment.

(b) OLD2NEW. The original environment version
is lower than the target environment version. This
scenario involves upgrading older code to be com-
patible with a newer environment.

3.2 Dataset Statistics

CODEMENV includes two programming lan-
guages: Python and Java. The Python dataset con-
sists of 11 packages with a total of 587 data points,
categorized into two difficulty levels: easy and
hard. The easy category contains 396 data points,
where only a single line of code is incompatible
with the target environment. The hard category
contains 191 data points, where there are k lines
of incompatible code k € {2,3}. The Java dataset
consists of 8 packages with 335 data points. The
Java dataset only contains easy difficulty because
we find that its incompatible functions have poor
linkage and it is difficult to make difficult data. See
Appendix B for the details of data statistics.

3.3 Function Changes

We divide function changes into three types:

* Addition (None — f): A new function f is
introduced in a later version, meaning older
environments cannot use it

* Deprecation (f — None): The function f
is no longer supported after a certain version,
making it unusable in newer environments

 Replacement (f — f): The functions f has
been modified to f/, with changes such as al-
terations to the calling method, the number of
function parameters, and other adjustments.

See Table 2 for the distribution of the types of
changes we collected.

3.4 Evaluation

In this section, we introduce some details of our
evaluation. We mainly use the following two eval-
uation methods.

Agent-based Evaluation. To verify whether
the LLM correctly identifies version-incompatible

x Step 1 Data Collection
Data

% Step 2 Code Generation

gz‘ﬁ@ Step 3 Test data Generation
2=

Function changes Code description
e
N NumPy TensorFlow @ PgthOﬂ X Function description > QE] % Code @
Prompt Prompt
Example LLM LLM
B ﬁ o Check Generate
Function Changes: B wi whether Test
After Numpy 1.26, np.compare_chararrays is deprecated in favor runnable Cases

of np.char.compare_chararrays

Function description:

Problem description:
Please use python code to help me with a function that

casel: {torch.tensor([-1.0, 0.0, 1.0, 2.0, 3.0])}

torch.nn.functional.sigmoid (input) — Tensor [SOURCE]

Code:

Applies the element-wise function Sigmoid(z) = 1

processes a 1-dimensional tensor using_certain activation
functions from the torch library,

case2: {torch.tensor([-10.0, -5.0, 1.0, 0.0, 1.0, 5.0, 10.0])}
case3: {torch.tensor([0.0, 0.5, 1.5, 3.5, 100.0])}

def activation_stats(input_tensor):

sigmoid_output = torch.nn.functional.sigmoid(input_tensor)

See Signoid for more details.

relu_output = torch.nn.functional.relu(input_tensor

Try three times until all three cases can run

Figure 3: The construction process of CODEMENV. Step 1: We collect function change information and function
descriptions from the official website; Step 2: Based on the collected functions, generate code that can run in the
original version and its problem description; Step 3: Generate 3 test cases for each data and repeat three times

until all cases can run correctly.

functions and whether the change knowledge pro-
vided for these functions is accurate, we use an
agent-based evaluation approach. We provide
each agent with the correct answers, including
the incompatible functions and the changes these
functions underwent. The agent’s task is to eval-
uate whether the model’s answers are correct. It
does this by comparing the model’s output with
the correct answers based on the evaluation crite-
ria we provide.

For the first task, we require the correct identi-
fication of all functions that are incompatible with
the environment. Missing even one is considered
a failure. For the second task, we mainly con-
sider three aspects: First, whether the model can
correctly identify the type of change, i.e., dep-
recated, added, or replaced. Next, whether the
model can accurately identify what the function
has been replaced by, skipping this step for dep-
recated and added functions. Finally, the third as-
pect is whether the model can accurately provide
the version number in which the change occurred.
A difference of less than 0.5 in version numbers is
considered correct.

Unit Tests. To verify the correctness of the mi-
grated code, we prepare three test cases for each
data. These test cases ensure that the modified
code not only eliminates environment-related is-
sues but also preserves its original functionality.
We ensure correctness by comparing the answers
obtained from executing the migrated code in the
target environment with the answers in the test
cases. The code is considered correct if all three
test cases pass.

See Appendix A for the details of prompts for
evaluation.

Datasets 1-incom. 2-incom. 3-incom. Total
Easy(Py.) 396 - - 396
Hard(Py.) - 103 88 191
Java 335 - - 335

Table 1: Statistics of incompatible functions of CODE-
MENV .

Package Replacement Deprecation Addition
numpy 2 8 -
pandas - 12 13
tensorflow 87 2

python 9 7

math - 1 17
re - -

0s - - 14
random - - 2
csv - - 1
itertools - - 5
torch - 5 5
total 98 35 79

Table 2: Statistics of change types collected by differ-
ent packages.

3.5 Process-flow

Figure 3 illustrates the process of constructing our
dataset, which consists of three main steps.
Step 1 Data Collection. Our first step is to collect
a set of functions along with their changes, func-
tional descriptions, and supported version ranges.
To achieve this, we identify which functions
have changed by reviewing the version release
notes on the official website of each package.
Here, we can determine in which version these
functions were modified and what changes were
made. At the same time, we record the functional

descriptions and usage of these functions, mak-
ing it easier to generate code based on them later.
Official documentations do not always specify the
version ranges in which these functions are com-
patible, thus we determine them through manual
execution and verification.

Through our analysis, we identified a total of
212 functions for Python datasets and 114 func-
tions for Java datasets, which provide essential
data support for the subsequent code generation
process. The websites from which we collected
data are organized in Appendix.

Step 2 Code Generation. The core of our ap-
proach in this step is to provide the powerful
model GPT-4 with functions and their usage meth-
ods, allowing it to generate code that calls these
functions.

Depending on the type of change, we will de-
termine whether to generate the OLD2NEW or
NEW2OLD scenario. For deprecation (f —
None), we provide the model with the function
f before it was deprecated and ask it to generate
the code. The target environment version is then
selected as the version after the change, where the
function f can no longer be used (OLD2NEW Sce-
nario). For addition (None — f), we provide the
model with the function f that was newly intro-
duced and ask it to generate the code. The target
environment version is selected as the version be-
fore the change, where the function is unavailable
(NEW20LD Scenario). For replacement (f — f),
a similar approach to the previous steps can be
used to generate two sets of data for the functions
before and after the change, corresponding to the
OLD2NEW and NEW2OLD scenarios.

In addition to generating code, we also require
the model to generate the problem and input range
corresponding to this code. These elements are
crucial for the third step, where we generate test
cases.

Step 3 Test Cases Generation. In this step, we
construct the test cases. We provide GPT-4 with
the code, problem description, and input range.
A total of three test cases are generated. These
test cases are then used to verify the correctness of
the code execution and obtain the output results.
However, we find that even though we provide the
model with the correct input data range, the gener-
ated input data might be problematic. Therefore,
we provide the compilation information error as
feedback to the model to fix the test cases. Re-

peat this step three times until all three cases pass,
otherwise discard the code. For the Python dataset
of easy difficulty, we generated 629 code samples
in the previous step, with 396 remaining after fil-
tering. For the hard-difficulty Python dataset, 441
code samples were generated, leaving 191 after fil-
tering.

4 Experimentation

In this section, we introduce the experimental set-
tings and the analysis results of our experiments.

4.1 Experimental Settings

Large Models. We conduct experiments on seven
LLMs, including three proprietary models:GPT-
TURBO-3.5 (Ye et al., 2023), GPT-40-MINI
(OpenAl et al., 2024a), GPT-40 (OpenAl et al.,
2024b), and four open-source models: LLAMA-
3.1-8B-INSTRUCT (Abhimanyu Dubey et al.,
2024), LLAMA-3.1-70B (Abhimanyu Dubey
et al., 2024), QWEN2.5-CODER-7B-INSTRUCT
(Team, 2024) and DEEPSEEK-R1 (Shao et al.,
2024).

Evaluation Metrics. we use Pass@k (Hendrycks
et al., 2021) to evaluate the effectiveness of differ-
ent models. Pass@Fk refers to the probability that
at least one correct solution is included among the
top k generated solutions for each problem:

! ("&)
Pass@k :=FE |1 —

®] .

where n is the number of coding solutions, c is the
number of passed solutions, and k is the number
of solutions being evaluated. For task-1 and task-
2, we set k = 1. For task-3, we set k € {1,5}.
Experiment Setup. For all LLMs, we set the gen-
eration temperature to 0.7, the maximum gener-
ated length is 2048 tokens. For proprietary models
such as the GPT series, we conduct evaluations us-
ing the APIs provided on their official website. For
smaller open-source models, we deploy them lo-
cally with two RTX 4090 GPUs. For larger open-
source models, such as LLAMA-3.1-70B, we ac-
cess them through APIs provided by third-party
websites !.

4.2 Main Experiments

We present the experimental results for Task 1 and
Task 2 in Table 3.

lhttps://cloud.siliconflow.cn/models

https://cloud.siliconflow.cn/models

Base Model Task 1 Locating Function Task 2 Answering Change
Easy(Py.) Hard(Py.) Java Avg. Easy(Py.) Hard(Py.) Java Avg.
GPT-TURBO-3.5 85.10 32.98 80.89 66.32 26.01 13.09 63.28 34.13
GPT-40-MINI 77.21 21.99 84.77 61.32 18.73 6.28 68.95 31.32
GPT-40 70.71 25.65 81.19 59.18 2222 13.61 75.22 37.02
LLAMA-3.1-8B 70.71 21.99 67.16 53.29 16.16 2.09 53.13 23.79
LLAMA-3.1-70B 75.51 29.84 81.19 62.18 22.73 8.38 75.22 35.44
QWEN2.5-CODER-7B 66.16 15.71 79.40 53.76 16.92 1.05 56.42 24.8
DEEPSEEK-CHAT 78.48 26.17 82.08 62.24 38.99 16.75 70.44 42.06

Table 3: Experiment results for function locating and function change answering task. We bold the best result and

underline the second-best result.

Overall Performance of Function Locating. The
average locating success rate for the seven LLMs
across two languages is 59.76%. Both Easy(Py.)
and Java datasets show relatively high scores, with
averages of 74.84% and 79.53%, respectively.
However, for the Hard(Py.) dataset, where there
are multiple incompatible functions, all models
perform poorly. For example, QWEN2.5-CODER-
7B only achieves a pass rate of 15.71%. We find
that the low performance is due to the models’
inability to successfully locate all incompatible
functions, leading to missed cases.

The model with the best performance on the
locating task is GPT-TURBO-3.5, with an aver-
age locating success rate of 66.32%. Compared
with other models, it can better cope with the lo-
cating task of Python language, both Easy(Py.)
and Hard(Py.) tasks achieve the first 85.10% and
32.98% pass rates.

Overall Performance of Answering Change.
The pass rate for successfully identifying function
changes is lower than that for locating, with an av-
erage score of 32.65% across the seven models. In
our evaluation, we find that although the models
may successfully locate the function, they often
output incorrect changes. For example, when the
change is a deprecating type, the model incorrectly
classifies it as a replacement change, answering
that the function has been replaced by another.

Although the success rate of most models in an-
swering is only about half of their locating success
rate, two models stand out: DEEPSEEK-CHAT
and GPT-40. The former achieves a response suc-
cess rate of 42.06%, the highest among all mod-
els, while the latter reaches a response success rate
of 37.02%, ranking second. DEEPSEEK-CHAT
not only accurately identifies the type of change
but also provides accurate responses regarding the
version where the change occurs.

Overall Performance of Code Migration. Table
4 illustrates the results of code migration. In the
code migration OLD2NEW scenario, the average
pass@1 success rate for the seven LLMs at the
easy difficulty level is 33.56%, while at the hard
difficulty level, the pass@1 rate is 16.20%. As
the number of attempts increases, the success rate
rises significantly, with pass@5 reaching 45.5%
for the easy difficulty and 26.47% for the hard dif-
ficulty.

In the code migration NEW2OLD scenario, the
average pass@1 and pass@5 success rate for the
seven LLMs are only 12.77% and 17.30% at the
hard difficulty level. In this case, increasing the
number of model attempts did not improve the per-
formance.

The model that performs best in the OLD2NEW
migration is GPT-40, achieving impressive re-
sults with pass@1 rate of 43.84% and pass@5 rate
of 59.59% at the easy difficulty level. However,
GPT-TURBO-3.5, which performs best in locat-
ing task, does not deliver outstanding results in
code migration, especially at the hard difficulty
level, where its pass@]1 rate is only 7.32%. This
shows that GPT-TURBO-3.5 is difficult to com-
plete code migration, but it can help users find
functions that are not compatible with the environ-
ment.

Preference of New Functions. We find that
LLMs are more familiar with the new functions
compared to the old ones. Our experimental
results show that LLMs perform better in the
OLD2NEW task compared to the NEW2OLD task.
For example, GPT-40 achieves a pass@]1 rate of
44.52% in the OLD2NEW task at easy difficulty,
while for NEW2OLD at the same difficulty, it only
reaches 28.00%. A possible reason for this is
that the demand for writing code for new environ-
ments is more widespread, and during the train-

Task 3 Migration (OLD2NEW)

Task 3 Migration (NEW2OLD)

Base Model Easy(Py.) Hard(Py.) Easy(Py.) Hard(Py.)
Pass@1 Pass@5 Pass@1 Pass@5 Pass@1 Pass@5 Pass@1 Pass@5

GPT-TURBO-3.5 26.03 34.93 7.32 10.98 24.80 38.40 7.34 9.17

GPT-40-MINI 30.82 49.32 15.85 26.83 29.60 44.00 11.93 16.51
GPT-40 43.84 59.59 26.83 47.56 31.60 43.60 22.94 27.52
LLAMA-3.1-8B 23.97 28.08 8.54 10.97 20.80 24.00 7.34 11.93
LLAMA-3.1-70B 32.88 45.89 19.51 35.37 28.80 40.80 1743 19.27
QWEN2.5-CODER-7B 32.19 46.58 14.63 24.39 29.20 38.00 8.26 12.84
DEEPSEEK-CHAT 41.20 54.11 20.73 29.27 29.60 39.60 14.68 23.85

Table 4: Experiment results for code migration, we report the results in two cases: OLD2NEW and NEW2OLD.

Easy(Py.) Hard(Py.) Easy(Py.) Hard(Py.) Easy(Py.) Hard(Py.)
9 28.0% [
41.7% 22.7% 64.4% {7.29,37-1% 23.09% 33.0% 24.0% 6 43.5%
7.9%

1 9.6% o 12.6% 33.0% 17.3%

13607 24,693 1% 36.1% 19.49%24.6% 35.4% i Y

. (]

CallError RunError WrongAnswer Success
(a) Llama-3.1-8B-Instruct (b) GPT-40 (c) Deepseek-Chat

Figure 4: Error Analysis of Code Migration. CallError represents a function where an incompatible the en-
vironment is still called. RunError represents that the migrated code enters an infinite loop during execution.
WrongAnswer represents this code runs normally and gets the result, but it is different from the standard answer.
We combine the experimental results of NEW2OLD and OLD2NEW in this pie chart.

ing process, the proportion of new functions in
the training data is higher than that of old func-
tions, leading to this function preference. Further-
more, this trend varies in magnitude across differ-
ent models. For instance, GPT-40-MINI shows a
smaller performance gap between NEW2OLD and
OLD2NEW.

Error Analysis for Code Migration. As shown
in Figure 4, a significant portion of the data fail-
ures can be attributed to CallError, where a
function incompatible with the environment is still
being invoked. For example, 50.8% of the code
generated by LLAMA-3.1-8B for the Hard(Py.)
migration task fails due to CallError. These
errors occur either because the incompatible func-
tion was not successfully located or because, even
when the model correctly identifies the incompati-
ble function, it generates code that calls an incom-
patible one instead.

Another portion of the failed code is due to
RunError, where the code compiles correctly
but enters an infinite loop, causing it to run for
an excessively long time. For instance, 33.0% of
the code generated by DEEPSEEK-CHAT failed

due to this error.

Additionally, some migrated code, while calling
functions compatible with the environment and
passing compilation successfully, produces results
that deviate from the expected output, leading to a
WrongAnswer. For instance, 19.4% of the code
generated by GPT-40 failed due WrongAnswer.

Case Studies. Figure 5 illustrates the responses
of four models performing the locating and an-
swering change tasks. In this example, two mod-
els fail to locate, namely LLAMA-3.1-8B and
GPT-TUBRO-3.5. They locate another function
np.array2string in the code. These two
models provide the change knowledge for this
function at version of 1.17 and 1.18, but the tar-
get environment is 1.16, which does not affect
the function’s operation in the target environment.
Although this function did undergo a change in
NumPy 1.18, it does not affect its functionality
in the target version, Numpy 1.16. From this ex-
ample, we can see that one possible reason for
the model’s error is an incorrect version compar-
ison, specifically the confusion between the sizes
of NumPy 1.16 and 1.18.

def custom_array_representation(arr: np.ndarray, precision: int, threshold: int):

import numpy as np

Original

np.set_printoptions(precision=precision, threshold=threshold

formatted_array = np.array2string(arr
return formatted_array

% LLAMA-3.1-8B

X

Wrong Locating!

Located .

Function: np.array2string

Function The function

Change: hympy.array2string has been

deprecated since numpy
version 1.17 and will be
removed in a future version.

EY

Wrong Locating!

GPT-TURBO-3.5

Located .

Function: np.array2string

Function The function np.array2string
Change:

has been changed to
in numpy version
1.18.

ﬁ LLAMA-3.1-70B

@ GPT-40-MINI

Numpy 2.0
version —
T
arqet Numpy 1.16
version

1

Located . .
Function: np.set_printoptions
Function After Numpy 2.0,

Change: "

deprecated in
favor np.set_printoptions;

J
Wrong Change!
np.set_printoptions

Located
Function:

Function
Change:

was
the standard way to apply the
set_string_function function;

Figure 5: Case Study. We plot an example from Easy (Python) datasets and present the response of task-1 and
task-2 for four LLMs. In this case study, we observe the phenomenon of logical inconsistency, where LLAMA-
3.1-8B and GPT-TURBO-3.5 provide function changes that are unrelated to the migration process.

Two models, LLAMA-3.1-70B and GPT-
40-MINT, successfully locate functions
np.set_printoptions that are incompatible
with NumPy 1.16. However, GPT-40-mini’s
response of function changes is unsatisfactory, as
it failed to accurately provide the version in which
the function change occurred. This problem is
actually quite common in our evaluation, where
the version number provided for the change is
different from the actual version.

5 Conclusion

In this paper, we introduce CODEMENV, a novel
benchmark designed to evaluate whether language
models can perform code migration, i.e., adapt-
ing code to the desired environment. CODEMENV
provides three tasks that systematically assess the
model’s ability to accurately locate incompatible
functions, answering function change knowledge,
and, finally, correctly migrate the code.

We systematically evaluate seven LLMs on
CODEMENV, and experimental results show the
model’s understanding of old version functions is

lower than that of new version functions, making
it more difficult to perform the NEW2OLD mi-
gration task effectively. In addition, through de-
tailed error analysis, we reveal the phenomenon of
logical inconsistency in code migration, where the
changes provided by the model are not helpful for
our migration task.

In future, we plan to expand the dataset to in-
clude more packages and programming languages,
as well as increase the code length to a repository
level.

Limitations

CODEMENV is relatively small, particularly the
Java dataset. Additionally, the language features
of Java make it challenging to establish rigorous
unit tests. CODEMENV currently involves only
two programming languages, Python and Java. We
plan to add more programming languages in the
future.

Ethics Statement

Throughout our work, we have strictly adhered
to ethical standards. The creation of our dataset

also complies with open-source regulations, and
the data has undergone manual checks to prevent
harmful content.

References

The claude 3 model family: Opus, sonnet, haiku.

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad
Awan, Jyoti Aneja, Ahmed Awadallah, Hany Has-
san Awadalla, Nguyen Bach, Amit Bahree, Arash
Bakhtiari, Harkirat Singh Behl, Alon Benhaim,
Misha Bilenko, and Johan Bjorck. 2024. Phi-3 tech-
nical report: A highly capable language model lo-
cally on your phone. ArXiv, abs/2404.14219.

Abhinav Jauhri Abhimanyu Dubey et al. 2024. The
Ilama 3 herd of models. ArXiv, abs/2407.21783.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical re-
port. arXiv preprint arXiv:2303.08774.

Keyuan Cheng, Gang Lin, Haoyang Fei, Yuxuan Zhai,
Lu Yu, Muhammad Asif Ali, Lijie Hu, and Di Wang.
2024. Multi-hop question answering under temporal
knowledge editing. ArXiv, abs/2404.00492.

Xueying Du, Mingwei Liu, Kaixin Wang, Han-
lin Wang, Junwei Liu, Yixuan Chen, Jiayi Feng,
Chaofeng Sha, Xin Peng, and Yiling Lou. 2024.
Evaluating large language models in class-level code
generation. 2024 IEEE/ACM 46th International
Conference on Software Engineering (ICSE), pages
982-994.

Hasan Ferit Eniser, Hanliang Zhang, Cristina David,
Meng Wang, Maria Christakis, Brandon Paulsen,
Joey Dodds, and Daniel Kroening. 2024. Towards
translating real-world code with Ilms: A study of
translating to rust. ArXiv, abs/2405.11514.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. Realm: Retrieval-
augmented language model pre-training. ArXiv,
abs/2002.08909.

Dan Hendrycks, Steven Basart, Saurav Kadavath,
Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Xiaodong
Song, and Jacob Steinhardt. 2021. Measuring
coding challenge competence with apps. ArXiv,
abs/2105.09938.

Cheng-Yu Hsieh, Sibei Chen, Chun-Liang Li, Yasuhisa
Fujii, Alexander J. Ratner, Chen-Yu Lee, Ranjay
Krishna, and Tomas Pfister. 2023. Tool documen-
tation enables zero-shot tool-usage with large lan-
guage models. ArXiv, abs/2308.00675.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and
Sunghun Kim. 2024. A survey on large language
models for code generation. ArXiv, abs/2406.00515.

Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kuttler, Mike Lewis, Wen tau Yih, Tim Rock-
taschel, Sebastian Riedel, and Douwe Kiela. 2020.
Retrieval-augmented generation for knowledge-
intensive nlp tasks. ArXiv, abs/2005.11401.

Xiaopeng Li, Shangwen Wang, Shasha Li, Jun Ma, Jie
Yu, Xiaodong Liu, Jing Wang, Bing Ji, and Weimin
Zhang. 2024. Model editing for llms4code: How far
are we? ArXiv, abs/2411.06638.

Zeyu Leo Liu, Shrey Pandit, Xi Ye, Eunsol Choi,
and Greg Durrett. 2024. Codeupdatearena: Bench-
marking knowledge editing on api updates. ArXiv,
abs/2407.06249.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022a. Locating and editing factual as-
sociations in gpt. Advances in Neural Information
Processing Systems, 35:17359—-17372.

Kevin Meng, Arnab Sen Sharma, Alex J Andonian,
Yonatan Belinkov, and David Bau. 2022b. Mass-
editing memory in a transformer. In The Eleventh
International Conference on Learning Representa-
tions.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agar-
wal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, et al. 2024a. Gpt-4 technical report.

OpenAl, Aaron Hurst, Adam Lerer, Adam P. Goucher,
Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec
Radford, Aleksander Madry, Alex Baker-Whitcomb,
Alex Beutel, et al. 2024b. Gpt-40 system card.

Machel Reid, Nikolay Savinov, Denis Teplyashin,
Dmitry Lepikhin, Timothy P. Lillicrap, Jean-
Baptiste Alayrac, Radu Soricut, Angeliki Lazari-
dou, Orhan Firat, Julian Schrittwieser, loannis
Antonoglou, Rohan Anil, Sebastian Borgeaud, and
Andrew M. 2024. Gemini 1.5: Unlocking multi-
modal understanding across millions of tokens of
context. ArXiv, abs/2403.05530.

Zhihong Shao, Damai Dai, Daya Guo, Bo Liu (Ben-
jamin Liu), Zihan Wang, and Huajian Xin. 2024.
Deepseek-v2: A strong, economical, and effi-
cient mixture-of-experts language model. ArXiv,
abs/2405.04434.

Hongjin Su, Shuyang Jiang, Yuhang Lai, Haoyuan Wu,
Boao Shi, Che Liu, Qian Liu, and Tao Yu. 2024.
Evor: Evolving retrieval for code generation. In
Conference on Empirical Methods in Natural Lan-
guage Processing.

Qwen Team. 2024. Qwen2.5: A party of foundation
models.

Junjie Ye, Xuanting Chen, Nuo Xu, Can Zu, Zekai
Shao, Shichun Liu, Yuhan Cui, Zeyang Zhou, Chao
Gong, Yang Shen, Jie Zhou, Siming Chen, Tao Gui,

https://api.semanticscholar.org/CorpusID:268232499
https://api.semanticscholar.org/CorpusID:269293048
https://api.semanticscholar.org/CorpusID:269293048
https://api.semanticscholar.org/CorpusID:269293048
https://api.semanticscholar.org/CorpusID:269293048
https://api.semanticscholar.org/CorpusID:269293048
https://api.semanticscholar.org/CorpusID:271571434
https://api.semanticscholar.org/CorpusID:271571434
https://api.semanticscholar.org/CorpusID:271571434
https://api.semanticscholar.org/CorpusID:268819534
https://api.semanticscholar.org/CorpusID:268819534
https://api.semanticscholar.org/CorpusID:268819534
https://api.semanticscholar.org/CorpusID:269128474
https://api.semanticscholar.org/CorpusID:269128474
https://api.semanticscholar.org/CorpusID:269128474
https://api.semanticscholar.org/CorpusID:269922036
https://api.semanticscholar.org/CorpusID:269922036
https://api.semanticscholar.org/CorpusID:269922036
https://api.semanticscholar.org/CorpusID:269922036
https://api.semanticscholar.org/CorpusID:269922036
https://api.semanticscholar.org/CorpusID:211204736
https://api.semanticscholar.org/CorpusID:211204736
https://api.semanticscholar.org/CorpusID:211204736
https://api.semanticscholar.org/CorpusID:234790100
https://api.semanticscholar.org/CorpusID:234790100
https://api.semanticscholar.org/CorpusID:234790100
https://api.semanticscholar.org/CorpusID:260351459
https://api.semanticscholar.org/CorpusID:260351459
https://api.semanticscholar.org/CorpusID:260351459
https://api.semanticscholar.org/CorpusID:260351459
https://api.semanticscholar.org/CorpusID:260351459
https://api.semanticscholar.org/CorpusID:270214176
https://api.semanticscholar.org/CorpusID:270214176
https://api.semanticscholar.org/CorpusID:270214176
https://api.semanticscholar.org/CorpusID:218869575
https://api.semanticscholar.org/CorpusID:218869575
https://api.semanticscholar.org/CorpusID:218869575
https://api.semanticscholar.org/CorpusID:273963883
https://api.semanticscholar.org/CorpusID:273963883
https://api.semanticscholar.org/CorpusID:273963883
https://api.semanticscholar.org/CorpusID:271064726
https://api.semanticscholar.org/CorpusID:271064726
https://api.semanticscholar.org/CorpusID:271064726
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2410.21276
https://api.semanticscholar.org/CorpusID:268297180
https://api.semanticscholar.org/CorpusID:268297180
https://api.semanticscholar.org/CorpusID:268297180
https://api.semanticscholar.org/CorpusID:268297180
https://api.semanticscholar.org/CorpusID:268297180
https://api.semanticscholar.org/CorpusID:269613809
https://api.semanticscholar.org/CorpusID:269613809
https://api.semanticscholar.org/CorpusID:269613809
https://api.semanticscholar.org/CorpusID:267750919
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/

Qi Zhang, and Xuanjing Huang. 2023. A compre-
hensive capability analysis of gpt-3 and gpt-3.5 se-
ries models.

Zhigiang Yuan, Weitong Chen, Hanlin Wang, Kai Yu,
Xin Peng, and Yiling Lou. 2024. Transagent: An
llm-based multi-agent system for code translation.
ArXiv, abs/2409.19894.

Zexuan Zhong, Zhengxuan Wu, Christopher D Man-
ning, Christopher Potts, and Danqi Chen. 2023.
Mquake: Assessing knowledge editing in language
models via multi-hop questions. arXiv preprint
arXiv:2305.14795.

Shuyan Zhou, Uri Alon, Frank F. Xu, Zhiruo
Wang, Zhengbao Jiang, and Graham Neubig. 2022.
Docprompting: Generating code by retrieving the
docs. In International Conference on Learning Rep-
resentations.

10

http://arxiv.org/abs/2303.10420
http://arxiv.org/abs/2303.10420
http://arxiv.org/abs/2303.10420
http://arxiv.org/abs/2303.10420
http://arxiv.org/abs/2303.10420
https://api.semanticscholar.org/CorpusID:272988134
https://api.semanticscholar.org/CorpusID:272988134
https://api.semanticscholar.org/CorpusID:272988134
https://api.semanticscholar.org/CorpusID:252734952
https://api.semanticscholar.org/CorpusID:252734952
https://api.semanticscholar.org/CorpusID:252734952

A Prompts for CODEMENYV

See Prompt1 for the generation of python code.

See Prompt?2 for the evaluation of python of various llms.

See Prompt3 for the judgment of Python code evaluation results for llms.
See Prompt4 for the generation of unit test.

See Prompt5 for the improving of unit test.

See Prompt6 for the generation of java code.

See Prompt7 for the evaluation of java of various llms.

See Prompt8 for the judgment of Java code evaluation results for llms.

Prompt 1: Generate Python Code based on Given function

== SYSTEM ===
You are a very experienced programmer who is familiar with the functions of many functions and is good at applying
them. At the same time, you are thoughtful and creative and like to apply some functions to solve algorithmic problems.

First of all, I will give you an existing library function, you will get the function with signatures and functionality, as
well as import methods. I hope you can think about the application of this library function according to the function
of this library function, be bold and creative, and then write a piece of code that calls this new function, we call this
code the solution. This solution is a function. This solution should be able to solve medium and difficult algorithmic
problems, which require "multiple inferences", at least three or four steps to solve, rather than simply calling your
library function. There should be no comments in this solution.

Then, design a problem for the solution you generated, and ask others to be able to generate a solution from the
problem , and your problem description should be biased towards the functionality of the solution, as well as the inputs
and outputs, rather than leading to a step-by-step solution generation in the description. You should be clear about
the data type and dimension of each parameter you input, as well as the data type and parameters of the output. Your
problem description goes like "Please use python code to help me with a function...". Indicate in the description which
library is being called, but not which library function is being called. Don’t mention the details of the task fulfillment.

Note: Do not alias when importing; Here’s a return template,only output the JSON in raw text. Don’t return anything
else.

{

solution_function: The function that you generate. Make sure the code you return is runnable.

solution_signature: The signature of the function you generated, indicating the input and output. And the name of the
solution should derive from its functionality,

problem: Generate a literal description of this function. Describe the data type and dimensions of each input parameter
and the data type and dimension of the output.

}

==== USER ====

The package name for the new library function is:
<PACKAGE>

The import method is as follows:

<IMPORT>

The signature of the new library function is:
<SIGNATURE>

The feature description of the new library function is:
[DOC]

<DOC_STRING>

[/DOC]

Note: Do not alias when importing; Only output the JSON in raw text.Don’t return anything else.

11

Prompt 2: Evaluate the ability of large language models to locate and correct errors in the python code.

==== SYSTEM ====

You’re a good assistant, and now you need to help me change the code.

I’ll give you a piece of python code that has an error due to an exception in the python library version. You need to
locate the wrong API in this code. Then give the information about the change of the wrong api. It must include the
change type deprecation/addition/replacement,the replace api(if the change type is replace), and the version of the API
that changed. Finally return your corrected code, noting that you only need to fix the wrong API in the code, but your
return includes the entire code as modified.

Note that Only output the JSON in raw text. Don’t return anything else. And here’s an example of what you returned.
{

ai_api_wrong: There is the wrong API in the code because of the version,

ai_api_change: 1.The specified API(error api) has changed due to version changes, such as being added in version...,
being abandoned in version..., or the calling method has changed; 2.The replace method is... 3.The version tha the api
changed is...

code_fixed: Entire code modified

}

Here’s an example of an answer.

{

ai_api_wrong: numpy.compare_chararrays.

ai_api_change: 1.replacement 2.use numpy.char.compare_chararrays instead

3.The function numpy.compare_chararrays has been removed in numpy version 2.0.
code_fixed: def string_array_similarities(strings1, strings2):

result =[]

for s1 in strings1:

temp_result =0

for s2 in strings2:

length_diff = abs(len(s1) - len(s2))

comparison = numpy.char.compare_chararrays(numpy.array(list(s1)), numpy.array(list(s2)), cmp='==", as-
sume_equal=False)

similarity = numpy.sum(comparison) - length_diff

temp_result = max(temp_result, similarity)

result.append(temp_result)

return result

}

==== USER ====

Here’s the code you need to identify errors.
[CODE]

<CODE>

[/CODE]

Here’s the Python library you need to modify your code.
[PACKAGE]

<PACKAGE>

[/PACKAGE]

Here’s the version of above package.
[VERSION]

<VERSION>

[/VERSION]

12

Prompt 3: Judge the correctness of AI’s reasoning of python code.

==== SYSTEM ====

You are a good helper for a human being. I'm now having another big AI model try to figure out the API in a piece
of code that is incorrectly called because of the version, and have it return the error api,the api change about different
version and code after he fixed. I’ll give you another reason for the AI’s return, and I'll give you a basis for judging
whether the AI’s reason is correct. I’'m going to give you a judgment based on the python library function that is
wrong and whether the version of the library function is too low or too high.

Please compare the wrong apis returned by the Al and the correct apis I give you. If ai_api_wrong contains api_wrong,
the judge_locate_answer is 1,unless return 0.

Compare whether the change of the api returned by the and the real change I give you. You can loosely compare the
two changes. If they are related or only have a little difference, the judge_update_answer is 1. If two changes are
absolutly are completely irrelevant, return 0. Remenber if judge_locate_answer is 0, judge_update_answer must be 0.
Note that Only output the JSON in raw text. Don’t return anything else. And here’s an example of what you returned.
{

judge_reason: The reason why the Al determines whether it is correct or wrong,

judge_locate_answer: {0/1}

judge_update_answer: {0/1}

}

==== USER ====

Here’s the code that lets the Al judge that there is an error.
[CODE]

<CODE>

[/CODE]

Here are the apis given by LLM that are not suitable for the target environment.
[API_LOCATE_BY_ LLM]

<API_LOCATE_BY_LLM>

[API_LOCATE_BY_ LLM]

Here’s the information regarding the changes in this API, which was returned by LLM.
[CHANGE_INFORMATION_BY_LLM]
<CHANGE_INFORMATION_BY_LLM>
[CHANGE_INFORMATION_BY_ LLM]

Here are the answers.

[API_REFERENCE_ANSWER]
<API_REFERENCE_ANSWER>
[API_REFERENCE_ANSWER]
[CHANGE_INFORMATION_REFERENCE_ANSWER]
<CHANGE_INFORMATION_REFERENCE_ANSWER>
[CHANGE_INFORMATION_REFERENCE_ANSWER]

The version is too high or too low.

[VERSION_ERROR]

<VERSION_ERROR>

[/VERSION_ERROR]

13

Prompt 4: Generate test data

=== SYSTEM =S===
Role
A very experienced programmer who is good at algorithmic reasoning and can write high-quality code.

Responsibilities
Write 3 sets of *high-quality* and *comprehensive* input test data based on the problem description and benchmark
code.

The specific description of these requirements is as follows:

Problem:

That is, the problem situation. The type of input data and the range limit of the input data are often given in the
problem.

(Problem is between "[PROBLEM]" and "[/PROBLEM]")

Benchmark code:
That is, the given callable code, and its parameters are each set of input data to be passed in (Benchmark code is
between "[CODE]" and "[/CODE]")

Implementation steps
Please answer the questions strictly according to the above requirements and the following steps:

1. Determine the input data
- First analyze the problem and the given code to determine the type of input data,

2. Final input data group generation
Based on step 1, return the string of the input data group
- Return format: casel:

—====== Task start =====
Below is the given problem and function.

==== USER ====
[PROBLEM]
<PROBLEM>

[/PROBLEM]
[CODE]
<CODE>
[/CODE]

14

Prompt 5: Improve data quality

=== SYSTEM =S===
Role
An experienced data tester who is good at writing more accurate and higher quality test data based on error information.

Responsibilities
Adjust the test data group according to the provided executable script and running information, and return the adjusted
test data

Executable script:
That is, a script that can be compiled and run, and the script code already contains an array of test data.(BETWEEN
"[TARGET_IMPLEMENTATION]" and "[/TARGET_IMPLEMENTATION]")

Running information: That is, the running information of each set of test data when the function is running, mainly
focusing on error information.(BETWEEN "[MESSAGE]" and "[/MESSAGE]")

Example:
- input:
[TARGET_IMPLEMENTATION]

import tensorflow as tf

def weighted_average_division(matrix, weights) :
matrix_tensor = tf.convert_to_tensor (matrix, dtype=tf.float32)
weilghts_tensor = tf.convert_to_tensor (weights, dtype=tf.float32)
weighted _matrix = tf.multiply (matrix_tensor, weights_tensor)
sum_of_weights = tf.reduce_sum(weights_tensor)
weighted_sum = tf.reduce_sum(weighted_matrix)
return tf.divide (weighted_sum, sum_of_weights) .numpy ()

Input data
test_data = [
(rrfr.o0, 2.01, [3.0, 4.011, [0.5, 0.5]),
(rrr1.5, 2.51, (3.5, 4.5], [5.5, 6.5]], [0.2, 0.3, 0.5]),
([[10.0]1], [1.01)
]

Process each data case and save results

results = []
for matrix, weights in test_data:
try:
result = weighted_average_division (matrix, weights)

results.append(result)
except Exception as e:
results.append(f"error:{e}l")

[/TARGET_IMPLEMENTATION]

[MESSAGE]

5.0

error:function_node __ wrapped__Mul_device_/job:localhost/replica:0/task:0/device:CPU:0 Incompatible shapes:
[3,2] vs. [3] [Op:Mul]

10.0

nn

[/MESSAGE]

- output:

casel:[[1.0, 2.01, [3.0, 4.01], [0.5, 0.5],
case2:[[-1.0, -2.0], [-3.0, -4.0]], [0.5, 0.5],
case3:[[10.01], [1.0]

Notes
Here, you only need to pay attention to the test data with running errors. For arrays without error information records,
there is no need to adjust.

Implementation steps

Please strictly follow the above requirements and the following steps to answer the questions:

1. Test data extraction and identification

-Extract the parameters passed by the calling function from the executable script as the test data group

15

Prompt 5: Improve data quality

2. Match the test data group with the corresponding operation information

-Pair the test data input groups in sequence according to the operation results

3. Save the test data group that runs correctly and replace the test data group that runs incorrectly

-Keep the test data group that runs correctly unchanged

-For the test data group that runs incorrectly, analyze the cause according to the error information, avoid similar errors,
and replace the new test data group

4. Finally, just return the modified test data, do not return unnecessary explanations!

—====== Task start =====
Below is the given executable script and running information.

==== USER ====
[TARGET_IMPLEMENTATION]
<TARGET_IMPLEMENTATION>
[/TARGET_IMPLEMENTATION]
[MESSAGE]

<MESSAGE>

[/MESSAGE]

Prompt 6: Generate Java Code based on Given function

==== SYSTEM ====
You are a very experienced JAVA programmer who is familiar with various library functions of java and is good
at applying them. At the same time, you are thoughtful and creative, and like to apply some functions to solve
algorithmic problems.

First of all, I will specify that you use an old API to complete a class, this API may have been removed in the new
JDK. Assuming that I am running in an old JDK environment, please call the API anyway.

Then, generate a functional description for your generated code, and I can ask others to be able to generate the code
from the problem.

Note: Do not alias when importing; Here’s a return template,only output the JSON in raw text. Don’t return anything
else.

java_code: The function that you generate. Make sure the code you return is runnable.
class_name: The name of the class you generate.
function_description: The function description of your generated code.

}

=== USER ===
The sigature of the new library function is: <SIGNATURE>

Note: Do not alias when importing; Only output the JSON in raw text.Don’t return anything else.

16

Prompt 7: Evaluate the ability of large language models to locate and correct errors in the java code.

====SYSTEM ====

You’re a good assistant, and now you need to help me find the error of the code. I'll give you a piece of java code that
has errors due to an exception in the java JDK version. You need to locate the wrong APIs in this code, and explain
what version changes have taken place in the API that caused the error you pointed out.

Note that your answers must be concise, and you only need to point out the mistake directly.

Here’s an example of an answer:

Output:

ai_api_wrong: com.sun.javadoc.AnnotatedType

ai_api_change: The declarations in this package have been superseded by those in the package jdk.javadoc.doclet. For
more information, see the Migration Guide in the documentation for that package.

==== USER ====

Here’s the code you need to identify errors.

[CODE]

<CODE>

[/CODE]

Here’s the version of the JDK

[VERSION]

<VERSION>

[VERSION]

Prompt 8: Judge the correctness of AI’s reasoning of java code.

== SYSTEM ==

You are a good helper for a human being. I’'m now having another large AI model try to figure out the API in a piece
of code that is incorrectly called because of the JDK version, and have it return the error_api,the api’s change about
different version. I’'m going to give you a judgment based on the java api(class or interface) that is deparcted.

Please compare the wrong apis returned by the Al and the correct apis I give you. If api_locate_by_llm contains
api_reference_answer, the judge_locate_answer is 1,unless return 0.

Compare whether the change of the api returned by the and the real change I give you. You can loosely compare the
two changes. If they are related or only have a little difference, the judge_update_answer is 1. If two changes are
absolutly are completely irrelevant, return 0. Remenber if judge_locate_answer is 0, judge_update_answer must be 0.
{

judge_reason: The reason why the Al determines whether it is correct or wrong,

judge_locate_answer: {0/1}

judge_update_answer: {0/1}

}

==== USER ====

Here’s the code that lets the Al judge that there is an error.
[CODE]

<CODE>

[/CODE]

Here’s the wrong apis that the Al returned.
[API_LOCATE_BY_ LILM]
<API_LOCATE_BY_LLM>
[API_LOCATE_BY_ LILM]

Here’s the change of the wrong apis that the Al returned.
[CHANGE_INFORMATION_BY_ LLM]
<CHANGE_INFORMATION_BY_LLM>
[CHANGE_INFORMATION_BY_ LLM]

Here are the answers.

[API_REFERENCE_ANSWER]
<API_REFERENCE_ANSWER>
[API_REFERENCE_ANSWER]
[CHANGE_INFORMATION_REFERENCE_ANSWER]
<CHANGE_INFORMATION_REFERENCE_ANSWER>
[CHANGE_INFORMATION_REFERENCE_ANSWER]
The version is too high or too low.

[VERSION_ERROR]

<VERSION_ERROR>

[/VERSION_ERROR]

17

B Datsets Statistics

Datasets jdk.nashorn org.xml com.sun java.applet java.beans java.rmi java.util java.security

Java 188 9 86 9 3 15 7 18

Table 5: Distribution of Code Segments across Various Java Packages

Datasets numpy python math re os random itertools torch tensorflow pandas csv

Easy(Py.) 39 26 51 5 34 3 15 21 154 46 2
Hard(Py.) 20 - - - - - - 21 115 35 -

Table 6: Distribution of Code Segments across Various Python Packages

18

C Data Example

C.1 Data Example of Easy(Py.)

Related API

‘ np.row_stack (tup, *, dtype=None, casting='same_kind')->numpy.ndarray ‘

Update Message
np.row_stack has been deprecated to reduce redundancy and encourage direct usage of np.vstack.

Document Message
np.row_stack was used as an alias for np.vstack, which vertically stacks arrays row-wise.

Original And Target Environment

Original version: numpyl.26
Target version: numpy2.0

Code Before Migration

def maximize_channel_sum(matrices) :
import numpy as np
stacked_matrix = np.row_stack (matrices)
return np.max (np.sum(stacked_matrix, axis=0))

Problem Description

Please use python code to help me with a function that takes a list of 2D numpy arrays, all having the same number of
columns, and returns the maximum sum of any column after stacking all arrays vertically.

Each array in the list is a 2D numpy array, and the output is a single integer representing the maximum column sum.
Use the numpy library for the operations.

Incompatible Function

numpy .row_stack

Function Change
The function numpy.row_stack has been removed in numpy version 2.0 instead stack function is recommended.

Code After Migration

def maximize_ channel sum(matrices):
import numpy as np
stacked_matrix = np.stack (matrices, axis=0) .reshape (-1,
— matrices[0].shape[l])
return np.max (np.sum(stacked_matrix, axis=0))

19

C.1 Data Example of Easy(Py.)

Unit Test
test_data = [
[np.array ([[1, 2], [3, 41]), np. array s, 61, (7, 811)1,
[array([[lO, 20, 301, [40, 50, 0]1), np.array([[5, 15, 25], [35, 45,
> 511), np.array([[1, 2, 3], [4, 5, 611)1,
[np. array([[lo, -5], [-2, 311), np.array([[5, -10], [8, 10]11)]
]
Complete Code

import numpy as np

def maximize_channel_sum(matrices) :
import numpy as np
stacked_matrix = np.stack (matrices, axis=0) .reshape (-1,
— matrices[0].shape[l])
return np.max (np.sum(stacked_matrix, axis=0))

Input data

test_data = [
[np.array ([[1, 2], [3, 4]1]), np. array s, 61, (7, 8111,
[np.array([[10, 20, 30], [40, 50, 60]]), np.array([[5, 15, 25], [35, 45,
— 55]11), np.array([[1, 2, 3], [4, 5, 611)1,
[np.array ([[10, -5], [-2, 3]]), np.array([[5, -10], [8, 10]1)]

]

for matrices in test_data:
try:
result = maximize_channel_sum(matrices)
print (result)
except Exception as e:
print ("error:", e)

Operation Results

20
179
21

20

C.2 Data Example of Hard(Py.)

Related API

pd.bfill ()
pd.api.types.is_any_real numeric_dtype (arr_or_dtype) ->bool

Update Message

1)Before pandas 2.0, pd.Series.backfill was the standard way to apply the backfill function; however, after pandas 2.0,
it is recommended to use pd.bfill instead.

2)New in pandas 2.0.

Document Message
DIt is used to backward-fill missing values in a Series.

2)Check whether the provided array or dtype is of a real number dtype.

Original And Target Environment

Original version: pandas2.0
Target version: pandasl.0.0

Code Before Migration

def interpolate_and_check_numeric(data) :
df = pd.DataFrame (data)
df = df.bfill()

numeric_cols = [col for col in df.columns if
— pd.api.types.is_any_real_numeric_dtype (df[col])]
numeric_data = df[numeric_cols]

return numeric_data.mean () .to_dict ()

Problem Description

Please use python code to help me with a function that takes a dictionary representing a dataset with possible missing
values in its columns. Each key in the dictionary is a column name, and the value is a list representing column data.
The function should fill in missing values by carrying backward the next valid observation. Then, identify which
columns contain numeric data and return a dictionary with the mean of each numeric column after filling missing
values. Use the pandas library in your solution. The input is a dictionary where keys are strings and values are lists of
equal length, which may contain None to represent missing data. The output is a dictionary where keys are column
names containing numeric data and values are their respective means as floats.

Incompatible Function

pd.bfill
pd.api.types.is_any_real numeric_dtype

Function Change

In Pandas version 1.0.0, DataFrame.bfill is not directly callable via pd.bfill since it’s a method of DataFrame objects.
pd.api.types.is_any_real_numeric_dtype was introduced in later versions;

in version 1.0.0, use pd.api.types.is_numeric_dtype instead.

Code After Migration

import pandas as pd

def interpolate_and_check_numeric (data) :
df = pd.DataFrame (data)
df = df.bfill ()
numeric_cols = [col for col in df.columns if
— pd.api.types.is_numeric_dtype (df[col])]
numeric_data = df[numeric_cols]
return numeric_data.mean () .to_dict ()

21

C.2 Data Example of Hard(Py.)

Unit Test

test_data = [

{
'A': [1.2, None, 3.4, None, 5.6],
'B': [None, 10, None, 12, None],
ICI: [lal, lbl, 'C‘, ldl, lel],
'D': [None, None, 2.2, None, 3.3]

'Height': [170, 165, 180, 1751,
'Weight': [70, 60, 80, 751,
'Labels': ['tall', 'short', 'tall', 'medium']

'A': [None, None, None],
'B': [None, None, None],
'C': [None, None, None]

Complete Code

import pandas as pd

def interpolate_and_check_numeric(data) :

df = pd.DataFrame (data)

df = df.bfill()

numeric_cols = [col for col in df.columns if

— pd.api.types.is_any_real_ numeric_dtype (df[col])]
numeric_data = df[numeric_cols]

return numeric_data.mean () .to_dict ()

Input data
test_data = [
{
'A': [1.2, None, 3.4, None, 5.6],
'B': [None, 10, None, 12, None],
Cr. [lal, 'b', lcl, ldl, lel]’
'D': [None, None, 2.2, None, 3.3]

'Height': [170, 165, 180, 17517,
'Weight': [70, 60, 80, 751,
'Labels': ['tall', 'short', 'tall', 'medium']

'A': [None, None, None],
'B': [None, None, None],
'C': [None, None, None]

]

for data in test_data:
try:
result = interpolate_and_check_numeric (data)
print (result)
except Exception as e:
print ("error:", e)

Operation Results

{'A': 3.84, 'B': 11.0, 'D': 2.6399999999999997}
{'"Height': 172.5, 'Weight': 71.25}
{}

22

C.3 Data Example of Java

Related API

’ jdk.nashorn.api.tree.WhileLoopTree ‘

Update Message
Nashorn JavaScript script engine and APIs, and the jjs tool are deprecated with the intent to remove them in a future
release.

Original And Target Environment

Original version: jdkl1l.7
Target version: jdkll

Code

import jdk.nashorn.api.tree.WhileLoopTree;
import jdk.nashorn.api.tree.Tree;
import jdk.nashorn.api.tree.ExpressionTree;
import jdk.nashorn.api.tree.StatementTree;
public class OldWhileLoopTreeExample ({
public void analyzeWhileLoop (Tree tree) {
if (tree instanceof WhileLoopTree) {
WhileLoopTree whileLoop = (WhileLoopTree) tree;

ExpressionTree condition = whilelLoop.getCondition () ;

StatementTree statement = whilelLoop.getStatement () ;
System.out.println("While Loop Condition: " + condition.toString());
System.out.println ("While Loop Statement: " +

statement.toString()); }

else {

System.out .println("The provided tree is not a WhileLoopTree.");
}
}

public static void main (String[] args) {
Tree someTree = null;

OldWhileLoopTreeExample example = new OldWhileLoopTreeExample () ;
example.analyzeWhileLoop (someTree) ;

Function Description

This class, OldWhileLoopTreeExample, demonstrates the usage of the deprecated Nashorn API’'s WhileLoopTree
class. It includes a method analyzeWhileLoop that takes a Tree object as input, checks if it is an instance of
WhileLoopTree, and if so, extracts and prints the condition and statement of the while loop. The main function
provides a framework for how this method might be used, although actual tree creation is complex and not included in
this example.

Incompatible Function

jdk .nashorn.api.tree.WhileLoopTree

Function Change
The Nashorn JavaScript engine and the ‘jdk.nashorn.api® package were deprecated in JDK 11 and removed in JDK
17. For more information, see the Java API documentation for Nashorn’s removal.

D Further Experiments

Performance across Different Packages. As Figure 6 show, LLMs show significant performance differ-
ences across different packages. For example, GPT-40 achieves a pass@]1 rate of around 71% in Pandas
package, but only 0% and 20% pass@]1 rates in CSV and TensorFlow package, respectively. One possi-

23

0.8 GPT-40-Mini
Meta-Llama-3.1-70B-Instruct
GPT-Turbo-3.5
0.7 1 Qwen?2.5-Coder-7B-Instruct
GPT-40
Deepseek-Chat
0.6 q
0.54
—
Q
B 0.4
©
a
0.31
0.24
0.11
0.0 v
T T T T T T T T T T T
© & X 3 o $ & 5 @
o R O > &< J o o S &
o & & S & & &
’\‘é& e & * & N &
<@
Packages

Figure 6: The experimental results of code migration at easy difficulty across different packages.

ble reason for this discrepancy is the varying difficulty of data across different packages. Additionally,
the extent to which different packages are covered in the LLM’s training data may also contribute to the
performance differences.

24

