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Abstract

This paper considers the problem of model selection under domain shift. Motivated by
principles from distributionally robust optimisation (DRO) and domain adaptation theory,
it is proposed that the training-validation split should maximise the distribution mismatch
between the two sets. By adopting the maximum mean discrepancy (MMD) as the measure
of mismatch, it is shown that the partitioning problem reduces to kernel k-means cluster-
ing. A constrained clustering algorithm, which leverages linear programming to control the
size, label, and (optionally) group distributions of the splits, is presented. The algorithm
does not require additional metadata, and comes with convergence guarantees. In experi-
ments, the technique consistently outperforms alternative splitting strategies across a range
of datasets and training algorithms, for both domain generalisation (DG) and unsupervised
domain adaptation (UDA) tasks. Analysis also shows the MMD between the training and
validation sets to be significantly rank-correlated (ρ = 0.63) with test domain accuracy,
further substantiating the validity of this approach.

1 Introduction

The ability for models to maintain high performance on data lying outside their training distribution, known
as domain generalisation (DG), is crucial to the widespread deployment of AI. Although extensive research
has been conducted towards developing more generalisable training algorithms (Gulrajani & Lopez-Paz,
2021), significantly less focus has been given to increasing the robustness of the model selection process,
despite being as integral a part of the learning problem, and indeed, just as susceptible to distribution shifts,
as the fitting of the model itself.

As with model parameters, hyperparameters chosen based on in-distribution (ID) performance lack opti-
mality guarantees on out-of-distribution (OOD) test data. Metadata-based dataset splitting, which creates
OOD validation sets distinct from both the training and test data, is commonly used in this scenario, and has
empirically been shown to encourage the selection of more generalisable hyperparameters (Koh et al., 2021).
This paper is motivated by the principles of distributionally robust optimisation (DRO) (Rahimian & Mehro-
tra, 2019), which aims to optimise for worst-case performance within some uncertainty set of distributions.
This suggests that the validation set should indeed be maximally domain shifted from the training set, while
still retaining a relevant distribution. It is proposed that a worst-case dataset split which maximises domain
mismatch would balance these two aims, and further encourage the selection of robust hyperparameters.

Among other considerations, the measure of mismatch should be such that the partitioning problem can
be tractably solved. To this end, it is noted that performing kernel k-means clustering is equivalent to
maximising the empirical maximum mean discrepancy (MMD) between clusters (weighted by cluster size).
Thus, this paper proposes to perform a validation split based on kernel k-means, and presents a modified
clustering algorithm for this purpose. Specifically, constraints are introduced to the cluster assignment step
to control the holdout fraction (i.e., the cluster sizes), and to preserve class and (optionally) domain/group
distributions; this is then formulated and solved as a linear program, providing convergence guarantees not
present in prior work. In addition, the Nyström method for low-rank approximation is employed to make
the algorithm tractable for large datasets.

1



Under review as submission to TMLR

The proposed method provides a model selection strategy based on OOD performance that does not require
additional metadata, which is not always available. It is also argued that the method is able to capture more
nuances in real-world data than can be described by a single domain variable, which is another limitation of
metadata-based splits. For example, in tumour identification, domain shifts can be caused by variations in
sample preparation methods or patient populations. Or, in wildlife monitoring (both acoustic and visual),
these can be due to differences in environmental or weather conditions, data collection equipment, or new
unseen events (Koh et al., 2021). However, all this information is unlikely to be described in the available
metadata, which may only state the hospital of origin or the recording location, respectively. In such cases,
splitting the data along lines closer to the underlying cause of the shift, as determined by the clustering
algorithm, rather than a more loosely correlated proxy, may permit a more informed model selection which
can result in hyperparameters better suited to the nature of the shift.

In summary, this paper contributes the following:

• Description of a constrained clustering algorithm based on kernel k-means which can be used to
perform a training-validation split in applications expected to involve domain shifts.

• Comparison of this approach with existing validation splitting strategies for a range of datasets and
algorithms, in both DG and UDA settings.

• Analysis of the relationship between test domain accuracy and the MMD between the training and
validation sets.

1.1 Prior work

Gulrajani & Lopez-Paz (2021) reviewed 3 criteria for model selection in a DG setting: ID accuracy (on
a randomly held-out subset of each training domain); OOD accuracy on an additional domain held-out
using metadata (referred to as leave-one-domain-out); and test-distribution accuracy on a held-out subset
of the test domain (referred to as the oracle criterion), which can be used to provide an upper bound on
performance. Where multiple validation domains are given, a DRO-style treatment of model selection which
considers only the worst-performing domain is studied by Sagawa et al. (2019); Gao et al. (2023); Pfohl et al.
(2022) – although this again relies on the availability of metadata.

In addition to validation accuracy, it has been suggested that a model’s stability to distribution shifts should
also be explicitly considered. Prior work has quantified stability in terms of the expected calibration error
(the average deviation between accuracy and confidence) (Wald et al., 2021); the MMD between features
from different domains (Lyu et al., 2023); or the average variation of each feature between domains (Ye et al.,
2021).

It has also been proposed to induce a domain shift between the training and validation sets by performing
mix-up augmentation on the held-out data (Lu et al., 2023). This links to a range of general robustness
benchmarks, where the evaluation sets have been subjected to various synthetic transformations. For exam-
ple, visual corruptions and perturbations (Hendrycks & Dietterich, 2019), stylisation (Geirhos et al., 2018),
the addition of spurious cues (Li et al., 2022), and adversarial filtration (Hendrycks et al., 2019) have all
been employed; a more complete review of this approach is given in Koh et al. (2021).

Non-random data splits have previously been used to produce domain-shifted evaluation sets, but no prior
work has investigated these in a model selection context. Søgaard et al. (2021) proposed an adversarial split
which heuristically aims to maximise the Wasserstein distance between clusters, but no attempt was made
to control label distribution. Adversarial data splits have also been used in meta-learning to improve DG
(Gu et al., 2023; Wang et al., 2024). Recently, Napoli & White (2025) proposed a data selection algorithm
which can be used to choose a validation set closer to the test domain in the UDA setting, but this is not
applicable if the split needs to be decided before the test domain is accessible, e.g., for test-time adaptation.

Wecker et al. (2020) proposed a split based on constrained k-means clustering, with constraints on cluster
size and label distribution imposed using a greedy algorithm. However, since greedy assignments can be sub-
optimal, the algorithm lacks convergence guarantees. The current paper develops on this by formulating the
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constrained assignment as a linear program (Bennett et al., 2000); as this can be solved globally, the clustering
objective must reduce (unless it is already at a local minimum), guaranteeing convergence. Additionally, our
theoretical analysis motivates a kernelised version of this algorithm, thereby exploiting the relation between
the kernelised objective (the MMD) and validation accuracy.

1.2 Preliminaries and notation

Let S = {(x1, y1, d1), . . . , (xn, yn, dn)} be the development set consisting of input-label-domain triplets over
X ×Y ×DS . Similarly, let E be the evaluation set over X ×Y ×DE , where DS ∩DE = ∅ (i.e., the development
and evaluation domains are disjoint). For ease of notation, subscripts are used on sets to simplify set-builder
notation, in two ways. Firstly, “slices” of a set are denoted using capitals, for example:

SX = {x : (x, y, d) ∈ S}

SY D = {(y, d) : (x, y, d) ∈ S}.

Additionally, a predicate can be specified to restrict the set to samples satisfying a condition. For example,
to denote only inputs associated with a specific class y′:

SX,y=y′ = {x : (x, y, d) ∈ S ∧ y = y′}.

In short, the goal of DG is to use S to produce a model θ : X → Y that performs well on E. θ comprises
a featuriser θF : X → F and label classifier θC : F → Y, such that θ = θC ◦ θF . In order to tune hyper-
parameters, S must be partitioned into training and validation sets, T and V respectively. A number of
models Θ = {θ1, . . . , θm} are trained on T using different hyperparameters; the “best" model is then selected,
according to

θ∗ = arg min
θ∈Θ

R(θ, V ),

where R(θ, V ) is the error of θ on V , and θ∗ is evaluated on E.

1.3 Theoretical motivation

DRO (Rahimian & Mehrotra, 2019; Sagawa et al., 2019) is a well-established paradigm which aims to obtain
more generalisable solutions to optimisation problems. Instead of reducing overall error, DRO adopts a
minimax strategy which minimises the worst-case error over some uncertainty set Q. By defining Q as the
possible (suitable) partitions of S, the model selection problem becomes

min
θ∈Θ

max
{T,V }∈Q

R(θ, V ).

This could be solved directly via an expensive alternating optimisation process (Gu et al., 2023). However,
we propose instead to find arg maxT,V R(θ, V ), the worst-case partition in the sense of R, in a single step by
solving a proxy problem based on the well-known relationship between R(θ, V ) and the mismatch between T
and V , which has been fundamental to domain adaptation theory (Ben-David et al., 2006; 2010). By using
the MMD to measure this mismatch, the partitioning problem can be efficiently solved through clustering,
as will be shown in Section 1.4. The theoretical relation between MMD(T, V ) and R(θ, V ) is given by the
generalisation error bound (Redko et al., 2020, Theorem 36)

R(θ, V ) ≤ R(θ, T ) + MMD(T, V ) + λ (1)

where λ is a term depending on the capacity of the hypothesis space and the combined performance of an
ideal model on both T and V . A linear correlation has also been observed empirically (Napoli & White,
2025). Maximising the MMD is not guaranteed to maximise the above bound due to the dependence of
R(θ, T ) on the partitioning. However, the empirical analysis in Section 2.5 shows that this term remains
fairly stable in practice.
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1.4 Method

This section defines the constraints needed to ensure an appropriate split, formulates the partitioning prob-
lem, and describes an algorithm to solve the optimisation.

T and V should be of sizes determined by a user-defined holdout fraction h satisfying 0 < h < 1, and have
equivalent class distributions. This can be achieved by constraining the size of each label group in V to h
times the size of the corresponding group in S:

|Vy=g| = h |Sy=g| , ∀g ∈ Y. (2)

It may also be necessary or desirable to control domain distributions. For example, certain training algo-
rithms may require that the domains in T be uniformly represented to avoid overfitting; controlling the
distributions of validation groups has also been suggested to reduce noise in the hyperparameter tuning
process (Sagawa et al., 2019). Finally, in the multi-task learning setting (i.e., some or all of the domains cor-
respond to different tasks, with separate validation metrics), the domain split-ratio should also be controlled:
this both prevents bias towards a specific task, and also ensures that each task has sufficient representation
in the validation set to reliably estimate the corresponding validation metric. In these cases, the constraints
should be taken over all (y, d) pairs instead:∣∣V(y,d)=g

∣∣ = h
∣∣S(y,d)=g

∣∣ , ∀g ∈ Y × D. (3)

For the remainder of this section, the latter set of constraints (3) are assumed, although (2) can easily be
substituted if desired (as relaxing the constraints will increase the discrepancy), or if domain labels are
unavailable.

The objective is to maximise the discrepancy between T and V , measured using the MMD. Given the
potentially high dimensionality of X , doing this directly in the input space can be impractical. Therefore,
it is proposed to instead measure the MMD between the distributions of feature sets θF [TX ] and θF [VX ],
where θF [·] denotes the image under θF . Moreover, the highest-level feature activations (those closest to
the end of the network) are those most highly correlated with the network’s outputs, meaning this is the
representation space for which the MMD is most predictive of classification error. For further intuition,
consider that a large MMD in this space implies a domain shift that the model is not invariant to (and thus
is more likely to cause problems) – hence why this is also the representation space normally targeted by
feature alignment methods (Gulrajani & Lopez-Paz, 2021).

Assume θF [TX ] and θF [VX ] are samples from distributions PT , PV over F . A positive-definite kernel
κ : F × F → R induces a unique reproducing kernel Hilbert space (RKHS) H on F , along with a mapping
ϕ : F → H. The empirical mean map of PT (and analogously for PV ) in H is given by

µPT
= 1

|TX |
∑

f∈θF [TX ]

ϕ(f).

The MMD can then be estimated as the distance between means of samples embedded in H:

MMD (PT ,PV ) = ∥µPT
− µPV

∥H .

The partitioning problem can now be formulated as

arg max
T,V

∥µPT
− µPV

∥H

subject to (3).
(4)

This is equivalent to performing kernel k-means clustering, subject to the same constraints:

arg min
T,V

Ψ(T, V )

subject to (3),
(5)
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where
Ψ(T, V ) = SSq(TX) + SSq(VX)

is the standard kernel k-means objective function and

SSq(TX) =
∑

f∈θF [TX ]

∥ϕ(f) − µPT
∥2

H

is the sum of squared deviations of a set of points from their centroid (in feature space).
Theorem 1. Problems (4) and (5) are equivalent.

Proof sketch. The equivalence can be derived by applying an ANOVA sum-of-squares decomposition, fol-
lowed by a substitution based on the polarisation identity. The resulting identity is

∥µPT
− µPV

∥2
H = |SX |

|TX ||VX |
(SSq(SX) − Ψ(T, V )). (6)

For a full derivation, see Appendix A. As SX is constant with respect to the cluster allocations, and the
cluster sizes are fixed by the constraint, these terms can all be dropped from the objective function. Hence,
(4) and (5) are equivalent.

Problem (5) can be solved by applying a variation of Lloyd’s algorithm (Chitta et al., 2014).

Algorithm 1 Constrained kernel k-means clustering

Given an initial set of assignments, alternate between 2 steps until convergence or max iterations reached:

1. Distance Update (maximisation). Compute the distance matrix D ∈ Rn×2 from each point to
the centroid of each cluster using the kernel trick. For large datasets, use the Nyström method
(Chitta et al., 2014) to reduce the complexity of the kernel computations from O(n2) to O(qn), by
computing only a randomly selected submatrix of the full kernel, of size q × n.

2. Constrained Assignment (expectation). Compute the one-hot cluster assignment matrix U ∈
{0, 1}n×2 that assigns each point to exactly one of the two clusters. U is the solution to the binary
linear program (LP):

arg min
U

Tr
(
UT D

)
(7)

subject to

Uij ∈ {0, 1} for i ∈ {1, . . . , n}; j ∈ {1, 2} (8)∑
j

Uij = 1 for i ∈ {1, . . . , n} (9)

∑
i|(yi,di)=g

Uij = round
(
h

∣∣S(y,d)=g

∣∣) for g ∈ Y × D; j = 1 or 2. (10)

(9) ensures that each point is assigned to only one cluster. The disjunctive constraint (10) enforces (3), and
indicates that j can take a value of either 1 or 2. The disjunction arises as (3) is independent of the cluster
indices, i.e., it does not matter which index is designated as the validation set. Which option has lower cost
depends on the initialisation of the centroids. As there are only 2 clusters, the easiest way to approach this
is simply to solve 2 LPs, one for each value of j, and then select the lower-cost solution.

The constraints satisfy Hoffman’s sufficient conditions for total unimodularity (Heller & Tompkins, 1956)
(in particular, it can be seen that (9) and (10) form two disjoint sets of constraints, and every element of U
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is referenced at most once in each set). The consequence is that the LP will always have integer solutions,
without having to enforce them explicitly. This means the binary constraint (8) can be relaxed to

0 ≤ Uij ≤ 1 for i ∈ {1, . . . , n}; j ∈ {1, 2}

and the problem can be solved without integer constraints.

To enforce soft constraints, (10) can be replaced by the inequality

round
(
h (1 − τg)

∣∣S(y,d)=g

∣∣) ≤
∑

i|(yi,di)=g

Uij ≤ round
(
h (1 + τg)

∣∣S(y,d)=g

∣∣) for g ∈ Y × D; j = 1 or 2,

where τg is the relative tolerance for constraint associated to g.
Proposition 2. Algorithm 1 converges to a locally optimal partitioning in a finite number of iterations.

Proof sketch. Note that Ψ(T, V ) is bounded below by 0 and is also non-increasing, since both the centroid
updates and cluster assignments are (or can be interpreted as) optimisation problems which share the same
objective function as (5), can be solved globally at each iteration, and do not violate any of the constraints.
Note also that only a finite number of partitionings are possible, meaning Ψ(T, V ) can only decrease a finite
number of times. Therefore, convergence in finite time is guaranteed. For a full proof, see Bennett et al.
(2000).

2 Experiments

The benefits of any new model selection method can only be verified when the oracle criterion suggests
there is “room for improvement” over a basic random split, i.e., there is a performance gap between the two.
Thus, the experiments described in this section are set up to reflect this scenario (the limitations of this are
discussed further in Section 2.6). For example, it is noticed that UDA tends to exhibit a larger gap than
DG, and this is especially pronounced (perhaps unsurprisingly) for adversarial algorithms, which tend to be
more sensitive to hyperparameter choices.

Two batches of experiments are run, to reflect both the UDA and DG settings. Each batch comprises an
identical training setup applied to 3 different datasets. For the DG experiments, models are trained using the
CORAL algorithm (Sun & Saenko, 2016), with the clustering performed using constraints (2). For the UDA
experiments, the DANN algorithm (Ganin et al., 2015) is used to adapt to an additional, unlabelled subset
of test domain samples, as well as to align the training domains to each other. As DANN was observed to be
more sensitive to domain imbalances, the validation split is set to preserve domain distributions, i.e., using
constraints (3).

All feature extractors are finetuned on the entirety of S before the features are computed for the clustering,
regardless of pretraining. Experiments are conducted using the DomainBed framework (Gulrajani & Lopez-
Paz, 2021). This means all-but-one of the domains are placed in the development set, and the remaining
“evaluation" domain is randomly split into a UDA set (for adaptation, unused for the DG experiments),
and an independent test set used to determine final accuracy values. Every domain is tested 3 times for
reproducibility, each time with a different random seed for model initialisation, hyperparameter search and
other stochastic variables. The reported accuracy values are averages over all domains and repeats. Further
training and hyperparameter search details are given in Appendix B; unless otherwise stated, the remaining
details all follow the Domainbed default options. The Gurobi Optimizer (Gurobi Optimization LLC, 2023)
is used to solve the LPs. In total, the experiments involve training 5,160 models, requiring around 100
GPU-days of computation.

2.1 Datasets

The datasets represent a range of domain shift problems encompassing both image and audio classification
tasks. In addition to the covariate shifts which occur across all datasets, the two ecological datasets (Hump-
backs and TerraIncognita) also contain significant conditional shifts due to the open-set and sometimes
annotator-dependent nature of wildlife monitoring data.
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Table 1: Average test domain accuracies for all datasets and model selection criteria.
DG experiments UDA experiments

Split type Camelyon17 Humpbacks SVIRO VLCS PACS TerraInc Raw
average

Normalised
average

Random 84.0 ± 1.0 76.4 ± 2.1 98.1 ± 0.2 70.7 ± 2.9 80.3 ± 0.3 38.7 ± 2.9 74.7 ± 0.8 0.0 ± 11.8
Leave-one-domain-out 85.6 ± 1.0 77.3 ± 1.7 98.6 ± 0.0 71.3 ± 3.5 83.7 ± 0.6 37.3 ± 2.5 75.6 ± 0.8 28.2 ± 11.7

Linear k-means 87.2 ± 0.2 78.0 ± 1.8 98.4 ± 0.0 76.9 ± 0.1 82.7 ± 0.2 43.0 ± 2.0 77.7 ± 0.5 55.2 ± 5.9
RBF kernel k-means 87.3 ± 0.7 78.3 ± 0.6 98.6 ± 0.2 75.2 ± 0.8 82.3 ± 0.8 40.1 ± 2.1 77.0 ± 0.4 46.9 ± 7.6

Mix-up 85.1 ± 0.4 76.1 ± 1.2 98.2 ± 0.1 73.8 ± 1.7 80.5 ± 0.6 37.3 ± 2.9 75.2 ± 0.6 10.4 ± 8.9
Oracle 88.3 ± 0.6 85.4 ± 1.5 99.1 ± 0.1 77.6 ± 0.5 84.4 ± 0.4 45.8 ± 1.0 80.1 ± 0.3 100.0 ± 5.1

With the exception of Camelyon17, the datasets are all small enough that the entire kernel matrix can be
computed. So, Camelyon17 is the only dataset for which the Nyström method is applied.

Camelyon17-WILDS (Bándi et al., 2019; Koh et al., 2021) tumour detection in tissue samples across 5
hospitals, 2 classes and 455,954 samples. In keeping with the WILDS setup, the model in this case is trained
from scratch rather than using pretrained weights. However, note that these results still cannot be compared
directly with results from WILDS, as the DomainBed setup does not match exactly. License: CC0.

Humpbacks (Napoli & White, 2023) detection of humpback whale vocalisations across 4 recording locations,
2 classes and 43,385 samples. This is the only dataset not to use the ResNet-18 architecture, and instead
uses a custom CNN architecture and acoustic front-end described in Appendix B. License: Proprietary.

SVIRO (Dias Da Cruz et al., 2020) classification of vehicle rear seat occupancy across 10 car models, 7
classes and a balanced subset of 24,500 samples of the original dataset. License: CC BY-NC-SA 4.0.

VLCS (Fang et al., 2013) object classification across 4 image datasets, 5 classes and 10,729 samples. License:
unknown.

PACS (Li et al., 2017) object classification across 4 image styles (photos, art, cartoons, and sketches), 7
classes and 9,991 samples. License: unknown.

Terra Incognita (Beery et al., 2018) classification of wild animals across 4 camera trap locations, 10 classes
and 24,788 samples. License: CDLA-Permissive 1.0.

2.2 Results

In total, 6 model selection methods are compared. These are: the random split; the leave-one-domain-
out split; the test domain (oracle) validation set; a random split followed by mix-up augmentation on the
validation set (Lu et al., 2023); and two variants of the cluster-based split described in Section 1, using a
linear kernel κ(x, y) = xT y (linear k-means); and a radial basis function (RBF) kernel κ(x, y) = e−γ∥x−y∥2

with bandwidth parameter γ = 1. The results are shown in Table 1, along with standard errors (the standard
errors are as computed by DomainBed, and capture variability in the overall experimental run, including
random seeds and across domains). In the following sections, a 95% confidence level is used when verifying
whether two values have a statistically significant difference, which corresponds to non-overlapping confidence
intervals of 1.96 times the standard error (assuming normally distributed errors).

The range of possible performance improvement differs by dataset, as determined by the gap between the
random split and oracle criterion; accuracy values should be considered relative to this scale when averaging
across datasets. Therefore, a column of average normalised values is also shown, where each dataset is shifted
and scaled to give the random split a value of 0 and the oracle a value of 100.

Where the validation set comprises multiple domains, model selection is based on average validation accuracy
across these domains, as is the DomainBed default. Results based on worst-domain accuracy are also shown
in Appendix C, providing an additional layer of distributional robustness with respect to the domain labels
(Sagawa et al., 2019). Overall, no significant difference in test accuracy is seen if worst-case validation
accuracy is used, although the standard error does increase. It is possible that the uncertainty set Q = DS

has too few degrees of freedom for DRO to confer any meaningful robustness in this case.
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Table 2: Ablation study on VLCS.
Kernel/

Split type Finetuning θF
Constraint

groups
Full/

Nyström kernel Accuracy (%)

Linear True g ∈ Y × D Nyström 76.4 ± 0.4
RBF True g ∈ Y × D Nyström 76.2 ± 0.6

Linear True g ∈ Y Full 72.4 ± 1.9
RBF True g ∈ Y Full 75.1 ± 0.9

Linear True g ∈ Y × D Full 76.9 ± 0.1
RBF True g ∈ Y × D Full 75.2 ± 0.8

Linear False g ∈ Y × D Full 75.6 ± 0.8
RBF False g ∈ Y × D Full 76.4 ± 0.5

Mix-up True N/A N/A 73.8 ± 1.7
Leave-one-domain-out True N/A N/A 71.3 ± 3.5

Random True N/A N/A 70.7 ± 2.9
Oracle True N/A N/A 77.6 ± 0.5

On average, the cluster-based splits provide a net absolute accuracy gain of around 3 percentage points
compared to the random split, and 2 percentage points gain compared to leave-one-domain out validation.
In relative terms, clustering is observed to close around 50% of the gap between the random split and oracle
criterion, compared to 28% for leave-one-domain-out validation and 10% for mix-up. Overall, performance
is slightly higher using the linear kernel than with the RBF kernel, although this is within margin of error.
It is possible that the latter may be improved by taking more care into choosing a suitable value for γ.

2.3 Ablation study on VLCS

An ablation study conducted on the VLCS dataset is shown in Table 2. This shows the effects of finetuning
the feature extractor before clustering, the Nyström approximation, and the different constraint sets (2) and
(3). For this dataset, use of the Nyström approximation, as well as additional finetuning of θF , are not
observed to have significant effects on test accuracy. For the linear kernel, clustering with constraints (2)
performs significantly lower than using constraints (3), however, for the RBF kernel, this difference is not
observed.

2.4 MMD analysis

As stated in Section 1, the motivation for cluster-based splits is the notion that increasing the MMD between
the training and validation sets increases test domain accuracy. To provide empirical support for this, these
two variables are plotted against each other in Figure 1, for each dataset. Again, the Nyström method is
used to estimate the MMD for the Camelyon17 dataset due to its size. Each subplot in Figure 1 shows a
different dataset, and each point in a subplot represents one of the 5 split types (not including the oracle).
The correlation coefficients and associated p-values are also shown. As only monotonic associations are being
tested for, Spearman’s rank correlation ρ is used.

The leave-one-domain-out method often produced large outlier values for the MMD, which can be seen in
Figure 1 for all datasets other than Camelyon17 and Humpbacks. The reason for these outliers is unclear.
Nonetheless, the correlation for all datasets, with the exception of PACS, is positive.

Even with only 5 datapoints, Camelyon17 gives by far the clearest indication of a logarithmic-style rela-
tionship between the MMD and test accuracy, possibly because the dataset is large enough that a low-noise
estimate of the MMD is possible. The results for this dataset are given in tabular form in Table 3, along with
an additional ablation study comparing the different clustering constraints (2) and (3). It can be seen that
the additional constraint on the clustering (i.e., taking g ∈ Y × D) reduces the optimised objective function
value (as would be expected), and this also corresponds to a reduction in test domain model accuracy.

The results for all datasets plotted on a single set of axes are shown in Figure 2. As the ranges of both
the accuracy and MMD values vary across datasets, these must be normalised in order to combine them.
The median-IQR method (where each dataset is scaled to have zero median and unit interquartile range,
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Figure 1: The MMD between the training and validation sets versus test domain accuracy, by dataset.

Table 3: The MMD between the training and validation sets versus test domain accuracy by split type for
Camelyon17.

Split type (Constraint) Accuracy (%) MMD ×1000

Random 84.0 ± 1.0 0.01 ± 0.0003
Mix-up 85.1 ± 0.4 5.4 ± 0.2

Leave-one-domain-out 85.6 ± 1.0 14.3 ± 0.8
Linear k-means (3) 86.5 ± 1.3 97.0 ± 6.2

RBF kernel k-means (3) 85.6 ± 1.3 183.1 ± 2.0
Linear k-means (2) 87.2 ± 0.2 108.3 ± 2.6

RBF kernel k-means (2) 87.3 ± 0.7 206.0 ± 3.4

on both axes) is used as this is the most robust to the large outliers mentioned. The MMDs are plotted on
a symmetrical log scale (Webber, 2013) to make the correlation more visually evident. The means for each
split type are also indicated.

Spearman’s ρ for the combined datasets is 0.63, indicating a strong positive correlation between the MMD and
test accuracy, whilst the p-value indicates with strong significance that a rank correlation exists. Furthermore,
Pearson’s r coefficient for the log-scaled data in Figure 2 is 0.61, with a p-value of 3.79×10−4. This p-value is
testing for the stronger hypothesis that the relationship between the two normalised variables is symmetrical-
logarithmic, and again is strongly indicative that this is the case.

The evidence in this section supports the proposition that the validation split should be attempting to
maximise the MMD between the training and validation sets, and that this is more effective than using the
same metadata-based splitting rule as the test split, as the leave-one-domain-out split intends to do.

2.5 Assessing the effect of the changing training distribution

As evidenced in (1), the use of non-random data splitting introduces a confounding variable to the exper-
iments: as both the training and validation distributions are dependent on the split, it is possible the test
accuracy is being influenced by the model training, as well as the validation. To support the claim that
cluster-based splitting results in more generalisable model selection, it is necessary to decouple the effects of
these interventions, and show that it is indeed the improved model validation, and not the training, that is
improving test accuracy.
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Figure 2: The MMD between the training and validation sets versus test domain accuracy, normalised by
dataset, and plotted on a single set of axes. The mean for each split type is indicated with an asterisk (∗).
Note there are 6 overlaying datapoints at the origin, corresponding to the medians of each dataset.

As non-random data splitting inherently changes the training distribution, the effect of the model selection
cannot be isolated from that of the training. However, the inverse – that is, varying the training distribution
by changing the split type, but keeping the validation set constant – can be achieved, if the oracle selection
criterion is used.

If the test accuracy remains constant across split types, this would be sufficient to verify the hypothesis
that the performance improvements are due to the model selection, without having to make any additional
assumptions. If the accuracy is lower than the random split, the hypothesis can still be confirmed (which
then implies the model selection is additionally compensating for this reduction), as long as the effects of
training and validation robustness on test accuracy are assumed to be additive (i.e., any interaction effects
are minor). If anything, the non-random splits would be expected to underperform, since coverage of the
overall data distribution by the training set is being reduced – and this would be expected to be detrimental
to generalisation power. The results are given in Table 4.

Table 4: Test accuracy using the oracle criterion, for training sets induced by the different split types.
DG experiments UDA experiments

Split type Camelyon17 Humpbacks SVIRO VLCS PACS TerraInc Average

Random 88.3 ± 0.6 85.4 ± 1.5 99.1 ± 0.1 77.6 ± 0.5 84.4 ± 0.4 45.8 ± 1.0 80.1 ± 0.3
Leave-one-domain-out 85.4 ± 0.4 82.1 ± 1.3 99.0 ± 0.1 73.8 ± 0.3 82.2 ± 0.5 38.9 ± 1.2 76.9 ± 0.3

Linear k-means 88.0 ± 0.3 85.4 ± 0.8 99.1 ± 0.1 77.0 ± 0.3 85.7 ± 0.3 47.1 ± 0.9 80.4 ± 0.2
RBF kernel k-means 88.6 ± 0.6 85.0 ± 0.7 99.2 ± 0.1 77.9 ± 0.5 85.7 ± 0.3 44.5 ± 0.6 80.2 ± 0.2

Mix-up 88.3 ± 0.6 85.6 ± 1.6 99.2 ± 0.1 77.3 ± 0.5 84.4 ± 0.5 44.6 ± 0.9 79.9 ± 0.3

These results show that performing a cluster-based split has no significant effect on the generalisation power
of a model when the hyperparameters are being chosen via the oracle criterion. Therefore, it can be concluded
that the performance improvements of cluster-based splitting seen in Table 1 come entirely from the model
selection, and not from the training. On the other hand, test accuracy for the leave-one-domain-out split
does significantly reduce. This finding may help to explain why metadata-based splits have been found to
underperform random splits in some works (Gulrajani & Lopez-Paz, 2021): the increased robustness of OOD
validation is not enough to counterbalance the reduced robustness of training on fewer domains.

2.6 Limitations

As with all robust optimisation, a “no free lunch" theorem (Wolpert & Macready, 1997) applies to model
selection as well: using a worst-case split loses the guarantee that the selected model will be optimal in
the nominal (ID) case. If no domain shift is expected, an ID validation set is clearly preferable; in general,
robust strategies may be inappropriate if the uncertainty is minimal, so the nature of the problem should

10
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be considered prior to choosing a methodology. Additionally, if unlabelled test domain data is available
at split time, this should also be factored in when choosing the validation set (e.g., using the method of
Napoli & White (2025)). However, this is not applicable if the hyperparameters need to be decided before
the test domain is accessible, e.g., for test-time adaptation, and our experiments show that the worst-case
split is still valid in the UDA case. The motivations and considerations for using worst-case optimisation
are discussed thoroughly in Sagawa et al. (2019). It is also noted that in the nominal case, the favourable
training distribution will be the dominating factor on test accuracy compared to the model selection, and so
sub-optimality of the selection method will be less of an issue.

Dataset and training algorithm choices for these experiments were biased towards combinations with larger
performance gaps between the random split and oracle criteria. This was necessary to properly validate the
method: it would be impossible to see any significant signs of improvement if the random split and oracle
criterion were within margin of error. Although this does inevitably limit the scope of the experiments, it
by no means invalidates the results: cluster-based splits do outperform random and metadata-based splits,
where such an improvement is possible.

As stated in Section 1, a major advantage of clustering-based validation split is that it is not dependent
on domain metadata. However, even with the domain constraint removed or with metadata-independent
training algorithms (e.g., ERM), the specific experimental setup in this paper precludes the ability to test
this method in truly metadata-free settings. Due to the fundamental design of the DomainBed framework,
domain metadata can still be leveraged (both implicitly and explicitly) through several avenues. For example,
models are still trained on domain-balanced minibatches of data, and validation accuracy is averaged over
the validation domains. The datasets themselves may also be unrealistically domain-balanced to begin with.
However, the authors believe that these influences are mild enough that the overall trends observed in these
experiments can reasonably be expected to hold in metadata-free settings as well.

The experiments would ideally be repeated across a range of model architectures to reflect the differences in
generalisation power of larger/newer models. However, it was necessary to restrict the experiments in this
paper to a single, smaller model (ResNet-18) due to the high computational costs involved in developing and
comparing model selection criteria.

3 Conclusion

This paper presented a method for model selection under domain shift, where the training-validation split is
performed using a constrained kernel k-means clustering algorithm. In addition to outperforming traditional
methods, this approach is grounded by an observed strong correlation between the MMD between the training
and validation sets, and test domain accuracy.

The algorithm is not parameter-free; future work could include a data-driven method for selecting these
parameters, for example with an additional layer of meta-tuning. The algorithm can also trivially be extended
to k-fold cross-validation by increasing the number of clusters. Prior knowledge could also be incorporated
into the feature extractor used for the clustering. For example, if it were known that the domain shift will be
related to image style, it might be more appropriate to cluster based on style features (Matsuura & Harada,
2020).
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A Derivation of equation (6)

Based on the law of total variance, a fundamental theorem in ANOVA is that the total sum of squares of a
set of points can be decomposed into the sum of squares within each cluster and the sum of squares of each
cluster centroid to the overall centroid (weighted by cluster size):

SSq(SX) = SSq(TX) + SSq(VX) + |TX | ∥µPT
− µPS

∥2
H + |VX | ∥µPV

− µPS
∥2

H .

Next, using the fact that
µPS

= |TX |µPT
+ |VX |µPV

|TX | + |VX |
,

we have

∥µPT
− µPS

∥2
H =
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− |TX |µPT

+ |VX |µPV

|TX | + |VX |

∥∥∥∥2

H

=
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(|TX | + |VX |) − |TX |µPT
− |VX |µPV

|TX | + |VX |

∥∥∥∥2

H

=
∥∥∥∥ |VX |(µPT

− µPV
)

|TX | + |VX |
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H

= |VX |2

(|TX | + |VX |)2 ∥µPT
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∥2
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Similarly,

∥µPV
− µPS

∥2
H = |TX |2

(|TX | + |VX |)2 ∥µPT
− µPV

∥2
H .

Substituting and simplifying:

SSq(SX) = SSq(TX) + SSq(VX) + |VX ||TX |2 + |TX ||VX |2

(|TX | + |VX |)2 ∥µPT
− µPV

∥2
H

= SSq(TX) + SSq(VX) + |TX ||VX |
|TX | + |VX |

∥µPT
− µPV

∥2
H .

Finally, rearranging:

∥µPT
− µPV

∥2
H = |TX | + |VX |

|TX ||VX |
(SSq(SX) − SSq(TX) − SSq(VX)),

as required.
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B Additional training and hyperparameter details

Table 5: General parameter values and training details for the experiments.
Experimental parameter Value

Hyperparameter random search size 10
Number of trials 3
Holdout fraction 0.2
UDA holdout fraction 0.5
Number of training steps 3000
Gaussian kernel bandwidth 1
Finetuning iterations before split 3000
Nyström subset size (if applicable) 2000
Architecture ResNet-18
Class balanced True

Table 6: Classification pipeline of the Humpbacks dataset. This follows the pipeline in (Napoli & White,
2023).

Step number Step detail
Acoustic front-end

1 Resample to 10 kHz
2 Mel-scale filter bank with 64 filters
3 Short-time Fourier transform with 100 ms FFT window, 50% overlap
4 Per-channel energy normalisation
5 Split into 3.92 s (128 pixel) analysis frames with 50% overlap

CNN
1 Conv2D (nodes=16, kernel=3x3, stride=2, activation=ReLU)
2 Conv2D (nodes=16, kernel=3x3, stride=2, activation=ReLU)
3 Conv2D (nodes=16, kernel=3x3, stride=2, activation=ReLU)
4 Conv2D (nodes=16, kernel=3x3, stride=2, activation=ReLU)
5 Global average-pooling 2D
6 Fully-connected layer

C Worst-case accuracy validation

Table 7: Model selection using validation accuracy of the worst performing domain. Note that this does not
apply to the leave-one-domain-out and oracle criteria, so these values are unchanged from Table 1.

DG experiments UDA experiments

Split type Camelyon17 Humpbacks SVIRO VLCS PACS TerraInc Raw
average

Normalised
average

Random 83.2 ± 1.6 76.7 ± 3.1 98.2 ± 0.2 69.7 ± 3.0 81.8 ± 0.9 40.2 ± 1.9 75.0 ± 0.8 0.0 ± 13.5
Leave-one-domain-out 85.6 ± 1.0 77.3 ± 1.7 98.6 ± 0.0 71.3 ± 3.5 83.7 ± 0.6 37.3 ± 2.5 75.6 ± 0.8 23.3 ± 12.1

Linear k-means 87.1 ± 0.2 77.8 ± 1.6 98.6 ± 0.1 73.7 ± 2.0 83.8 ± 0.6 42.3 ± 1.9 77.2 ± 0.5 49.8 ± 8.8
RBF kernel k-means 87.5 ± 0.7 78.2 ± 0.6 98.5 ± 0.2 76.8 ± 0.6 83.9 ± 1.0 38.8 ± 2.5 77.3 ± 0.5 46.8 ± 10.9

Mix-up 83.9 ± 0.8 76.9 ± 1.5 98.4 ± 0.2 72.9 ± 1.5 81.0 ± 0.5 38.3 ± 2.7 75.2 ± 0.6 2.3 ± 10.7
Oracle 88.3 ± 0.6 85.4 ± 1.5 99.1 ± 0.1 77.6 ± 0.5 84.4 ± 0.4 45.8 ± 1.0 80.1 ± 0.3 100.0 ± 5.7
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