
Evaluating Worst Case Adversarial Weather
Perturbations Robustness

Yihan Wang
UCLA

wangyihan617@gmail.com

Yunhao Ba
UCLA

yhba@ucla.edu

Howard Zhang
UCLA

hwdz15508@g.ucla.edu

Huan Zhang
CMU

huan@huan-zhang.com

Achuta Kadambi
UCLA

achuta@ee.ucla.edu

Stefano Soatto
UCLA

soatto@ucla.edu

Alex Wong
Yale

alex.wong@yale.edu

Cho-Jui Hsieh
UCLA

chohsieh@cs.ucla.edu

Abstract

Several algorithms are proposed to improve the robustness of deep neural networks
against adversarial perturbations beyond ℓp cases, i.e. weather perturbations. How-
ever, evaluations of existing robust training algorithms are over-optimistic. This is
in part due to the lack of a standardized evaluation protocol across various robust
training algorithms, leading to ad-hoc methods that test robustness on either random
perturbations or the adversarial samples from generative models that are used for
robust training, which is either uninformative of the worst case, or is heavily biased.
In this paper, we identify such evaluation bias in these existing works and propose
the first standardized and fair evaluation that compares various robust training
algorithms by using physics simulators for common adverse weather effects i.e.
rain and snow. With this framework, we evaluated several existing robust training
algorithms on two streetview classification datasets (BIC_GSV, Places365) and
show the evaluation bias in experiments.

1 Introduction

Adversarial robustness of machine learning models has become an important topic in recent years.
For safety-critical applications such as autonomous driving and healthcare systems, it is important to
ensure the robustness of models before deploying them into the real world. Most of previous works
on adversarial robustness focus on the simplified ℓp norm threat model where the worst perturbation
is defined within a small ℓp ball (Madry et al., 2018; Goodfellow et al., 2015). This simplified
assumption ensures the perturbation is imperceptible and makes it easier to design attack and defense
algorithms. However, in practice there are many other semantic-preserved or natural perturbations
that are not ℓp norm bounded and difficult to be mathematically defined, such as adversarial shadows
(Zhong et al., 2022), adversarial rains (Zhai et al., 2020), and physical adversarial T-shirts (Xu et al.,
2020). Since collecting real-world adversarial examples is infeasible, a natural solution to improve
the natural adversarial robustness is through learning a perturbation set that introduces weather
effects such as rain or snow into the original clean images, and then conduct adversarial training
with the ℓp ball constraint replaced by the general perturbation set (Wong & Kolter, 2020; Robey
et al., 2020). However, the lack of natural adversarial examples also makes evaluating the robustness
of such a perturbation set with real images impossible. To bypass this difficulty, Wong & Kolter
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(2020) reuses the pretrained generative model to produce adversarial examples, which is also used in
adversarial training. In addition, Robey et al. (2020) deploys out-of-distribution (OOD) perturbations
in evaluation, which limits the exploration in the perturbation space. The ad-hoc nature of these
evaluations makes it difficult to compare existing robust training algorithms. This stems from a lack
of a standardized and fair evaluation protocol for natural robust training algorithms, where current
evaluation methods potentially lead to unreliable robustness metrics.

To address the above issue, we propose an evaluation framework for robust training algorithms
based on physics-based weather simulators. The framework is designed in a differentiable manner to
enable the generation of worst-case adversarial examples during evaluation. The adversarial examples
generated by physical simulators can give a fair evaluation by using independent random simulators
both in training and evaluation. In experiments, we show that several existing models are robust to
the perturbations from their own generative models as expected, but are not robust to our adversarial
attacks based on physical simulators.

Our main contributions are summarized as follows:

• We propose the first standard protocol for evaluating robust training algorithms for machine
learning models against weather perturbations. We do so by leveraging physics-based
simulators to model adverse weather effects – yielding fair comparisons between algorithms
for learning perturbation sets beyond ℓp norm and robust training.

• We demonstrate that existing robust training methods are over-optimistic in their claims due
to their ad-hoc evaluations, which are either uninformative of worst case perturbations or
favorable towards the particular training algorithm.

2 Background

We consider the robust training problem where we are given a clean dataset and a perturbed dataset,
which is normally the case when we want to train a model robust against natural perturbations where
the perturbation set is difficult to be defined mathematically. For example, we can collect a dataset of
sunny images (x0,x1, ...,xn) and a dataset of rainy i.e. perturbed images (x′

0,x
′
1, ...,x

′
m). Here the

clean dataset is sampled from the clean distribution x ∈ Rd ∼ p(x). Each perturbed example x′ in
the perturbed dataset is corresponding to a clean image x and x′ = g(x, z) where z is the feature
vector for this perturbation and g is the perturbation function. In this work, we focus on rain and snow
perturbations where we can write the perturbation function as x′ = g(x, z) = x+ δ = x+ g′(x, z).
Here g′ is the function that generates the perturbation mask δ from the perturbation feature z. Here z
can be limited within a pre-defined perturbation set z ∈ ∆ which limits the perturbation δ from being
too strong to alter the semantic meaning of the clean image x.

A classifier trained with a (robust) training algorithm fθ(x) : Rd → C parameterized by θ is
considered as safe for an example x if we cannot find an adversarial example with an adversarial
attack algorithm. In adversarial attack, we find the worst-case examples:

x̂ = argmax
z∈∆

l(fθ(x
′), y). (1)

Here l(·, y) is the standard cross entropy loss where y is the ground-truth label.

If fθ(x̂) = y, fθ is safe for x under adversarial attack. In this work, we evaluate the robustness of a
given model fθ by evaluating the percentage of safe examples in the test set.

3 Evaluation Framework for Robust Training Algorithms

In this section, we describe our evaluation framework for robust training algorithms. We illustrate
the overview of this framework in Figure 1. Given a robust training algorithm, we run the algorithm
with the same datasets generated by our framework and then evaluate the result robust model with the
same environment.

Differentiable physics-based weather simulator: The key module of this framework is the
differentiable simulation engine which enables us to apply adversarial attacks directly to evaluate the
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Figure 1: An overview of our proposed evaluation framework.

robustness of downstream models without the need for ad-hoc generative models used by previous
works (Wong & Kolter, 2020; Robey et al., 2020).

The simulator generates weather perturbations in a two-stage process: (1) particles rendering, and (2)
particles aggregation.

Falling particles like rain drops and snowflakes are rendered according to physical parameters such
as particle size, scene illumination, and camera settings. For rain drops, we follow Garg & Nayar
(2006). For snowflakes, we generate each snowflake from a Gaussian noise image and control the
size, shape, and direction with threshold, standard deviation, and a motion blur, respectively. These
diverse rain drops and snowflakes are pre-generated with random parameters and stored in a database.

At the second stage, we randomly sample N particles from the particle database and aggregate them
to form a weather mask. To make it differentiable, each particle image denoted by si is parameterized
by a translation matrix Ti and a rotation matrix Ri. We can generate a weather effect mask with N
particles via:

o =

N−1∑
i=0

siRiTi. (2)

Then the mask can be merged with the clean image to produce a perturbed image x′ = o+ x(1− o)
where x is the clean image. This differentiable aggregation enables us to generate adversarial
examples directly in the simulator:

R∗
i ,T

∗
i = argmax

Ri,Ti

l(f(x′), y),

where Ri and Ti are constrained in some given perturbation set. The constrained maximization
problem can be solved with PGD attack (Madry et al., 2018). We call the adversarial attack with our
differentiable simulator as simulation attack.

Evaluation framework: To evaluate robust training algorithms, we have a clean dataset which is
the same for all training algorithms. Then we use the simulator described earlier to generate a random
perturbed dataset with random transformation and rotation matrix. The clean and perturbed datasets
are then fed into the training algorithm, where potentially the training algorithm includes a module to
learn perturbation set and then conduct adversarial training within this learned perturbation set. After
obtaining the trained robust model, we use the differentiable simulator to evaluate the adversarial
natural robustness of this model with adversarial attack on the simulation parameters Ri and Ti.

4 Experiments

In this section, we evaluate some existing robust training algorithms with our proposed evaluation
framework and compare the results with their own evaluations. We will show that evaluations in
existing work have bias which prefers the models trained with its own generative models.
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Table 1: Ranks and robust error (R.E.) of different training methods under different evaluations for
BIC_GSV (Kang et al., 2018) with rainy effects. Method with the lowest robust error is ranked as
1. “Random” is evaluated with randomly generated perturbed images, VRGNet (Wang et al., 2021),
CVAE (Wong & Kolter, 2020) and MUNIT (Robey et al., 2020) are evaluated with adversarial attack
based on different generators and “Attack” is evaluated with simulation attack.

Training methods Random VRGNet CVAE MUNIT Attack
Rank R.E. Rank R.E. Rank R.E. Rank R.E. Rank R.E.

Clean Training 4 0.6424 5 0.7634 5 0.4893 5 0.8027 5 0.6890
Augmented Training 3 0.4815 3 0.5656 2 0.4592 3 0.5928 3 0.5136

VRGNet AT (Wang et al., 2021) 1 0.4587 1 0.4767 3 0.4742 1 0.5063 1 0.4665
CVAE AT (Wong & Kolter, 2020) 5 0.6113 4 0.7498 3 0.4742 4 0.7430 4 0.6477
MUNIT AT (Robey et al., 2020) 2 0.4728 2 0.5228 1 0.4397 1 0.5063 2 0.4893

4.1 Settings

Datasets: In our experiments, we choose two streetview classification datasets which are suitable
for weather effects. The BIC_GSV (Kang et al., 2018) dataset contains streetview figures extracted
from Google StreetView labeled as 8 classes. Another dataset is the commonly used Places365
dataset (Zhou et al., 2017) for scene recognition which includes 365 scene categories. We picked a
subset with 7 outdoor scenes from Places365 as the dataset used in our experiments. We also picked
another 4 classes for our unpaired dataset. A list of categories chosen in the subset can be found in
the Appendix. For training the unpaired generator models, we generate the perturbed dataset from
4 additional classes for Places dataset. In all of our experiments, the input images are resized to
256× 256 pixels. The number of particles in simulation is set to be 2,000.

Robust training algorithm baselines: We include three robust training algorithms in our evaluation
experiments. VRGNet (Wang et al., 2021) proposes a Bayesian weather generation model to generate
rain/snow masks with an input latent code which can be used in adversarial training by attacking the
latent code. Robey et al. (2020) implements MUNIT (Huang et al., 2018) as the generator model
which maps clean images to naturally perturbed images with a latent code which can also be used
in adversarial training. For experiments related to MUNIT, we implemented a modified version of
MUNIT for weather perturbations. The architecture of MUNIT used in our experiments can be found
in the Appendix. Wong & Kolter (2020) learns the perturbation set with a CVAE model conditioned
on a latent code. Both VRGNet and CVAE require paired datasets and MUNIT supports unpaired
datasets. The three generators can then be used in adversarial training to train robust downstream
models. Details of training settings can be found in the Appendix.

4.2 Evaluation Results

We evaluate and compare the robust error of five models trained with different methods under the five
evaluations for BIC_GSV (Kang et al., 2018) under rain perturbations. Clean training is trained with
only the clean dataset. Augmented Training is augmented with randomly perturbed images from the
simulator. For the five different evaluation methods, we use 10-step PGD attack in all methods that
requires adversarial attack. In Table 1, we list the ranks of different training methods under different
evaluations where the model with the lowest robust error is ranked as 1. We also report the exact
numbers in evaluation.

As illustrated in Table 1, if we train and test a model using the same generator, the model can overfit
the perturbation set defined by the generator during training. For example, when evaluating the model
with adversarial attacks using VRGNet or MUNIT, the model trained with the corresponding AT
has the best adversarial robust accuracy. This result validates our motivation to propose a standard
evaluation protocol for robust training algorithms.

5 Conclusion

In the paper, we propose the first standard evaluation protocol for robust training algorithms under
perturbation sets beyond ℓp. This addresses a gap in the community as evaluations were previously
performed using ad-hoc generative models that were also used by the robust training algorithms,
which can lead to unreliable evaluation.
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A Appendix

A.1 Related Work

Adversarial robustness of beyond ℓp robustness: Neural Networks are shown to be vulnerable
to perturbations that are imperceptible to humans. Several papers (Biggio et al., 2013; Carlini
& Wagner, 2017; Goodfellow et al., 2015) have shown that neural networks can be attacked by
small perturbations bounded by ℓ1, ℓ2, ℓp balls. For instance, Szegedy et al. (2014) shows that such
perturbations can alter the output of a classification network. Goodfellow et al. (2015) introduces the
fast gradient sign method (FGSM). Dong et al. (2018); Kurakin et al. (2016); Madry et al. (2018)
extend FGSM to iterative optimization to boost its performance. Moosavi-Dezfooli et al. (2016) finds
the minimal perturbation to alter the predicted class while Madry et al. (2018) proposed projected
gradient descent (PGD) to find the worst-case perturbations.

Beyond ℓp robustness, some recent papers extend the perturbation sets to settings that can preserve
semantic meaning. Some can be well-defined mathematically such as Wasserstein robustness (Wong
et al., 2019), distributional shifts (Sinha et al., 2017; Sagawa et al., 2019) and word substitution
(Jia et al., 2019) in texts. Others can not be well-defined but perturbed datasets can be generated or
collected, like adversarial shadows (Zhong et al., 2022), adversarial rains (Zhai et al., 2020) and some
physical adversarial perturbations (Duan et al., 2020, 2021; Li et al., 2019a; Xu et al., 2020).

Robust training algorithms for natural robustness: For general natural robustness settings, attack
methods like PGD (Madry et al., 2018) and FGSM (Goodfellow et al., 2015) cannot be directly
applied whithin the perturbation set. Some works use generative adversarial networks (GANs) to learn
the perturbation set and then generate adversarial examples during adversarial training (Xiao et al.,
2018; Wong & Kolter, 2020; Robey et al., 2020). Another line of work uses random perturbations
to improve the out-of-distribution robustness (Hendrycks et al., 2021, 2019; Calian et al., 2021).
However, these solutions cannot bypass the lack of natural adversarial examples in evaluation. Wong
& Kolter (2020) reuses the learned generators to generate adversarial examples, where the learned
generators is not guaranteed to match the perturbation set under the worst-case perturbations, and
evaluating and training the models with the same generative model can leads to fake robustness
in evaluation. Robey et al. (2020) uses out-of-distribution (OOD) perturbations, which limits the
exploration in perturbation space.

Weather simulation: The appearance of falling particles in rain and snow are highly complicated
and can be affected by multiple factors, such as the particle properties, camera configurations, and
environmental illumination (Garg & Nayar, 2007; Barnum et al., 2010). Copious amounts of research
has been conducted to simulate the weather dynamics based on different principles, including raindrop
oscillation models (Garg & Nayar, 2006; Li et al., 2016), frequency domain analysis (Barnum et al.,
2010; Weber et al., 2015), and depth dependent formulations (Hu et al., 2019; Li et al., 2019b; Halder
et al., 2019; Von Bernuth et al., 2019; Tremblay et al., 2021). More recently, several data-driven deep
learning techniques have also been developed for weather effect simulation (Shen et al., 2019; Pizzati
et al., 2020a,b; Wang et al., 2021; Wei et al., 2021). Other than these, the community also resorts
to some existing image editing software (e.g. PhotoShop) for weather simulation (Liu et al., 2018;
Zhang & Patel, 2018; Zhang et al., 2019; Chen et al., 2020, 2021).

A.2 Experiment Details

Datasets For Places dataset, we picked 7 categories from the 365 categories in Places365 Zhou et al.
(2017) dataset as the training and test datasets for classifier training, including: apartment_building-
outdoor, church-outdoor, garage-outdoor, general_store-outdoor, house, library-outdoor and of-
fice_building. For generator training which supports unpaired dataset, we picked 4 additional
categories to generate the perturbed dataset, which includes art_gallery, entrance_hall, golf_course
and yard.

Classifier architectures We use ResNet34 He et al. (2016) as our classifier architecture. In our
classifier training, we initialize the Resnet34 classifier with pretrained weights on Imagenet provided
by cnn_finetune1 and the final linear layer is randomly initialized.

1https://github.com/creafz/pytorch-cnn-finetune
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(a) Clean (b) Random (c) Adversarial (d) Difference

Figure 2: Examples for random simulation and simulation attack for rainy effects. (a) is the original
clean image sampled from BIC_GSV Kang et al. (2018) dataset.; (b) is produced by random rain
simulation; (c) is an adversarial example for a ResNet34 classifier pretrained with clean training; (d)
is the difference between (b) and (c).

Generator architectures We implement MUNIT based on pytorch-CycleGAN-and-pix2pix.2
We denote a convolutional layer with padding 1, k 4 × 4 filters and stride s as Ck-s. Then the
discriminators can be represented as C64-2 C128-2 C256-2 C512-2 C512-1 C1-1.

For the generators, we let x-Rk denote x ResNet blocks, each of which contains two 3×3 convolutional
blocks with k filters, TCk denote a transpose convolutional block with k filters of size 3, stride 2,
padding 1, output padding 1, SCk denote a convolutional block with k filters of size 3, stride 2,
padding 1 and Ck denote a convolutional block with k filters of size 7 and padding 0. Then the
mask generator can be represented as 9-R256 TC256 TC256 C3. The generator from perturbed
image to clean image can be represented as C64 SC128 SC256 9-R256 TC256 TC256 C3. In our
MUNIT implementation, we insert the latent code by concatenating into the hidden layer of the
generator from clean images to perturbed images. The generator from clean image to perturbed
image can be represented as C64 SC128 SC256 9-R257 TC257 TC257 C3 where the latent code
which is transformed by a full-connected layer is concatenated with the output of SC256. For our
model and MUNIT, we also have a simple convolutional neural network to reconstruct the latent code
which takes the output of 9-R256 as the input. The architecture can be represented C16 C32 C64
L128 L128 where Ck is a convolutional layer with k 4× 4 filters, stride 2 and padding 1 and Lk is a
fully-connected layer with output dimension k.

For VRGNet and CVAE, we run the code provided by authors and we scale the architectures defined
in the VRGNet code to fit the image size in our dataset where the input is randomly cropped to
224× 224 in training. The weather mask generator architecture in VRGNet is L12544 TC128-4-2-1
TC64-4-2-1 TC32-4-2-1 TC3-8-4-2 and the encoder architecure is C32-8-4-2 C64-4-2-1 C128-4-2-1
C256-4-2-1 L256 where Lk is a fully-connected layer with output dimension k and TCk-f-s-p and
Ck-f-s-p are a transposed convolutional and convolutional layers with k filters of size f, stride s and
padding p.

Training settings for baseline robust training algorithms The number of dimensions for the
latent code in VRGNet, MUNIT is set at 128. MUNIT is trained with a learning rate of 2e-4 for 5
epochs. For VRGNet, we ran the code provided by the authors for 100 epochs on our datasets with
default hyper-parameters. For the CVAE model, we ran the code provided by the authors with the
same configuration as the Multi-illumination dataset. For VRGNet and CVAE, we scaled the encoder
and decoder to fit the image size in our datasets. Details of the architectures are listed in the Appendix.
For all adversarial training, we set batch size to 8 and learning rate to 5e-5. After obtaining these
trained generators, we use them to train a ResNet34 classifier with adversarial training.

Examples of simulated adversarial examples In Figure 2, we show examples generated by our
simulator and simulation attack. We can see that the our adversarial examples are of the similar
quality as the random ones.

2https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
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