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Abstract

This paper considers the problem of model selection under domain shift. Motivated by
principles from distributionally robust optimisation and domain adaptation theory, it is
proposed that the training-validation split should maximise the distribution mismatch be-
tween the two sets. By adopting the maximum mean discrepancy (MMD) as the measure
of mismatch, it is shown that the partitioning problem reduces to kernel k-means cluster-
ing. A constrained clustering algorithm, which leverages linear programming to control the
size, label, and (optionally) group distributions of the splits, is presented. The algorithm
does not require additional metadata, and comes with convergence guarantees. In experi-
ments, the technique consistently outperforms alternative splitting strategies across a range
of datasets and training algorithms, for both domain generalisation and unsupervised do-
main adaptation tasks. Analysis also shows the MMD between the training and validation
sets to be well-correlated with test domain accuracy, further substantiating the validity of
this approach.

1 Introduction

The ability for models to maintain high performance on data lying outside their training distribution, known
as domain generalisation (DG), is crucial to the widespread deployment of artificial intelligence. Although
extensive research has been conducted towards developing more generalisable training algorithms (Gulrajani
& Lopez-Paz, 2021), significantly less focus has been given to increasing the robustness of the model selection
process, despite being as integral a part of the learning problem, and indeed, just as susceptible to distribution
shifts, as the fitting of the model itself.

As with model parameters, hyperparameters chosen based on in-distribution (ID) performance lack opti-
mality guarantees on out-of-distribution (OOD) test data. Metadata-based dataset splitting, which creates
OOD validation sets distinct from both the training and test data, is commonly used in this scenario, and has
empirically been shown to encourage the selection of more generalisable hyperparameters (Koh et al., 2021).
This paper is motivated by the principles of distributionally robust optimisation (DRO) (Rahimian & Mehro-
tra, 2019), which aims to optimise for worst-case performance within some uncertainty set of distributions.
This suggests that the validation set should indeed be maximally domain shifted from the training set, while
still retaining a relevant distribution. It is proposed that a worst-case dataset split which maximises domain
mismatch would balance these two aims, and further encourage the selection of robust hyperparameters.

Among other considerations, the measure of mismatch should be such that the partitioning problem can
be tractably solved. To this end, it is noted that performing kernel k-means clustering is equivalent to
maximising the empirical maximum mean discrepancy (MMD) between clusters (weighted by cluster size).
Thus, this paper proposes to perform a validation split based on kernel k-means, and presents a modified
clustering algorithm for this purpose. Specifically, constraints are introduced to the cluster assignment step
to control the holdout fraction (i.e., the cluster sizes), and to preserve class and (optionally) domain/group
distributions; this is then formulated and solved as a linear program, providing convergence guarantees not
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present in prior work. In addition, the Nyström method for low-rank approximation is employed to make
the algorithm tractable for large datasets.

The proposed method provides a model selection strategy based on OOD performance that does not require
additional metadata, which is not always available. It is also argued that the method is able to capture more
nuances in real-world data than can be described by a single domain variable, which is another limitation of
metadata-based splits. For example, in tumour identification, domain shifts can be caused by variations in
sample preparation methods or patient populations. Or, in wildlife monitoring (both acoustic and visual),
these can be due to differences in environmental or weather conditions, data collection equipment, or new
unseen events (Koh et al., 2021). However, all this information is unlikely to be described in the available
metadata, which may only state the hospital of origin or the recording location, respectively. In such cases,
splitting the data along lines closer to the underlying cause of the shift, as determined by the clustering
algorithm, rather than a more loosely correlated proxy, may permit a more informed model selection which
can result in hyperparameters better suited to the nature of the shift.

This paper considers the two most common paradigms for learning under domain shift: domain generalisation
(DG) and unsupervised domain adaptation (UDA). Both paradigms assume the data can be grouped into
“domains” which share certain characteristics, and that each domain is associated with a different data
distribution. Given multiple source domains, DG seeks to learn domain-invariant feature representations
such that the model becomes robust to future (unknown) changes in the data. In contrast, UDA assumes
unlabelled data from a specific target domain is also available during training. Although DG operates in a
stricter setting, it also requires fewer assumptions about the target data – for example, UDA methods often
assume minimal label shift, but this can have a significant detrimental effect on performance (Napoli & White,
2024). UDA is also less stable than DG, as it is susceptible to phenomena such as catastrophic forgetting,
negative transfer, or overfitting on the target data. However, DG requires that the causal mechanisms behind
the domain shift remain stable, that is, that the test domain is drawn from the same meta-distribution as
the source domains. As this is difficult to ascertain in practice, test domain performance is also harder to
predict. In contrast, test domain accuracy in UDA is directly coupled to domain alignment quality, given
the theoretical link between the two (Redko et al., 2022).

In summary, this paper contributes the following:

• Description of a constrained clustering algorithm based on kernel k-means which can be used to
perform a training-validation split in applications expected to involve domain shifts.

• Comparison of this approach with existing validation splitting strategies for a range of datasets and
algorithms, in both DG and UDA settings.

• Analysis of the relationship between test domain accuracy and the MMD between the training and
validation sets.

2 Prior work

Gulrajani & Lopez-Paz (2021) reviewed 3 criteria for model selection in a DG setting: ID accuracy (on
a randomly held-out subset of each training domain); OOD accuracy on an additional domain held-out
using metadata (referred to as leave-one-domain-out); and test-distribution accuracy on a held-out subset
of the test domain (referred to as the oracle criterion), which can be used to provide an upper bound on
performance. Where multiple validation domains are given, a DRO-style treatment of model selection which
considers only the worst-performing domain is studied by Sagawa et al. (2019); Gao et al. (2023); Pfohl et al.
(2022) – although this again relies on the availability of metadata.

In addition to validation accuracy, it has been suggested that a model’s stability to distribution shifts should
also be explicitly considered. Prior work has quantified stability in terms of the expected calibration error
(the average deviation between accuracy and confidence) (Wald et al., 2021); the MMD between features
from different domains (Lyu et al., 2023); or the average variation of each feature between domains (Ye et al.,
2021).
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It has also been proposed to induce a domain shift between the training and validation sets by performing
mix-up augmentation on the held-out data (Lu et al., 2023). This links to a range of general robustness
benchmarks, where the evaluation sets have been subjected to various synthetic transformations. For exam-
ple, visual corruptions and perturbations (Hendrycks & Dietterich, 2019), stylisation (Geirhos et al., 2018),
the addition of spurious cues (Li et al., 2022), and adversarial filtration (Hendrycks et al., 2019) have all
been employed; a more complete review of this approach is given in Koh et al. (2021).

Non-random data splits have previously been used to produce domain-shifted evaluation sets, but no prior
work has investigated these in a model selection context. Søgaard et al. (2021) proposed an adversarial split-
ting heuristic based on k-nearest neighbours and the Wasserstein distance between term count distributions
of text documents, but this is not generally applicable to features in Rn, and no attempt was made to control
the label distribution. Adversarial data splits have also been used in meta-learning to improve DG (Gu et al.,
2023; Wang et al., 2024). Recently, Napoli & White (2025) proposed a data selection algorithm which can be
used to choose a validation set closer to the test domain in the UDA setting. However, this is not applicable
if the split needs to be decided before the test domain is accessible, e.g., for test-time adaptation.

Finally, with an approach most similar to ours, Wecker et al. (2020) proposed an evaluation split based on
k-means clustering, with constraints to control for cluster size and label distribution. Our paper develops
on this work in a number of ways. Firstly, the motivation of Wecker et al. (2020) is merely to create
more challenging data splits, and is not applied to improving model selection nor theoretically connected
to distributional robustness. Secondly, Wecker et al. (2020) impose the constraints using a greedy strategy,
which are susceptible to local minima. In contrast, we solve a constrained assignment problem using linear
programming, which avoids this effect and results in better quality solutions. We also generalise the label-
wise constraints to domains for multi-domain data. Finally, our theoretical analysis motivates a kernelised
version of this algorithm, thereby exploiting the relation between the kernelised objective (which we link to
the MMD) and validation accuracy.

The theoretical relation between the MMD and kernel k-means clustering has also been derived in other
contexts. For example, França et al. (2017) obtain similar results from the viewpoint of generalised energy
statistics, while Ohl et al. (2024) use the relation to improve training of unsupervised decision trees.

3 Preliminaries and notation

Let S = {(x1, y1, d1), . . . , (xn, yn, dn)} be the development set consisting of input-label-domain triplets over
X ×Y ×DS . Similarly, let E be the evaluation set over X ×Y ×DE , where DS ∩DE = ∅ (i.e., the development
and evaluation domains are disjoint), and let Y, DS and DE be finite sets. For ease of notation, subscripts
are used on sets to simplify set-builder notation, in two ways. Firstly, “slices” of a set are denoted using
capitals, for example:

SX = {x : (x, y, d) ∈ S}

SY D = {(y, d) : (x, y, d) ∈ S}.

Additionally, a predicate can be specified to restrict the set to samples satisfying a condition. For example,
to denote only inputs associated with a specific class y′:

SX,Y =y′ = {x : (x, y, d) ∈ S ∧ y = y′}.

In short, the goal of DG is to use S to produce a model θ : X → Y that performs well on E. θ comprises
a featuriser θF : X → F and label classifier θC : F → Y, such that θ = θC ◦ θF . In order to tune hyper-
parameters, S must be partitioned into training and validation sets, T and V respectively. A number of
models Θ = {θ1, . . . , θm} are trained on T using different hyperparameters; the “best" model is then selected,
according to

θ∗ = arg min
θ∈Θ

R(θ, V ), (1)

where R(θ, V ) is the error of θ on V , and θ∗ is evaluated on E.
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3.1 Theoretical motivation

DRO (Rahimian & Mehrotra, 2019; Sagawa et al., 2019) is a well-established and theoretically grounded
paradigm for obtaining more generalisable solutions to optimisation problems. Instead of reducing overall
error, DRO adopts a minimax strategy which minimises the worst-case error over some uncertainty set Q.
By defining Q as the possible (suitable) partitions of S, the model selection problem becomes

min
θ∈Θ

max
{T,V }∈Q

R(θ, V ). (2)

This could be solved directly via an expensive alternating optimisation process (Gu et al., 2023). However,
we propose instead to find arg maxT,V R(θ, V ), the worst-case partition in the sense of R, in a single step
by solving a surrogate problem based on the well-known relationship between R(θ, V ) and the mismatch
between T and V , which has been fundamental to domain adaptation theory (Ben-David et al., 2006; 2010).
By using the MMD to measure this mismatch, the partitioning problem can be efficiently solved through
clustering, as will be shown in Section 4. The theoretical relation between MMD(T, V ) and R(θ, V ) is given
by the generalisation error bound (Redko et al., 2022, Theorem 36)

R(θ, V ) ≤ R(θ, T ) + MMD(T, V ) + λ (3)

where λ is a term depending on the capacity of the hypothesis space and the combined performance of an
ideal model on both T and V . A linear correlation has also been observed empirically (Napoli & White,
2025). Although maximising the MMD is not guaranteed to maximise this bound due to the dependence of
R(θ, T ) on the partitioning, the empirical analysis in Section 5.5 shows that this term remains fairly stable
in practice.

Equation (3) is quite general and not strictly limited to covariate shift. However, the robustness of the bound
relies on the ability of the model to simultaneously perform well on both T and V (through λ), and this can
be affected by the presence of conditional shifts. There are also assumptions made about both the (joint)
data distributions and the hypothesis class of models – we refer to Redko et al. (2022) for formal statements
of these – and these ultimately define the reproducing kernel Hilbert space in which the MMD in the bound
is measured. Thus, by symmetry, the choice of kernel shapes the underlying assumptions about the model
and data, and ultimately determines whether the MMD being optimised is predictive of the discrepancy
between the training and validation losses.

4 Method

This section defines the constraints needed to ensure an appropriate split, formulates the partitioning prob-
lem, and describes an algorithm to solve the optimisation.

T and V should be of sizes determined by a user-defined holdout fraction h satisfying 0 < h < 1, and have
equivalent class distributions. This can be achieved by constraining the size of each label group in V to h
times the size of the corresponding group in S:

|VY =g| = h |SY =g| , ∀g ∈ Y. (4)

This constraint ensures that there are sufficient examples from each class in both T and V to properly train
and validate the models. Without it, the data may have a tendency to cluster by class, which may result in
certain classes being placed entirely in one set.

It may also be necessary or desirable to control domain distributions. For example, certain training algo-
rithms may require that the domains in T be uniformly represented to avoid overfitting; controlling the
distributions of validation groups has also been suggested to reduce noise in the hyperparameter tuning
process (Sagawa et al., 2019). Finally, in the multi-task learning setting (i.e., some or all of the domains cor-
respond to different tasks, with separate validation metrics), the domain split-ratio should also be controlled:
this both prevents bias towards a specific task, and also ensures that each task has sufficient representation
in the validation set to reliably estimate the corresponding validation metric. In these cases, the constraints
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should be taken over all (y, d) pairs instead:∣∣V(Y,D)=g

∣∣ = h
∣∣S(Y,D)=g

∣∣ , ∀g ∈ Y × DS . (5)

For the remainder of this section, the latter set of constraints (5) are assumed, although (4) can easily be
substituted if desired (as relaxing the constraints will increase the clustering objective), or if domain labels
are unavailable.

The objective is to maximise the discrepancy between T and V , measured using the MMD. Given the
potentially high dimensionality of X , doing this directly in the input space can be impractical. Therefore, it
is proposed to instead measure the MMD between the distributions of feature sets θF [TX ] and θF [VX ], where
θF [·] denotes the image under θF . Moreover, these intermediate features are those most highly correlated
with the model’s outputs, meaning this is the representation space for which the MMD is most predictive
of classification error. For further intuition, consider that a large MMD in this space implies a domain shift
that the model is not invariant to (and thus is more likely to cause problems) – hence why this is also the
representation space normally targeted by feature alignment methods (Gulrajani & Lopez-Paz, 2021). For
models where no intermediate representations are available, the input representations can be used directly,
or an alternative feature extractor or dimensionality reduction technique can be used. Prior knowledge on
the expected nature of the domain shift could also be incorporated into the clustering features; a detailed
discussion this is given in Appendix A.

Assume θF [TX ] and θF [VX ] are samples from distributions PT , PV over F . A positive-definite kernel
κ : F × F → R induces a unique reproducing kernel Hilbert space (RKHS) H on F , along with a mapping
ϕ : F → H. The empirical mean map of PT (and analogously for PV ) in H is given by

µPT
= 1

|TX |
∑

f∈θF [TX ]

ϕ(f). (6)

The MMD can then be estimated as the distance between means of samples embedded in H:
MMD (PT ,PV ) = ∥µPT

− µPV
∥H . (7)

The partitioning problem can now be formulated as
arg max

T,V
∥µPT

− µPV
∥H subject to (5). (8)

This is equivalent to performing kernel k-means clustering with k = 2 (i.e., using one cluster for each of T
and V ), subject to the same constraints:

arg min
T,V

Ψ(T, V ) subject to (5), (9)

where Ψ(T, V ) = SSq(TX) + SSq(VX) is the standard kernel k-means objective function and

SSq(TX) =
∑

f∈θF [TX ]

∥ϕ(f) − µPT
∥2

H (10)

is the sum of squared deviations of a set of points from their centroid (in feature space).

Theorem 1. Problems (8) and (9) are equivalent.

Proof sketch. The equivalence can be derived by applying an ANOVA sum-of-squares decomposition, fol-
lowed by a substitution based on the polarisation identity. The resulting identity is

∥µPT
− µPV

∥2
H = |SX |

|TX ||VX |
(SSq(SX) − Ψ(T, V )). (11)

For a full derivation, see Appendix B. As SX is constant with respect to the cluster allocations, and the
cluster sizes are fixed by the constraint, these terms can all be dropped from the objective function. Hence,
(8) and (9) are equivalent.

Problem (9) can be solved by applying a variation of Lloyd’s algorithm (Chitta et al., 2014).
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Algorithm 1 Constrained kernel k-means clustering

Given an initial set of assignments, alternate between 2 steps until convergence or max iterations reached:

1. Distance Update (maximisation). Compute the distance matrix D ∈ Rn×2 from each point to
the centroid of each cluster using the kernel trick. For large datasets, use the Nyström method
(Chitta et al., 2014) to reduce the complexity of the kernel computations from O(n2) to O(qn), by
computing only a randomly selected submatrix of the full kernel, of size q × n.

2. Constrained Assignment (expectation). Compute the one-hot cluster assignment matrix U ∈
{0, 1}n×2 that assigns each point to exactly one of the two clusters. U is the solution to the binary
linear program (LP):

arg min
U

∑
i,j

UijDij (12)

subject to

Uij ∈ {0, 1} for i ∈ {1, . . . , n}; j ∈ {1, 2} (13)∑
j

Uij = 1 for i ∈ {1, . . . , n} (14)

∑
i|(Yi,Di)=g

Uij = round
(
h

∣∣S(Y,D)=g

∣∣) for g ∈ Y × DS ; j = 1 or 2. (15)

(14) ensures that each point is assigned to only one cluster. The disjunctive constraint (15) enforces (5), and
indicates that j can take a value of either 1 or 2. The disjunction arises as (5) is independent of the cluster
indices, i.e., it does not matter which index is designated as the validation set. Which option has lower cost
depends on the initialisation of the centroids. As there are only 2 clusters, the easiest way to approach this
is simply to solve 2 LPs, one for each value of j, and then select the lower-cost solution.

The constraints satisfy Hoffman’s sufficient conditions for total unimodularity (Heller & Tompkins, 1956)
(in particular, it can be seen that (14) and (15) form two disjoint sets of constraints, and every element of U
is referenced at most once in each set). The consequence is that the LP will always have integer solutions,
without having to enforce them explicitly. This means the binary constraint (13) can be relaxed to

0 ≤ Uij ≤ 1 for i ∈ {1, . . . , n}; j ∈ {1, 2} (16)

and the problem can be solved without integer constraints. To enforce soft constraints, (15) can be replaced
by the inequality

round
(
h (1 − τg)

∣∣S(Y,D)=g

∣∣) ≤
∑

i|(Yi,Di)=g

Uij ≤ round
(
h (1 + τg)

∣∣S(Y,D)=g

∣∣) for g ∈ Y × DS ; j = 1 or 2,

(17)
where τg is the relative tolerance for constraint associated to g.

Proposition 2. Algorithm 1 converges to a locally optimal partitioning in a finite number of iterations.

Proof sketch. Note that Ψ(T, V ) is bounded below by 0 and is also non-increasing, since both the centroid
updates and cluster assignments are (or can be interpreted as) optimisation problems which share the same
objective function as (9), can be solved globally at each iteration, and do not violate any of the constraints.
Note also that only a finite number of partitionings are possible, meaning Ψ(T, V ) can only decrease a finite
number of times. Therefore, convergence in finite time is guaranteed. For a full proof, see Bradley et al.
(2000).

Although Proposition 2 provides a trivial upper bound for the number of iterations required until convergence,
Lloyd’s algorithm is known to be fast in practice, and the runtime is often considered to be linear in the
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number of datapoints based on empirical observations (Cordeiro de Amorim & Makarenkov, 2023). For
further theoretical analysis on the number of iterations required, see, e.g., Arthur et al. (2009); Arthur &
Vassilvitskii (2006).

4.1 Kernel choice

As noted in Section 3.1, the choice of kernel implies certain assumptions about the data. In some applications
(e.g., physical modelling), known feature constraints naturally guide the kernel choice. In our case, however,
only relatively weak geometric assumptions can be made. The kernel should also be characteristic to ensure
the MMD can distinguish between any two distributions (Sriperumbudur et al., 2009). However, we note
that, unlike kernel methods which make use of the kernel distances directly, kernel k-means clustering only
compares between kernel distances when assigning datapoints, which we would argue makes the solution less
sensitive to kernel choice or kernel hyperparameters. Additionally, the cluster size constraints restricts the
solution space, which further desensitises the solution to kernel choice.

For the experiments in the subsequent section, we opt to use a Gaussian radial basis function (RBF) kernel
κ(x, y) = e−γ∥x−y∥2 , which is a convenient and popular choice for MMD estimation (Sriperumbudur et al.,
2009). Perhaps more relevantly, we also note that the correlation between the MMD (with an RBF kernel)
and R(θ, V ) has been supported by empirical observations (Napoli & White, 2025).

5 Experiments

The benefits of any new model selection method can only be verified when the oracle criterion suggests
there is “room for improvement” over a basic random split, i.e., there is a performance gap between the two.
Thus, the experiments described in this section are set up to reflect this scenario (the limitations of this are
discussed further in Section 6). For example, it is noticed that UDA tends to exhibit a larger gap than DG,
and this is especially pronounced (perhaps unsurprisingly) for adversarial algorithms, which tend to be more
sensitive to hyperparameter choices.

Two batches of experiments are run, to reflect both the UDA and DG settings. Each batch comprises an
identical training setup applied to 3 different datasets. For the DG experiments, models are trained using the
CORAL algorithm (Sun & Saenko, 2016), with the clustering performed using constraints (4). For the UDA
experiments, the DANN algorithm (Ganin et al., 2015) is used to adapt to an additional, unlabelled subset
of test domain samples, as well as to align the training domains to each other. As DANN was observed to be
more sensitive to domain imbalances, the validation split is set to preserve domain distributions, i.e., using
constraints (5).

In this work, we fix the RBF bandwidth to γ = 1. To assess the sensitivity of our results to the choice of
kernel, we also test a linear kernel κ(x, y) = xT y, which is equivalent to linear k-means clustering.

All feature extractors are finetuned on the entirety of S before the features are computed for the clustering,
regardless of pretraining. Experiments are conducted using the DomainBed framework (Gulrajani & Lopez-
Paz, 2021). This means all-but-one of the domains are placed in the development set, and the remaining
“evaluation” domain is randomly split into a UDA set (for adaptation, unused for the DG experiments),
and an independent test set used to determine final accuracy values. Every domain is tested 3 times for
reproducibility, each time with a different random seed for model initialisation, hyperparameter search and
other stochastic variables. The reported accuracy values are averages over all domains and repeats. Further
training and hyperparameter search details are given in Appendix C; unless otherwise stated, the remaining
details all follow the Domainbed default options. The Gurobi Optimizer (Gurobi Optimization LLC, 2023)
is used to solve the LPs. In total, the experiments involve training 5,160 models, requiring around 100
GPU-days of computation.

5.1 Datasets

The datasets represent a range of domain shift problems encompassing both image and audio classification
tasks. In addition to the covariate shifts which occur across all datasets, the two ecological datasets (Hump-
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backs and TerraIncognita) also contain significant conditional shifts due to the open-set and sometimes
annotator-dependent nature of wildlife monitoring data. With the exception of Camelyon17, the datasets
are all small enough that the entire kernel matrix can be computed. So, Camelyon17 is the only dataset for
which the Nyström method is applied.

Camelyon17-WILDS (Bándi et al., 2019; Koh et al., 2021) tumour detection in tissue samples across 5
hospitals, 2 classes and 455,954 samples. In keeping with the WILDS setup, the model in this case is trained
from scratch rather than using pretrained weights. However, note that these results still cannot be compared
directly with results from WILDS, as the DomainBed setup does not match exactly. License: CC0.

Humpbacks (Napoli & White, 2023) detection of humpback whale vocalisations across 4 recording locations,
2 classes and 43,385 samples. This is the only dataset not to use the ResNet-18 architecture, and instead
uses a custom CNN architecture and acoustic front-end described in Appendix C. License: Proprietary.

SVIRO (Dias Da Cruz et al., 2020) classification of vehicle rear seat occupancy across 10 car models, 7
classes and a balanced subset of 24,500 samples of the original dataset. License: CC BY-NC-SA 4.0.

VLCS (Fang et al., 2013) object classification across 4 image datasets, 5 classes and 10,729 samples. License:
unknown.

PACS (Li et al., 2017) object classification across 4 image styles (photos, art, cartoons, and sketches), 7
classes and 9,991 samples. License: unknown.

Terra Incognita (Beery et al., 2018) classification of wild animals across 4 camera trap locations, 10 classes
and 24,788 samples. License: CDLA-Permissive 1.0.

5.2 Results

In total, 6 model selection methods are compared. These are: the random split; the leave-one-domain-
out split; the test domain (oracle) validation set; a random split followed by mix-up augmentation on the
validation set (Lu et al., 2023); and cluster-based splits using linear and kernel k-means clustering. The
random and random-plus-mix-up splits are stratified by domain. The validation and test accuracies are
class-balanced for all methods.

The results are shown in Table 1, along with standard errors (the standard errors are as computed by
DomainBed, and capture variability in the overall experimental run, including random seeds and across
domains). In the following sections, a 95% confidence level is used when verifying whether two values have
a statistically significant difference, which corresponds to non-overlapping confidence intervals of 1.96 times
the standard error (assuming normally distributed errors).

Table 1: Average test domain accuracies for all datasets and model selection criteria.
DG experiments UDA experiments

Split type Camelyon Humpbacks SVIRO VLCS PACS TerraInc Raw
average

Normalised
average

Random 84.0 ± 1.0 76.4 ± 2.1 98.1 ± 0.2 70.7 ± 2.9 80.3 ± 0.3 38.7 ± 2.9 74.7 ± 0.8 0.0 ± 11.8
Leave-one-out 85.6 ± 1.0 77.3 ± 1.7 98.6 ± 0.0 71.3 ± 3.5 83.7 ± 0.6 37.3 ± 2.5 75.6 ± 0.8 28.2 ± 11.7

Linear k-means 87.2 ± 0.2 78.0 ± 1.8 98.4 ± 0.0 76.9 ± 0.1 82.7 ± 0.2 43.0 ± 2.0 77.7 ± 0.5 55.2 ± 5.9
RBF k-means 87.3 ± 0.7 78.3 ± 0.6 98.6 ± 0.2 75.2 ± 0.8 82.3 ± 0.8 40.1 ± 2.1 77.0 ± 0.4 46.9 ± 7.6

Mix-up 85.1 ± 0.4 76.1 ± 1.2 98.2 ± 0.1 73.8 ± 1.7 80.5 ± 0.6 37.3 ± 2.9 75.2 ± 0.6 10.4 ± 8.9
Oracle 88.3 ± 0.6 85.4 ± 1.5 99.1 ± 0.1 77.6 ± 0.5 84.4 ± 0.4 45.8 ± 1.0 80.1 ± 0.3 100.0 ± 5.1

The range of possible performance improvement differs by dataset, as determined by the gap between the
random split and oracle criterion; accuracy values should be considered relative to this scale when averaging
across datasets. Therefore, a column of average normalised values is also shown, where each dataset is shifted
and scaled such that the random split has a value of 0 and the oracle a value of 100.

Where the validation set comprises multiple domains, model selection is based on average validation accuracy
across these domains, as is the DomainBed default. Results based on worst-domain accuracy are also shown in
Appendix D. In theory, worst-domain accuracy should provide an additional layer of distributional robustness
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with respect to the domain labels (Sagawa et al., 2019). However, no significant difference in test accuracy
overall is observed if worst-case validation accuracy is used, although the standard error does increase. It is
possible that the uncertainty set Q = DS has too few degrees of freedom for DRO to confer any meaningful
robustness in this case.

On average, the cluster-based splits provide a net absolute accuracy gain of around 3 percentage points
compared to the random split, and 2 percentage points gain compared to leave-one-domain out validation.
In relative terms, clustering is observed to close around 50% of the gap between the random split and oracle
criterion, compared to 28% for leave-one-domain-out validation and 10% for mix-up. Overall, performance
is slightly higher using the linear kernel than with the RBF kernel, although this is within margin of error.
It is possible that the latter may be improved with more careful tuning of γ. It is noted that both clustering
methods are also within margin of error of leave-one-domain-out validation.

5.3 Ablation study on VLCS

An ablation study conducted on the VLCS dataset is shown in Table 2. This shows the effects of finetuning
the feature extractor before clustering, the Nyström approximation, and the different constraint sets (4) and
(5). For this dataset, use of the Nyström approximation, as well as additional finetuning of θF , are not
observed to have significant effects on test accuracy. For the linear kernel, clustering with constraints (4)
performs significantly lower than using constraints (5), however, for the RBF kernel, this difference is not
observed.

Table 2: Ablation study on VLCS.
Kernel/

Split type Finetuning θF
Constraint

groups
Full/

Nyström kernel Accuracy (%)

Linear True g ∈ Y × D Nyström 76.4 ± 0.4
RBF True g ∈ Y × D Nyström 76.2 ± 0.6

Linear True g ∈ Y Full 72.4 ± 1.9
RBF True g ∈ Y Full 75.1 ± 0.9

Linear True g ∈ Y × D Full 76.9 ± 0.1
RBF True g ∈ Y × D Full 75.2 ± 0.8

Linear False g ∈ Y × D Full 75.6 ± 0.8
RBF False g ∈ Y × D Full 76.4 ± 0.5

Mix-up True N/A N/A 73.8 ± 1.7
Leave-one-domain-out True N/A N/A 71.3 ± 3.5

Random True N/A N/A 70.7 ± 2.9
Oracle True N/A N/A 77.6 ± 0.5

5.4 MMD analysis

As stated in Section 1, the motivation for cluster-based splits is the notion that increasing the MMD between
the training and validation sets increases test domain accuracy. To provide empirical support for this, these
two variables are plotted against each other in Figure 1, for each dataset. As for the clustering, an RBF
kernel is used with γ = 1. Again, the Nyström method is used to estimate the MMD for the Camelyon17
dataset due to its size. Each subplot in Figure 1 shows a different dataset, and each point in a subplot
represents one of the 5 split types (not including the oracle), averaged across the domains and 3 repeats.
Standard errors were sufficiently small (i.e., at least 2 order of magnitude smaller than the data range for
all subplots) that error bars were not included. The correlation coefficients and associated p-values are also
shown. As only monotonic associations are being tested for, Spearman’s rank correlation ρ is used.

The leave-one-domain-out method often produced large outlier values for the MMD, which can be seen in
Figure 1 for all datasets other than Camelyon17 and Humpbacks. The reason for these outliers is unclear.
Nonetheless, the correlation for all datasets, with the exception of PACS, is positive.

The correlation is clearest for Camelyon17, possibly because the dataset is large enough that a low-noise
estimate of the MMD is possible. The results for this dataset are given in tabular form in Table 3, along with
an additional ablation study comparing the different clustering constraints (4) and (5). It can be seen that
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Figure 1: The MMD between the training and validation sets versus test domain accuracy, by dataset.

Table 3: The MMD between the training and validation sets versus test domain accuracy by split type for
Camelyon17.

Split type (Constraint) Accuracy (%) MMD ×1000

Random 84.0 ± 1.0 0.01 ± 0.0003
Mix-up 85.1 ± 0.4 5.4 ± 0.2

Leave-one-domain-out 85.6 ± 1.0 14.3 ± 0.8
Linear k-means (5) 86.5 ± 1.3 97.0 ± 6.2

RBF kernel k-means (5) 85.6 ± 1.3 183.1 ± 2.0
Linear k-means (4) 87.2 ± 0.2 108.3 ± 2.6

RBF kernel k-means (4) 87.3 ± 0.7 206.0 ± 3.4

the additional constraint on the clustering (i.e., taking g ∈ Y × D) reduces the optimised objective function
value (as would be expected), and this also corresponds to a reduction in test domain model accuracy.

The evidence in this section supports the proposition that the validation split should be attempting to
maximise the MMD between the training and validation sets, and that this is more effective than using the
same metadata-based splitting rule as the test split, as the leave-one-domain-out split intends to do.

5.5 Assessing the effect of the changing training distribution

As evidenced in (3), the use of non-random data splitting introduces a confounding variable to the exper-
iments: as both the training and validation distributions are dependent on the split, it is possible the test
accuracy is being influenced by the model training, as well as the validation. To support the claim that
cluster-based splitting results in more generalisable model selection, it is necessary to decouple the effects of
these interventions, and show that it is indeed the improved model validation, and not the training, that is
improving test accuracy.

As non-random data splitting inherently changes the training distribution, the effect of the model selection
cannot be isolated from that of the training. However, the inverse – that is, varying the training distribution
by changing the split type, but keeping the validation set constant – can be achieved, if the oracle selection
criterion is used.

If the test accuracy remains constant across split types, this would be sufficient to verify the hypothesis
that the performance improvements are due to the model selection, without having to make any additional
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assumptions. If the accuracy is lower than the random split, the hypothesis can still be confirmed (which
then implies the model selection is additionally compensating for this reduction), as long as the effects of
training and validation robustness on test accuracy are assumed to be additive (i.e., any interaction effects
are minor). If anything, the non-random splits would be expected to underperform, since coverage of the
overall data distribution by the training set is being reduced – and this would be expected to be detrimental
to generalisation power. The results are given in Table 4.

Table 4: Test accuracy using the oracle criterion, for training sets induced by the different split types.
DG experiments UDA experiments

Split type Camelyon17 Humpbacks SVIRO VLCS PACS TerraInc Average

Random 88.3 ± 0.6 85.4 ± 1.5 99.1 ± 0.1 77.6 ± 0.5 84.4 ± 0.4 45.8 ± 1.0 80.1 ± 0.3
Leave-one-domain-out 85.4 ± 0.4 82.1 ± 1.3 99.0 ± 0.1 73.8 ± 0.3 82.2 ± 0.5 38.9 ± 1.2 76.9 ± 0.3

Linear k-means 88.0 ± 0.3 85.4 ± 0.8 99.1 ± 0.1 77.0 ± 0.3 85.7 ± 0.3 47.1 ± 0.9 80.4 ± 0.2
RBF kernel k-means 88.6 ± 0.6 85.0 ± 0.7 99.2 ± 0.1 77.9 ± 0.5 85.7 ± 0.3 44.5 ± 0.6 80.2 ± 0.2

Mix-up 88.3 ± 0.6 85.6 ± 1.6 99.2 ± 0.1 77.3 ± 0.5 84.4 ± 0.5 44.6 ± 0.9 79.9 ± 0.3

These results show that performing a cluster-based split has no significant effect on the generalisation power
of a model when the hyperparameters are being chosen via the oracle criterion. Therefore, it can be concluded
that the performance improvements of cluster-based splitting seen in Table 1 come entirely from the model
selection, and not from the training. On the other hand, test accuracy for the leave-one-domain-out split
does significantly reduce. This finding may help to explain why metadata-based splits have been found to
underperform random splits in some works (Gulrajani & Lopez-Paz, 2021): the increased robustness of OOD
validation is not enough to counterbalance the reduced robustness of training on fewer domains.

5.6 Convergence behaviour of Algorithm 1

As mentioned previously, the proposed split method is similar in principle to the one of Wecker et al. (2020).
One important implementational distinction is the manner by which the constraints are enforced. We have
claimed that the greedy approach of Wecker et al. (2020) is susceptible to local minima and thus tends to
converge to inferior solutions. To support this claim, this section presents an experiment to compare the
quality of the optima attained by the two methods. We use the official implementation of Wecker et al.
(2020), which uses linear k-means with label-only constraints (4), and configure our method similarly for fair
comparison. For each domain in the VLCS dataset, we run both algorithms 20 times with different random
initialisations, and h = 0.5. The attained clustering objectives Ψ(T, V ) are shown in Figure 2. It can be seen
that our method has significantly less spread than the one of Wecker et al. (2020) (around 1000 times less
for Domain 3, 100 times less for Domains 1 and 4, and 1.8 times less for Domain 2), and the mean losses also
tend to be lower. These findings suggest that the greedy method is indeed getting trapped in local minima.
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Figure 2: The attained loss of our clustering algorithm vs that of Wecker et al. (2020), on the Humpbacks
dataset, by domain.

5.7 Assessing the effect of the number of classes

As can be inferred from the problem formulation, a large number of classes may limit the effectiveness of
the method. Specifically, with more classes, the partitioning problem is less flexible due to the increased
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number of clustering constraints, which reduces the upper bound on the MMD which can be achieved. For
example, in an extreme case with only two examples per class, a random split (stratified by class) and a
clustering-based split would be equivalent. Thus, this section presents an experiment to analyse the effect
of the number of classes on MMD(T, V ). Specifically, using a Humpbacks subset of 8,000 examples, we
generate synthetic class labels using another round of kernel k-means clustering, with a constraint to ensure
equal class sizes. Then, we perform a kernel k-means data split using the synthetic labels, and the label-only
constraints (4). Table 5 shows how the MMDs change as the number of classes varies between 1 and 500.
We also report the MMDs for two of the baselines: the random split and the metadata-based split.

Table 5: The MMDs of the kernel k-means clustering data split by number of classes, and two baselines.
Number of classes/

Baselines MMD(T, V ) MMD(T, E) MMD(V, E)

1 0.221 ± 0.016 0.152 ± 0.042 0.148 ± 0.040
2 0.187 ± 0.007 0.154 ± 0.048 0.129 ± 0.048
5 0.177 ± 0.007 0.121 ± 0.037 0.157 ± 0.034
10 0.161 ± 0.006 0.132 ± 0.020 0.138 ± 0.021
20 0.159 ± 0.005 0.132 ± 0.021 0.137 ± 0.019
50 0.145 ± 0.002 0.137 ± 0.031 0.125 ± 0.031
100 0.138 ± 0.004 0.119 ± 0.019 0.140 ± 0.017
500 0.129 ± 0.001 0.123 ± 0.027 0.130 ± 0.027

Random 0.001 ± 0.000 0.095 ± 0.064 0.095 ± 0.064
Leave-one-domain-out 0.052 ± 0.034 0.053 ± 0.036 0.135 ± 0.087

To determine a threshold for the maximum number of classes for which a clustering-based split is still valid,
we can consider the range for which MMD(T, V ) is higher than MMD(T, E) and MMD(V, E), since this is the
assumption made by DRO. We consider both MMD(T, E) and MMD(V, E) since the data split is symmetric
(it does not matter which way around T and V are labelled). Note that MMD(T, E) and MMD(V, E) also
tend to reduce with MMD(T, V ) due to the triangle inequality. In this case, it can be seen that this threshold
occurs at around 100 classes. Although, it is noted that even for larger class numbers, the clustering-based
split still yields significantly higher MMD(T, V ) than both baselines.

6 Limitations

As with all robust optimisation, a “no free lunch” theorem (Wolpert & Macready, 1997) applies to model
selection as well: using a worst-case split loses the guarantee that the selected model will be optimal in
the nominal (ID) case. If no domain shift is expected, an ID validation set is clearly preferable; in general,
robust strategies may be inappropriate if the uncertainty is minimal, so the nature of the problem should
be considered prior to choosing a methodology. Additionally, if unlabelled test domain data is available
at split time, this should also be factored in when choosing the validation set (e.g., using the method of
Napoli & White (2025)). However, this is not applicable if the hyperparameters need to be decided before
the test domain is accessible, e.g., for test-time adaptation, and our experiments show that the worst-case
split is still valid in the UDA case. The motivations and considerations for using worst-case optimisation
are discussed thoroughly in Sagawa et al. (2019). It is also noted that in the nominal case, the favourable
training distribution will be the dominating factor on test accuracy compared to the model selection, and so
sub-optimality of the selection method will be less of an issue.

On evaluation, using γ = 1 for the RBF kernel bandwidth was not an appropriate choice, especially in the
high-dimensional case. A more practical option would be to use γ = 1/dF , where dF is the dimensionality
of the clustering features (Liu et al., 2020).

Dataset and training algorithm choices for these experiments were biased towards combinations with larger
performance gaps between the random split and oracle criteria. This was necessary to properly validate the
method: it would be impossible to see any significant signs of improvement if the random split and oracle
criterion were within margin of error. Although this does inevitably limit the scope of the experiments, it
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by no means invalidates the results: cluster-based splits do outperform random and metadata-based splits,
where such an improvement is possible.

As stated in Section 1, a major advantage of the clustering-based validation split is that it is not dependent
on domain metadata. However, even with the domain constraint removed or with metadata-independent
training algorithms (e.g., empirical risk minimisation), the specific experimental setup in this paper precludes
the ability to test this method in truly metadata-free settings. Due to the fundamental design of the
DomainBed framework, domain metadata can still be leveraged (both implicitly and explicitly) through
several avenues. For example, models are still trained on domain-balanced minibatches of data, and validation
accuracy is averaged over the validation domains. The datasets themselves may also be unrealistically
domain-balanced to begin with. However, the authors believe that these influences are mild enough that the
overall trends observed in these experiments can reasonably be expected to hold in metadata-free settings
as well.

The experiments would ideally be repeated across a range of model architectures to reflect the differences in
generalisation power of larger/newer models. However, it was necessary to restrict the experiments in this
paper to a single, smaller model (ResNet-18) due to the high computational costs involved in developing and
comparing model selection criteria.

7 Conclusion

This paper presented a method for model selection under domain shift, where the training-validation split is
performed using a constrained kernel k-means clustering algorithm. In addition to outperforming traditional
methods, this approach is grounded by an observed strong correlation between the MMD between the training
and validation sets, and test domain accuracy.

The algorithm is not parameter-free; future work could include a data-driven method for selecting these
parameters, for example with an additional layer of meta-tuning. The algorithm can also trivially be extended
to k-fold cross-validation by increasing the number of clusters. Finally, an investigation into the use of prior
knowledge-informed feature extraction (see Appendix A) would be of interest.
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A Prior Knowledge-Informed Feature Extraction

Clustering-based splits may be rendered more effective if the features used for clustering are informed by
domain knowledge on the underlying causes of the domain shift. In this section, we discuss various appli-
cations where domain knowledge may be available and propose relevant features which could leverage this
information.

In visual tasks involving stylistic shifts, style features (Matsuura & Harada, 2020) or CLIP-derived tokens
can explicitly capture these differences. In histopathology, tumour detection is affected by staining variations
across tissue slides, so colour-based features such as hue histograms or colour deconvolution can be used.
In wildlife monitoring, shifts due to habitat or camera placement can be isolated by using segmentation to
extract backgrounds. Visual changes such as lighting or colour tone shifts can be captured through metrics
like brightness, contrast, and colour temperature. In cases where image resolution or fidelity varies, edge
density, compression or downsampling artefacts, or image quality scores may provide useful indicators. Audio
tasks can suffer from variations in recording equipment or conditions; features such as spectral descriptors,
microphone gain, and SNR estimates can help characterise these differences. Or, for speech recognition,
speaker differences can be captured using accent classifiers, phonetic parameters, or word rate.

B Derivation of equation (11)

Based on the law of total variance, a fundamental theorem in ANOVA is that the total sum of squares of a
set of points can be decomposed into the sum of squares within each cluster and the sum of squares of each
cluster centroid to the overall centroid (weighted by cluster size):

SSq(SX) = SSq(TX) + SSq(VX) + |TX | ∥µPT
− µPS

∥2
H + |VX | ∥µPV

− µPS
∥2

H .

Next, using the fact that
µPS

= |TX |µPT
+ |VX |µPV

|TX | + |VX |
,

we have

∥µPT
− µPS

∥2
H =

∥∥∥∥µPT
− |TX |µPT

+ |VX |µPV

|TX | + |VX |

∥∥∥∥2

H

=
∥∥∥∥µPT

(|TX | + |VX |) − |TX |µPT
− |VX |µPV

|TX | + |VX |

∥∥∥∥2

H

=
∥∥∥∥ |VX |(µPT

− µPV
)

|TX | + |VX |

∥∥∥∥2

H

= |VX |2

(|TX | + |VX |)2 ∥µPT
− µPV

∥2
H .

Similarly,

∥µPV
− µPS

∥2
H = |TX |2

(|TX | + |VX |)2 ∥µPT
− µPV

∥2
H .

Substituting and simplifying:

SSq(SX) = SSq(TX) + SSq(VX) + |VX ||TX |2 + |TX ||VX |2

(|TX | + |VX |)2 ∥µPT
− µPV

∥2
H

= SSq(TX) + SSq(VX) + |TX ||VX |
|TX | + |VX |

∥µPT
− µPV

∥2
H .

Finally, rearranging:

∥µPT
− µPV

∥2
H = |TX | + |VX |

|TX ||VX |
(SSq(SX) − SSq(TX) − SSq(VX)),

as required.
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C Additional training and hyperparameter details

Table 6: General parameter values and training details for the experiments.
Experimental parameter Value

Hyperparameter random search size 10
Number of trials 3
Holdout fraction 0.2
UDA holdout fraction 0.5
Number of training steps 3000
Gaussian kernel bandwidth 1
Finetuning iterations before split 3000
Nyström subset size (if applicable) 2000
Architecture ResNet-18
Class balanced True

Table 7: Classification pipeline of the Humpbacks dataset. This follows the pipeline in (Napoli & White,
2023).

Step number Step detail
Acoustic front-end

1 Resample to 10 kHz
2 Mel-scale filter bank with 64 filters
3 Short-time Fourier transform with 100 ms FFT window, 50% overlap
4 Per-channel energy normalisation
5 Split into 3.92 s (128 pixel) analysis frames with 50% overlap

CNN
1 Conv2D (nodes=16, kernel=3x3, stride=2, activation=ReLU)
2 Conv2D (nodes=16, kernel=3x3, stride=2, activation=ReLU)
3 Conv2D (nodes=16, kernel=3x3, stride=2, activation=ReLU)
4 Conv2D (nodes=16, kernel=3x3, stride=2, activation=ReLU)
5 Global average-pooling 2D
6 Fully-connected layer

D Worst-case accuracy validation

Table 8: Model selection using validation accuracy of the worst performing domain. Note that this does not
apply to the leave-one-domain-out and oracle criteria, so these values are unchanged from Table 1.

DG experiments UDA experiments

Split type Camelyon Humpbacks SVIRO VLCS PACS TerraInc Raw
average

Normalised
average

Random 83.2 ± 1.6 76.7 ± 3.1 98.2 ± 0.2 69.7 ± 3.0 81.8 ± 0.9 40.2 ± 1.9 75.0 ± 0.8 0.0 ± 13.5
Leave-one-out 85.6 ± 1.0 77.3 ± 1.7 98.6 ± 0.0 71.3 ± 3.5 83.7 ± 0.6 37.3 ± 2.5 75.6 ± 0.8 23.3 ± 12.1

Linear k-means 87.1 ± 0.2 77.8 ± 1.6 98.6 ± 0.1 73.7 ± 2.0 83.8 ± 0.6 42.3 ± 1.9 77.2 ± 0.5 49.8 ± 8.8
RBF k-means 87.5 ± 0.7 78.2 ± 0.6 98.5 ± 0.2 76.8 ± 0.6 83.9 ± 1.0 38.8 ± 2.5 77.3 ± 0.5 46.8 ± 10.9

Mix-up 83.9 ± 0.8 76.9 ± 1.5 98.4 ± 0.2 72.9 ± 1.5 81.0 ± 0.5 38.3 ± 2.7 75.2 ± 0.6 2.3 ± 10.7
Oracle 88.3 ± 0.6 85.4 ± 1.5 99.1 ± 0.1 77.6 ± 0.5 84.4 ± 0.4 45.8 ± 1.0 80.1 ± 0.3 100.0 ± 5.7
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